1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_cfg.h"
31 #include "util/set.h"
32 #include "util/register_allocate.h"
33
34 using namespace brw;
35
36 static void
assign_reg(unsigned * reg_hw_locations,fs_reg * reg)37 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
38 {
39 if (reg->file == VGRF) {
40 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
41 reg->offset %= REG_SIZE;
42 }
43 }
44
45 void
assign_regs_trivial()46 fs_visitor::assign_regs_trivial()
47 {
48 unsigned hw_reg_mapping[this->alloc.count + 1];
49 unsigned i;
50 int reg_width = dispatch_width / 8;
51
52 /* Note that compressed instructions require alignment to 2 registers. */
53 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
54 for (i = 1; i <= this->alloc.count; i++) {
55 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
56 this->alloc.sizes[i - 1]);
57 }
58 this->grf_used = hw_reg_mapping[this->alloc.count];
59
60 foreach_block_and_inst(block, fs_inst, inst, cfg) {
61 assign_reg(hw_reg_mapping, &inst->dst);
62 for (i = 0; i < inst->sources; i++) {
63 assign_reg(hw_reg_mapping, &inst->src[i]);
64 }
65 }
66
67 if (this->grf_used >= max_grf) {
68 fail("Ran out of regs on trivial allocator (%d/%d)\n",
69 this->grf_used, max_grf);
70 } else {
71 this->alloc.count = this->grf_used;
72 }
73
74 }
75
76 /**
77 * Size of a register from the aligned_bary_class register class.
78 */
79 static unsigned
aligned_bary_size(unsigned dispatch_width)80 aligned_bary_size(unsigned dispatch_width)
81 {
82 return (dispatch_width == 8 ? 2 : 4);
83 }
84
85 static void
brw_alloc_reg_set(struct brw_compiler * compiler,int dispatch_width)86 brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
87 {
88 const struct intel_device_info *devinfo = compiler->devinfo;
89 int base_reg_count = BRW_MAX_GRF;
90 const int index = util_logbase2(dispatch_width / 8);
91
92 if (dispatch_width > 8 && devinfo->ver >= 7) {
93 /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
94 * SIMD16. Therefore, we can use the exact same register sets for
95 * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
96 */
97 compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
98 return;
99 }
100
101 /* The registers used to make up almost all values handled in the compiler
102 * are a scalar value occupying a single register (or 2 registers in the
103 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
104 * multiplying allocated register numbers by 2). Things that were
105 * aggregates of scalar values at the GLSL level were split to scalar
106 * values by split_virtual_grfs().
107 *
108 * However, texture SEND messages return a series of contiguous registers
109 * to write into. We currently always ask for 4 registers, but we may
110 * convert that to use less some day.
111 *
112 * Additionally, on gfx5 we need aligned pairs of registers for the PLN
113 * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
114 * texturing.
115 */
116 const int class_count = MAX_VGRF_SIZE;
117 int class_sizes[MAX_VGRF_SIZE];
118 for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
119 class_sizes[i] = i + 1;
120
121 struct ra_regs *regs = ra_alloc_reg_set(compiler, BRW_MAX_GRF, false);
122 if (devinfo->ver >= 6)
123 ra_set_allocate_round_robin(regs);
124 struct ra_class **classes = ralloc_array(compiler, struct ra_class *, class_count);
125 struct ra_class *aligned_bary_class = NULL;
126
127 /* Now, make the register classes for each size of contiguous register
128 * allocation we might need to make.
129 */
130 for (int i = 0; i < class_count; i++) {
131 classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
132
133 if (devinfo->ver <= 5 && dispatch_width >= 16) {
134 /* From the G45 PRM:
135 *
136 * In order to reduce the hardware complexity, the following
137 * rules and restrictions apply to the compressed instruction:
138 * ...
139 * * Operand Alignment Rule: With the exceptions listed below, a
140 * source/destination operand in general should be aligned to
141 * even 256-bit physical register with a region size equal to
142 * two 256-bit physical register
143 */
144 for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2)
145 ra_class_add_reg(classes[i], reg);
146 } else {
147 for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
148 ra_class_add_reg(classes[i], reg);
149 }
150 }
151
152 /* Add a special class for aligned barycentrics, which we'll put the
153 * first source of LINTERP on so that we can do PLN on Gen <= 6.
154 */
155 if (devinfo->has_pln && (devinfo->ver == 6 ||
156 (dispatch_width == 8 && devinfo->ver <= 5))) {
157 int contig_len = aligned_bary_size(dispatch_width);
158 aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len);
159
160 for (int i = 0; i <= base_reg_count - contig_len; i += 2)
161 ra_class_add_reg(aligned_bary_class, i);
162 }
163
164 ra_set_finalize(regs, NULL);
165
166 compiler->fs_reg_sets[index].regs = regs;
167 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
168 compiler->fs_reg_sets[index].classes[i] = NULL;
169 for (int i = 0; i < class_count; i++)
170 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
171 compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
172 }
173
174 void
brw_fs_alloc_reg_sets(struct brw_compiler * compiler)175 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
176 {
177 brw_alloc_reg_set(compiler, 8);
178 brw_alloc_reg_set(compiler, 16);
179 brw_alloc_reg_set(compiler, 32);
180 }
181
182 static int
count_to_loop_end(const bblock_t * block)183 count_to_loop_end(const bblock_t *block)
184 {
185 if (block->end()->opcode == BRW_OPCODE_WHILE)
186 return block->end_ip;
187
188 int depth = 1;
189 /* Skip the first block, since we don't want to count the do the calling
190 * function found.
191 */
192 for (block = block->next();
193 depth > 0;
194 block = block->next()) {
195 if (block->start()->opcode == BRW_OPCODE_DO)
196 depth++;
197 if (block->end()->opcode == BRW_OPCODE_WHILE) {
198 depth--;
199 if (depth == 0)
200 return block->end_ip;
201 }
202 }
203 unreachable("not reached");
204 }
205
calculate_payload_ranges(int payload_node_count,int * payload_last_use_ip) const206 void fs_visitor::calculate_payload_ranges(int payload_node_count,
207 int *payload_last_use_ip) const
208 {
209 int loop_depth = 0;
210 int loop_end_ip = 0;
211
212 for (int i = 0; i < payload_node_count; i++)
213 payload_last_use_ip[i] = -1;
214
215 int ip = 0;
216 foreach_block_and_inst(block, fs_inst, inst, cfg) {
217 switch (inst->opcode) {
218 case BRW_OPCODE_DO:
219 loop_depth++;
220
221 /* Since payload regs are deffed only at the start of the shader
222 * execution, any uses of the payload within a loop mean the live
223 * interval extends to the end of the outermost loop. Find the ip of
224 * the end now.
225 */
226 if (loop_depth == 1)
227 loop_end_ip = count_to_loop_end(block);
228 break;
229 case BRW_OPCODE_WHILE:
230 loop_depth--;
231 break;
232 default:
233 break;
234 }
235
236 int use_ip;
237 if (loop_depth > 0)
238 use_ip = loop_end_ip;
239 else
240 use_ip = ip;
241
242 /* Note that UNIFORM args have been turned into FIXED_GRF by
243 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
244 * the start (see interp_reg()).
245 */
246 for (int i = 0; i < inst->sources; i++) {
247 if (inst->src[i].file == FIXED_GRF) {
248 int node_nr = inst->src[i].nr;
249 if (node_nr >= payload_node_count)
250 continue;
251
252 for (unsigned j = 0; j < regs_read(inst, i); j++) {
253 payload_last_use_ip[node_nr + j] = use_ip;
254 assert(node_nr + j < unsigned(payload_node_count));
255 }
256 }
257 }
258
259 if (inst->dst.file == FIXED_GRF) {
260 int node_nr = inst->dst.nr;
261 if (node_nr < payload_node_count) {
262 for (unsigned j = 0; j < regs_written(inst); j++) {
263 payload_last_use_ip[node_nr + j] = use_ip;
264 assert(node_nr + j < unsigned(payload_node_count));
265 }
266 }
267 }
268
269 /* Special case instructions which have extra implied registers used. */
270 switch (inst->opcode) {
271 case CS_OPCODE_CS_TERMINATE:
272 payload_last_use_ip[0] = use_ip;
273 break;
274
275 default:
276 if (inst->eot) {
277 /* We could omit this for the !inst->header_present case, except
278 * that the simulator apparently incorrectly reads from g0/g1
279 * instead of sideband. It also really freaks out driver
280 * developers to see g0 used in unusual places, so just always
281 * reserve it.
282 */
283 payload_last_use_ip[0] = use_ip;
284 payload_last_use_ip[1] = use_ip;
285 }
286 break;
287 }
288
289 ip++;
290 }
291 }
292
293 class fs_reg_alloc {
294 public:
fs_reg_alloc(fs_visitor * fs)295 fs_reg_alloc(fs_visitor *fs):
296 fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
297 live(fs->live_analysis.require()), g(NULL),
298 have_spill_costs(false)
299 {
300 mem_ctx = ralloc_context(NULL);
301
302 /* Stash the number of instructions so we can sanity check that our
303 * counts still match liveness.
304 */
305 live_instr_count = fs->cfg->last_block()->end_ip + 1;
306
307 spill_insts = _mesa_pointer_set_create(mem_ctx);
308
309 /* Most of this allocation was written for a reg_width of 1
310 * (dispatch_width == 8). In extending to SIMD16, the code was
311 * left in place and it was converted to have the hardware
312 * registers it's allocating be contiguous physical pairs of regs
313 * for reg_width == 2.
314 */
315 int reg_width = fs->dispatch_width / 8;
316 rsi = util_logbase2(reg_width);
317 payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
318
319 /* Get payload IP information */
320 payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
321
322 node_count = 0;
323 first_payload_node = 0;
324 first_mrf_hack_node = 0;
325 scratch_header_node = 0;
326 grf127_send_hack_node = 0;
327 first_vgrf_node = 0;
328 last_vgrf_node = 0;
329 first_spill_node = 0;
330
331 spill_vgrf_ip = NULL;
332 spill_vgrf_ip_alloc = 0;
333 spill_node_count = 0;
334 }
335
~fs_reg_alloc()336 ~fs_reg_alloc()
337 {
338 ralloc_free(mem_ctx);
339 }
340
341 bool assign_regs(bool allow_spilling, bool spill_all);
342
343 private:
344 void setup_live_interference(unsigned node,
345 int node_start_ip, int node_end_ip);
346 void setup_inst_interference(const fs_inst *inst);
347
348 void build_interference_graph(bool allow_spilling);
349 void discard_interference_graph();
350
351 void emit_unspill(const fs_builder &bld, struct shader_stats *stats,
352 fs_reg dst, uint32_t spill_offset, unsigned count);
353 void emit_spill(const fs_builder &bld, struct shader_stats *stats,
354 fs_reg src, uint32_t spill_offset, unsigned count);
355
356 void set_spill_costs();
357 int choose_spill_reg();
358 fs_reg alloc_scratch_header();
359 fs_reg alloc_spill_reg(unsigned size, int ip);
360 void spill_reg(unsigned spill_reg);
361
362 void *mem_ctx;
363 fs_visitor *fs;
364 const intel_device_info *devinfo;
365 const brw_compiler *compiler;
366 const fs_live_variables &live;
367 int live_instr_count;
368
369 set *spill_insts;
370
371 /* Which compiler->fs_reg_sets[] to use */
372 int rsi;
373
374 ra_graph *g;
375 bool have_spill_costs;
376
377 int payload_node_count;
378 int *payload_last_use_ip;
379
380 int node_count;
381 int first_payload_node;
382 int first_mrf_hack_node;
383 int scratch_header_node;
384 int grf127_send_hack_node;
385 int first_vgrf_node;
386 int last_vgrf_node;
387 int first_spill_node;
388
389 int *spill_vgrf_ip;
390 int spill_vgrf_ip_alloc;
391 int spill_node_count;
392
393 fs_reg scratch_header;
394 };
395
396 /**
397 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
398 *
399 * This is used in assign_regs() to decide which of the GRFs that we use as
400 * MRFs on gfx7 get normally register allocated, and in register spilling to
401 * see if we can actually use MRFs to do spills without overwriting normal MRF
402 * contents.
403 */
404 static void
get_used_mrfs(const fs_visitor * v,bool * mrf_used)405 get_used_mrfs(const fs_visitor *v, bool *mrf_used)
406 {
407 int reg_width = v->dispatch_width / 8;
408
409 memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->ver) * sizeof(bool));
410
411 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
412 if (inst->dst.file == MRF) {
413 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
414 mrf_used[reg] = true;
415 if (reg_width == 2) {
416 if (inst->dst.nr & BRW_MRF_COMPR4) {
417 mrf_used[reg + 4] = true;
418 } else {
419 mrf_used[reg + 1] = true;
420 }
421 }
422 }
423
424 if (inst->mlen > 0) {
425 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
426 mrf_used[inst->base_mrf + i] = true;
427 }
428 }
429 }
430 }
431
432 namespace {
433 /**
434 * Maximum spill block size we expect to encounter in 32B units.
435 *
436 * This is somewhat arbitrary and doesn't necessarily limit the maximum
437 * variable size that can be spilled -- A higher value will allow a
438 * variable of a given size to be spilled more efficiently with a smaller
439 * number of scratch messages, but will increase the likelihood of a
440 * collision between the MRFs reserved for spilling and other MRFs used by
441 * the program (and possibly increase GRF register pressure on platforms
442 * without hardware MRFs), what could cause register allocation to fail.
443 *
444 * For the moment reserve just enough space so a register of 32 bit
445 * component type and natural region width can be spilled without splitting
446 * into multiple (force_writemask_all) scratch messages.
447 */
448 unsigned
spill_max_size(const backend_shader * s)449 spill_max_size(const backend_shader *s)
450 {
451 /* FINISHME - On Gfx7+ it should be possible to avoid this limit
452 * altogether by spilling directly from the temporary GRF
453 * allocated to hold the result of the instruction (and the
454 * scratch write header).
455 */
456 /* FINISHME - The shader's dispatch width probably belongs in
457 * backend_shader (or some nonexistent fs_shader class?)
458 * rather than in the visitor class.
459 */
460 return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
461 }
462
463 /**
464 * First MRF register available for spilling.
465 */
466 unsigned
spill_base_mrf(const backend_shader * s)467 spill_base_mrf(const backend_shader *s)
468 {
469 /* We don't use the MRF hack on Gfx9+ */
470 assert(s->devinfo->ver < 9);
471 return BRW_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1;
472 }
473 }
474
475 void
setup_live_interference(unsigned node,int node_start_ip,int node_end_ip)476 fs_reg_alloc::setup_live_interference(unsigned node,
477 int node_start_ip, int node_end_ip)
478 {
479 /* Mark any virtual grf that is live between the start of the program and
480 * the last use of a payload node interfering with that payload node.
481 */
482 for (int i = 0; i < payload_node_count; i++) {
483 if (payload_last_use_ip[i] == -1)
484 continue;
485
486 /* Note that we use a <= comparison, unlike vgrfs_interfere(),
487 * in order to not have to worry about the uniform issue described in
488 * calculate_live_intervals().
489 */
490 if (node_start_ip <= payload_last_use_ip[i])
491 ra_add_node_interference(g, node, first_payload_node + i);
492 }
493
494 /* If we have the MRF hack enabled, mark this node as interfering with all
495 * MRF registers.
496 */
497 if (first_mrf_hack_node >= 0) {
498 for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++)
499 ra_add_node_interference(g, node, first_mrf_hack_node + i);
500 }
501
502 /* Everything interferes with the scratch header */
503 if (scratch_header_node >= 0)
504 ra_add_node_interference(g, node, scratch_header_node);
505
506 /* Add interference with every vgrf whose live range intersects this
507 * node's. We only need to look at nodes below this one as the reflexivity
508 * of interference will take care of the rest.
509 */
510 for (unsigned n2 = first_vgrf_node;
511 n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
512 unsigned vgrf = n2 - first_vgrf_node;
513 if (!(node_end_ip <= live.vgrf_start[vgrf] ||
514 live.vgrf_end[vgrf] <= node_start_ip))
515 ra_add_node_interference(g, node, n2);
516 }
517 }
518
519 void
setup_inst_interference(const fs_inst * inst)520 fs_reg_alloc::setup_inst_interference(const fs_inst *inst)
521 {
522 /* Certain instructions can't safely use the same register for their
523 * sources and destination. Add interference.
524 */
525 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
526 for (unsigned i = 0; i < inst->sources; i++) {
527 if (inst->src[i].file == VGRF) {
528 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
529 first_vgrf_node + inst->src[i].nr);
530 }
531 }
532 }
533
534 /* In 16-wide instructions we have an issue where a compressed
535 * instruction is actually two instructions executed simultaneously.
536 * It's actually ok to have the source and destination registers be
537 * the same. In this case, each instruction over-writes its own
538 * source and there's no problem. The real problem here is if the
539 * source and destination registers are off by one. Then you can end
540 * up in a scenario where the first instruction over-writes the
541 * source of the second instruction. Since the compiler doesn't know
542 * about this level of granularity, we simply make the source and
543 * destination interfere.
544 */
545 if (inst->exec_size >= 16 && inst->dst.file == VGRF) {
546 for (int i = 0; i < inst->sources; ++i) {
547 if (inst->src[i].file == VGRF) {
548 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
549 first_vgrf_node + inst->src[i].nr);
550 }
551 }
552 }
553
554 if (grf127_send_hack_node >= 0) {
555 /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
556 * subsection "EUISA Instructions", Send Message (page 990):
557 *
558 * "r127 must not be used for return address when there is a src and
559 * dest overlap in send instruction."
560 *
561 * We are avoiding using grf127 as part of the destination of send
562 * messages adding a node interference to the grf127_send_hack_node.
563 * This node has a fixed assignment to grf127.
564 *
565 * We don't apply it to SIMD16 instructions because previous code avoids
566 * any register overlap between sources and destination.
567 */
568 if (inst->exec_size < 16 && inst->is_send_from_grf() &&
569 inst->dst.file == VGRF)
570 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
571 grf127_send_hack_node);
572
573 /* Spilling instruction are generated as SEND messages from MRF but as
574 * Gfx7+ supports sending from GRF the driver will maps assingn these
575 * MRF registers to a GRF. Implementations reuses the dest of the send
576 * message as source. So as we will have an overlap for sure, we create
577 * an interference between destination and grf127.
578 */
579 if ((inst->opcode == SHADER_OPCODE_GFX7_SCRATCH_READ ||
580 inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ) &&
581 inst->dst.file == VGRF)
582 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
583 grf127_send_hack_node);
584 }
585
586 /* From the Skylake PRM Vol. 2a docs for sends:
587 *
588 * "It is required that the second block of GRFs does not overlap with
589 * the first block."
590 *
591 * Normally, this is taken care of by fixup_sends_duplicate_payload() but
592 * in the case where one of the registers is an undefined value, the
593 * register allocator may decide that they don't interfere even though
594 * they're used as sources in the same instruction. We also need to add
595 * interference here.
596 */
597 if (devinfo->ver >= 9) {
598 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
599 inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
600 inst->src[2].nr != inst->src[3].nr)
601 ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
602 first_vgrf_node + inst->src[3].nr);
603 }
604
605 /* When we do send-from-GRF for FB writes, we need to ensure that the last
606 * write instruction sends from a high register. This is because the
607 * vertex fetcher wants to start filling the low payload registers while
608 * the pixel data port is still working on writing out the memory. If we
609 * don't do this, we get rendering artifacts.
610 *
611 * We could just do "something high". Instead, we just pick the highest
612 * register that works.
613 */
614 if (inst->eot) {
615 const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
616 inst->src[2].nr : inst->src[0].nr;
617 int reg = BRW_MAX_GRF - fs->alloc.sizes[vgrf];
618
619 if (first_mrf_hack_node >= 0) {
620 /* If something happened to spill, we want to push the EOT send
621 * register early enough in the register file that we don't
622 * conflict with any used MRF hack registers.
623 */
624 reg -= BRW_MAX_MRF(devinfo->ver) - spill_base_mrf(fs);
625 } else if (grf127_send_hack_node >= 0) {
626 /* Avoid r127 which might be unusable if the node was previously
627 * written by a SIMD8 SEND message with source/destination overlap.
628 */
629 reg--;
630 }
631
632 ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
633
634 if (inst->ex_mlen > 0) {
635 const int vgrf = inst->src[3].nr;
636 reg -= fs->alloc.sizes[vgrf];
637 ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
638 }
639 }
640 }
641
642 void
build_interference_graph(bool allow_spilling)643 fs_reg_alloc::build_interference_graph(bool allow_spilling)
644 {
645 /* Compute the RA node layout */
646 node_count = 0;
647 first_payload_node = node_count;
648 node_count += payload_node_count;
649 if (devinfo->ver >= 7 && devinfo->ver < 9 && allow_spilling) {
650 first_mrf_hack_node = node_count;
651 node_count += BRW_MAX_GRF - GFX7_MRF_HACK_START;
652 } else {
653 first_mrf_hack_node = -1;
654 }
655 if (devinfo->ver >= 8) {
656 grf127_send_hack_node = node_count;
657 node_count ++;
658 } else {
659 grf127_send_hack_node = -1;
660 }
661 first_vgrf_node = node_count;
662 node_count += fs->alloc.count;
663 last_vgrf_node = node_count - 1;
664 if (devinfo->ver >= 9 && allow_spilling) {
665 scratch_header_node = node_count++;
666 } else {
667 scratch_header_node = -1;
668 }
669 first_spill_node = node_count;
670
671 fs->calculate_payload_ranges(payload_node_count,
672 payload_last_use_ip);
673
674 assert(g == NULL);
675 g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
676 ralloc_steal(mem_ctx, g);
677
678 /* Set up the payload nodes */
679 for (int i = 0; i < payload_node_count; i++)
680 ra_set_node_reg(g, first_payload_node + i, i);
681
682 if (first_mrf_hack_node >= 0) {
683 /* Mark each MRF reg node as being allocated to its physical
684 * register.
685 *
686 * The alternative would be to have per-physical-register classes,
687 * which would just be silly.
688 */
689 for (int i = 0; i < BRW_MAX_MRF(devinfo->ver); i++) {
690 ra_set_node_reg(g, first_mrf_hack_node + i,
691 GFX7_MRF_HACK_START + i);
692 }
693 }
694
695 if (grf127_send_hack_node >= 0)
696 ra_set_node_reg(g, grf127_send_hack_node, 127);
697
698 /* Specify the classes of each virtual register. */
699 for (unsigned i = 0; i < fs->alloc.count; i++) {
700 unsigned size = fs->alloc.sizes[i];
701
702 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
703 "Register allocation relies on split_virtual_grfs()");
704
705 ra_set_node_class(g, first_vgrf_node + i,
706 compiler->fs_reg_sets[rsi].classes[size - 1]);
707 }
708
709 /* Special case: on pre-Gfx7 hardware that supports PLN, the second operand
710 * of a PLN instruction needs to be an even-numbered register, so we have a
711 * special register class aligned_bary_class to handle this case.
712 */
713 if (compiler->fs_reg_sets[rsi].aligned_bary_class) {
714 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
715 if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
716 fs->alloc.sizes[inst->src[0].nr] ==
717 aligned_bary_size(fs->dispatch_width)) {
718 ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
719 compiler->fs_reg_sets[rsi].aligned_bary_class);
720 }
721 }
722 }
723
724 /* Add interference based on the live range of the register */
725 for (unsigned i = 0; i < fs->alloc.count; i++) {
726 setup_live_interference(first_vgrf_node + i,
727 live.vgrf_start[i],
728 live.vgrf_end[i]);
729 }
730
731 /* Add interference based on the instructions in which a register is used.
732 */
733 foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
734 setup_inst_interference(inst);
735 }
736
737 void
discard_interference_graph()738 fs_reg_alloc::discard_interference_graph()
739 {
740 ralloc_free(g);
741 g = NULL;
742 have_spill_costs = false;
743 }
744
745 void
emit_unspill(const fs_builder & bld,struct shader_stats * stats,fs_reg dst,uint32_t spill_offset,unsigned count)746 fs_reg_alloc::emit_unspill(const fs_builder &bld,
747 struct shader_stats *stats,
748 fs_reg dst,
749 uint32_t spill_offset, unsigned count)
750 {
751 const intel_device_info *devinfo = bld.shader->devinfo;
752 const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
753 REG_SIZE;
754 assert(count % reg_size == 0);
755
756 for (unsigned i = 0; i < count / reg_size; i++) {
757 ++stats->fill_count;
758
759 fs_inst *unspill_inst;
760 if (devinfo->ver >= 9) {
761 fs_reg header = this->scratch_header;
762 fs_builder ubld = bld.exec_all().group(1, 0);
763 assert(spill_offset % 16 == 0);
764 unspill_inst = ubld.MOV(component(header, 2),
765 brw_imm_ud(spill_offset / 16));
766 _mesa_set_add(spill_insts, unspill_inst);
767
768 unsigned bti;
769 fs_reg ex_desc;
770 if (devinfo->verx10 >= 125) {
771 bti = GFX9_BTI_BINDLESS;
772 ex_desc = component(this->scratch_header, 0);
773 } else {
774 bti = GFX8_BTI_STATELESS_NON_COHERENT;
775 ex_desc = brw_imm_ud(0);
776 }
777
778 fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header };
779 unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst,
780 srcs, ARRAY_SIZE(srcs));
781 unspill_inst->mlen = 1;
782 unspill_inst->header_size = 1;
783 unspill_inst->size_written = reg_size * REG_SIZE;
784 unspill_inst->send_has_side_effects = false;
785 unspill_inst->send_is_volatile = true;
786 unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
787 unspill_inst->desc =
788 brw_dp_desc(devinfo, bti,
789 BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
790 BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
791 } else if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) {
792 /* The Gfx7 descriptor-based offset is 12 bits of HWORD units.
793 * Because the Gfx7-style scratch block read is hardwired to BTI 255,
794 * on Gfx9+ it would cause the DC to do an IA-coherent read, what
795 * largely outweighs the slight advantage from not having to provide
796 * the address as part of the message header, so we're better off
797 * using plain old oword block reads.
798 */
799 unspill_inst = bld.emit(SHADER_OPCODE_GFX7_SCRATCH_READ, dst);
800 unspill_inst->offset = spill_offset;
801 } else {
802 unspill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_READ, dst);
803 unspill_inst->offset = spill_offset;
804 unspill_inst->base_mrf = spill_base_mrf(bld.shader);
805 unspill_inst->mlen = 1; /* header contains offset */
806 }
807 _mesa_set_add(spill_insts, unspill_inst);
808
809 dst.offset += reg_size * REG_SIZE;
810 spill_offset += reg_size * REG_SIZE;
811 }
812 }
813
814 void
emit_spill(const fs_builder & bld,struct shader_stats * stats,fs_reg src,uint32_t spill_offset,unsigned count)815 fs_reg_alloc::emit_spill(const fs_builder &bld,
816 struct shader_stats *stats,
817 fs_reg src,
818 uint32_t spill_offset, unsigned count)
819 {
820 const intel_device_info *devinfo = bld.shader->devinfo;
821 const unsigned reg_size = src.component_size(bld.dispatch_width()) /
822 REG_SIZE;
823 assert(count % reg_size == 0);
824
825 for (unsigned i = 0; i < count / reg_size; i++) {
826 ++stats->spill_count;
827
828 fs_inst *spill_inst;
829 if (devinfo->ver >= 9) {
830 fs_reg header = this->scratch_header;
831 fs_builder ubld = bld.exec_all().group(1, 0);
832 assert(spill_offset % 16 == 0);
833 spill_inst = ubld.MOV(component(header, 2),
834 brw_imm_ud(spill_offset / 16));
835 _mesa_set_add(spill_insts, spill_inst);
836
837 unsigned bti;
838 fs_reg ex_desc;
839 if (devinfo->verx10 >= 125) {
840 bti = GFX9_BTI_BINDLESS;
841 ex_desc = component(this->scratch_header, 0);
842 } else {
843 bti = GFX8_BTI_STATELESS_NON_COHERENT;
844 ex_desc = brw_imm_ud(0);
845 }
846
847 fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header, src };
848 spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
849 srcs, ARRAY_SIZE(srcs));
850 spill_inst->mlen = 1;
851 spill_inst->ex_mlen = reg_size;
852 spill_inst->size_written = 0;
853 spill_inst->header_size = 1;
854 spill_inst->send_has_side_effects = true;
855 spill_inst->send_is_volatile = false;
856 spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
857 spill_inst->desc =
858 brw_dp_desc(devinfo, bti,
859 GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
860 BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
861 } else {
862 spill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_WRITE,
863 bld.null_reg_f(), src);
864 spill_inst->offset = spill_offset;
865 spill_inst->mlen = 1 + reg_size; /* header, value */
866 spill_inst->base_mrf = spill_base_mrf(bld.shader);
867 }
868 _mesa_set_add(spill_insts, spill_inst);
869
870 src.offset += reg_size * REG_SIZE;
871 spill_offset += reg_size * REG_SIZE;
872 }
873 }
874
875 void
set_spill_costs()876 fs_reg_alloc::set_spill_costs()
877 {
878 float block_scale = 1.0;
879 float spill_costs[fs->alloc.count];
880 bool no_spill[fs->alloc.count];
881
882 for (unsigned i = 0; i < fs->alloc.count; i++) {
883 spill_costs[i] = 0.0;
884 no_spill[i] = false;
885 }
886
887 /* Calculate costs for spilling nodes. Call it a cost of 1 per
888 * spill/unspill we'll have to do, and guess that the insides of
889 * loops run 10 times.
890 */
891 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
892 for (unsigned int i = 0; i < inst->sources; i++) {
893 if (inst->src[i].file == VGRF)
894 spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
895 }
896
897 if (inst->dst.file == VGRF)
898 spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
899
900 /* Don't spill anything we generated while spilling */
901 if (_mesa_set_search(spill_insts, inst)) {
902 for (unsigned int i = 0; i < inst->sources; i++) {
903 if (inst->src[i].file == VGRF)
904 no_spill[inst->src[i].nr] = true;
905 }
906 if (inst->dst.file == VGRF)
907 no_spill[inst->dst.nr] = true;
908 }
909
910 switch (inst->opcode) {
911
912 case BRW_OPCODE_DO:
913 block_scale *= 10;
914 break;
915
916 case BRW_OPCODE_WHILE:
917 block_scale /= 10;
918 break;
919
920 case BRW_OPCODE_IF:
921 case BRW_OPCODE_IFF:
922 block_scale *= 0.5;
923 break;
924
925 case BRW_OPCODE_ENDIF:
926 block_scale /= 0.5;
927 break;
928
929 default:
930 break;
931 }
932 }
933
934 for (unsigned i = 0; i < fs->alloc.count; i++) {
935 /* Do the no_spill check first. Registers that are used as spill
936 * temporaries may have been allocated after we calculated liveness so
937 * we shouldn't look their liveness up. Fortunately, they're always
938 * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
939 * no_spill.
940 */
941 if (no_spill[i])
942 continue;
943
944 int live_length = live.vgrf_end[i] - live.vgrf_start[i];
945 if (live_length <= 0)
946 continue;
947
948 /* Divide the cost (in number of spills/fills) by the log of the length
949 * of the live range of the register. This will encourage spill logic
950 * to spill long-living things before spilling short-lived things where
951 * spilling is less likely to actually do us any good. We use the log
952 * of the length because it will fall off very quickly and not cause us
953 * to spill medium length registers with more uses.
954 */
955 float adjusted_cost = spill_costs[i] / logf(live_length);
956 ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
957 }
958
959 have_spill_costs = true;
960 }
961
962 int
choose_spill_reg()963 fs_reg_alloc::choose_spill_reg()
964 {
965 if (!have_spill_costs)
966 set_spill_costs();
967
968 int node = ra_get_best_spill_node(g);
969 if (node < 0)
970 return -1;
971
972 assert(node >= first_vgrf_node);
973 return node - first_vgrf_node;
974 }
975
976 fs_reg
alloc_scratch_header()977 fs_reg_alloc::alloc_scratch_header()
978 {
979 int vgrf = fs->alloc.allocate(1);
980 assert(first_vgrf_node + vgrf == scratch_header_node);
981 ra_set_node_class(g, scratch_header_node,
982 compiler->fs_reg_sets[rsi].classes[0]);
983
984 setup_live_interference(scratch_header_node, 0, INT_MAX);
985
986 return fs_reg(VGRF, vgrf, BRW_REGISTER_TYPE_UD);
987 }
988
989 fs_reg
alloc_spill_reg(unsigned size,int ip)990 fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
991 {
992 int vgrf = fs->alloc.allocate(size);
993 int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]);
994 assert(n == first_vgrf_node + vgrf);
995 assert(n == first_spill_node + spill_node_count);
996
997 setup_live_interference(n, ip - 1, ip + 1);
998
999 /* Add interference between this spill node and any other spill nodes for
1000 * the same instruction.
1001 */
1002 for (int s = 0; s < spill_node_count; s++) {
1003 if (spill_vgrf_ip[s] == ip)
1004 ra_add_node_interference(g, n, first_spill_node + s);
1005 }
1006
1007 /* Add this spill node to the list for next time */
1008 if (spill_node_count >= spill_vgrf_ip_alloc) {
1009 if (spill_vgrf_ip_alloc == 0)
1010 spill_vgrf_ip_alloc = 16;
1011 else
1012 spill_vgrf_ip_alloc *= 2;
1013 spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
1014 spill_vgrf_ip_alloc);
1015 }
1016 spill_vgrf_ip[spill_node_count++] = ip;
1017
1018 return fs_reg(VGRF, vgrf);
1019 }
1020
1021 void
spill_reg(unsigned spill_reg)1022 fs_reg_alloc::spill_reg(unsigned spill_reg)
1023 {
1024 int size = fs->alloc.sizes[spill_reg];
1025 unsigned int spill_offset = fs->last_scratch;
1026 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
1027
1028 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
1029 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
1030 * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
1031 * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
1032 * depth), starting from m1. In summary: We may not be able to spill in
1033 * SIMD16 mode, because we'd stomp the FB writes.
1034 */
1035 if (!fs->spilled_any_registers) {
1036 if (devinfo->ver >= 9) {
1037 this->scratch_header = alloc_scratch_header();
1038 fs_builder ubld = fs->bld.exec_all().group(8, 0).at(
1039 fs->cfg->first_block(), fs->cfg->first_block()->start());
1040
1041 fs_inst *inst;
1042 if (devinfo->verx10 >= 125) {
1043 inst = ubld.MOV(this->scratch_header, brw_imm_ud(0));
1044 _mesa_set_add(spill_insts, inst);
1045 inst = ubld.group(1, 0).AND(component(this->scratch_header, 0),
1046 retype(brw_vec1_grf(0, 5),
1047 BRW_REGISTER_TYPE_UD),
1048 brw_imm_ud(INTEL_MASK(31, 10)));
1049 _mesa_set_add(spill_insts, inst);
1050 } else {
1051 inst = ubld.emit(SHADER_OPCODE_SCRATCH_HEADER,
1052 this->scratch_header);
1053 _mesa_set_add(spill_insts, inst);
1054 }
1055 } else {
1056 bool mrf_used[BRW_MAX_MRF(devinfo->ver)];
1057 get_used_mrfs(fs, mrf_used);
1058
1059 for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) {
1060 if (mrf_used[i]) {
1061 fs->fail("Register spilling not supported with m%d used", i);
1062 return;
1063 }
1064 }
1065 }
1066
1067 fs->spilled_any_registers = true;
1068 }
1069
1070 fs->last_scratch += size * REG_SIZE;
1071
1072 /* We're about to replace all uses of this register. It no longer
1073 * conflicts with anything so we can get rid of its interference.
1074 */
1075 ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1076 ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1077
1078 /* Generate spill/unspill instructions for the objects being
1079 * spilled. Right now, we spill or unspill the whole thing to a
1080 * virtual grf of the same size. For most instructions, though, we
1081 * could just spill/unspill the GRF being accessed.
1082 */
1083 int ip = 0;
1084 foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
1085 const fs_builder ibld = fs_builder(fs, block, inst);
1086 exec_node *before = inst->prev;
1087 exec_node *after = inst->next;
1088
1089 for (unsigned int i = 0; i < inst->sources; i++) {
1090 if (inst->src[i].file == VGRF &&
1091 inst->src[i].nr == spill_reg) {
1092 int count = regs_read(inst, i);
1093 int subset_spill_offset = spill_offset +
1094 ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1095 fs_reg unspill_dst = alloc_spill_reg(count, ip);
1096
1097 inst->src[i].nr = unspill_dst.nr;
1098 inst->src[i].offset %= REG_SIZE;
1099
1100 /* We read the largest power-of-two divisor of the register count
1101 * (because only POT scratch read blocks are allowed by the
1102 * hardware) up to the maximum supported block size.
1103 */
1104 const unsigned width =
1105 MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1106
1107 /* Set exec_all() on unspill messages under the (rather
1108 * pessimistic) assumption that there is no one-to-one
1109 * correspondence between channels of the spilled variable in
1110 * scratch space and the scratch read message, which operates on
1111 * 32 bit channels. It shouldn't hurt in any case because the
1112 * unspill destination is a block-local temporary.
1113 */
1114 emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
1115 unspill_dst, subset_spill_offset, count);
1116 }
1117 }
1118
1119 if (inst->dst.file == VGRF &&
1120 inst->dst.nr == spill_reg &&
1121 inst->opcode != SHADER_OPCODE_UNDEF) {
1122 int subset_spill_offset = spill_offset +
1123 ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1124 fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1125
1126 inst->dst.nr = spill_src.nr;
1127 inst->dst.offset %= REG_SIZE;
1128
1129 /* If we're immediately spilling the register, we should not use
1130 * destination dependency hints. Doing so will cause the GPU do
1131 * try to read and write the register at the same time and may
1132 * hang the GPU.
1133 */
1134 inst->no_dd_clear = false;
1135 inst->no_dd_check = false;
1136
1137 /* Calculate the execution width of the scratch messages (which work
1138 * in terms of 32 bit components so we have a fixed number of eight
1139 * channels per spilled register). We attempt to write one
1140 * exec_size-wide component of the variable at a time without
1141 * exceeding the maximum number of (fake) MRF registers reserved for
1142 * spills.
1143 */
1144 const unsigned width = 8 * MIN2(
1145 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
1146 spill_max_size(fs));
1147
1148 /* Spills should only write data initialized by the instruction for
1149 * whichever channels are enabled in the execution mask. If that's
1150 * not possible we'll have to emit a matching unspill before the
1151 * instruction and set force_writemask_all on the spill.
1152 */
1153 const bool per_channel =
1154 inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1155 inst->exec_size == width;
1156
1157 /* Builder used to emit the scratch messages. */
1158 const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1159
1160 /* If our write is going to affect just part of the
1161 * regs_written(inst), then we need to unspill the destination since
1162 * we write back out all of the regs_written(). If the original
1163 * instruction had force_writemask_all set and is not a partial
1164 * write, there should be no need for the unspill since the
1165 * instruction will be overwriting the whole destination in any case.
1166 */
1167 if (inst->is_partial_write() ||
1168 (!inst->force_writemask_all && !per_channel))
1169 emit_unspill(ubld, &fs->shader_stats, spill_src,
1170 subset_spill_offset, regs_written(inst));
1171
1172 emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src,
1173 subset_spill_offset, regs_written(inst));
1174 }
1175
1176 for (fs_inst *inst = (fs_inst *)before->next;
1177 inst != after; inst = (fs_inst *)inst->next)
1178 setup_inst_interference(inst);
1179
1180 /* We don't advance the ip for scratch read/write instructions
1181 * because we consider them to have the same ip as instruction we're
1182 * spilling around for the purposes of interference. Also, we're
1183 * inserting spill instructions without re-running liveness analysis
1184 * and we don't want to mess up our IPs.
1185 */
1186 if (!_mesa_set_search(spill_insts, inst))
1187 ip++;
1188 }
1189
1190 assert(ip == live_instr_count);
1191 }
1192
1193 bool
assign_regs(bool allow_spilling,bool spill_all)1194 fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1195 {
1196 build_interference_graph(fs->spilled_any_registers || spill_all);
1197
1198 bool spilled = false;
1199 while (1) {
1200 /* Debug of register spilling: Go spill everything. */
1201 if (unlikely(spill_all)) {
1202 int reg = choose_spill_reg();
1203 if (reg != -1) {
1204 spill_reg(reg);
1205 continue;
1206 }
1207 }
1208
1209 if (ra_allocate(g))
1210 break;
1211
1212 if (!allow_spilling)
1213 return false;
1214
1215 /* Failed to allocate registers. Spill a reg, and the caller will
1216 * loop back into here to try again.
1217 */
1218 int reg = choose_spill_reg();
1219 if (reg == -1)
1220 return false;
1221
1222 /* If we're going to spill but we've never spilled before, we need to
1223 * re-build the interference graph with MRFs enabled to allow spilling.
1224 */
1225 if (!fs->spilled_any_registers) {
1226 discard_interference_graph();
1227 build_interference_graph(true);
1228 }
1229
1230 spilled = true;
1231
1232 spill_reg(reg);
1233 }
1234
1235 if (spilled)
1236 fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1237
1238 /* Get the chosen virtual registers for each node, and map virtual
1239 * regs in the register classes back down to real hardware reg
1240 * numbers.
1241 */
1242 unsigned hw_reg_mapping[fs->alloc.count];
1243 fs->grf_used = fs->first_non_payload_grf;
1244 for (unsigned i = 0; i < fs->alloc.count; i++) {
1245 int reg = ra_get_node_reg(g, first_vgrf_node + i);
1246
1247 hw_reg_mapping[i] = reg;
1248 fs->grf_used = MAX2(fs->grf_used,
1249 hw_reg_mapping[i] + fs->alloc.sizes[i]);
1250 }
1251
1252 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
1253 assign_reg(hw_reg_mapping, &inst->dst);
1254 for (int i = 0; i < inst->sources; i++) {
1255 assign_reg(hw_reg_mapping, &inst->src[i]);
1256 }
1257 }
1258
1259 fs->alloc.count = fs->grf_used;
1260
1261 return true;
1262 }
1263
1264 bool
assign_regs(bool allow_spilling,bool spill_all)1265 fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1266 {
1267 fs_reg_alloc alloc(this);
1268 bool success = alloc.assign_regs(allow_spilling, spill_all);
1269 if (!success && allow_spilling) {
1270 fail("no register to spill:\n");
1271 dump_instructions(NULL);
1272 }
1273 return success;
1274 }
1275