• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log2l.c */
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 /*
18  *      Base 2 logarithm, long double precision
19  *
20  *
21  * SYNOPSIS:
22  *
23  * long double x, y, log2l();
24  *
25  * y = log2l( x );
26  *
27  *
28  * DESCRIPTION:
29  *
30  * Returns the base 2 logarithm of x.
31  *
32  * The argument is separated into its exponent and fractional
33  * parts.  If the exponent is between -1 and +1, the (natural)
34  * logarithm of the fraction is approximated by
35  *
36  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
37  *
38  * Otherwise, setting  z = 2(x-1)/x+1),
39  *
40  *     log(x) = z + z**3 P(z)/Q(z).
41  *
42  *
43  * ACCURACY:
44  *
45  *                      Relative error:
46  * arithmetic   domain     # trials      peak         rms
47  *    IEEE      0.5, 2.0     30000      9.8e-20     2.7e-20
48  *    IEEE     exp(+-10000)  70000      5.4e-20     2.3e-20
49  *
50  * In the tests over the interval exp(+-10000), the logarithms
51  * of the random arguments were uniformly distributed over
52  * [-10000, +10000].
53  */
54 
55 #include "libm.h"
56 
57 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
log2l(long double x)58 long double log2l(long double x)
59 {
60 	return log2(x);
61 }
62 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
63 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
64  * 1/sqrt(2) <= x < sqrt(2)
65  * Theoretical peak relative error = 6.2e-22
66  */
67 static const long double P[] = {
68  4.9962495940332550844739E-1L,
69  1.0767376367209449010438E1L,
70  7.7671073698359539859595E1L,
71  2.5620629828144409632571E2L,
72  4.2401812743503691187826E2L,
73  3.4258224542413922935104E2L,
74  1.0747524399916215149070E2L,
75 };
76 static const long double Q[] = {
77 /* 1.0000000000000000000000E0,*/
78  2.3479774160285863271658E1L,
79  1.9444210022760132894510E2L,
80  7.7952888181207260646090E2L,
81  1.6911722418503949084863E3L,
82  2.0307734695595183428202E3L,
83  1.2695660352705325274404E3L,
84  3.2242573199748645407652E2L,
85 };
86 
87 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
88  * where z = 2(x-1)/(x+1)
89  * 1/sqrt(2) <= x < sqrt(2)
90  * Theoretical peak relative error = 6.16e-22
91  */
92 static const long double R[4] = {
93  1.9757429581415468984296E-3L,
94 -7.1990767473014147232598E-1L,
95  1.0777257190312272158094E1L,
96 -3.5717684488096787370998E1L,
97 };
98 static const long double S[4] = {
99 /* 1.00000000000000000000E0L,*/
100 -2.6201045551331104417768E1L,
101  1.9361891836232102174846E2L,
102 -4.2861221385716144629696E2L,
103 };
104 /* log2(e) - 1 */
105 #define LOG2EA 4.4269504088896340735992e-1L
106 
107 #define SQRTH 0.70710678118654752440L
108 
log2l(long double x)109 long double log2l(long double x)
110 {
111 	long double y, z;
112 	int e;
113 
114 	if (isnan(x))
115 		return x;
116 	if (x == INFINITY)
117 		return x;
118 	if (x <= 0.0) {
119 		if (x == 0.0)
120 			return -1/(x*x); /* -inf with divbyzero */
121 		return 0/0.0f; /* nan with invalid */
122 	}
123 
124 	/* separate mantissa from exponent */
125 	/* Note, frexp is used so that denormal numbers
126 	 * will be handled properly.
127 	 */
128 	x = frexpl(x, &e);
129 
130 	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
131 	 * where z = 2(x-1)/x+1)
132 	 */
133 	if (e > 2 || e < -2) {
134 		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
135 			e -= 1;
136 			z = x - 0.5;
137 			y = 0.5 * z + 0.5;
138 		} else {  /*  2 (x-1)/(x+1)   */
139 			z = x - 0.5;
140 			z -= 0.5;
141 			y = 0.5 * x + 0.5;
142 		}
143 		x = z / y;
144 		z = x*x;
145 		y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
146 		goto done;
147 	}
148 
149 	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
150 	if (x < SQRTH) {
151 		e -= 1;
152 		x = 2.0*x - 1.0;
153 	} else {
154 		x = x - 1.0;
155 	}
156 	z = x*x;
157 	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
158 	y = y - 0.5*z;
159 
160 done:
161 	/* Multiply log of fraction by log2(e)
162 	 * and base 2 exponent by 1
163 	 *
164 	 * ***CAUTION***
165 	 *
166 	 * This sequence of operations is critical and it may
167 	 * be horribly defeated by some compiler optimizers.
168 	 */
169 	z = y * LOG2EA;
170 	z += x * LOG2EA;
171 	z += y;
172 	z += x;
173 	z += e;
174 	return z;
175 }
176 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
177 // TODO: broken implementation to make things compile
log2l(long double x)178 long double log2l(long double x)
179 {
180 	return log2(x);
181 }
182 #endif
183