• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4  * Copyright (c) 2015, CloudFlare, Inc.
5  *
6  * Licensed under the Apache License 2.0 (the "License").  You may not use
7  * this file except in compliance with the License.  You can obtain a copy
8  * in the file LICENSE in the source distribution or at
9  * https://www.openssl.org/source/license.html
10  *
11  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12  * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13  * (2) University of Haifa, Israel
14  * (3) CloudFlare, Inc.
15  *
16  * Reference:
17  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18  *                          256 Bit Primes"
19  */
20 
21 /*
22  * ECDSA low level APIs are deprecated for public use, but still ok for
23  * internal use.
24  */
25 #include "internal/deprecated.h"
26 
27 #include <string.h>
28 
29 #include "internal/cryptlib.h"
30 #include "crypto/bn.h"
31 #include "ec_local.h"
32 #include "internal/refcount.h"
33 
34 #if BN_BITS2 != 64
35 # define TOBN(hi,lo)    lo,hi
36 #else
37 # define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
38 #endif
39 
40 #if defined(__GNUC__)
41 # define ALIGN32        __attribute((aligned(32)))
42 #elif defined(_MSC_VER)
43 # define ALIGN32        __declspec(align(32))
44 #else
45 # define ALIGN32
46 #endif
47 
48 #define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
49 #define P256_LIMBS      (256/BN_BITS2)
50 
51 typedef unsigned short u16;
52 
53 typedef struct {
54     BN_ULONG X[P256_LIMBS];
55     BN_ULONG Y[P256_LIMBS];
56     BN_ULONG Z[P256_LIMBS];
57 } P256_POINT;
58 
59 typedef struct {
60     BN_ULONG X[P256_LIMBS];
61     BN_ULONG Y[P256_LIMBS];
62 } P256_POINT_AFFINE;
63 
64 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65 
66 /* structure for precomputed multiples of the generator */
67 struct nistz256_pre_comp_st {
68     const EC_GROUP *group;      /* Parent EC_GROUP object */
69     size_t w;                   /* Window size */
70     /*
71      * Constant time access to the X and Y coordinates of the pre-computed,
72      * generator multiplies, in the Montgomery domain. Pre-calculated
73      * multiplies are stored in affine form.
74      */
75     PRECOMP256_ROW *precomp;
76     void *precomp_storage;
77     CRYPTO_REF_COUNT references;
78     CRYPTO_RWLOCK *lock;
79 };
80 
81 /* Functions implemented in assembly */
82 /*
83  * Most of below mentioned functions *preserve* the property of inputs
84  * being fully reduced, i.e. being in [0, modulus) range. Simply put if
85  * inputs are fully reduced, then output is too. Note that reverse is
86  * not true, in sense that given partially reduced inputs output can be
87  * either, not unlikely reduced. And "most" in first sentence refers to
88  * the fact that given the calculations flow one can tolerate that
89  * addition, 1st function below, produces partially reduced result *if*
90  * multiplications by 2 and 3, which customarily use addition, fully
91  * reduce it. This effectively gives two options: a) addition produces
92  * fully reduced result [as long as inputs are, just like remaining
93  * functions]; b) addition is allowed to produce partially reduced
94  * result, but multiplications by 2 and 3 perform additional reduction
95  * step. Choice between the two can be platform-specific, but it was a)
96  * in all cases so far...
97  */
98 /* Modular add: res = a+b mod P   */
99 void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
100                       const BN_ULONG a[P256_LIMBS],
101                       const BN_ULONG b[P256_LIMBS]);
102 /* Modular mul by 2: res = 2*a mod P */
103 void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
104                            const BN_ULONG a[P256_LIMBS]);
105 /* Modular mul by 3: res = 3*a mod P */
106 void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
107                            const BN_ULONG a[P256_LIMBS]);
108 
109 /* Modular div by 2: res = a/2 mod P */
110 void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
111                            const BN_ULONG a[P256_LIMBS]);
112 /* Modular sub: res = a-b mod P   */
113 void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
114                       const BN_ULONG a[P256_LIMBS],
115                       const BN_ULONG b[P256_LIMBS]);
116 /* Modular neg: res = -a mod P    */
117 void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
118 /* Montgomery mul: res = a*b*2^-256 mod P */
119 void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
120                            const BN_ULONG a[P256_LIMBS],
121                            const BN_ULONG b[P256_LIMBS]);
122 /* Montgomery sqr: res = a*a*2^-256 mod P */
123 void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
124                            const BN_ULONG a[P256_LIMBS]);
125 /* Convert a number from Montgomery domain, by multiplying with 1 */
126 void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
127                             const BN_ULONG in[P256_LIMBS]);
128 /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
129 void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
130                           const BN_ULONG in[P256_LIMBS]);
131 /* Functions that perform constant time access to the precomputed tables */
132 void ecp_nistz256_scatter_w5(P256_POINT *val,
133                              const P256_POINT *in_t, int idx);
134 void ecp_nistz256_gather_w5(P256_POINT *val,
135                             const P256_POINT *in_t, int idx);
136 void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
137                              const P256_POINT_AFFINE *in_t, int idx);
138 void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
139                             const P256_POINT_AFFINE *in_t, int idx);
140 
141 /* One converted into the Montgomery domain */
142 static const BN_ULONG ONE[P256_LIMBS] = {
143     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
144     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
145 };
146 
147 static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
148 
149 /* Precomputed tables for the default generator */
150 extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
151 
152 /* Recode window to a signed digit, see ecp_nistputil.c for details */
_booth_recode_w5(unsigned int in)153 static unsigned int _booth_recode_w5(unsigned int in)
154 {
155     unsigned int s, d;
156 
157     s = ~((in >> 5) - 1);
158     d = (1 << 6) - in - 1;
159     d = (d & s) | (in & ~s);
160     d = (d >> 1) + (d & 1);
161 
162     return (d << 1) + (s & 1);
163 }
164 
_booth_recode_w7(unsigned int in)165 static unsigned int _booth_recode_w7(unsigned int in)
166 {
167     unsigned int s, d;
168 
169     s = ~((in >> 7) - 1);
170     d = (1 << 8) - in - 1;
171     d = (d & s) | (in & ~s);
172     d = (d >> 1) + (d & 1);
173 
174     return (d << 1) + (s & 1);
175 }
176 
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)177 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
178                              const BN_ULONG src[P256_LIMBS], BN_ULONG move)
179 {
180     BN_ULONG mask1 = 0-move;
181     BN_ULONG mask2 = ~mask1;
182 
183     dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
184     dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
185     dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
186     dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
187     if (P256_LIMBS == 8) {
188         dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
189         dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
190         dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
191         dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
192     }
193 }
194 
is_zero(BN_ULONG in)195 static BN_ULONG is_zero(BN_ULONG in)
196 {
197     in |= (0 - in);
198     in = ~in;
199     in >>= BN_BITS2 - 1;
200     return in;
201 }
202 
is_equal(const BN_ULONG a[P256_LIMBS],const BN_ULONG b[P256_LIMBS])203 static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
204                          const BN_ULONG b[P256_LIMBS])
205 {
206     BN_ULONG res;
207 
208     res = a[0] ^ b[0];
209     res |= a[1] ^ b[1];
210     res |= a[2] ^ b[2];
211     res |= a[3] ^ b[3];
212     if (P256_LIMBS == 8) {
213         res |= a[4] ^ b[4];
214         res |= a[5] ^ b[5];
215         res |= a[6] ^ b[6];
216         res |= a[7] ^ b[7];
217     }
218 
219     return is_zero(res);
220 }
221 
is_one(const BIGNUM * z)222 static BN_ULONG is_one(const BIGNUM *z)
223 {
224     BN_ULONG res = 0;
225     BN_ULONG *a = bn_get_words(z);
226 
227     if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
228         res = a[0] ^ ONE[0];
229         res |= a[1] ^ ONE[1];
230         res |= a[2] ^ ONE[2];
231         res |= a[3] ^ ONE[3];
232         if (P256_LIMBS == 8) {
233             res |= a[4] ^ ONE[4];
234             res |= a[5] ^ ONE[5];
235             res |= a[6] ^ ONE[6];
236             /*
237              * no check for a[7] (being zero) on 32-bit platforms,
238              * because value of "one" takes only 7 limbs.
239              */
240         }
241         res = is_zero(res);
242     }
243 
244     return res;
245 }
246 
247 /*
248  * For reference, this macro is used only when new ecp_nistz256 assembly
249  * module is being developed.  For example, configure with
250  * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
251  * performing simplest arithmetic operations on 256-bit vectors. Then
252  * work on implementation of higher-level functions performing point
253  * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
254  * and never define it again. (The correct macro denoting presence of
255  * ecp_nistz256 module is ECP_NISTZ256_ASM.)
256  */
257 #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
258 void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
259 void ecp_nistz256_point_add(P256_POINT *r,
260                             const P256_POINT *a, const P256_POINT *b);
261 void ecp_nistz256_point_add_affine(P256_POINT *r,
262                                    const P256_POINT *a,
263                                    const P256_POINT_AFFINE *b);
264 #else
265 /* Point double: r = 2*a */
ecp_nistz256_point_double(P256_POINT * r,const P256_POINT * a)266 static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
267 {
268     BN_ULONG S[P256_LIMBS];
269     BN_ULONG M[P256_LIMBS];
270     BN_ULONG Zsqr[P256_LIMBS];
271     BN_ULONG tmp0[P256_LIMBS];
272 
273     const BN_ULONG *in_x = a->X;
274     const BN_ULONG *in_y = a->Y;
275     const BN_ULONG *in_z = a->Z;
276 
277     BN_ULONG *res_x = r->X;
278     BN_ULONG *res_y = r->Y;
279     BN_ULONG *res_z = r->Z;
280 
281     ecp_nistz256_mul_by_2(S, in_y);
282 
283     ecp_nistz256_sqr_mont(Zsqr, in_z);
284 
285     ecp_nistz256_sqr_mont(S, S);
286 
287     ecp_nistz256_mul_mont(res_z, in_z, in_y);
288     ecp_nistz256_mul_by_2(res_z, res_z);
289 
290     ecp_nistz256_add(M, in_x, Zsqr);
291     ecp_nistz256_sub(Zsqr, in_x, Zsqr);
292 
293     ecp_nistz256_sqr_mont(res_y, S);
294     ecp_nistz256_div_by_2(res_y, res_y);
295 
296     ecp_nistz256_mul_mont(M, M, Zsqr);
297     ecp_nistz256_mul_by_3(M, M);
298 
299     ecp_nistz256_mul_mont(S, S, in_x);
300     ecp_nistz256_mul_by_2(tmp0, S);
301 
302     ecp_nistz256_sqr_mont(res_x, M);
303 
304     ecp_nistz256_sub(res_x, res_x, tmp0);
305     ecp_nistz256_sub(S, S, res_x);
306 
307     ecp_nistz256_mul_mont(S, S, M);
308     ecp_nistz256_sub(res_y, S, res_y);
309 }
310 
311 /* Point addition: r = a+b */
ecp_nistz256_point_add(P256_POINT * r,const P256_POINT * a,const P256_POINT * b)312 static void ecp_nistz256_point_add(P256_POINT *r,
313                                    const P256_POINT *a, const P256_POINT *b)
314 {
315     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
316     BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
317     BN_ULONG Z1sqr[P256_LIMBS];
318     BN_ULONG Z2sqr[P256_LIMBS];
319     BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
320     BN_ULONG Hsqr[P256_LIMBS];
321     BN_ULONG Rsqr[P256_LIMBS];
322     BN_ULONG Hcub[P256_LIMBS];
323 
324     BN_ULONG res_x[P256_LIMBS];
325     BN_ULONG res_y[P256_LIMBS];
326     BN_ULONG res_z[P256_LIMBS];
327 
328     BN_ULONG in1infty, in2infty;
329 
330     const BN_ULONG *in1_x = a->X;
331     const BN_ULONG *in1_y = a->Y;
332     const BN_ULONG *in1_z = a->Z;
333 
334     const BN_ULONG *in2_x = b->X;
335     const BN_ULONG *in2_y = b->Y;
336     const BN_ULONG *in2_z = b->Z;
337 
338     /*
339      * Infinity in encoded as (,,0)
340      */
341     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
342     if (P256_LIMBS == 8)
343         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
344 
345     in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
346     if (P256_LIMBS == 8)
347         in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
348 
349     in1infty = is_zero(in1infty);
350     in2infty = is_zero(in2infty);
351 
352     ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
353     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
354 
355     ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
356     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
357 
358     ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
359     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
360     ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
361 
362     ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
363     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
364     ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
365 
366     /*
367      * The formulae are incorrect if the points are equal so we check for
368      * this and do doubling if this happens.
369      *
370      * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
371      * that are bound to the affine coordinates (xi, yi) by the following
372      * equations:
373      *     - xi = Xi / (Zi)^2
374      *     - y1 = Yi / (Zi)^3
375      *
376      * For the sake of optimization, the algorithm operates over
377      * intermediate variables U1, U2 and S1, S2 that are derived from
378      * the projective coordinates:
379      *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
380      *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
381      *
382      * It is easy to prove that is_equal(U1, U2) implies that the affine
383      * x-coordinates are equal, or either point is at infinity.
384      * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
385      * equal, or either point is at infinity.
386      *
387      * The special case of either point being the point at infinity (Z1 or Z2
388      * is zero), is handled separately later on in this function, so we avoid
389      * jumping to point_double here in those special cases.
390      *
391      * When both points are inverse of each other, we know that the affine
392      * x-coordinates are equal, and the y-coordinates have different sign.
393      * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
394      * will equal 0, thus the result is infinity, if we simply let this
395      * function continue normally.
396      *
397      * We use bitwise operations to avoid potential side-channels introduced by
398      * the short-circuiting behaviour of boolean operators.
399      */
400     if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
401         /*
402          * This is obviously not constant-time but it should never happen during
403          * single point multiplication, so there is no timing leak for ECDH or
404          * ECDSA signing.
405          */
406         ecp_nistz256_point_double(r, a);
407         return;
408     }
409 
410     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
411     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
412     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
413     ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
414     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
415 
416     ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
417     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
418 
419     ecp_nistz256_sub(res_x, Rsqr, Hsqr);
420     ecp_nistz256_sub(res_x, res_x, Hcub);
421 
422     ecp_nistz256_sub(res_y, U2, res_x);
423 
424     ecp_nistz256_mul_mont(S2, S1, Hcub);
425     ecp_nistz256_mul_mont(res_y, R, res_y);
426     ecp_nistz256_sub(res_y, res_y, S2);
427 
428     copy_conditional(res_x, in2_x, in1infty);
429     copy_conditional(res_y, in2_y, in1infty);
430     copy_conditional(res_z, in2_z, in1infty);
431 
432     copy_conditional(res_x, in1_x, in2infty);
433     copy_conditional(res_y, in1_y, in2infty);
434     copy_conditional(res_z, in1_z, in2infty);
435 
436     memcpy(r->X, res_x, sizeof(res_x));
437     memcpy(r->Y, res_y, sizeof(res_y));
438     memcpy(r->Z, res_z, sizeof(res_z));
439 }
440 
441 /* Point addition when b is known to be affine: r = a+b */
ecp_nistz256_point_add_affine(P256_POINT * r,const P256_POINT * a,const P256_POINT_AFFINE * b)442 static void ecp_nistz256_point_add_affine(P256_POINT *r,
443                                           const P256_POINT *a,
444                                           const P256_POINT_AFFINE *b)
445 {
446     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
447     BN_ULONG Z1sqr[P256_LIMBS];
448     BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
449     BN_ULONG Hsqr[P256_LIMBS];
450     BN_ULONG Rsqr[P256_LIMBS];
451     BN_ULONG Hcub[P256_LIMBS];
452 
453     BN_ULONG res_x[P256_LIMBS];
454     BN_ULONG res_y[P256_LIMBS];
455     BN_ULONG res_z[P256_LIMBS];
456 
457     BN_ULONG in1infty, in2infty;
458 
459     const BN_ULONG *in1_x = a->X;
460     const BN_ULONG *in1_y = a->Y;
461     const BN_ULONG *in1_z = a->Z;
462 
463     const BN_ULONG *in2_x = b->X;
464     const BN_ULONG *in2_y = b->Y;
465 
466     /*
467      * Infinity in encoded as (,,0)
468      */
469     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
470     if (P256_LIMBS == 8)
471         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
472 
473     /*
474      * In affine representation we encode infinity as (0,0), which is
475      * not on the curve, so it is OK
476      */
477     in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
478                 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
479     if (P256_LIMBS == 8)
480         in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
481                      in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
482 
483     in1infty = is_zero(in1infty);
484     in2infty = is_zero(in2infty);
485 
486     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
487 
488     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
489     ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
490 
491     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
492 
493     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
494 
495     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
496     ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
497 
498     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
499     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
500     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
501 
502     ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
503     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
504 
505     ecp_nistz256_sub(res_x, Rsqr, Hsqr);
506     ecp_nistz256_sub(res_x, res_x, Hcub);
507     ecp_nistz256_sub(H, U2, res_x);
508 
509     ecp_nistz256_mul_mont(S2, in1_y, Hcub);
510     ecp_nistz256_mul_mont(H, H, R);
511     ecp_nistz256_sub(res_y, H, S2);
512 
513     copy_conditional(res_x, in2_x, in1infty);
514     copy_conditional(res_x, in1_x, in2infty);
515 
516     copy_conditional(res_y, in2_y, in1infty);
517     copy_conditional(res_y, in1_y, in2infty);
518 
519     copy_conditional(res_z, ONE, in1infty);
520     copy_conditional(res_z, in1_z, in2infty);
521 
522     memcpy(r->X, res_x, sizeof(res_x));
523     memcpy(r->Y, res_y, sizeof(res_y));
524     memcpy(r->Z, res_z, sizeof(res_z));
525 }
526 #endif
527 
528 /* r = in^-1 mod p */
ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])529 static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
530                                      const BN_ULONG in[P256_LIMBS])
531 {
532     /*
533      * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
534      * ffffffff ffffffff We use FLT and used poly-2 as exponent
535      */
536     BN_ULONG p2[P256_LIMBS];
537     BN_ULONG p4[P256_LIMBS];
538     BN_ULONG p8[P256_LIMBS];
539     BN_ULONG p16[P256_LIMBS];
540     BN_ULONG p32[P256_LIMBS];
541     BN_ULONG res[P256_LIMBS];
542     int i;
543 
544     ecp_nistz256_sqr_mont(res, in);
545     ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
546 
547     ecp_nistz256_sqr_mont(res, p2);
548     ecp_nistz256_sqr_mont(res, res);
549     ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
550 
551     ecp_nistz256_sqr_mont(res, p4);
552     ecp_nistz256_sqr_mont(res, res);
553     ecp_nistz256_sqr_mont(res, res);
554     ecp_nistz256_sqr_mont(res, res);
555     ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
556 
557     ecp_nistz256_sqr_mont(res, p8);
558     for (i = 0; i < 7; i++)
559         ecp_nistz256_sqr_mont(res, res);
560     ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
561 
562     ecp_nistz256_sqr_mont(res, p16);
563     for (i = 0; i < 15; i++)
564         ecp_nistz256_sqr_mont(res, res);
565     ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
566 
567     ecp_nistz256_sqr_mont(res, p32);
568     for (i = 0; i < 31; i++)
569         ecp_nistz256_sqr_mont(res, res);
570     ecp_nistz256_mul_mont(res, res, in);
571 
572     for (i = 0; i < 32 * 4; i++)
573         ecp_nistz256_sqr_mont(res, res);
574     ecp_nistz256_mul_mont(res, res, p32);
575 
576     for (i = 0; i < 32; i++)
577         ecp_nistz256_sqr_mont(res, res);
578     ecp_nistz256_mul_mont(res, res, p32);
579 
580     for (i = 0; i < 16; i++)
581         ecp_nistz256_sqr_mont(res, res);
582     ecp_nistz256_mul_mont(res, res, p16);
583 
584     for (i = 0; i < 8; i++)
585         ecp_nistz256_sqr_mont(res, res);
586     ecp_nistz256_mul_mont(res, res, p8);
587 
588     ecp_nistz256_sqr_mont(res, res);
589     ecp_nistz256_sqr_mont(res, res);
590     ecp_nistz256_sqr_mont(res, res);
591     ecp_nistz256_sqr_mont(res, res);
592     ecp_nistz256_mul_mont(res, res, p4);
593 
594     ecp_nistz256_sqr_mont(res, res);
595     ecp_nistz256_sqr_mont(res, res);
596     ecp_nistz256_mul_mont(res, res, p2);
597 
598     ecp_nistz256_sqr_mont(res, res);
599     ecp_nistz256_sqr_mont(res, res);
600     ecp_nistz256_mul_mont(res, res, in);
601 
602     memcpy(r, res, sizeof(res));
603 }
604 
605 /*
606  * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
607  * returns one if it fits. Otherwise it returns zero.
608  */
ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],const BIGNUM * in)609 __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
610                                                     const BIGNUM *in)
611 {
612     return bn_copy_words(out, in, P256_LIMBS);
613 }
614 
615 /* r = sum(scalar[i]*point[i]) */
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const BIGNUM ** scalar,const EC_POINT ** point,size_t num,BN_CTX * ctx)616 __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
617                                             P256_POINT *r,
618                                             const BIGNUM **scalar,
619                                             const EC_POINT **point,
620                                             size_t num, BN_CTX *ctx)
621 {
622     size_t i;
623     int j, ret = 0;
624     unsigned int idx;
625     unsigned char (*p_str)[33] = NULL;
626     const unsigned int window_size = 5;
627     const unsigned int mask = (1 << (window_size + 1)) - 1;
628     unsigned int wvalue;
629     P256_POINT *temp;           /* place for 5 temporary points */
630     const BIGNUM **scalars = NULL;
631     P256_POINT (*table)[16] = NULL;
632     void *table_storage = NULL;
633 
634     if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
635         || (table_storage =
636             OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
637         || (p_str =
638             OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
639         || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
640         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
641         goto err;
642     }
643 
644     table = (void *)ALIGNPTR(table_storage, 64);
645     temp = (P256_POINT *)(table + num);
646 
647     for (i = 0; i < num; i++) {
648         P256_POINT *row = table[i];
649 
650         /* This is an unusual input, we don't guarantee constant-timeness. */
651         if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
652             BIGNUM *mod;
653 
654             if ((mod = BN_CTX_get(ctx)) == NULL)
655                 goto err;
656             if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
657                 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
658                 goto err;
659             }
660             scalars[i] = mod;
661         } else
662             scalars[i] = scalar[i];
663 
664         for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
665             BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
666 
667             p_str[i][j + 0] = (unsigned char)d;
668             p_str[i][j + 1] = (unsigned char)(d >> 8);
669             p_str[i][j + 2] = (unsigned char)(d >> 16);
670             p_str[i][j + 3] = (unsigned char)(d >>= 24);
671             if (BN_BYTES == 8) {
672                 d >>= 8;
673                 p_str[i][j + 4] = (unsigned char)d;
674                 p_str[i][j + 5] = (unsigned char)(d >> 8);
675                 p_str[i][j + 6] = (unsigned char)(d >> 16);
676                 p_str[i][j + 7] = (unsigned char)(d >> 24);
677             }
678         }
679         for (; j < 33; j++)
680             p_str[i][j] = 0;
681 
682         if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
683             || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
684             || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
685             ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
686             goto err;
687         }
688 
689         /*
690          * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
691          * is not stored. All other values are actually stored with an offset
692          * of -1 in table.
693          */
694 
695         ecp_nistz256_scatter_w5  (row, &temp[0], 1);
696         ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
697         ecp_nistz256_scatter_w5  (row, &temp[1], 2);
698         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
699         ecp_nistz256_scatter_w5  (row, &temp[2], 3);
700         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
701         ecp_nistz256_scatter_w5  (row, &temp[1], 4);
702         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
703         ecp_nistz256_scatter_w5  (row, &temp[2], 6);
704         ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
705         ecp_nistz256_scatter_w5  (row, &temp[3], 5);
706         ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
707         ecp_nistz256_scatter_w5  (row, &temp[4], 7);
708         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
709         ecp_nistz256_scatter_w5  (row, &temp[1], 8);
710         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
711         ecp_nistz256_scatter_w5  (row, &temp[2], 12);
712         ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
713         ecp_nistz256_scatter_w5  (row, &temp[3], 10);
714         ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
715         ecp_nistz256_scatter_w5  (row, &temp[4], 14);
716         ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
717         ecp_nistz256_scatter_w5  (row, &temp[2], 13);
718         ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
719         ecp_nistz256_scatter_w5  (row, &temp[3], 11);
720         ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
721         ecp_nistz256_scatter_w5  (row, &temp[4], 15);
722         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
723         ecp_nistz256_scatter_w5  (row, &temp[2], 9);
724         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
725         ecp_nistz256_scatter_w5  (row, &temp[1], 16);
726     }
727 
728     idx = 255;
729 
730     wvalue = p_str[0][(idx - 1) / 8];
731     wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
732 
733     /*
734      * We gather to temp[0], because we know it's position relative
735      * to table
736      */
737     ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
738     memcpy(r, &temp[0], sizeof(temp[0]));
739 
740     while (idx >= 5) {
741         for (i = (idx == 255 ? 1 : 0); i < num; i++) {
742             unsigned int off = (idx - 1) / 8;
743 
744             wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
745             wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
746 
747             wvalue = _booth_recode_w5(wvalue);
748 
749             ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
750 
751             ecp_nistz256_neg(temp[1].Y, temp[0].Y);
752             copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
753 
754             ecp_nistz256_point_add(r, r, &temp[0]);
755         }
756 
757         idx -= window_size;
758 
759         ecp_nistz256_point_double(r, r);
760         ecp_nistz256_point_double(r, r);
761         ecp_nistz256_point_double(r, r);
762         ecp_nistz256_point_double(r, r);
763         ecp_nistz256_point_double(r, r);
764     }
765 
766     /* Final window */
767     for (i = 0; i < num; i++) {
768         wvalue = p_str[i][0];
769         wvalue = (wvalue << 1) & mask;
770 
771         wvalue = _booth_recode_w5(wvalue);
772 
773         ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
774 
775         ecp_nistz256_neg(temp[1].Y, temp[0].Y);
776         copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
777 
778         ecp_nistz256_point_add(r, r, &temp[0]);
779     }
780 
781     ret = 1;
782  err:
783     OPENSSL_free(table_storage);
784     OPENSSL_free(p_str);
785     OPENSSL_free(scalars);
786     return ret;
787 }
788 
789 /* Coordinates of G, for which we have precomputed tables */
790 static const BN_ULONG def_xG[P256_LIMBS] = {
791     TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
792     TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
793 };
794 
795 static const BN_ULONG def_yG[P256_LIMBS] = {
796     TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
797     TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
798 };
799 
800 /*
801  * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
802  * generator.
803  */
ecp_nistz256_is_affine_G(const EC_POINT * generator)804 static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
805 {
806     return (bn_get_top(generator->X) == P256_LIMBS) &&
807         (bn_get_top(generator->Y) == P256_LIMBS) &&
808         is_equal(bn_get_words(generator->X), def_xG) &&
809         is_equal(bn_get_words(generator->Y), def_yG) &&
810         is_one(generator->Z);
811 }
812 
ecp_nistz256_mult_precompute(EC_GROUP * group,BN_CTX * ctx)813 __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
814 {
815     /*
816      * We precompute a table for a Booth encoded exponent (wNAF) based
817      * computation. Each table holds 64 values for safe access, with an
818      * implicit value of infinity at index zero. We use window of size 7, and
819      * therefore require ceil(256/7) = 37 tables.
820      */
821     const BIGNUM *order;
822     EC_POINT *P = NULL, *T = NULL;
823     const EC_POINT *generator;
824     NISTZ256_PRE_COMP *pre_comp;
825     BN_CTX *new_ctx = NULL;
826     int i, j, k, ret = 0;
827     size_t w;
828 
829     PRECOMP256_ROW *preComputedTable = NULL;
830     unsigned char *precomp_storage = NULL;
831 
832     /* if there is an old NISTZ256_PRE_COMP object, throw it away */
833     EC_pre_comp_free(group);
834     generator = EC_GROUP_get0_generator(group);
835     if (generator == NULL) {
836         ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
837         return 0;
838     }
839 
840     if (ecp_nistz256_is_affine_G(generator)) {
841         /*
842          * No need to calculate tables for the standard generator because we
843          * have them statically.
844          */
845         return 1;
846     }
847 
848     if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
849         return 0;
850 
851     if (ctx == NULL) {
852         ctx = new_ctx = BN_CTX_new_ex(group->libctx);
853         if (ctx == NULL)
854             goto err;
855     }
856 
857     BN_CTX_start(ctx);
858 
859     order = EC_GROUP_get0_order(group);
860     if (order == NULL)
861         goto err;
862 
863     if (BN_is_zero(order)) {
864         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
865         goto err;
866     }
867 
868     w = 7;
869 
870     if ((precomp_storage =
871          OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
872         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
873         goto err;
874     }
875 
876     preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
877 
878     P = EC_POINT_new(group);
879     T = EC_POINT_new(group);
880     if (P == NULL || T == NULL)
881         goto err;
882 
883     /*
884      * The zero entry is implicitly infinity, and we skip it, storing other
885      * values with -1 offset.
886      */
887     if (!EC_POINT_copy(T, generator))
888         goto err;
889 
890     for (k = 0; k < 64; k++) {
891         if (!EC_POINT_copy(P, T))
892             goto err;
893         for (j = 0; j < 37; j++) {
894             P256_POINT_AFFINE temp;
895             /*
896              * It would be faster to use EC_POINTs_make_affine and
897              * make multiple points affine at the same time.
898              */
899             if (group->meth->make_affine == NULL
900                 || !group->meth->make_affine(group, P, ctx))
901                 goto err;
902             if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
903                 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
904                 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
905                 goto err;
906             }
907             ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
908             for (i = 0; i < 7; i++) {
909                 if (!EC_POINT_dbl(group, P, P, ctx))
910                     goto err;
911             }
912         }
913         if (!EC_POINT_add(group, T, T, generator, ctx))
914             goto err;
915     }
916 
917     pre_comp->group = group;
918     pre_comp->w = w;
919     pre_comp->precomp = preComputedTable;
920     pre_comp->precomp_storage = precomp_storage;
921     precomp_storage = NULL;
922     SETPRECOMP(group, nistz256, pre_comp);
923     pre_comp = NULL;
924     ret = 1;
925 
926  err:
927     BN_CTX_end(ctx);
928     BN_CTX_free(new_ctx);
929 
930     EC_nistz256_pre_comp_free(pre_comp);
931     OPENSSL_free(precomp_storage);
932     EC_POINT_free(P);
933     EC_POINT_free(T);
934     return ret;
935 }
936 
ecp_nistz256_set_from_affine(EC_POINT * out,const EC_GROUP * group,const P256_POINT_AFFINE * in,BN_CTX * ctx)937 __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
938                                                const P256_POINT_AFFINE *in,
939                                                BN_CTX *ctx)
940 {
941     int ret = 0;
942 
943     if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
944         && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
945         && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
946         out->Z_is_one = 1;
947 
948     return ret;
949 }
950 
951 /* r = scalar*G + sum(scalars[i]*points[i]) */
ecp_nistz256_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * scalar,size_t num,const EC_POINT * points[],const BIGNUM * scalars[],BN_CTX * ctx)952 __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
953                                           EC_POINT *r,
954                                           const BIGNUM *scalar,
955                                           size_t num,
956                                           const EC_POINT *points[],
957                                           const BIGNUM *scalars[], BN_CTX *ctx)
958 {
959     int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
960     unsigned char p_str[33] = { 0 };
961     const PRECOMP256_ROW *preComputedTable = NULL;
962     const NISTZ256_PRE_COMP *pre_comp = NULL;
963     const EC_POINT *generator = NULL;
964     const BIGNUM **new_scalars = NULL;
965     const EC_POINT **new_points = NULL;
966     unsigned int idx = 0;
967     const unsigned int window_size = 7;
968     const unsigned int mask = (1 << (window_size + 1)) - 1;
969     unsigned int wvalue;
970     ALIGN32 union {
971         P256_POINT p;
972         P256_POINT_AFFINE a;
973     } t, p;
974     BIGNUM *tmp_scalar;
975 
976     if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
977         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
978         return 0;
979     }
980 
981     memset(&p, 0, sizeof(p));
982     BN_CTX_start(ctx);
983 
984     if (scalar) {
985         generator = EC_GROUP_get0_generator(group);
986         if (generator == NULL) {
987             ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
988             goto err;
989         }
990 
991         /* look if we can use precomputed multiples of generator */
992         pre_comp = group->pre_comp.nistz256;
993 
994         if (pre_comp) {
995             /*
996              * If there is a precomputed table for the generator, check that
997              * it was generated with the same generator.
998              */
999             EC_POINT *pre_comp_generator = EC_POINT_new(group);
1000             if (pre_comp_generator == NULL)
1001                 goto err;
1002 
1003             ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
1004             if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1005                                               group, &p.a, ctx)) {
1006                 EC_POINT_free(pre_comp_generator);
1007                 goto err;
1008             }
1009 
1010             if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1011                 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1012 
1013             EC_POINT_free(pre_comp_generator);
1014         }
1015 
1016         if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1017             /*
1018              * If there is no precomputed data, but the generator is the
1019              * default, a hardcoded table of precomputed data is used. This
1020              * is because applications, such as Apache, do not use
1021              * EC_KEY_precompute_mult.
1022              */
1023             preComputedTable = ecp_nistz256_precomputed;
1024         }
1025 
1026         if (preComputedTable) {
1027             BN_ULONG infty;
1028 
1029             if ((BN_num_bits(scalar) > 256)
1030                 || BN_is_negative(scalar)) {
1031                 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1032                     goto err;
1033 
1034                 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1035                     ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1036                     goto err;
1037                 }
1038                 scalar = tmp_scalar;
1039             }
1040 
1041             for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1042                 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1043 
1044                 p_str[i + 0] = (unsigned char)d;
1045                 p_str[i + 1] = (unsigned char)(d >> 8);
1046                 p_str[i + 2] = (unsigned char)(d >> 16);
1047                 p_str[i + 3] = (unsigned char)(d >>= 24);
1048                 if (BN_BYTES == 8) {
1049                     d >>= 8;
1050                     p_str[i + 4] = (unsigned char)d;
1051                     p_str[i + 5] = (unsigned char)(d >> 8);
1052                     p_str[i + 6] = (unsigned char)(d >> 16);
1053                     p_str[i + 7] = (unsigned char)(d >> 24);
1054                 }
1055             }
1056 
1057             for (; i < 33; i++)
1058                 p_str[i] = 0;
1059 
1060             /* First window */
1061             wvalue = (p_str[0] << 1) & mask;
1062             idx += window_size;
1063 
1064             wvalue = _booth_recode_w7(wvalue);
1065 
1066             ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1067                                    wvalue >> 1);
1068 
1069             ecp_nistz256_neg(p.p.Z, p.p.Y);
1070             copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1071 
1072             /*
1073              * Since affine infinity is encoded as (0,0) and
1074              * Jacobian is (,,0), we need to harmonize them
1075              * by assigning "one" or zero to Z.
1076              */
1077             infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1078                      p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1079             if (P256_LIMBS == 8)
1080                 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1081                           p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1082 
1083             infty = 0 - is_zero(infty);
1084             infty = ~infty;
1085 
1086             p.p.Z[0] = ONE[0] & infty;
1087             p.p.Z[1] = ONE[1] & infty;
1088             p.p.Z[2] = ONE[2] & infty;
1089             p.p.Z[3] = ONE[3] & infty;
1090             if (P256_LIMBS == 8) {
1091                 p.p.Z[4] = ONE[4] & infty;
1092                 p.p.Z[5] = ONE[5] & infty;
1093                 p.p.Z[6] = ONE[6] & infty;
1094                 p.p.Z[7] = ONE[7] & infty;
1095             }
1096 
1097             for (i = 1; i < 37; i++) {
1098                 unsigned int off = (idx - 1) / 8;
1099                 wvalue = p_str[off] | p_str[off + 1] << 8;
1100                 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1101                 idx += window_size;
1102 
1103                 wvalue = _booth_recode_w7(wvalue);
1104 
1105                 ecp_nistz256_gather_w7(&t.a,
1106                                        preComputedTable[i], wvalue >> 1);
1107 
1108                 ecp_nistz256_neg(t.p.Z, t.a.Y);
1109                 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1110 
1111                 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1112             }
1113         } else {
1114             p_is_infinity = 1;
1115             no_precomp_for_generator = 1;
1116         }
1117     } else
1118         p_is_infinity = 1;
1119 
1120     if (no_precomp_for_generator) {
1121         /*
1122          * Without a precomputed table for the generator, it has to be
1123          * handled like a normal point.
1124          */
1125         new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1126         if (new_scalars == NULL) {
1127             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1128             goto err;
1129         }
1130 
1131         new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1132         if (new_points == NULL) {
1133             ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1134             goto err;
1135         }
1136 
1137         memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1138         new_scalars[num] = scalar;
1139         memcpy(new_points, points, num * sizeof(EC_POINT *));
1140         new_points[num] = generator;
1141 
1142         scalars = new_scalars;
1143         points = new_points;
1144         num++;
1145     }
1146 
1147     if (num) {
1148         P256_POINT *out = &t.p;
1149         if (p_is_infinity)
1150             out = &p.p;
1151 
1152         if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1153             goto err;
1154 
1155         if (!p_is_infinity)
1156             ecp_nistz256_point_add(&p.p, &p.p, out);
1157     }
1158 
1159     /* Not constant-time, but we're only operating on the public output. */
1160     if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1161         !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1162         !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1163         goto err;
1164     }
1165     r->Z_is_one = is_one(r->Z) & 1;
1166 
1167     ret = 1;
1168 
1169 err:
1170     BN_CTX_end(ctx);
1171     OPENSSL_free(new_points);
1172     OPENSSL_free(new_scalars);
1173     return ret;
1174 }
1175 
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)1176 __owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1177                                           const EC_POINT *point,
1178                                           BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1179 {
1180     BN_ULONG z_inv2[P256_LIMBS];
1181     BN_ULONG z_inv3[P256_LIMBS];
1182     BN_ULONG x_aff[P256_LIMBS];
1183     BN_ULONG y_aff[P256_LIMBS];
1184     BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1185     BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1186 
1187     if (EC_POINT_is_at_infinity(group, point)) {
1188         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1189         return 0;
1190     }
1191 
1192     if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1193         !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1194         !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1195         ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1196         return 0;
1197     }
1198 
1199     ecp_nistz256_mod_inverse(z_inv3, point_z);
1200     ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1201     ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1202 
1203     if (x != NULL) {
1204         ecp_nistz256_from_mont(x_ret, x_aff);
1205         if (!bn_set_words(x, x_ret, P256_LIMBS))
1206             return 0;
1207     }
1208 
1209     if (y != NULL) {
1210         ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1211         ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1212         ecp_nistz256_from_mont(y_ret, y_aff);
1213         if (!bn_set_words(y, y_ret, P256_LIMBS))
1214             return 0;
1215     }
1216 
1217     return 1;
1218 }
1219 
ecp_nistz256_pre_comp_new(const EC_GROUP * group)1220 static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1221 {
1222     NISTZ256_PRE_COMP *ret = NULL;
1223 
1224     if (!group)
1225         return NULL;
1226 
1227     ret = OPENSSL_zalloc(sizeof(*ret));
1228 
1229     if (ret == NULL) {
1230         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1231         return ret;
1232     }
1233 
1234     ret->group = group;
1235     ret->w = 6;                 /* default */
1236     ret->references = 1;
1237 
1238     ret->lock = CRYPTO_THREAD_lock_new();
1239     if (ret->lock == NULL) {
1240         ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1241         OPENSSL_free(ret);
1242         return NULL;
1243     }
1244     return ret;
1245 }
1246 
EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP * p)1247 NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1248 {
1249     int i;
1250     if (p != NULL)
1251         CRYPTO_UP_REF(&p->references, &i, p->lock);
1252     return p;
1253 }
1254 
EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP * pre)1255 void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1256 {
1257     int i;
1258 
1259     if (pre == NULL)
1260         return;
1261 
1262     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1263     REF_PRINT_COUNT("EC_nistz256", pre);
1264     if (i > 0)
1265         return;
1266     REF_ASSERT_ISNT(i < 0);
1267 
1268     OPENSSL_free(pre->precomp_storage);
1269     CRYPTO_THREAD_lock_free(pre->lock);
1270     OPENSSL_free(pre);
1271 }
1272 
1273 
ecp_nistz256_window_have_precompute_mult(const EC_GROUP * group)1274 static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1275 {
1276     /* There is a hard-coded table for the default generator. */
1277     const EC_POINT *generator = EC_GROUP_get0_generator(group);
1278 
1279     if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1280         /* There is a hard-coded table for the default generator. */
1281         return 1;
1282     }
1283 
1284     return HAVEPRECOMP(group, nistz256);
1285 }
1286 
1287 #if defined(__x86_64) || defined(__x86_64__) || \
1288     defined(_M_AMD64) || defined(_M_X64) || \
1289     defined(__powerpc64__) || defined(_ARCH_PP64) || \
1290     defined(__aarch64__)
1291 /*
1292  * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1293  */
1294 void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1295                                const BN_ULONG a[P256_LIMBS],
1296                                const BN_ULONG b[P256_LIMBS]);
1297 void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1298                                const BN_ULONG a[P256_LIMBS],
1299                                BN_ULONG rep);
1300 
ecp_nistz256_inv_mod_ord(const EC_GROUP * group,BIGNUM * r,const BIGNUM * x,BN_CTX * ctx)1301 static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1302                                     const BIGNUM *x, BN_CTX *ctx)
1303 {
1304     /* RR = 2^512 mod ord(p256) */
1305     static const BN_ULONG RR[P256_LIMBS]  = {
1306         TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1307         TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1308     };
1309     /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1310     static const BN_ULONG one[P256_LIMBS] = {
1311         TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1312     };
1313     /*
1314      * We don't use entry 0 in the table, so we omit it and address
1315      * with -1 offset.
1316      */
1317     BN_ULONG table[15][P256_LIMBS];
1318     BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1319     int i, ret = 0;
1320     enum {
1321         i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1322         i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1323     };
1324 
1325     /*
1326      * Catch allocation failure early.
1327      */
1328     if (bn_wexpand(r, P256_LIMBS) == NULL) {
1329         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1330         goto err;
1331     }
1332 
1333     if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1334         BIGNUM *tmp;
1335 
1336         if ((tmp = BN_CTX_get(ctx)) == NULL
1337             || !BN_nnmod(tmp, x, group->order, ctx)) {
1338             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1339             goto err;
1340         }
1341         x = tmp;
1342     }
1343 
1344     if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1345         ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1346         goto err;
1347     }
1348 
1349     ecp_nistz256_ord_mul_mont(table[0], t, RR);
1350 #if 0
1351     /*
1352      * Original sparse-then-fixed-window algorithm, retained for reference.
1353      */
1354     for (i = 2; i < 16; i += 2) {
1355         ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1356         ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1357     }
1358 
1359     /*
1360      * The top 128bit of the exponent are highly redudndant, so we
1361      * perform an optimized flow
1362      */
1363     ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1364     ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1365 
1366     ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1367     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1368 
1369     ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1370     ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1371 
1372     ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1373     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1374 
1375     ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1376     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1377 
1378     /*
1379      * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1380      */
1381     for(i = 0; i < 32; i++) {
1382         /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1383          * split into nibbles */
1384         static const unsigned char expLo[32]  = {
1385             0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1386             0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1387         };
1388 
1389         ecp_nistz256_ord_sqr_mont(out, out, 4);
1390         /* The exponent is public, no need in constant-time access */
1391         ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1392     }
1393 #else
1394     /*
1395      * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1396      *
1397      * Even though this code path spares 12 squarings, 4.5%, and 13
1398      * multiplications, 25%, on grand scale sign operation is not that
1399      * much faster, not more that 2%...
1400      */
1401 
1402     /* pre-calculate powers */
1403     ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1404 
1405     ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1406 
1407     ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1408 
1409     ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1410 
1411     ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1412 
1413     ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1414 
1415     ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1416     ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1417 
1418     ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1419 
1420     ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1421 
1422     ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1423 
1424     ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1425     ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1426 
1427     ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1428     ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1429 
1430     ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1431     ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1432 
1433     /* calculations */
1434     ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1435     ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1436 
1437     for (i = 0; i < 27; i++) {
1438         static const struct { unsigned char p, i; } chain[27] = {
1439             { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1440             { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1441             { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1442             { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1443             { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1444             { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1445             { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1446             { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1447             { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1448         };
1449 
1450         ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1451         ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1452     }
1453 #endif
1454     ecp_nistz256_ord_mul_mont(out, out, one);
1455 
1456     /*
1457      * Can't fail, but check return code to be consistent anyway.
1458      */
1459     if (!bn_set_words(r, out, P256_LIMBS))
1460         goto err;
1461 
1462     ret = 1;
1463 err:
1464     return ret;
1465 }
1466 #else
1467 # define ecp_nistz256_inv_mod_ord NULL
1468 #endif
1469 
EC_GFp_nistz256_method(void)1470 const EC_METHOD *EC_GFp_nistz256_method(void)
1471 {
1472     static const EC_METHOD ret = {
1473         EC_FLAGS_DEFAULT_OCT,
1474         NID_X9_62_prime_field,
1475         ossl_ec_GFp_mont_group_init,
1476         ossl_ec_GFp_mont_group_finish,
1477         ossl_ec_GFp_mont_group_clear_finish,
1478         ossl_ec_GFp_mont_group_copy,
1479         ossl_ec_GFp_mont_group_set_curve,
1480         ossl_ec_GFp_simple_group_get_curve,
1481         ossl_ec_GFp_simple_group_get_degree,
1482         ossl_ec_group_simple_order_bits,
1483         ossl_ec_GFp_simple_group_check_discriminant,
1484         ossl_ec_GFp_simple_point_init,
1485         ossl_ec_GFp_simple_point_finish,
1486         ossl_ec_GFp_simple_point_clear_finish,
1487         ossl_ec_GFp_simple_point_copy,
1488         ossl_ec_GFp_simple_point_set_to_infinity,
1489         ossl_ec_GFp_simple_point_set_affine_coordinates,
1490         ecp_nistz256_get_affine,
1491         0, 0, 0,
1492         ossl_ec_GFp_simple_add,
1493         ossl_ec_GFp_simple_dbl,
1494         ossl_ec_GFp_simple_invert,
1495         ossl_ec_GFp_simple_is_at_infinity,
1496         ossl_ec_GFp_simple_is_on_curve,
1497         ossl_ec_GFp_simple_cmp,
1498         ossl_ec_GFp_simple_make_affine,
1499         ossl_ec_GFp_simple_points_make_affine,
1500         ecp_nistz256_points_mul,                    /* mul */
1501         ecp_nistz256_mult_precompute,               /* precompute_mult */
1502         ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1503         ossl_ec_GFp_mont_field_mul,
1504         ossl_ec_GFp_mont_field_sqr,
1505         0,                                          /* field_div */
1506         ossl_ec_GFp_mont_field_inv,
1507         ossl_ec_GFp_mont_field_encode,
1508         ossl_ec_GFp_mont_field_decode,
1509         ossl_ec_GFp_mont_field_set_to_one,
1510         ossl_ec_key_simple_priv2oct,
1511         ossl_ec_key_simple_oct2priv,
1512         0, /* set private */
1513         ossl_ec_key_simple_generate_key,
1514         ossl_ec_key_simple_check_key,
1515         ossl_ec_key_simple_generate_public_key,
1516         0, /* keycopy */
1517         0, /* keyfinish */
1518         ossl_ecdh_simple_compute_key,
1519         ossl_ecdsa_simple_sign_setup,
1520         ossl_ecdsa_simple_sign_sig,
1521         ossl_ecdsa_simple_verify_sig,
1522         ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1523         0,                                          /* blind_coordinates */
1524         0,                                          /* ladder_pre */
1525         0,                                          /* ladder_step */
1526         0                                           /* ladder_post */
1527     };
1528 
1529     return &ret;
1530 }
1531