1 // © 2017 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 4 #include "unicode/utypes.h" 5 6 #if !UCONFIG_NO_FORMATTING 7 #ifndef __NUMBER_DECIMALQUANTITY_H__ 8 #define __NUMBER_DECIMALQUANTITY_H__ 9 10 #include <cstdint> 11 #include "unicode/umachine.h" 12 #include "standardplural.h" 13 #include "plurrule_impl.h" 14 #include "number_types.h" 15 16 U_NAMESPACE_BEGIN namespace number { 17 namespace impl { 18 19 // Forward-declare (maybe don't want number_utils.h included here): 20 class DecNum; 21 22 /** 23 * A class for representing a number to be processed by the decimal formatting pipeline. Includes 24 * methods for rounding, plural rules, and decimal digit extraction. 25 * 26 * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate 27 * object holding state during a pass through the decimal formatting pipeline. 28 * 29 * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD). 30 * 31 * <p>Java has multiple implementations for testing, but C++ has only one implementation. 32 */ 33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory { 34 public: 35 /** Copy constructor. */ 36 DecimalQuantity(const DecimalQuantity &other); 37 38 /** Move constructor. */ 39 DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT; 40 41 DecimalQuantity(); 42 43 ~DecimalQuantity() override; 44 45 /** 46 * Sets this instance to be equal to another instance. 47 * 48 * @param other The instance to copy from. 49 */ 50 DecimalQuantity &operator=(const DecimalQuantity &other); 51 52 /** Move assignment */ 53 DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT; 54 55 /** 56 * Sets the minimum integer digits that this {@link DecimalQuantity} should generate. 57 * This method does not perform rounding. 58 * 59 * @param minInt The minimum number of integer digits. 60 */ 61 void setMinInteger(int32_t minInt); 62 63 /** 64 * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate. 65 * This method does not perform rounding. 66 * 67 * @param minFrac The minimum number of fraction digits. 68 */ 69 void setMinFraction(int32_t minFrac); 70 71 /** 72 * Truncates digits from the upper magnitude of the number in order to satisfy the 73 * specified maximum number of integer digits. 74 * 75 * @param maxInt The maximum number of integer digits. 76 */ 77 void applyMaxInteger(int32_t maxInt); 78 79 /** 80 * Rounds the number to a specified interval, such as 0.05. 81 * 82 * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead. 83 * 84 * @param roundingIncrement The increment to which to round. 85 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary. 86 */ 87 void roundToIncrement(double roundingIncrement, RoundingMode roundingMode, 88 UErrorCode& status); 89 90 /** Removes all fraction digits. */ 91 void truncate(); 92 93 /** 94 * Rounds the number to the nearest multiple of 5 at the specified magnitude. 95 * For example, when magnitude == -2, this performs rounding to the nearest 0.05. 96 * 97 * @param magnitude The magnitude at which the digit should become either 0 or 5. 98 * @param roundingMode Rounding strategy. 99 */ 100 void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status); 101 102 /** 103 * Rounds the number to a specified magnitude (power of ten). 104 * 105 * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will 106 * round to 2 decimal places. 107 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary. 108 */ 109 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status); 110 111 /** 112 * Rounds the number to an infinite number of decimal points. This has no effect except for 113 * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation. 114 */ 115 void roundToInfinity(); 116 117 /** 118 * Multiply the internal value. Uses decNumber. 119 * 120 * @param multiplicand The value by which to multiply. 121 */ 122 void multiplyBy(const DecNum& multiplicand, UErrorCode& status); 123 124 /** 125 * Divide the internal value. Uses decNumber. 126 * 127 * @param multiplicand The value by which to multiply. 128 */ 129 void divideBy(const DecNum& divisor, UErrorCode& status); 130 131 /** Flips the sign from positive to negative and back. */ 132 void negate(); 133 134 /** 135 * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling 136 * this method with delta=-3 will change the value to "1.23456". 137 * 138 * @param delta The number of magnitudes of ten to change by. 139 * @return true if integer overflow occurred; false otherwise. 140 */ 141 bool adjustMagnitude(int32_t delta); 142 143 /** 144 * @return The power of ten corresponding to the most significant nonzero digit. 145 * The number must not be zero. 146 */ 147 int32_t getMagnitude() const; 148 149 /** 150 * @return The value of the (suppressed) exponent after the number has been 151 * put into a notation with exponents (ex: compact, scientific). Ex: given 152 * the number 1000 as "1K" / "1E3", the return value will be 3 (positive). 153 */ 154 int32_t getExponent() const; 155 156 /** 157 * Adjusts the value for the (suppressed) exponent stored when using 158 * notation with exponents (ex: compact, scientific). 159 * 160 * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in 161 * order to allow flexibility for {@link StandardPlural} to be selected in 162 * formatting (ex: for compact notation) either with or without the exponent 163 * applied in the value of the number. 164 * @param delta 165 * The value to adjust the exponent by. 166 */ 167 void adjustExponent(int32_t delta); 168 169 /** 170 * Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent. 171 */ 172 void resetExponent(); 173 174 /** 175 * @return Whether the value represented by this {@link DecimalQuantity} is 176 * zero, infinity, or NaN. 177 */ 178 bool isZeroish() const; 179 180 /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */ 181 bool isNegative() const; 182 183 /** @return The appropriate value from the Signum enum. */ 184 Signum signum() const; 185 186 /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */ 187 bool isInfinite() const U_OVERRIDE; 188 189 /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */ 190 bool isNaN() const U_OVERRIDE; 191 192 /** 193 * Note: this method incorporates the value of {@code exponent} 194 * (for cases such as compact notation) to return the proper long value 195 * represented by the result. 196 * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. 197 */ 198 int64_t toLong(bool truncateIfOverflow = false) const; 199 200 /** 201 * Note: this method incorporates the value of {@code exponent} 202 * (for cases such as compact notation) to return the proper long value 203 * represented by the result. 204 */ 205 uint64_t toFractionLong(bool includeTrailingZeros) const; 206 207 /** 208 * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity. 209 * @param ignoreFraction if true, silently ignore digits after the decimal place. 210 */ 211 bool fitsInLong(bool ignoreFraction = false) const; 212 213 /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */ 214 double toDouble() const; 215 216 /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */ 217 DecNum& toDecNum(DecNum& output, UErrorCode& status) const; 218 219 DecimalQuantity &setToInt(int32_t n); 220 221 DecimalQuantity &setToLong(int64_t n); 222 223 DecimalQuantity &setToDouble(double n); 224 225 /** 226 * Produces a DecimalQuantity that was parsed from a string by the decNumber 227 * C Library. 228 * 229 * decNumber is similar to BigDecimal in Java, and supports parsing strings 230 * such as "123.456621E+40". 231 */ 232 DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status); 233 234 /** Internal method if the caller already has a DecNum. */ 235 DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status); 236 237 /** 238 * Appends a digit, optionally with one or more leading zeros, to the end of the value represented 239 * by this DecimalQuantity. 240 * 241 * <p>The primary use of this method is to construct numbers during a parsing loop. It allows 242 * parsing to take advantage of the digit list infrastructure primarily designed for formatting. 243 * 244 * @param value The digit to append. 245 * @param leadingZeros The number of zeros to append before the digit. For example, if the value 246 * in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes 247 * 12.304. 248 * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the 249 * new digit. If false, append to the end like a fraction digit. If true, there must not be 250 * any fraction digits already in the number. 251 * @internal 252 * @deprecated This API is ICU internal only. 253 */ 254 void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger); 255 256 double getPluralOperand(PluralOperand operand) const U_OVERRIDE; 257 258 bool hasIntegerValue() const U_OVERRIDE; 259 260 /** 261 * Gets the digit at the specified magnitude. For example, if the represented number is 12.3, 262 * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1. 263 * 264 * @param magnitude The magnitude of the digit. 265 * @return The digit at the specified magnitude. 266 */ 267 int8_t getDigit(int32_t magnitude) const; 268 269 /** 270 * Gets the largest power of ten that needs to be displayed. The value returned by this function 271 * will be bounded between minInt and maxInt. 272 * 273 * @return The highest-magnitude digit to be displayed. 274 */ 275 int32_t getUpperDisplayMagnitude() const; 276 277 /** 278 * Gets the smallest power of ten that needs to be displayed. The value returned by this function 279 * will be bounded between -minFrac and -maxFrac. 280 * 281 * @return The lowest-magnitude digit to be displayed. 282 */ 283 int32_t getLowerDisplayMagnitude() const; 284 285 int32_t fractionCount() const; 286 287 int32_t fractionCountWithoutTrailingZeros() const; 288 289 void clear(); 290 291 /** This method is for internal testing only. */ 292 uint64_t getPositionFingerprint() const; 293 294 // /** 295 // * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction 296 // * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing 297 // * happens. 298 // * 299 // * @param fp The {@link UFieldPosition} to populate. 300 // */ 301 // void populateUFieldPosition(FieldPosition fp); 302 303 /** 304 * Checks whether the bytes stored in this instance are all valid. For internal unit testing only. 305 * 306 * @return An error message if this instance is invalid, or null if this instance is healthy. 307 */ 308 const char16_t* checkHealth() const; 309 310 UnicodeString toString() const; 311 312 /** Returns the string in standard exponential notation. */ 313 UnicodeString toScientificString() const; 314 315 /** Returns the string without exponential notation. Slightly slower than toScientificString(). */ 316 UnicodeString toPlainString() const; 317 318 /** Visible for testing */ isUsingBytes()319 inline bool isUsingBytes() { return usingBytes; } 320 321 /** Visible for testing */ isExplicitExactDouble()322 inline bool isExplicitExactDouble() { return explicitExactDouble; } 323 324 bool operator==(const DecimalQuantity& other) const; 325 326 inline bool operator!=(const DecimalQuantity& other) const { 327 return !(*this == other); 328 } 329 330 /** 331 * Bogus flag for when a DecimalQuantity is stored on the stack. 332 */ 333 bool bogus = false; 334 335 private: 336 /** 337 * The power of ten corresponding to the least significant digit in the BCD. For example, if this 338 * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2. 339 * 340 * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of 341 * digits after the decimal place, which is the negative of our definition of scale. 342 */ 343 int32_t scale; 344 345 /** 346 * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The 347 * maximum precision is 16 since a long can hold only 16 digits. 348 * 349 * <p>This value must be re-calculated whenever the value in bcd changes by using {@link 350 * #computePrecisionAndCompact()}. 351 */ 352 int32_t precision; 353 354 /** 355 * A bitmask of properties relating to the number represented by this object. 356 * 357 * @see #NEGATIVE_FLAG 358 * @see #INFINITY_FLAG 359 * @see #NAN_FLAG 360 */ 361 int8_t flags; 362 363 // The following three fields relate to the double-to-ascii fast path algorithm. 364 // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The 365 // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process 366 // of rounding the number ensures that the converted digits are correct, falling back to a slow- 367 // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it 368 // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If 369 // you don't round, assertions will fail in certain other methods if you try calling them. 370 371 /** 372 * Whether the value in the BCD comes from the double fast path without having been rounded to 373 * ensure correctness 374 */ 375 UBool isApproximate; 376 377 /** 378 * The original number provided by the user and which is represented in BCD. Used when we need to 379 * re-compute the BCD for an exact double representation. 380 */ 381 double origDouble; 382 383 /** 384 * The change in magnitude relative to the original double. Used when we need to re-compute the 385 * BCD for an exact double representation. 386 */ 387 int32_t origDelta; 388 389 // Positions to keep track of leading and trailing zeros. 390 // lReqPos is the magnitude of the first required leading zero. 391 // rReqPos is the magnitude of the last required trailing zero. 392 int32_t lReqPos = 0; 393 int32_t rReqPos = 0; 394 395 // The value of the (suppressed) exponent after the number has been put into 396 // a notation with exponents (ex: compact, scientific). 397 int32_t exponent = 0; 398 399 /** 400 * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map 401 * to one digit. For example, the number "12345" in BCD is "0x12345". 402 * 403 * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases 404 * like setting the digit to zero. 405 */ 406 union { 407 struct { 408 int8_t *ptr; 409 int32_t len; 410 } bcdBytes; 411 uint64_t bcdLong; 412 } fBCD; 413 414 bool usingBytes = false; 415 416 /** 417 * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if 418 * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise. 419 * Used for testing. 420 */ 421 bool explicitExactDouble = false; 422 423 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status); 424 425 /** 426 * Returns a single digit from the BCD list. No internal state is changed by calling this method. 427 * 428 * @param position The position of the digit to pop, counted in BCD units from the least 429 * significant digit. If outside the range supported by the implementation, zero is returned. 430 * @return The digit at the specified location. 431 */ 432 int8_t getDigitPos(int32_t position) const; 433 434 /** 435 * Sets the digit in the BCD list. This method only sets the digit; it is the caller's 436 * responsibility to call {@link #compact} after setting the digit, and to ensure 437 * that the precision field is updated to reflect the correct number of digits if a 438 * nonzero digit is added to the decimal. 439 * 440 * @param position The position of the digit to pop, counted in BCD units from the least 441 * significant digit. If outside the range supported by the implementation, an AssertionError 442 * is thrown. 443 * @param value The digit to set at the specified location. 444 */ 445 void setDigitPos(int32_t position, int8_t value); 446 447 /** 448 * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is 449 * the caller's responsibility to do further manipulation and then call {@link #compact}. 450 * 451 * @param numDigits The number of zeros to add. 452 */ 453 void shiftLeft(int32_t numDigits); 454 455 /** 456 * Directly removes digits from the end of the BCD list. 457 * Updates the scale and precision. 458 * 459 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method. 460 */ 461 void shiftRight(int32_t numDigits); 462 463 /** 464 * Directly removes digits from the front of the BCD list. 465 * Updates precision. 466 * 467 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method. 468 */ 469 void popFromLeft(int32_t numDigits); 470 471 /** 472 * Sets the internal representation to zero. Clears any values stored in scale, precision, 473 * hasDouble, origDouble, origDelta, exponent, and BCD data. 474 */ 475 void setBcdToZero(); 476 477 /** 478 * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to 479 * be either positive. The internal state is guaranteed to be empty when this method is called. 480 * 481 * @param n The value to consume. 482 */ 483 void readIntToBcd(int32_t n); 484 485 /** 486 * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to 487 * be either positive. The internal state is guaranteed to be empty when this method is called. 488 * 489 * @param n The value to consume. 490 */ 491 void readLongToBcd(int64_t n); 492 493 void readDecNumberToBcd(const DecNum& dn); 494 495 void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point); 496 497 void copyFieldsFrom(const DecimalQuantity& other); 498 499 void copyBcdFrom(const DecimalQuantity &other); 500 501 void moveBcdFrom(DecimalQuantity& src); 502 503 /** 504 * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the 505 * precision. The precision is the number of digits in the number up through the greatest nonzero 506 * digit. 507 * 508 * <p>This method must always be called when bcd changes in order for assumptions to be correct in 509 * methods like {@link #fractionCount()}. 510 */ 511 void compact(); 512 513 void _setToInt(int32_t n); 514 515 void _setToLong(int64_t n); 516 517 void _setToDoubleFast(double n); 518 519 void _setToDecNum(const DecNum& dn, UErrorCode& status); 520 521 void convertToAccurateDouble(); 522 523 /** Ensure that a byte array of at least 40 digits is allocated. */ 524 void ensureCapacity(); 525 526 void ensureCapacity(int32_t capacity); 527 528 /** Switches the internal storage mechanism between the 64-bit long and the byte array. */ 529 void switchStorage(); 530 }; 531 532 } // namespace impl 533 } // namespace number 534 U_NAMESPACE_END 535 536 537 #endif //__NUMBER_DECIMALQUANTITY_H__ 538 539 #endif /* #if !UCONFIG_NO_FORMATTING */ 540