• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crc32.c -- compute the CRC-32 of a data stream
2  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  *
5  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7  * tables for updating the shift register in one step with three exclusive-ors
8  * instead of four steps with four exclusive-ors.  This results in about a
9  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
10  */
11 
12 /* @(#) $Id$ */
13 
14 /*
15   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16   protection on the static variables used to control the first-use generation
17   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18   first call get_crc_table() to initialize the tables before allowing more than
19   one thread to use crc32().
20 
21   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
22  */
23 
24 #ifdef MAKECRCH
25 #  include <stdio.h>
26 #  ifndef DYNAMIC_CRC_TABLE
27 #    define DYNAMIC_CRC_TABLE
28 #  endif /* !DYNAMIC_CRC_TABLE */
29 #endif /* MAKECRCH */
30 
31 #include "deflate.h"
32 #include "x86.h"
33 #include "zutil.h"      /* for STDC and FAR definitions */
34 
35 #if defined(CRC32_SIMD_SSE42_PCLMUL)
36 #include "crc32_simd.h"
37 #elif defined(CRC32_ARMV8_CRC32)
38 #include "arm_features.h"
39 #include "crc32_simd.h"
40 #endif
41 
42 /* Definitions for doing the crc four data bytes at a time. */
43 #if !defined(NOBYFOUR) && defined(Z_U4)
44 #  define BYFOUR
45 #endif
46 #ifdef BYFOUR
47    local unsigned long crc32_little OF((unsigned long,
48                         const unsigned char FAR *, z_size_t));
49    local unsigned long crc32_big OF((unsigned long,
50                         const unsigned char FAR *, z_size_t));
51 #  define TBLS 8
52 #else
53 #  define TBLS 1
54 #endif /* BYFOUR */
55 
56 /* Local functions for crc concatenation */
57 local unsigned long gf2_matrix_times OF((unsigned long *mat,
58                                          unsigned long vec));
59 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
60 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
61 
62 
63 #ifdef DYNAMIC_CRC_TABLE
64 
65 local volatile int crc_table_empty = 1;
66 local z_crc_t FAR crc_table[TBLS][256];
67 local void make_crc_table OF((void));
68 #ifdef MAKECRCH
69    local void write_table OF((FILE *, const z_crc_t FAR *));
70 #endif /* MAKECRCH */
71 /*
72   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
73   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
74 
75   Polynomials over GF(2) are represented in binary, one bit per coefficient,
76   with the lowest powers in the most significant bit.  Then adding polynomials
77   is just exclusive-or, and multiplying a polynomial by x is a right shift by
78   one.  If we call the above polynomial p, and represent a byte as the
79   polynomial q, also with the lowest power in the most significant bit (so the
80   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
81   where a mod b means the remainder after dividing a by b.
82 
83   This calculation is done using the shift-register method of multiplying and
84   taking the remainder.  The register is initialized to zero, and for each
85   incoming bit, x^32 is added mod p to the register if the bit is a one (where
86   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
87   x (which is shifting right by one and adding x^32 mod p if the bit shifted
88   out is a one).  We start with the highest power (least significant bit) of
89   q and repeat for all eight bits of q.
90 
91   The first table is simply the CRC of all possible eight bit values.  This is
92   all the information needed to generate CRCs on data a byte at a time for all
93   combinations of CRC register values and incoming bytes.  The remaining tables
94   allow for word-at-a-time CRC calculation for both big-endian and little-
95   endian machines, where a word is four bytes.
96 */
make_crc_table()97 local void make_crc_table()
98 {
99     z_crc_t c;
100     int n, k;
101     z_crc_t poly;                       /* polynomial exclusive-or pattern */
102     /* terms of polynomial defining this crc (except x^32): */
103     static volatile int first = 1;      /* flag to limit concurrent making */
104     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
105 
106     /* See if another task is already doing this (not thread-safe, but better
107        than nothing -- significantly reduces duration of vulnerability in
108        case the advice about DYNAMIC_CRC_TABLE is ignored) */
109     if (first) {
110         first = 0;
111 
112         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
113         poly = 0;
114         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
115             poly |= (z_crc_t)1 << (31 - p[n]);
116 
117         /* generate a crc for every 8-bit value */
118         for (n = 0; n < 256; n++) {
119             c = (z_crc_t)n;
120             for (k = 0; k < 8; k++)
121                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
122             crc_table[0][n] = c;
123         }
124 
125 #ifdef BYFOUR
126         /* generate crc for each value followed by one, two, and three zeros,
127            and then the byte reversal of those as well as the first table */
128         for (n = 0; n < 256; n++) {
129             c = crc_table[0][n];
130             crc_table[4][n] = ZSWAP32(c);
131             for (k = 1; k < 4; k++) {
132                 c = crc_table[0][c & 0xff] ^ (c >> 8);
133                 crc_table[k][n] = c;
134                 crc_table[k + 4][n] = ZSWAP32(c);
135             }
136         }
137 #endif /* BYFOUR */
138 
139         crc_table_empty = 0;
140     }
141     else {      /* not first */
142         /* wait for the other guy to finish (not efficient, but rare) */
143         while (crc_table_empty)
144             ;
145     }
146 
147 #ifdef MAKECRCH
148     /* write out CRC tables to crc32.h */
149     {
150         FILE *out;
151 
152         out = fopen("crc32.h", "w");
153         if (out == NULL) return;
154         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
155         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
156         fprintf(out, "local const z_crc_t FAR ");
157         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
158         write_table(out, crc_table[0]);
159 #  ifdef BYFOUR
160         fprintf(out, "#ifdef BYFOUR\n");
161         for (k = 1; k < 8; k++) {
162             fprintf(out, "  },\n  {\n");
163             write_table(out, crc_table[k]);
164         }
165         fprintf(out, "#endif\n");
166 #  endif /* BYFOUR */
167         fprintf(out, "  }\n};\n");
168         fclose(out);
169     }
170 #endif /* MAKECRCH */
171 }
172 
173 #ifdef MAKECRCH
write_table(out,table)174 local void write_table(out, table)
175     FILE *out;
176     const z_crc_t FAR *table;
177 {
178     int n;
179 
180     for (n = 0; n < 256; n++)
181         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
182                 (unsigned long)(table[n]),
183                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
184 }
185 #endif /* MAKECRCH */
186 
187 #else /* !DYNAMIC_CRC_TABLE */
188 /* ========================================================================
189  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
190  */
191 #include "crc32.h"
192 #endif /* DYNAMIC_CRC_TABLE */
193 
194 /* =========================================================================
195  * This function can be used by asm versions of crc32()
196  */
get_crc_table()197 const z_crc_t FAR * ZEXPORT get_crc_table()
198 {
199 #ifdef DYNAMIC_CRC_TABLE
200     if (crc_table_empty)
201         make_crc_table();
202 #endif /* DYNAMIC_CRC_TABLE */
203     return (const z_crc_t FAR *)crc_table;
204 }
205 
206 /* ========================================================================= */
207 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
208 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
209 
210 /* ========================================================================= */
crc32_z(crc,buf,len)211 unsigned long ZEXPORT crc32_z(crc, buf, len)
212     unsigned long crc;
213     const unsigned char FAR *buf;
214     z_size_t len;
215 {
216     /*
217      * zlib convention is to call crc32(0, NULL, 0); before making
218      * calls to crc32(). So this is a good, early (and infrequent)
219      * place to cache CPU features if needed for those later, more
220      * interesting crc32() calls.
221      */
222 #if defined(CRC32_SIMD_SSE42_PCLMUL)
223     /*
224      * Use x86 sse4.2+pclmul SIMD to compute the crc32. Since this
225      * routine can be freely used, check CPU features here.
226      */
227     if (buf == Z_NULL) {
228         if (!len) /* Assume user is calling crc32(0, NULL, 0); */
229             x86_check_features();
230         return 0UL;
231     }
232 
233     if (x86_cpu_enable_simd && len >= Z_CRC32_SSE42_MINIMUM_LENGTH) {
234         /* crc32 16-byte chunks */
235         z_size_t chunk_size = len & ~Z_CRC32_SSE42_CHUNKSIZE_MASK;
236         crc = ~crc32_sse42_simd_(buf, chunk_size, ~(uint32_t)crc);
237         /* check remaining data */
238         len -= chunk_size;
239         if (!len)
240             return crc;
241         /* Fall into the default crc32 for the remaining data. */
242         buf += chunk_size;
243     }
244 #else
245     if (buf == Z_NULL) {
246         return 0UL;
247     }
248 #endif /* CRC32_SIMD_SSE42_PCLMUL */
249 
250 #ifdef DYNAMIC_CRC_TABLE
251     if (crc_table_empty)
252         make_crc_table();
253 #endif /* DYNAMIC_CRC_TABLE */
254 
255 #ifdef BYFOUR
256     if (sizeof(void *) == sizeof(ptrdiff_t)) {
257         z_crc_t endian;
258 
259         endian = 1;
260         if (*((unsigned char *)(&endian)))
261             return crc32_little(crc, buf, len);
262         else
263             return crc32_big(crc, buf, len);
264     }
265 #endif /* BYFOUR */
266     crc = crc ^ 0xffffffffUL;
267     while (len >= 8) {
268         DO8;
269         len -= 8;
270     }
271     if (len) do {
272         DO1;
273     } while (--len);
274     return crc ^ 0xffffffffUL;
275 }
276 
277 /* ========================================================================= */
crc32(crc,buf,len)278 unsigned long ZEXPORT crc32(crc, buf, len)
279     unsigned long crc;
280     const unsigned char FAR *buf;
281     uInt len;
282 {
283 #if defined(CRC32_ARMV8_CRC32)
284     /* We got to verify ARM CPU features, so exploit the common usage pattern
285      * of calling this function with Z_NULL for an initial valid crc value.
286      * This allows to cache the result of the feature check and avoid extraneous
287      * function calls.
288      * TODO: try to move this to crc32_z if we don't loose performance on ARM.
289      */
290     if (buf == Z_NULL) {
291         if (!len) /* Assume user is calling crc32(0, NULL, 0); */
292             arm_check_features();
293         return 0UL;
294     }
295 
296     if (arm_cpu_enable_crc32)
297         return armv8_crc32_little(crc, buf, len);
298 #endif
299     return crc32_z(crc, buf, len);
300 }
301 
302 #ifdef BYFOUR
303 
304 /*
305    This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
306    integer pointer type. This violates the strict aliasing rule, where a
307    compiler can assume, for optimization purposes, that two pointers to
308    fundamentally different types won't ever point to the same memory. This can
309    manifest as a problem only if one of the pointers is written to. This code
310    only reads from those pointers. So long as this code remains isolated in
311    this compilation unit, there won't be a problem. For this reason, this code
312    should not be copied and pasted into a compilation unit in which other code
313    writes to the buffer that is passed to these routines.
314  */
315 
316 /* ========================================================================= */
317 #define DOLIT4 c ^= *buf4++; \
318         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
319             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
320 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
321 
322 /* ========================================================================= */
crc32_little(crc,buf,len)323 local unsigned long crc32_little(crc, buf, len)
324     unsigned long crc;
325     const unsigned char FAR *buf;
326     z_size_t len;
327 {
328     register z_crc_t c;
329     register const z_crc_t FAR *buf4;
330 
331     c = (z_crc_t)crc;
332     c = ~c;
333     while (len && ((ptrdiff_t)buf & 3)) {
334         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
335         len--;
336     }
337 
338     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
339     while (len >= 32) {
340         DOLIT32;
341         len -= 32;
342     }
343     while (len >= 4) {
344         DOLIT4;
345         len -= 4;
346     }
347     buf = (const unsigned char FAR *)buf4;
348 
349     if (len) do {
350         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
351     } while (--len);
352     c = ~c;
353     return (unsigned long)c;
354 }
355 
356 /* ========================================================================= */
357 #define DOBIG4 c ^= *buf4++; \
358         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
359             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
360 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
361 
362 /* ========================================================================= */
crc32_big(crc,buf,len)363 local unsigned long crc32_big(crc, buf, len)
364     unsigned long crc;
365     const unsigned char FAR *buf;
366     z_size_t len;
367 {
368     register z_crc_t c;
369     register const z_crc_t FAR *buf4;
370 
371     c = ZSWAP32((z_crc_t)crc);
372     c = ~c;
373     while (len && ((ptrdiff_t)buf & 3)) {
374         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
375         len--;
376     }
377 
378     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
379     while (len >= 32) {
380         DOBIG32;
381         len -= 32;
382     }
383     while (len >= 4) {
384         DOBIG4;
385         len -= 4;
386     }
387     buf = (const unsigned char FAR *)buf4;
388 
389     if (len) do {
390         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
391     } while (--len);
392     c = ~c;
393     return (unsigned long)(ZSWAP32(c));
394 }
395 
396 #endif /* BYFOUR */
397 
398 #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
399 
400 /* ========================================================================= */
gf2_matrix_times(mat,vec)401 local unsigned long gf2_matrix_times(mat, vec)
402     unsigned long *mat;
403     unsigned long vec;
404 {
405     unsigned long sum;
406 
407     sum = 0;
408     while (vec) {
409         if (vec & 1)
410             sum ^= *mat;
411         vec >>= 1;
412         mat++;
413     }
414     return sum;
415 }
416 
417 /* ========================================================================= */
gf2_matrix_square(square,mat)418 local void gf2_matrix_square(square, mat)
419     unsigned long *square;
420     unsigned long *mat;
421 {
422     int n;
423 
424     for (n = 0; n < GF2_DIM; n++)
425         square[n] = gf2_matrix_times(mat, mat[n]);
426 }
427 
428 /* ========================================================================= */
crc32_combine_(crc1,crc2,len2)429 local uLong crc32_combine_(crc1, crc2, len2)
430     uLong crc1;
431     uLong crc2;
432     z_off64_t len2;
433 {
434     int n;
435     unsigned long row;
436     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
437     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
438 
439     /* degenerate case (also disallow negative lengths) */
440     if (len2 <= 0)
441         return crc1;
442 
443     /* put operator for one zero bit in odd */
444     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
445     row = 1;
446     for (n = 1; n < GF2_DIM; n++) {
447         odd[n] = row;
448         row <<= 1;
449     }
450 
451     /* put operator for two zero bits in even */
452     gf2_matrix_square(even, odd);
453 
454     /* put operator for four zero bits in odd */
455     gf2_matrix_square(odd, even);
456 
457     /* apply len2 zeros to crc1 (first square will put the operator for one
458        zero byte, eight zero bits, in even) */
459     do {
460         /* apply zeros operator for this bit of len2 */
461         gf2_matrix_square(even, odd);
462         if (len2 & 1)
463             crc1 = gf2_matrix_times(even, crc1);
464         len2 >>= 1;
465 
466         /* if no more bits set, then done */
467         if (len2 == 0)
468             break;
469 
470         /* another iteration of the loop with odd and even swapped */
471         gf2_matrix_square(odd, even);
472         if (len2 & 1)
473             crc1 = gf2_matrix_times(odd, crc1);
474         len2 >>= 1;
475 
476         /* if no more bits set, then done */
477     } while (len2 != 0);
478 
479     /* return combined crc */
480     crc1 ^= crc2;
481     return crc1;
482 }
483 
484 /* ========================================================================= */
crc32_combine(crc1,crc2,len2)485 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
486     uLong crc1;
487     uLong crc2;
488     z_off_t len2;
489 {
490     return crc32_combine_(crc1, crc2, len2);
491 }
492 
crc32_combine64(crc1,crc2,len2)493 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
494     uLong crc1;
495     uLong crc2;
496     z_off64_t len2;
497 {
498     return crc32_combine_(crc1, crc2, len2);
499 }
500 
crc_reset(deflate_state * const s)501 ZLIB_INTERNAL void crc_reset(deflate_state *const s)
502 {
503     if (x86_cpu_enable_simd) {
504         crc_fold_init(s);
505         return;
506     }
507     s->strm->adler = crc32(0L, Z_NULL, 0);
508 }
509 
crc_finalize(deflate_state * const s)510 ZLIB_INTERNAL void crc_finalize(deflate_state *const s)
511 {
512     if (x86_cpu_enable_simd)
513         s->strm->adler = crc_fold_512to32(s);
514 }
515 
copy_with_crc(z_streamp strm,Bytef * dst,long size)516 ZLIB_INTERNAL void copy_with_crc(z_streamp strm, Bytef *dst, long size)
517 {
518     if (x86_cpu_enable_simd) {
519         crc_fold_copy(strm->state, dst, strm->next_in, size);
520         return;
521     }
522     zmemcpy(dst, strm->next_in, size);
523     strm->adler = crc32(strm->adler, dst, size);
524 }
525