1 /*
2 * RFC 1321 compliant MD5 implementation
3 *
4 * Based on XySSL: Copyright (C) 2006-2008 Christophe Devine
5 *
6 * Copyright (C) 2009 Paul Bakker <polarssl_maintainer at polarssl dot org>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the names of PolarSSL or XySSL nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * The MD5 algorithm was designed by Ron Rivest in 1991.
37 *
38 * http://www.ietf.org/rfc/rfc1321.txt
39 */
40
41 #include "netif/ppp/ppp_opts.h"
42 #if PPP_SUPPORT && LWIP_INCLUDED_POLARSSL_MD5
43
44 #include "netif/ppp/polarssl/md5.h"
45
46 #include <string.h>
47
48 /*
49 * 32-bit integer manipulation macros (little endian)
50 */
51 #ifndef GET_ULONG_LE
52 #define GET_ULONG_LE(n,b,i) \
53 { \
54 (n) = ( (unsigned long) (b)[(i) ] ) \
55 | ( (unsigned long) (b)[(i) + 1] << 8 ) \
56 | ( (unsigned long) (b)[(i) + 2] << 16 ) \
57 | ( (unsigned long) (b)[(i) + 3] << 24 ); \
58 }
59 #endif
60
61 #ifndef PUT_ULONG_LE
62 #define PUT_ULONG_LE(n,b,i) \
63 { \
64 (b)[(i) ] = (unsigned char) ( (n) ); \
65 (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
66 (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
67 (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
68 }
69 #endif
70
71 /*
72 * MD5 context setup
73 */
md5_starts(md5_context * ctx)74 void md5_starts( md5_context *ctx )
75 {
76 ctx->total[0] = 0;
77 ctx->total[1] = 0;
78
79 ctx->state[0] = 0x67452301;
80 ctx->state[1] = 0xEFCDAB89;
81 ctx->state[2] = 0x98BADCFE;
82 ctx->state[3] = 0x10325476;
83 }
84
md5_process(md5_context * ctx,const unsigned char data[64])85 static void md5_process( md5_context *ctx, const unsigned char data[64] )
86 {
87 unsigned long X[16], A, B, C, D;
88
89 GET_ULONG_LE( X[ 0], data, 0 );
90 GET_ULONG_LE( X[ 1], data, 4 );
91 GET_ULONG_LE( X[ 2], data, 8 );
92 GET_ULONG_LE( X[ 3], data, 12 );
93 GET_ULONG_LE( X[ 4], data, 16 );
94 GET_ULONG_LE( X[ 5], data, 20 );
95 GET_ULONG_LE( X[ 6], data, 24 );
96 GET_ULONG_LE( X[ 7], data, 28 );
97 GET_ULONG_LE( X[ 8], data, 32 );
98 GET_ULONG_LE( X[ 9], data, 36 );
99 GET_ULONG_LE( X[10], data, 40 );
100 GET_ULONG_LE( X[11], data, 44 );
101 GET_ULONG_LE( X[12], data, 48 );
102 GET_ULONG_LE( X[13], data, 52 );
103 GET_ULONG_LE( X[14], data, 56 );
104 GET_ULONG_LE( X[15], data, 60 );
105
106 #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
107
108 #define P(a,b,c,d,k,s,t) \
109 { \
110 a += F(b,c,d) + X[k] + t; a = S(a,s) + b; \
111 }
112
113 A = ctx->state[0];
114 B = ctx->state[1];
115 C = ctx->state[2];
116 D = ctx->state[3];
117
118 #define F(x,y,z) (z ^ (x & (y ^ z)))
119
120 P( A, B, C, D, 0, 7, 0xD76AA478 );
121 P( D, A, B, C, 1, 12, 0xE8C7B756 );
122 P( C, D, A, B, 2, 17, 0x242070DB );
123 P( B, C, D, A, 3, 22, 0xC1BDCEEE );
124 P( A, B, C, D, 4, 7, 0xF57C0FAF );
125 P( D, A, B, C, 5, 12, 0x4787C62A );
126 P( C, D, A, B, 6, 17, 0xA8304613 );
127 P( B, C, D, A, 7, 22, 0xFD469501 );
128 P( A, B, C, D, 8, 7, 0x698098D8 );
129 P( D, A, B, C, 9, 12, 0x8B44F7AF );
130 P( C, D, A, B, 10, 17, 0xFFFF5BB1 );
131 P( B, C, D, A, 11, 22, 0x895CD7BE );
132 P( A, B, C, D, 12, 7, 0x6B901122 );
133 P( D, A, B, C, 13, 12, 0xFD987193 );
134 P( C, D, A, B, 14, 17, 0xA679438E );
135 P( B, C, D, A, 15, 22, 0x49B40821 );
136
137 #undef F
138
139 #define F(x,y,z) (y ^ (z & (x ^ y)))
140
141 P( A, B, C, D, 1, 5, 0xF61E2562 );
142 P( D, A, B, C, 6, 9, 0xC040B340 );
143 P( C, D, A, B, 11, 14, 0x265E5A51 );
144 P( B, C, D, A, 0, 20, 0xE9B6C7AA );
145 P( A, B, C, D, 5, 5, 0xD62F105D );
146 P( D, A, B, C, 10, 9, 0x02441453 );
147 P( C, D, A, B, 15, 14, 0xD8A1E681 );
148 P( B, C, D, A, 4, 20, 0xE7D3FBC8 );
149 P( A, B, C, D, 9, 5, 0x21E1CDE6 );
150 P( D, A, B, C, 14, 9, 0xC33707D6 );
151 P( C, D, A, B, 3, 14, 0xF4D50D87 );
152 P( B, C, D, A, 8, 20, 0x455A14ED );
153 P( A, B, C, D, 13, 5, 0xA9E3E905 );
154 P( D, A, B, C, 2, 9, 0xFCEFA3F8 );
155 P( C, D, A, B, 7, 14, 0x676F02D9 );
156 P( B, C, D, A, 12, 20, 0x8D2A4C8A );
157
158 #undef F
159
160 #define F(x,y,z) (x ^ y ^ z)
161
162 P( A, B, C, D, 5, 4, 0xFFFA3942 );
163 P( D, A, B, C, 8, 11, 0x8771F681 );
164 P( C, D, A, B, 11, 16, 0x6D9D6122 );
165 P( B, C, D, A, 14, 23, 0xFDE5380C );
166 P( A, B, C, D, 1, 4, 0xA4BEEA44 );
167 P( D, A, B, C, 4, 11, 0x4BDECFA9 );
168 P( C, D, A, B, 7, 16, 0xF6BB4B60 );
169 P( B, C, D, A, 10, 23, 0xBEBFBC70 );
170 P( A, B, C, D, 13, 4, 0x289B7EC6 );
171 P( D, A, B, C, 0, 11, 0xEAA127FA );
172 P( C, D, A, B, 3, 16, 0xD4EF3085 );
173 P( B, C, D, A, 6, 23, 0x04881D05 );
174 P( A, B, C, D, 9, 4, 0xD9D4D039 );
175 P( D, A, B, C, 12, 11, 0xE6DB99E5 );
176 P( C, D, A, B, 15, 16, 0x1FA27CF8 );
177 P( B, C, D, A, 2, 23, 0xC4AC5665 );
178
179 #undef F
180
181 #define F(x,y,z) (y ^ (x | ~z))
182
183 P( A, B, C, D, 0, 6, 0xF4292244 );
184 P( D, A, B, C, 7, 10, 0x432AFF97 );
185 P( C, D, A, B, 14, 15, 0xAB9423A7 );
186 P( B, C, D, A, 5, 21, 0xFC93A039 );
187 P( A, B, C, D, 12, 6, 0x655B59C3 );
188 P( D, A, B, C, 3, 10, 0x8F0CCC92 );
189 P( C, D, A, B, 10, 15, 0xFFEFF47D );
190 P( B, C, D, A, 1, 21, 0x85845DD1 );
191 P( A, B, C, D, 8, 6, 0x6FA87E4F );
192 P( D, A, B, C, 15, 10, 0xFE2CE6E0 );
193 P( C, D, A, B, 6, 15, 0xA3014314 );
194 P( B, C, D, A, 13, 21, 0x4E0811A1 );
195 P( A, B, C, D, 4, 6, 0xF7537E82 );
196 P( D, A, B, C, 11, 10, 0xBD3AF235 );
197 P( C, D, A, B, 2, 15, 0x2AD7D2BB );
198 P( B, C, D, A, 9, 21, 0xEB86D391 );
199
200 #undef F
201
202 ctx->state[0] += A;
203 ctx->state[1] += B;
204 ctx->state[2] += C;
205 ctx->state[3] += D;
206 }
207
208 /*
209 * MD5 process buffer
210 */
md5_update(md5_context * ctx,const unsigned char * input,int ilen)211 void md5_update( md5_context *ctx, const unsigned char *input, int ilen )
212 {
213 int fill;
214 unsigned long left;
215
216 if( ilen <= 0 )
217 return;
218
219 left = ctx->total[0] & 0x3F;
220 fill = 64 - left;
221
222 ctx->total[0] += ilen;
223 ctx->total[0] &= 0xFFFFFFFF;
224
225 if( ctx->total[0] < (unsigned long) ilen )
226 ctx->total[1]++;
227
228 if( left && ilen >= fill )
229 {
230 MEMCPY( (void *) (ctx->buffer + left),
231 input, fill );
232 md5_process( ctx, ctx->buffer );
233 input += fill;
234 ilen -= fill;
235 left = 0;
236 }
237
238 while( ilen >= 64 )
239 {
240 md5_process( ctx, input );
241 input += 64;
242 ilen -= 64;
243 }
244
245 if( ilen > 0 )
246 {
247 MEMCPY( (void *) (ctx->buffer + left),
248 input, ilen );
249 }
250 }
251
252 static const unsigned char md5_padding[64] =
253 {
254 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
255 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
256 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
258 };
259
260 /*
261 * MD5 final digest
262 */
md5_finish(md5_context * ctx,unsigned char output[16])263 void md5_finish( md5_context *ctx, unsigned char output[16] )
264 {
265 unsigned long last, padn;
266 unsigned long high, low;
267 unsigned char msglen[8];
268
269 high = ( ctx->total[0] >> 29 )
270 | ( ctx->total[1] << 3 );
271 low = ( ctx->total[0] << 3 );
272
273 PUT_ULONG_LE( low, msglen, 0 );
274 PUT_ULONG_LE( high, msglen, 4 );
275
276 last = ctx->total[0] & 0x3F;
277 padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
278
279 md5_update( ctx, md5_padding, padn );
280 md5_update( ctx, msglen, 8 );
281
282 PUT_ULONG_LE( ctx->state[0], output, 0 );
283 PUT_ULONG_LE( ctx->state[1], output, 4 );
284 PUT_ULONG_LE( ctx->state[2], output, 8 );
285 PUT_ULONG_LE( ctx->state[3], output, 12 );
286 }
287
288 /*
289 * output = MD5( input buffer )
290 */
md5(unsigned char * input,int ilen,unsigned char output[16])291 void md5( unsigned char *input, int ilen, unsigned char output[16] )
292 {
293 md5_context ctx;
294
295 md5_starts( &ctx );
296 md5_update( &ctx, input, ilen );
297 md5_finish( &ctx, output );
298 }
299
300 #endif /* PPP_SUPPORT && LWIP_INCLUDED_POLARSSL_MD5 */
301