• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_csqrtf.c */
2 /*-
3  * Copyright (c) 2007 David Schultz <das@FreeBSD.ORG>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include "complex_impl.h"
29 
30 /*
31  * gcc doesn't implement complex multiplication or division correctly,
32  * so we need to handle infinities specially. We turn on this pragma to
33  * notify conforming c99 compilers that the fast-but-incorrect code that
34  * gcc generates is acceptable, since the special cases have already been
35  * handled.
36  */
37 #pragma STDC CX_LIMITED_RANGE ON
38 
csqrtf(float complex z)39 float complex csqrtf(float complex z)
40 {
41 	float a = crealf(z), b = cimagf(z);
42 	double t;
43 
44 	/* Handle special cases. */
45 	if (z == 0)
46 		return CMPLXF(0, b);
47 	if (isinf(b))
48 		return CMPLXF(INFINITY, b);
49 	if (isnan(a)) {
50 		t = (b - b) / (b - b);  /* raise invalid if b is not a NaN */
51 		return CMPLXF(a, t);  /* return NaN + NaN i */
52 	}
53 	if (isinf(a)) {
54 		/*
55 		 * csqrtf(inf + NaN i)  = inf +  NaN i
56 		 * csqrtf(inf + y i)    = inf +  0 i
57 		 * csqrtf(-inf + NaN i) = NaN +- inf i
58 		 * csqrtf(-inf + y i)   = 0   +  inf i
59 		 */
60 		if (signbit(a))
61 			return CMPLXF(fabsf(b - b), copysignf(a, b));
62 		else
63 			return CMPLXF(a, copysignf(b - b, b));
64 	}
65 	/*
66 	 * The remaining special case (b is NaN) is handled just fine by
67 	 * the normal code path below.
68 	 */
69 
70 	/*
71 	 * We compute t in double precision to avoid overflow and to
72 	 * provide correct rounding in nearly all cases.
73 	 * This is Algorithm 312, CACM vol 10, Oct 1967.
74 	 */
75 	if (a >= 0) {
76 		t = sqrt((a + hypot(a, b)) * 0.5);
77 		return CMPLXF(t, b / (2.0 * t));
78 	} else {
79 		t = sqrt((-a + hypot(a, b)) * 0.5);
80 		return CMPLXF(fabsf(b) / (2.0 * t), copysignf(t, b));
81 	}
82 }
83