• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #ifndef OSSL_CRYPTO_BN_LOCAL_H
11 # define OSSL_CRYPTO_BN_LOCAL_H
12 
13 /*
14  * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15  * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16  * Configure script and needs to support both 32-bit and 64-bit.
17  */
18 # include <openssl/opensslconf.h>
19 
20 # if !defined(OPENSSL_SYS_UEFI)
21 #  include "crypto/bn_conf.h"
22 # endif
23 
24 # include "crypto/bn.h"
25 # include "internal/cryptlib.h"
26 # include "internal/numbers.h"
27 
28 /*
29  * These preprocessor symbols control various aspects of the bignum headers
30  * and library code. They're not defined by any "normal" configuration, as
31  * they are intended for development and testing purposes. NB: defining
32  * them can be useful for debugging application code as well as openssl
33  * itself. BN_DEBUG - turn on various debugging alterations to the bignum
34  * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
35  * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
36  * break some of the OpenSSL tests.
37  */
38 # if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
39 #  define BN_DEBUG
40 # endif
41 # if defined(BN_RAND_DEBUG)
42 #  include <openssl/rand.h>
43 # endif
44 
45 # ifndef OPENSSL_SMALL_FOOTPRINT
46 #  define BN_MUL_COMBA
47 #  define BN_SQR_COMBA
48 #  define BN_RECURSION
49 # endif
50 
51 /*
52  * This next option uses the C libraries (2 word)/(1 word) function. If it is
53  * not defined, I use my C version (which is slower). The reason for this
54  * flag is that when the particular C compiler library routine is used, and
55  * the library is linked with a different compiler, the library is missing.
56  * This mostly happens when the library is built with gcc and then linked
57  * using normal cc.  This would be a common occurrence because gcc normally
58  * produces code that is 2 times faster than system compilers for the big
59  * number stuff. For machines with only one compiler (or shared libraries),
60  * this should be on.  Again this in only really a problem on machines using
61  * "long long's", are 32bit, and are not using my assembler code.
62  */
63 # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
64     defined(OPENSSL_SYS_WIN32) || defined(linux)
65 #  define BN_DIV2W
66 # endif
67 
68 /*
69  * 64-bit processor with LP64 ABI
70  */
71 # ifdef SIXTY_FOUR_BIT_LONG
72 #  define BN_ULLONG       unsigned long long
73 #  define BN_BITS4        32
74 #  define BN_MASK2        (0xffffffffffffffffL)
75 #  define BN_MASK2l       (0xffffffffL)
76 #  define BN_MASK2h       (0xffffffff00000000L)
77 #  define BN_MASK2h1      (0xffffffff80000000L)
78 #  define BN_DEC_CONV     (10000000000000000000UL)
79 #  define BN_DEC_NUM      19
80 #  define BN_DEC_FMT1     "%lu"
81 #  define BN_DEC_FMT2     "%019lu"
82 # endif
83 
84 /*
85  * 64-bit processor other than LP64 ABI
86  */
87 # ifdef SIXTY_FOUR_BIT
88 #  undef BN_LLONG
89 #  undef BN_ULLONG
90 #  define BN_BITS4        32
91 #  define BN_MASK2        (0xffffffffffffffffLL)
92 #  define BN_MASK2l       (0xffffffffL)
93 #  define BN_MASK2h       (0xffffffff00000000LL)
94 #  define BN_MASK2h1      (0xffffffff80000000LL)
95 #  define BN_DEC_CONV     (10000000000000000000ULL)
96 #  define BN_DEC_NUM      19
97 #  define BN_DEC_FMT1     "%llu"
98 #  define BN_DEC_FMT2     "%019llu"
99 # endif
100 
101 # ifdef THIRTY_TWO_BIT
102 #  ifdef BN_LLONG
103 #   if defined(_WIN32) && !defined(__GNUC__)
104 #    define BN_ULLONG     unsigned __int64
105 #   else
106 #    define BN_ULLONG     unsigned long long
107 #   endif
108 #  endif
109 #  define BN_BITS4        16
110 #  define BN_MASK2        (0xffffffffL)
111 #  define BN_MASK2l       (0xffff)
112 #  define BN_MASK2h1      (0xffff8000L)
113 #  define BN_MASK2h       (0xffff0000L)
114 #  define BN_DEC_CONV     (1000000000L)
115 #  define BN_DEC_NUM      9
116 #  define BN_DEC_FMT1     "%u"
117 #  define BN_DEC_FMT2     "%09u"
118 # endif
119 
120 
121 /*-
122  * Bignum consistency macros
123  * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
124  * bignum data after direct manipulations on the data. There is also an
125  * "internal" macro, bn_check_top(), for verifying that there are no leading
126  * zeroes. Unfortunately, some auditing is required due to the fact that
127  * bn_fix_top() has become an overabused duct-tape because bignum data is
128  * occasionally passed around in an inconsistent state. So the following
129  * changes have been made to sort this out;
130  * - bn_fix_top()s implementation has been moved to bn_correct_top()
131  * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
132  *   bn_check_top() is as before.
133  * - if BN_DEBUG *is* defined;
134  *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
135  *     consistent. (ed: only if BN_RAND_DEBUG is defined)
136  *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
137  * The idea is to have debug builds flag up inconsistent bignums when they
138  * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
139  * the use of bn_fix_top() was appropriate (ie. it follows directly after code
140  * that manipulates the bignum) it is converted to bn_correct_top(), and if it
141  * was not appropriate, we convert it permanently to bn_check_top() and track
142  * down the cause of the bug. Eventually, no internal code should be using the
143  * bn_fix_top() macro. External applications and libraries should try this with
144  * their own code too, both in terms of building against the openssl headers
145  * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
146  * defined. This not only improves external code, it provides more test
147  * coverage for openssl's own code.
148  */
149 
150 # ifdef BN_DEBUG
151 /*
152  * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
153  * bn_correct_top, in other words such vectors are permitted to have zeros
154  * in most significant limbs. Such vectors are used internally to achieve
155  * execution time invariance for critical operations with private keys.
156  * It's BN_DEBUG-only flag, because user application is not supposed to
157  * observe it anyway. Moreover, optimizing compiler would actually remove
158  * all operations manipulating the bit in question in non-BN_DEBUG build.
159  */
160 #  define BN_FLG_FIXED_TOP 0x10000
161 #  ifdef BN_RAND_DEBUG
162 #   define bn_pollute(a) \
163         do { \
164             const BIGNUM *_bnum1 = (a); \
165             if (_bnum1->top < _bnum1->dmax) { \
166                 unsigned char _tmp_char; \
167                 /* We cast away const without the compiler knowing, any \
168                  * *genuinely* constant variables that aren't mutable \
169                  * wouldn't be constructed with top!=dmax. */ \
170                 BN_ULONG *_not_const; \
171                 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
172                 (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
173                 memset(_not_const + _bnum1->top, _tmp_char, \
174                        sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
175             } \
176         } while(0)
177 #  else
178 #   define bn_pollute(a)
179 #  endif
180 #  define bn_check_top(a) \
181         do { \
182                 const BIGNUM *_bnum2 = (a); \
183                 if (_bnum2 != NULL) { \
184                         int _top = _bnum2->top; \
185                         (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
186                                   (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
187                                             || _bnum2->d[_top - 1] != 0))); \
188                         bn_pollute(_bnum2); \
189                 } \
190         } while(0)
191 
192 #  define bn_fix_top(a)           bn_check_top(a)
193 
194 #  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
195 #  define bn_wcheck_size(bn, words) \
196         do { \
197                 const BIGNUM *_bnum2 = (bn); \
198                 assert((words) <= (_bnum2)->dmax && \
199                        (words) >= (_bnum2)->top); \
200                 /* avoid unused variable warning with NDEBUG */ \
201                 (void)(_bnum2); \
202         } while(0)
203 
204 # else                          /* !BN_DEBUG */
205 
206 #  define BN_FLG_FIXED_TOP 0
207 #  define bn_pollute(a)
208 #  define bn_check_top(a)
209 #  define bn_fix_top(a)           bn_correct_top(a)
210 #  define bn_check_size(bn, bits)
211 #  define bn_wcheck_size(bn, words)
212 
213 # endif
214 
215 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
216                           BN_ULONG w);
217 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
218 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
219 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
220 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
221                       int num);
222 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
223                       int num);
224 
225 struct bignum_st {
226     BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit
227                                  * chunks. */
228     int top;                    /* Index of last used d +1. */
229     /* The next are internal book keeping for bn_expand. */
230     int dmax;                   /* Size of the d array. */
231     int neg;                    /* one if the number is negative */
232     int flags;
233 };
234 
235 /* Used for montgomery multiplication */
236 struct bn_mont_ctx_st {
237     int ri;                     /* number of bits in R */
238     BIGNUM RR;                  /* used to convert to montgomery form,
239                                    possibly zero-padded */
240     BIGNUM N;                   /* The modulus */
241     BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
242                                  * stored for bignum algorithm) */
243     BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
244                                  * changed with 0.9.9, was "BN_ULONG n0;"
245                                  * before) */
246     int flags;
247 };
248 
249 /*
250  * Used for reciprocal division/mod functions It cannot be shared between
251  * threads
252  */
253 struct bn_recp_ctx_st {
254     BIGNUM N;                   /* the divisor */
255     BIGNUM Nr;                  /* the reciprocal */
256     int num_bits;
257     int shift;
258     int flags;
259 };
260 
261 /* Used for slow "generation" functions. */
262 struct bn_gencb_st {
263     unsigned int ver;           /* To handle binary (in)compatibility */
264     void *arg;                  /* callback-specific data */
265     union {
266         /* if (ver==1) - handles old style callbacks */
267         void (*cb_1) (int, int, void *);
268         /* if (ver==2) - new callback style */
269         int (*cb_2) (int, int, BN_GENCB *);
270     } cb;
271 };
272 
273 struct bn_blinding_st {
274     BIGNUM *A;
275     BIGNUM *Ai;
276     BIGNUM *e;
277     BIGNUM *mod;                /* just a reference */
278     CRYPTO_THREAD_ID tid;
279     int counter;
280     unsigned long flags;
281     BN_MONT_CTX *m_ctx;
282     int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
283                        const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
284     CRYPTO_RWLOCK *lock;
285 };
286 
287 /*-
288  * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
289  *
290  *
291  * For window size 'w' (w >= 2) and a random 'b' bits exponent,
292  * the number of multiplications is a constant plus on average
293  *
294  *    2^(w-1) + (b-w)/(w+1);
295  *
296  * here  2^(w-1)  is for precomputing the table (we actually need
297  * entries only for windows that have the lowest bit set), and
298  * (b-w)/(w+1)  is an approximation for the expected number of
299  * w-bit windows, not counting the first one.
300  *
301  * Thus we should use
302  *
303  *    w >= 6  if        b > 671
304  *     w = 5  if  671 > b > 239
305  *     w = 4  if  239 > b >  79
306  *     w = 3  if   79 > b >  23
307  *    w <= 2  if   23 > b
308  *
309  * (with draws in between).  Very small exponents are often selected
310  * with low Hamming weight, so we use  w = 1  for b <= 23.
311  */
312 # define BN_window_bits_for_exponent_size(b) \
313                 ((b) > 671 ? 6 : \
314                  (b) > 239 ? 5 : \
315                  (b) >  79 ? 4 : \
316                  (b) >  23 ? 3 : 1)
317 
318 /*
319  * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
320  * line width of the target processor is at least the following value.
321  */
322 # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
323 # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
324 
325 /*
326  * Window sizes optimized for fixed window size modular exponentiation
327  * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
328  * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
329  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
330  * defined for cache line sizes of 32 and 64, cache line sizes where
331  * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
332  * used on processors that have a 128 byte or greater cache line size.
333  */
334 # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
335 
336 #  define BN_window_bits_for_ctime_exponent_size(b) \
337                 ((b) > 937 ? 6 : \
338                  (b) > 306 ? 5 : \
339                  (b) >  89 ? 4 : \
340                  (b) >  22 ? 3 : 1)
341 #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
342 
343 # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
344 
345 #  define BN_window_bits_for_ctime_exponent_size(b) \
346                 ((b) > 306 ? 5 : \
347                  (b) >  89 ? 4 : \
348                  (b) >  22 ? 3 : 1)
349 #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
350 
351 # endif
352 
353 /* Pentium pro 16,16,16,32,64 */
354 /* Alpha       16,16,16,16.64 */
355 # define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
356 # define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
357 # define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
358 # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
359 # define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
360 
361 /*
362  * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
363  * size_t was used to perform integer-only operations on pointers.  This
364  * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
365  * is still only 32 bits.  What's needed in these cases is an integer type
366  * with the same size as a pointer, which size_t is not certain to be. The
367  * only fix here is VMS-specific.
368  */
369 # if defined(OPENSSL_SYS_VMS)
370 #  if __INITIAL_POINTER_SIZE == 64
371 #   define PTR_SIZE_INT long long
372 #  else                         /* __INITIAL_POINTER_SIZE == 64 */
373 #   define PTR_SIZE_INT int
374 #  endif                        /* __INITIAL_POINTER_SIZE == 64 [else] */
375 # elif !defined(PTR_SIZE_INT)   /* defined(OPENSSL_SYS_VMS) */
376 #  define PTR_SIZE_INT size_t
377 # endif                         /* defined(OPENSSL_SYS_VMS) [else] */
378 
379 # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
380 /*
381  * BN_UMULT_HIGH section.
382  * If the compiler doesn't support 2*N integer type, then you have to
383  * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
384  * shifts and additions which unavoidably results in severe performance
385  * penalties. Of course provided that the hardware is capable of producing
386  * 2*N result... That's when you normally start considering assembler
387  * implementation. However! It should be pointed out that some CPUs (e.g.,
388  * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
389  * the upper half of the product placing the result into a general
390  * purpose register. Now *if* the compiler supports inline assembler,
391  * then it's not impossible to implement the "bignum" routines (and have
392  * the compiler optimize 'em) exhibiting "native" performance in C. That's
393  * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
394  * support 2*64 integer type, which is also used here.
395  */
396 #  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
397       (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
398 #   define BN_UMULT_HIGH(a,b)          (((uint128_t)(a)*(b))>>64)
399 #   define BN_UMULT_LOHI(low,high,a,b) ({       \
400         uint128_t ret=(uint128_t)(a)*(b);   \
401         (high)=ret>>64; (low)=ret;      })
402 #  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
403 #   if defined(__DECC)
404 #    include <c_asm.h>
405 #    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
406 #   elif defined(__GNUC__) && __GNUC__>=2
407 #    define BN_UMULT_HIGH(a,b)   ({     \
408         register BN_ULONG ret;          \
409         asm ("umulh     %1,%2,%0"       \
410              : "=r"(ret)                \
411              : "r"(a), "r"(b));         \
412         ret;                      })
413 #   endif                       /* compiler */
414 #  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
415 #   if defined(__GNUC__) && __GNUC__>=2
416 #    define BN_UMULT_HIGH(a,b)   ({     \
417         register BN_ULONG ret;          \
418         asm ("mulhdu    %0,%1,%2"       \
419              : "=r"(ret)                \
420              : "r"(a), "r"(b));         \
421         ret;                      })
422 #   endif                       /* compiler */
423 #  elif (defined(__x86_64) || defined(__x86_64__)) && \
424        (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
425 #   if defined(__GNUC__) && __GNUC__>=2
426 #    define BN_UMULT_HIGH(a,b)   ({     \
427         register BN_ULONG ret,discard;  \
428         asm ("mulq      %3"             \
429              : "=a"(discard),"=d"(ret)  \
430              : "a"(a), "g"(b)           \
431              : "cc");                   \
432         ret;                      })
433 #    define BN_UMULT_LOHI(low,high,a,b) \
434         asm ("mulq      %3"             \
435                 : "=a"(low),"=d"(high)  \
436                 : "a"(a),"g"(b)         \
437                 : "cc");
438 #   endif
439 #  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
440 #   if defined(_MSC_VER) && _MSC_VER>=1400
441 unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
442 unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
443                           unsigned __int64 *h);
444 #    pragma intrinsic(__umulh,_umul128)
445 #    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
446 #    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
447 #   endif
448 #  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
449 #   if defined(__GNUC__) && __GNUC__>=2
450 #    define BN_UMULT_HIGH(a,b) ({       \
451         register BN_ULONG ret;          \
452         asm ("dmultu    %1,%2"          \
453              : "=h"(ret)                \
454              : "r"(a), "r"(b) : "l");   \
455         ret;                    })
456 #    define BN_UMULT_LOHI(low,high,a,b) \
457         asm ("dmultu    %2,%3"          \
458              : "=l"(low),"=h"(high)     \
459              : "r"(a), "r"(b));
460 #   endif
461 #  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
462 #   if defined(__GNUC__) && __GNUC__>=2
463 #    define BN_UMULT_HIGH(a,b)   ({     \
464         register BN_ULONG ret;          \
465         asm ("umulh     %0,%1,%2"       \
466              : "=r"(ret)                \
467              : "r"(a), "r"(b));         \
468         ret;                      })
469 #   endif
470 #  endif                        /* cpu */
471 # endif                         /* OPENSSL_NO_ASM */
472 
473 # ifdef BN_RAND_DEBUG
474 #  define bn_clear_top2max(a) \
475         { \
476         int      ind = (a)->dmax - (a)->top; \
477         BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
478         for (; ind != 0; ind--) \
479                 *(++ftl) = 0x0; \
480         }
481 # else
482 #  define bn_clear_top2max(a)
483 # endif
484 
485 # ifdef BN_LLONG
486 /*******************************************************************
487  * Using the long long type, has to be twice as wide as BN_ULONG...
488  */
489 #  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
490 #  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
491 
492 #  define mul_add(r,a,w,c) { \
493         BN_ULLONG t; \
494         t=(BN_ULLONG)w * (a) + (r) + (c); \
495         (r)= Lw(t); \
496         (c)= Hw(t); \
497         }
498 
499 #  define mul(r,a,w,c) { \
500         BN_ULLONG t; \
501         t=(BN_ULLONG)w * (a) + (c); \
502         (r)= Lw(t); \
503         (c)= Hw(t); \
504         }
505 
506 #  define sqr(r0,r1,a) { \
507         BN_ULLONG t; \
508         t=(BN_ULLONG)(a)*(a); \
509         (r0)=Lw(t); \
510         (r1)=Hw(t); \
511         }
512 
513 # elif defined(BN_UMULT_LOHI)
514 #  define mul_add(r,a,w,c) {              \
515         BN_ULONG high,low,ret,tmp=(a);  \
516         ret =  (r);                     \
517         BN_UMULT_LOHI(low,high,w,tmp);  \
518         ret += (c);                     \
519         (c) =  (ret<(c))?1:0;           \
520         (c) += high;                    \
521         ret += low;                     \
522         (c) += (ret<low)?1:0;           \
523         (r) =  ret;                     \
524         }
525 
526 #  define mul(r,a,w,c)    {               \
527         BN_ULONG high,low,ret,ta=(a);   \
528         BN_UMULT_LOHI(low,high,w,ta);   \
529         ret =  low + (c);               \
530         (c) =  high;                    \
531         (c) += (ret<low)?1:0;           \
532         (r) =  ret;                     \
533         }
534 
535 #  define sqr(r0,r1,a)    {               \
536         BN_ULONG tmp=(a);               \
537         BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
538         }
539 
540 # elif defined(BN_UMULT_HIGH)
541 #  define mul_add(r,a,w,c) {              \
542         BN_ULONG high,low,ret,tmp=(a);  \
543         ret =  (r);                     \
544         high=  BN_UMULT_HIGH(w,tmp);    \
545         ret += (c);                     \
546         low =  (w) * tmp;               \
547         (c) =  (ret<(c))?1:0;           \
548         (c) += high;                    \
549         ret += low;                     \
550         (c) += (ret<low)?1:0;           \
551         (r) =  ret;                     \
552         }
553 
554 #  define mul(r,a,w,c)    {               \
555         BN_ULONG high,low,ret,ta=(a);   \
556         low =  (w) * ta;                \
557         high=  BN_UMULT_HIGH(w,ta);     \
558         ret =  low + (c);               \
559         (c) =  high;                    \
560         (c) += (ret<low)?1:0;           \
561         (r) =  ret;                     \
562         }
563 
564 #  define sqr(r0,r1,a)    {               \
565         BN_ULONG tmp=(a);               \
566         (r0) = tmp * tmp;               \
567         (r1) = BN_UMULT_HIGH(tmp,tmp);  \
568         }
569 
570 # else
571 /*************************************************************
572  * No long long type
573  */
574 
575 #  define LBITS(a)        ((a)&BN_MASK2l)
576 #  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
577 #  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
578 
579 #  define LLBITS(a)       ((a)&BN_MASKl)
580 #  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
581 #  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
582 
583 #  define mul64(l,h,bl,bh) \
584         { \
585         BN_ULONG m,m1,lt,ht; \
586  \
587         lt=l; \
588         ht=h; \
589         m =(bh)*(lt); \
590         lt=(bl)*(lt); \
591         m1=(bl)*(ht); \
592         ht =(bh)*(ht); \
593         m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
594         ht+=HBITS(m); \
595         m1=L2HBITS(m); \
596         lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
597         (l)=lt; \
598         (h)=ht; \
599         }
600 
601 #  define sqr64(lo,ho,in) \
602         { \
603         BN_ULONG l,h,m; \
604  \
605         h=(in); \
606         l=LBITS(h); \
607         h=HBITS(h); \
608         m =(l)*(h); \
609         l*=l; \
610         h*=h; \
611         h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
612         m =(m&BN_MASK2l)<<(BN_BITS4+1); \
613         l=(l+m)&BN_MASK2; if (l < m) h++; \
614         (lo)=l; \
615         (ho)=h; \
616         }
617 
618 #  define mul_add(r,a,bl,bh,c) { \
619         BN_ULONG l,h; \
620  \
621         h= (a); \
622         l=LBITS(h); \
623         h=HBITS(h); \
624         mul64(l,h,(bl),(bh)); \
625  \
626         /* non-multiply part */ \
627         l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
628         (c)=(r); \
629         l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
630         (c)=h&BN_MASK2; \
631         (r)=l; \
632         }
633 
634 #  define mul(r,a,bl,bh,c) { \
635         BN_ULONG l,h; \
636  \
637         h= (a); \
638         l=LBITS(h); \
639         h=HBITS(h); \
640         mul64(l,h,(bl),(bh)); \
641  \
642         /* non-multiply part */ \
643         l+=(c); if ((l&BN_MASK2) < (c)) h++; \
644         (c)=h&BN_MASK2; \
645         (r)=l&BN_MASK2; \
646         }
647 # endif                         /* !BN_LLONG */
648 
649 void BN_RECP_CTX_init(BN_RECP_CTX *recp);
650 void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
651 
652 void bn_init(BIGNUM *a);
653 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
654 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
655 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
656 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
657 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
658 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
659 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
660 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
661 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
662                       int dna, int dnb, BN_ULONG *t);
663 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
664                            int n, int tna, int tnb, BN_ULONG *t);
665 void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
666 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
667 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
668                           BN_ULONG *t);
669 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
670                            int cl, int dl);
671 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
672                 const BN_ULONG *np, const BN_ULONG *n0, int num);
673 
674 BIGNUM *int_bn_mod_inverse(BIGNUM *in,
675                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
676                            int *noinv);
677 
bn_expand(BIGNUM * a,int bits)678 static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
679 {
680     if (bits > (INT_MAX - BN_BITS2 + 1))
681         return NULL;
682 
683     if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
684         return a;
685 
686     return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
687 }
688 
689 int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
690                         int do_trial_division, BN_GENCB *cb);
691 
692 #endif
693