• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1.section #gm107_builtin_code
2// DIV U32
3//
4// UNR recurrence (q = a / b):
5// look for z such that 2^32 - b <= b * z < 2^32
6// then q - 1 <= (a * z) / 2^32 <= q
7//
8// INPUT:   $r0: dividend, $r1: divisor
9// OUTPUT:  $r0: result, $r1: modulus
10// CLOBBER: $r2 - $r3, $p0 - $p1
11// SIZE:    22 / 14 * 8 bytes
12//
13gm107_div_u32:
14   sched (st 0xd wr 0x0 wt 0x3f) (st 0x1 wt 0x1) (st 0x6)
15   flo u32 $r2 $r1
16   lop xor 1 $r2 $r2 0x1f
17   mov $r3 0x1 0xf
18   sched (st 0x1) (st 0xf wr 0x0) (st 0x6 wr 0x0 wt 0x1)
19   shl $r2 $r3 $r2
20   i2i u32 u32 $r1 neg $r1
21   imul u32 u32 $r3 $r1 $r2
22   sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1)
23   imad u32 u32 hi $r2 $r2 $r3 $r2
24   imul u32 u32 $r3 $r1 $r2
25   imad u32 u32 hi $r2 $r2 $r3 $r2
26   sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1)
27   imul u32 u32 $r3 $r1 $r2
28   imad u32 u32 hi $r2 $r2 $r3 $r2
29   imul u32 u32 $r3 $r1 $r2
30   sched (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 wt 0x1) (st 0x6 wr 0x0 rd 0x1 wt 0x1)
31   imad u32 u32 hi $r2 $r2 $r3 $r2
32   imul u32 u32 $r3 $r1 $r2
33   imad u32 u32 hi $r2 $r2 $r3 $r2
34   sched (st 0x6 wt 0x2) (st 0x6 wr 0x0 rd 0x1 wt 0x1) (st 0xf wr 0x0 rd 0x1 wt 0x2)
35   mov $r3 $r0 0xf
36   imul u32 u32 hi $r0 $r0 $r2
37   i2i u32 u32 $r2 neg $r1
38   sched (st 0x6 wr 0x0 wt 0x3) (st 0xd wt 0x1) (st 0x1)
39   imad u32 u32 $r1 $r1 $r0 $r3
40   isetp ge u32 and $p0 1 $r1 $r2 1
41   $p0 iadd $r1 $r1 neg $r2
42   sched (st 0x5) (st 0xd) (st 0x1)
43   $p0 iadd $r0 $r0 0x1
44   $p0 isetp ge u32 and $p0 1 $r1 $r2 1
45   $p0 iadd $r1 $r1 neg $r2
46   sched (st 0x1) (st 0xf) (st 0xf)
47   $p0 iadd $r0 $r0 0x1
48   ret
49   nop 0
50
51// DIV S32, like DIV U32 after taking ABS(inputs)
52//
53// INPUT:   $r0: dividend, $r1: divisor
54// OUTPUT:  $r0: result, $r1: modulus
55// CLOBBER: $r2 - $r3, $p0 - $p3
56//
57gm107_div_s32:
58   sched (st 0xd wt 0x3f) (st 0x1) (st 0x1 wr 0x0)
59   isetp lt and $p2 0x1 $r0 0 1
60   isetp lt xor $p3 1 $r1 0 $p2
61   i2i s32 s32 $r0 abs $r0
62   sched (st 0xf wr 0x1) (st 0xd wr 0x1 wt 0x2) (st 0x1 wt 0x2)
63   i2i s32 s32 $r1 abs $r1
64   flo u32 $r2 $r1
65   lop xor 1 $r2 $r2 0x1f
66   sched (st 0x6) (st 0x1) (st 0xf wr 0x1)
67   mov $r3 0x1 0xf
68   shl $r2 $r3 $r2
69   i2i u32 u32 $r1 neg $r1
70   sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2)
71   imul u32 u32 $r3 $r1 $r2
72   imad u32 u32 hi $r2 $r2 $r3 $r2
73   imul u32 u32 $r3 $r1 $r2
74   sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2)
75   imad u32 u32 hi $r2 $r2 $r3 $r2
76   imul u32 u32 $r3 $r1 $r2
77   imad u32 u32 hi $r2 $r2 $r3 $r2
78   sched (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2) (st 0x6 wr 0x1 wt 0x2)
79   imul u32 u32 $r3 $r1 $r2
80   imad u32 u32 hi $r2 $r2 $r3 $r2
81   imul u32 u32 $r3 $r1 $r2
82   sched (st 0x6 wr 0x1 rd 0x2 wt 0x2) (st 0x2 wt 0x5) (st 0x6 wr 0x0 rd 0x1 wt 0x2)
83   imad u32 u32 hi $r2 $r2 $r3 $r2
84   mov $r3 $r0 0xf
85   imul u32 u32 hi $r0 $r0 $r2
86   sched (st 0xf wr 0x1 rd 0x2 wt 0x2) (st 0x6 wr 0x0 wt 0x5) (st 0xd wt 0x3)
87   i2i u32 u32 $r2 neg $r1
88   imad u32 u32 $r1 $r1 $r0 $r3
89   isetp ge u32 and $p0 1 $r1 $r2 1
90   sched (st 0x1) (st 0x5) (st 0xd)
91   $p0 iadd $r1 $r1 neg $r2
92   $p0 iadd $r0 $r0 0x1
93   $p0 isetp ge u32 and $p0 1 $r1 $r2 1
94   sched (st 0x1) (st 0x2) (st 0xf wr 0x0)
95   $p0 iadd $r1 $r1 neg $r2
96   $p0 iadd $r0 $r0 0x1
97   $p3 i2i s32 s32 $r0 neg $r0
98   sched (st 0xf wr 0x1) (st 0xf wt 0x3) (st 0xf)
99   $p2 i2i s32 s32 $r1 neg $r1
100   ret
101   nop 0
102
103// RCP F64
104//
105// INPUT:   $r0d
106// OUTPUT:  $r0d
107// CLOBBER: $r2 - $r9, $p0
108//
109// The core of RCP and RSQ implementation is Newton-Raphson step, which is
110// used to find successively better approximation from an imprecise initial
111// value (single precision rcp in RCP and rsqrt64h in RSQ).
112//
113gm107_rcp_f64:
114   // Step 1: classify input according to exponent and value, and calculate
115   // result for 0/inf/nan. $r2 holds the exponent value, which starts at
116   // bit 52 (bit 20 of the upper half) and is 11 bits in length
117   sched (st 0x0) (st 0x0) (st 0x0)
118   bfe u32 $r2 $r1 0xb14
119   iadd32i $r3 $r2 -1
120   ssy #rcp_rejoin
121   // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf,
122   // denorm, or 0). Do this by subtracting 1 from the exponent, which will
123   // mean that it's > 0x7fd in those cases when doing unsigned comparison
124   sched (st 0x0) (st 0x0) (st 0x0)
125   isetp gt u32 and $p0 1 $r3 0x7fd 1
126   // $r3: 0 for norms, 0x36 for denorms, -1 for others
127   mov $r3 0x0 0xf
128   not $p0 sync
129   // Process all special values: NaN, inf, denorm, 0
130   sched (st 0x0) (st 0x0) (st 0x0)
131   mov32i $r3 0xffffffff 0xf
132   // A number is NaN if its abs value is greater than or unordered with inf
133   dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1
134   not $p0 bra #rcp_inf_or_denorm_or_zero
135   // NaN -> NaN, the next line sets the "quiet" bit of the result. This
136   // behavior is both seen on the CPU and the blob
137   sched (st 0x0) (st 0x0) (st 0x0)
138   lop32i or $r1 $r1 0x80000
139   sync
140rcp_inf_or_denorm_or_zero:
141   lop32i and $r4 $r1 0x7ff00000
142   sched (st 0x0) (st 0x0) (st 0x0)
143   // Other values with nonzero in exponent field should be inf
144   isetp eq and $p0 1 $r4 0x0 1
145   $p0 bra #rcp_denorm_or_zero
146   // +/-Inf -> +/-0
147   lop32i xor $r1 $r1 0x7ff00000
148   sched (st 0x0) (st 0x0) (st 0x0)
149   mov $r0 0x0 0xf
150   sync
151rcp_denorm_or_zero:
152   dsetp gtu and $p0 1 abs $r0 0x0 1
153   sched (st 0x0) (st 0x0) (st 0x0)
154   $p0 bra #rcp_denorm
155   // +/-0 -> +/-Inf
156   lop32i or $r1 $r1 0x7ff00000
157   sync
158rcp_denorm:
159   // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms
160   sched (st 0x0) (st 0x0) (st 0x0)
161   dmul $r0 $r0 0x4350000000000000
162   mov $r3 0x36 0xf
163   sync
164rcp_rejoin:
165   // All numbers with -1 in $r3 have their result ready in $r0d, return them
166   // others need further calculation
167   sched (st 0x0) (st 0x0) (st 0x0)
168   isetp lt and $p0 1 $r3 0x0 1
169   $p0 bra #rcp_end
170   // Step 2: Before the real calculation goes on, renormalize the values to
171   // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1)
172   // result in $r6d. The exponent will be recovered later.
173   bfe u32 $r2 $r1 0xb14
174   sched (st 0x0) (st 0x0) (st 0x0)
175   lop32i and $r7 $r1 0x800fffff
176   iadd32i $r7 $r7 0x3ff00000
177   mov $r6 $r0 0xf
178   // Step 3: Convert new value to float (no overflow will occur due to step
179   // 2), calculate rcp and do newton-raphson step once
180   sched (st 0x0) (st 0x0) (st 0x0)
181   f2f ftz f64 f32 $r5 $r6
182   mufu rcp $r4 $r5
183   mov32i $r0 0xbf800000 0xf
184   sched (st 0x0) (st 0x0) (st 0x0)
185   ffma $r5 $r4 $r5 $r0
186   ffma $r0 $r5 neg $r4 $r4
187   // Step 4: convert result $r0 back to double, do newton-raphson steps
188   f2f f32 f64 $r0 $r0
189   sched (st 0x0) (st 0x0) (st 0x0)
190   f2f f64 f64 $r6 neg $r6
191   f2f f32 f64 $r8 0x3f800000
192   // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d
193   // The formula used here (and above) is:
194   //     RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n}
195   // The following code uses 2 FMAs for each step, and it will basically
196   // looks like:
197   //     tmp = -src * RCP_{n} + 1
198   //     RCP_{n + 1} = RCP_{n} * tmp + RCP_{n}
199   dfma $r4 $r6 $r0 $r8
200   sched (st 0x0) (st 0x0) (st 0x0)
201   dfma $r0 $r0 $r4 $r0
202   dfma $r4 $r6 $r0 $r8
203   dfma $r0 $r0 $r4 $r0
204   sched (st 0x0) (st 0x0) (st 0x0)
205   dfma $r4 $r6 $r0 $r8
206   dfma $r0 $r0 $r4 $r0
207   dfma $r4 $r6 $r0 $r8
208   sched (st 0x0) (st 0x0) (st 0x0)
209   dfma $r0 $r0 $r4 $r0
210   // Step 5: Exponent recovery and final processing
211   // The exponent is recovered by adding what we added to the exponent.
212   // Suppose we want to calculate rcp(x), but we have rcp(cx), then
213   //     rcp(x) = c * rcp(cx)
214   // The delta in exponent comes from two sources:
215   //   1) The renormalization in step 2. The delta is:
216   //      0x3ff - $r2
217   //   2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored
218   //      in $r3
219   // These 2 sources are calculated in the first two lines below, and then
220   // added to the exponent extracted from the result above.
221   // Note that after processing, the new exponent may >= 0x7ff (inf)
222   // or <= 0 (denorm). Those cases will be handled respectively below
223   iadd $r2 neg $r2 0x3ff
224   iadd $r4 $r2 $r3
225   sched (st 0x0) (st 0x0) (st 0x0)
226   bfe u32 $r3 $r1 0xb14
227   // New exponent in $r3
228   iadd $r3 $r3 $r4
229   iadd32i $r2 $r3 -1
230   // (exponent-1) < 0x7fe (unsigned) means the result is in norm range
231   // (same logic as in step 1)
232   sched (st 0x0) (st 0x0) (st 0x0)
233   isetp lt u32 and $p0 1 $r2 0x7fe 1
234   not $p0 bra #rcp_result_inf_or_denorm
235   // Norms: convert exponents back and return
236   shl $r4 $r4 0x14
237   sched (st 0x0) (st 0x0) (st 0x0)
238   iadd $r1 $r4 $r1
239   bra #rcp_end
240rcp_result_inf_or_denorm:
241   // New exponent >= 0x7ff means that result is inf
242   isetp ge and $p0 1 $r3 0x7ff 1
243   sched (st 0x0) (st 0x0) (st 0x0)
244   not $p0 bra #rcp_result_denorm
245   // Infinity
246   lop32i and $r1 $r1 0x80000000
247   mov $r0 0x0 0xf
248   sched (st 0x0) (st 0x0) (st 0x0)
249   iadd32i $r1 $r1 0x7ff00000
250   bra #rcp_end
251rcp_result_denorm:
252   // Denorm result comes from huge input. The greatest possible fp64, i.e.
253   // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest
254   // normal value. Other rcp result should be greater than that. If we
255   // set the exponent field to 1, we can recover the result by multiplying
256   // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise
257   // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies
258   // the logic here.
259   isetp ne u32 and $p0 1 $r3 0x0 1
260   sched (st 0x0) (st 0x0) (st 0x0)
261   lop32i and $r1 $r1 0x800fffff
262   // 0x3e800000: 1/4
263   $p0 f2f f32 f64 $r6 0x3e800000
264   // 0x3f000000: 1/2
265   not $p0 f2f f32 f64 $r6 0x3f000000
266   sched (st 0x0) (st 0x0) (st 0x0)
267   iadd32i $r1 $r1 0x00100000
268   dmul $r0 $r0 $r6
269rcp_end:
270   ret
271
272// RSQ F64
273//
274// INPUT:   $r0d
275// OUTPUT:  $r0d
276// CLOBBER: $r2 - $r9, $p0 - $p1
277//
278gm107_rsq_f64:
279   // Before getting initial result rsqrt64h, two special cases should be
280   // handled first.
281   // 1. NaN: set the highest bit in mantissa so it'll be surely recognized
282   //    as NaN in rsqrt64h
283   sched (st 0xd wr 0x0 wt 0x3f) (st 0xd wt 0x1) (st 0xd)
284   dsetp gtu and $p0 1 abs $r0 0x7ff0000000000000 1
285   $p0 lop32i or $r1 $r1 0x00080000
286   lop32i and $r2 $r1 0x7fffffff
287   // 2. denorms and small normal values: using their original value will
288   //    lose precision either at rsqrt64h or the first step in newton-raphson
289   //    steps below. Take 2 as a threshold in exponent field, and multiply
290   //    with 2^54 if the exponent is smaller or equal. (will multiply 2^27
291   //    to recover in the end)
292   sched (st 0xd) (st 0xd) (st 0xd)
293   bfe u32 $r3 $r1 0xb14
294   isetp le u32 and $p1 1 $r3 0x2 1
295   lop or 1 $r2 $r0 $r2
296   sched (st 0xd wr 0x0) (st 0xd wr 0x0 wt 0x1) (st 0xd)
297   $p1 dmul $r0 $r0 0x4350000000000000
298   mufu rsq64h $r5 $r1
299   // rsqrt64h will give correct result for 0/inf/nan, the following logic
300   // checks whether the input is one of those (exponent is 0x7ff or all 0
301   // except for the sign bit)
302   iset ne u32 and $r6 $r3 0x7ff 1
303   sched (st 0xd) (st 0xd) (st 0xd)
304   lop and 1 $r2 $r2 $r6
305   isetp ne u32 and $p0 1 $r2 0x0 1
306   $p0 bra #rsq_norm
307   // For 0/inf/nan, make sure the sign bit agrees with input and return
308   sched (st 0xd) (st 0xd) (st 0xd wt 0x1)
309   lop32i and $r1 $r1 0x80000000
310   mov $r0 0x0 0xf
311   lop or 1 $r1 $r1 $r5
312   sched (st 0xd) (st 0xf) (st 0xf)
313   ret
314   nop 0
315   nop 0
316rsq_norm:
317   // For others, do 4 Newton-Raphson steps with the formula:
318   //     RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n})
319   // In the code below, each step is written as:
320   //     tmp1 = 0.5 * x * RSQ_{n}
321   //     tmp2 = -RSQ_{n} * tmp1 + 0.5
322   //     RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n}
323   sched (st 0xd) (st 0xd wr 0x1) (st 0xd wr 0x1 rd 0x0 wt 0x3)
324   mov $r4 0x0 0xf
325   // 0x3f000000: 1/2
326   f2f f32 f64 $r8 0x3f000000
327   dmul $r2 $r0 $r8
328   sched (st 0xd wr 0x0 wt 0x3) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
329   dmul $r0 $r2 $r4
330   dfma $r6 $r0 neg $r4 $r8
331   dfma $r4 $r4 $r6 $r4
332   sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
333   dmul $r0 $r2 $r4
334   dfma $r6 $r0 neg $r4 $r8
335   dfma $r4 $r4 $r6 $r4
336   sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
337   dmul $r0 $r2 $r4
338   dfma $r6 $r0 neg $r4 $r8
339   dfma $r4 $r4 $r6 $r4
340   sched (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1) (st 0xd wr 0x0 wt 0x1)
341   dmul $r0 $r2 $r4
342   dfma $r6 $r0 neg $r4 $r8
343   dfma $r4 $r4 $r6 $r4
344   // Multiply 2^27 to result for small inputs to recover
345   sched (st 0xd wr 0x0 wt 0x1) (st 0xd wt 0x1) (st 0xd)
346   $p1 dmul $r4 $r4 0x41a0000000000000
347   mov $r1 $r5 0xf
348   mov $r0 $r4 0xf
349   sched (st 0xd) (st 0xf) (st 0xf)
350   ret
351   nop 0
352   nop 0
353
354.section #gm107_builtin_offsets
355.b64 #gm107_div_u32
356.b64 #gm107_div_s32
357.b64 #gm107_rcp_f64
358.b64 #gm107_rsq_f64
359