1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef SRC_STRING_SEARCH_H_
6 #define SRC_STRING_SEARCH_H_
7
8 #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
9
10 #include "util.h"
11
12 #include <cstring>
13 #include <algorithm>
14
15 namespace node {
16 namespace stringsearch {
17
18 template <typename T>
19 class Vector {
20 public:
Vector(T * data,size_t length,bool isForward)21 Vector(T* data, size_t length, bool isForward)
22 : start_(data), length_(length), is_forward_(isForward) {
23 CHECK(length > 0 && data != nullptr);
24 }
25
26 // Returns the start of the memory range.
27 // For vector v this is NOT necessarily &v[0], see forward().
start()28 const T* start() const { return start_; }
29
30 // Returns the length of the vector, in characters.
length()31 size_t length() const { return length_; }
32
33 // Returns true if the Vector is front-to-back, false if back-to-front.
34 // In the latter case, v[0] corresponds to the *end* of the memory range.
forward()35 bool forward() const { return is_forward_; }
36
37 // Access individual vector elements - checks bounds in debug mode.
38 T& operator[](size_t index) const {
39 DCHECK_LT(index, length_);
40 return start_[is_forward_ ? index : (length_ - index - 1)];
41 }
42
43 private:
44 T* start_;
45 size_t length_;
46 bool is_forward_;
47 };
48
49
50 //---------------------------------------------------------------------
51 // String Search object.
52 //---------------------------------------------------------------------
53
54 // Class holding constants and methods that apply to all string search variants,
55 // independently of subject and pattern char size.
56 class StringSearchBase {
57 protected:
58 // Cap on the maximal shift in the Boyer-Moore implementation. By setting a
59 // limit, we can fix the size of tables. For a needle longer than this limit,
60 // search will not be optimal, since we only build tables for a suffix
61 // of the string, but it is a safe approximation.
62 static const int kBMMaxShift = 250;
63
64 // Reduce alphabet to this size.
65 // One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
66 // proportional to the input alphabet. We reduce the alphabet size by
67 // equating input characters modulo a smaller alphabet size. This gives
68 // a potentially less efficient searching, but is a safe approximation.
69 // For needles using only characters in the same Unicode 256-code point page,
70 // there is no search speed degradation.
71 static const int kLatin1AlphabetSize = 256;
72 static const int kUC16AlphabetSize = 256;
73
74 // Bad-char shift table stored in the state. It's length is the alphabet size.
75 // For patterns below this length, the skip length of Boyer-Moore is too short
76 // to compensate for the algorithmic overhead compared to simple brute force.
77 static const int kBMMinPatternLength = 8;
78
79 // Store for the BoyerMoore(Horspool) bad char shift table.
80 int bad_char_shift_table_[kUC16AlphabetSize];
81 // Store for the BoyerMoore good suffix shift table.
82 int good_suffix_shift_table_[kBMMaxShift + 1];
83 // Table used temporarily while building the BoyerMoore good suffix
84 // shift table.
85 int suffix_table_[kBMMaxShift + 1];
86 };
87
88 template <typename Char>
89 class StringSearch : private StringSearchBase {
90 public:
91 typedef stringsearch::Vector<const Char> Vector;
92
StringSearch(Vector pattern)93 explicit StringSearch(Vector pattern)
94 : pattern_(pattern), start_(0) {
95 if (pattern.length() >= kBMMaxShift) {
96 start_ = pattern.length() - kBMMaxShift;
97 }
98
99 size_t pattern_length = pattern_.length();
100 CHECK_GT(pattern_length, 0);
101 if (pattern_length < kBMMinPatternLength) {
102 if (pattern_length == 1) {
103 strategy_ = SearchStrategy::kSingleChar;
104 return;
105 }
106 strategy_ = SearchStrategy::kLinear;
107 return;
108 }
109 strategy_ = SearchStrategy::kInitial;
110 }
111
Search(Vector subject,size_t index)112 size_t Search(Vector subject, size_t index) {
113 switch (strategy_) {
114 case kBoyerMooreHorspool:
115 return BoyerMooreHorspoolSearch(subject, index);
116 case kBoyerMoore:
117 return BoyerMooreSearch(subject, index);
118 case kInitial:
119 return InitialSearch(subject, index);
120 case kLinear:
121 return LinearSearch(subject, index);
122 case kSingleChar:
123 return SingleCharSearch(subject, index);
124 }
125 UNREACHABLE();
126 }
127
AlphabetSize()128 static inline int AlphabetSize() {
129 if (sizeof(Char) == 1) {
130 // Latin1 needle.
131 return kLatin1AlphabetSize;
132 } else {
133 // UC16 needle.
134 return kUC16AlphabetSize;
135 }
136
137 static_assert(sizeof(Char) == sizeof(uint8_t) ||
138 sizeof(Char) == sizeof(uint16_t),
139 "sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)");
140 }
141
142 private:
143 typedef size_t (StringSearch::*SearchFunction)(Vector, size_t);
144 size_t SingleCharSearch(Vector subject, size_t start_index);
145 size_t LinearSearch(Vector subject, size_t start_index);
146 size_t InitialSearch(Vector subject, size_t start_index);
147 size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index);
148 size_t BoyerMooreSearch(Vector subject, size_t start_index);
149
150 void PopulateBoyerMooreHorspoolTable();
151
152 void PopulateBoyerMooreTable();
153
CharOccurrence(int * bad_char_occurrence,Char char_code)154 static inline int CharOccurrence(int* bad_char_occurrence,
155 Char char_code) {
156 if (sizeof(Char) == 1) {
157 return bad_char_occurrence[static_cast<int>(char_code)];
158 }
159 // Both pattern and subject are UC16. Reduce character to equivalence class.
160 int equiv_class = char_code % kUC16AlphabetSize;
161 return bad_char_occurrence[equiv_class];
162 }
163
164 enum SearchStrategy {
165 kBoyerMooreHorspool,
166 kBoyerMoore,
167 kInitial,
168 kLinear,
169 kSingleChar,
170 };
171
172 // The pattern to search for.
173 Vector pattern_;
174 SearchStrategy strategy_;
175 // Cache value of Max(0, pattern_length() - kBMMaxShift)
176 size_t start_;
177 };
178
179
180 template <typename T, typename U>
AlignDown(T value,U alignment)181 inline T AlignDown(T value, U alignment) {
182 return reinterpret_cast<T>(
183 (reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
184 }
185
186
GetHighestValueByte(uint16_t character)187 inline uint8_t GetHighestValueByte(uint16_t character) {
188 return std::max(static_cast<uint8_t>(character & 0xFF),
189 static_cast<uint8_t>(character >> 8));
190 }
191
192
GetHighestValueByte(uint8_t character)193 inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
194
195
196 // Searches for a byte value in a memory buffer, back to front.
197 // Uses memrchr(3) on systems which support it, for speed.
198 // Falls back to a vanilla for loop on non-GNU systems such as Windows.
MemrchrFill(const void * haystack,uint8_t needle,size_t haystack_len)199 inline const void* MemrchrFill(const void* haystack, uint8_t needle,
200 size_t haystack_len) {
201 #ifdef _GNU_SOURCE
202 return memrchr(haystack, needle, haystack_len);
203 #else
204 const uint8_t* haystack8 = static_cast<const uint8_t*>(haystack);
205 for (size_t i = haystack_len - 1; i != static_cast<size_t>(-1); i--) {
206 if (haystack8[i] == needle) {
207 return haystack8 + i;
208 }
209 }
210 return nullptr;
211 #endif
212 }
213
214
215 // Finds the first occurrence of *two-byte* character pattern[0] in the string
216 // `subject`. Does not check that the whole pattern matches.
217 template <typename Char>
FindFirstCharacter(Vector<const Char> pattern,Vector<const Char> subject,size_t index)218 inline size_t FindFirstCharacter(Vector<const Char> pattern,
219 Vector<const Char> subject, size_t index) {
220 const Char pattern_first_char = pattern[0];
221 const size_t max_n = (subject.length() - pattern.length() + 1);
222
223 // For speed, search for the more `rare` of the two bytes in pattern[0]
224 // using memchr / memrchr (which are much faster than a simple for loop).
225 const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
226 size_t pos = index;
227 do {
228 const size_t bytes_to_search = (max_n - pos) * sizeof(Char);
229 const void* void_pos;
230 if (subject.forward()) {
231 // Assert that bytes_to_search won't overflow
232 CHECK_LE(pos, max_n);
233 CHECK_LE(max_n - pos, SIZE_MAX / sizeof(Char));
234 void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search);
235 } else {
236 CHECK_LE(pos, subject.length());
237 CHECK_LE(subject.length() - pos, SIZE_MAX / sizeof(Char));
238 void_pos = MemrchrFill(subject.start() + pattern.length() - 1,
239 search_byte,
240 bytes_to_search);
241 }
242 const Char* char_pos = static_cast<const Char*>(void_pos);
243 if (char_pos == nullptr)
244 return subject.length();
245
246 // Then, for each match, verify that the full two bytes match pattern[0].
247 char_pos = AlignDown(char_pos, sizeof(Char));
248 size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
249 pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1);
250 if (subject[pos] == pattern_first_char) {
251 // Match found, hooray.
252 return pos;
253 }
254 // Search byte matched, but the other byte of pattern[0] didn't. Keep going.
255 } while (++pos < max_n);
256
257 return subject.length();
258 }
259
260
261 // Finds the first occurrence of the byte pattern[0] in string `subject`.
262 // Does not verify that the whole pattern matches.
263 template <>
FindFirstCharacter(Vector<const uint8_t> pattern,Vector<const uint8_t> subject,size_t index)264 inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
265 Vector<const uint8_t> subject,
266 size_t index) {
267 const uint8_t pattern_first_char = pattern[0];
268 const size_t subj_len = subject.length();
269 const size_t max_n = (subject.length() - pattern.length() + 1);
270
271 const void* pos;
272 if (subject.forward()) {
273 pos = memchr(subject.start() + index, pattern_first_char, max_n - index);
274 } else {
275 pos = MemrchrFill(subject.start() + pattern.length() - 1,
276 pattern_first_char,
277 max_n - index);
278 }
279 const uint8_t* char_pos = static_cast<const uint8_t*>(pos);
280 if (char_pos == nullptr) {
281 return subj_len;
282 }
283
284 size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
285 return subject.forward() ? raw_pos : (subj_len - raw_pos - 1);
286 }
287
288 //---------------------------------------------------------------------
289 // Single Character Pattern Search Strategy
290 //---------------------------------------------------------------------
291
292 template <typename Char>
SingleCharSearch(Vector subject,size_t index)293 size_t StringSearch<Char>::SingleCharSearch(
294 Vector subject,
295 size_t index) {
296 CHECK_EQ(1, pattern_.length());
297 return FindFirstCharacter(pattern_, subject, index);
298 }
299
300 //---------------------------------------------------------------------
301 // Linear Search Strategy
302 //---------------------------------------------------------------------
303
304 // Simple linear search for short patterns. Never bails out.
305 template <typename Char>
LinearSearch(Vector subject,size_t index)306 size_t StringSearch<Char>::LinearSearch(
307 Vector subject,
308 size_t index) {
309 CHECK_GT(pattern_.length(), 1);
310 const size_t n = subject.length() - pattern_.length();
311 for (size_t i = index; i <= n; i++) {
312 i = FindFirstCharacter(pattern_, subject, i);
313 if (i == subject.length())
314 return subject.length();
315 CHECK_LE(i, n);
316
317 bool matches = true;
318 for (size_t j = 1; j < pattern_.length(); j++) {
319 if (pattern_[j] != subject[i + j]) {
320 matches = false;
321 break;
322 }
323 }
324 if (matches) {
325 return i;
326 }
327 }
328 return subject.length();
329 }
330
331 //---------------------------------------------------------------------
332 // Boyer-Moore string search
333 //---------------------------------------------------------------------
334
335 template <typename Char>
BoyerMooreSearch(Vector subject,size_t start_index)336 size_t StringSearch<Char>::BoyerMooreSearch(
337 Vector subject,
338 size_t start_index) {
339 const size_t subject_length = subject.length();
340 const size_t pattern_length = pattern_.length();
341 // Only preprocess at most kBMMaxShift last characters of pattern.
342 size_t start = start_;
343
344 int* bad_char_occurrence = bad_char_shift_table_;
345 int* good_suffix_shift = good_suffix_shift_table_ - start_;
346
347 Char last_char = pattern_[pattern_length - 1];
348 size_t index = start_index;
349 // Continue search from i.
350 while (index <= subject_length - pattern_length) {
351 size_t j = pattern_length - 1;
352 int c;
353 while (last_char != (c = subject[index + j])) {
354 int shift = j - CharOccurrence(bad_char_occurrence, c);
355 index += shift;
356 if (index > subject_length - pattern_length) {
357 return subject.length();
358 }
359 }
360 while (pattern_[j] == (c = subject[index + j])) {
361 if (j == 0) {
362 return index;
363 }
364 j--;
365 }
366 if (j < start) {
367 // we have matched more than our tables allow us to be smart about.
368 // Fall back on BMH shift.
369 index += pattern_length - 1 -
370 CharOccurrence(bad_char_occurrence, last_char);
371 } else {
372 int gs_shift = good_suffix_shift[j + 1];
373 int bc_occ = CharOccurrence(bad_char_occurrence, c);
374 int shift = j - bc_occ;
375 if (gs_shift > shift) {
376 shift = gs_shift;
377 }
378 index += shift;
379 }
380 }
381
382 return subject.length();
383 }
384
385 template <typename Char>
PopulateBoyerMooreTable()386 void StringSearch<Char>::PopulateBoyerMooreTable() {
387 const size_t pattern_length = pattern_.length();
388 // Only look at the last kBMMaxShift characters of pattern (from start_
389 // to pattern_length).
390 const size_t start = start_;
391 const size_t length = pattern_length - start;
392
393 // Biased tables so that we can use pattern indices as table indices,
394 // even if we only cover the part of the pattern from offset start.
395 int* shift_table = good_suffix_shift_table_ - start_;
396 int* suffix_table = suffix_table_ - start_;
397
398 // Initialize table.
399 for (size_t i = start; i < pattern_length; i++) {
400 shift_table[i] = length;
401 }
402 shift_table[pattern_length] = 1;
403 suffix_table[pattern_length] = pattern_length + 1;
404
405 if (pattern_length <= start) {
406 return;
407 }
408
409 // Find suffixes.
410 Char last_char = pattern_[pattern_length - 1];
411 size_t suffix = pattern_length + 1;
412 {
413 size_t i = pattern_length;
414 while (i > start) {
415 Char c = pattern_[i - 1];
416 while (suffix <= pattern_length && c != pattern_[suffix - 1]) {
417 if (static_cast<size_t>(shift_table[suffix]) == length) {
418 shift_table[suffix] = suffix - i;
419 }
420 suffix = suffix_table[suffix];
421 }
422 suffix_table[--i] = --suffix;
423 if (suffix == pattern_length) {
424 // No suffix to extend, so we check against last_char only.
425 while ((i > start) && (pattern_[i - 1] != last_char)) {
426 if (static_cast<size_t>(shift_table[pattern_length]) == length) {
427 shift_table[pattern_length] = pattern_length - i;
428 }
429 suffix_table[--i] = pattern_length;
430 }
431 if (i > start) {
432 suffix_table[--i] = --suffix;
433 }
434 }
435 }
436 }
437 // Build shift table using suffixes.
438 if (suffix < pattern_length) {
439 for (size_t i = start; i <= pattern_length; i++) {
440 if (static_cast<size_t>(shift_table[i]) == length) {
441 shift_table[i] = suffix - start;
442 }
443 if (i == suffix) {
444 suffix = suffix_table[suffix];
445 }
446 }
447 }
448 }
449
450 //---------------------------------------------------------------------
451 // Boyer-Moore-Horspool string search.
452 //---------------------------------------------------------------------
453
454 template <typename Char>
BoyerMooreHorspoolSearch(Vector subject,size_t start_index)455 size_t StringSearch<Char>::BoyerMooreHorspoolSearch(
456 Vector subject,
457 size_t start_index) {
458 const size_t subject_length = subject.length();
459 const size_t pattern_length = pattern_.length();
460 int* char_occurrences = bad_char_shift_table_;
461 int64_t badness = -static_cast<int64_t>(pattern_length);
462
463 // How bad we are doing without a good-suffix table.
464 Char last_char = pattern_[pattern_length - 1];
465 int last_char_shift =
466 pattern_length - 1 -
467 CharOccurrence(char_occurrences, last_char);
468
469 // Perform search
470 size_t index = start_index; // No matches found prior to this index.
471 while (index <= subject_length - pattern_length) {
472 size_t j = pattern_length - 1;
473 int subject_char;
474 while (last_char != (subject_char = subject[index + j])) {
475 int bc_occ = CharOccurrence(char_occurrences, subject_char);
476 int shift = j - bc_occ;
477 index += shift;
478 badness += 1 - shift; // at most zero, so badness cannot increase.
479 if (index > subject_length - pattern_length) {
480 return subject_length;
481 }
482 }
483 j--;
484 while (pattern_[j] == (subject[index + j])) {
485 if (j == 0) {
486 return index;
487 }
488 j--;
489 }
490 index += last_char_shift;
491 // Badness increases by the number of characters we have
492 // checked, and decreases by the number of characters we
493 // can skip by shifting. It's a measure of how we are doing
494 // compared to reading each character exactly once.
495 badness += (pattern_length - j) - last_char_shift;
496 if (badness > 0) {
497 PopulateBoyerMooreTable();
498 strategy_ = SearchStrategy::kBoyerMoore;
499 return BoyerMooreSearch(subject, index);
500 }
501 }
502 return subject.length();
503 }
504
505 template <typename Char>
PopulateBoyerMooreHorspoolTable()506 void StringSearch<Char>::PopulateBoyerMooreHorspoolTable() {
507 const size_t pattern_length = pattern_.length();
508
509 int* bad_char_occurrence = bad_char_shift_table_;
510
511 // Only preprocess at most kBMMaxShift last characters of pattern.
512 const size_t start = start_;
513 // Run forwards to populate bad_char_table, so that *last* instance
514 // of character equivalence class is the one registered.
515 // Notice: Doesn't include the last character.
516 const size_t table_size = AlphabetSize();
517 if (start == 0) {
518 // All patterns less than kBMMaxShift in length.
519 memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
520 } else {
521 for (size_t i = 0; i < table_size; i++) {
522 bad_char_occurrence[i] = start - 1;
523 }
524 }
525 for (size_t i = start; i < pattern_length - 1; i++) {
526 Char c = pattern_[i];
527 int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize();
528 bad_char_occurrence[bucket] = i;
529 }
530 }
531
532 //---------------------------------------------------------------------
533 // Linear string search with bailout to BMH.
534 //---------------------------------------------------------------------
535
536 // Simple linear search for short patterns, which bails out if the string
537 // isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
538 template <typename Char>
InitialSearch(Vector subject,size_t index)539 size_t StringSearch<Char>::InitialSearch(
540 Vector subject,
541 size_t index) {
542 const size_t pattern_length = pattern_.length();
543 // Badness is a count of how much work we have done. When we have
544 // done enough work we decide it's probably worth switching to a better
545 // algorithm.
546 int64_t badness = -10 - (pattern_length << 2);
547
548 // We know our pattern is at least 2 characters, we cache the first so
549 // the common case of the first character not matching is faster.
550 for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
551 badness++;
552 if (badness <= 0) {
553 i = FindFirstCharacter(pattern_, subject, i);
554 if (i == subject.length())
555 return subject.length();
556 CHECK_LE(i, n);
557 size_t j = 1;
558 do {
559 if (pattern_[j] != subject[i + j]) {
560 break;
561 }
562 j++;
563 } while (j < pattern_length);
564 if (j == pattern_length) {
565 return i;
566 }
567 badness += j;
568 } else {
569 PopulateBoyerMooreHorspoolTable();
570 strategy_ = SearchStrategy::kBoyerMooreHorspool;
571 return BoyerMooreHorspoolSearch(subject, i);
572 }
573 }
574 return subject.length();
575 }
576
577 // Perform a single stand-alone search.
578 // If searching multiple times for the same pattern, a search
579 // object should be constructed once and the Search function then called
580 // for each search.
581 template <typename Char>
SearchString(Vector<const Char> subject,Vector<const Char> pattern,size_t start_index)582 size_t SearchString(Vector<const Char> subject,
583 Vector<const Char> pattern,
584 size_t start_index) {
585 StringSearch<Char> search(pattern);
586 return search.Search(subject, start_index);
587 }
588 } // namespace stringsearch
589 } // namespace node
590
591 namespace node {
592
593 template <typename Char>
SearchString(const Char * haystack,size_t haystack_length,const Char * needle,size_t needle_length,size_t start_index,bool is_forward)594 size_t SearchString(const Char* haystack,
595 size_t haystack_length,
596 const Char* needle,
597 size_t needle_length,
598 size_t start_index,
599 bool is_forward) {
600 if (haystack_length < needle_length) return haystack_length;
601 // To do a reverse search (lastIndexOf instead of indexOf) without redundant
602 // code, create two vectors that are reversed views into the input strings.
603 // For example, v_needle[0] would return the *last* character of the needle.
604 // So we're searching for the first instance of rev(needle) in rev(haystack)
605 stringsearch::Vector<const Char> v_needle(needle, needle_length, is_forward);
606 stringsearch::Vector<const Char> v_haystack(
607 haystack, haystack_length, is_forward);
608 size_t diff = haystack_length - needle_length;
609 size_t relative_start_index;
610 if (is_forward) {
611 relative_start_index = start_index;
612 } else if (diff < start_index) {
613 relative_start_index = 0;
614 } else {
615 relative_start_index = diff - start_index;
616 }
617 size_t pos = node::stringsearch::SearchString(
618 v_haystack, v_needle, relative_start_index);
619 if (pos == haystack_length) {
620 // not found
621 return pos;
622 }
623 return is_forward ? pos : (haystack_length - needle_length - pos);
624 }
625
626 template <size_t N>
SearchString(const char * haystack,size_t haystack_length,const char (& needle)[N])627 size_t SearchString(const char* haystack, size_t haystack_length,
628 const char (&needle)[N]) {
629 return SearchString(
630 reinterpret_cast<const uint8_t*>(haystack), haystack_length,
631 reinterpret_cast<const uint8_t*>(needle), N - 1, 0, true);
632 }
633
634 } // namespace node
635
636 #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
637
638 #endif // SRC_STRING_SEARCH_H_
639