1#! /usr/bin/env perl 2# Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the Apache License 2.0 (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16# 17# July 2004 18# 19# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in 20# "hand-coded assembler"] doesn't stand for the whole improvement 21# coefficient. It turned out that eliminating RC4_CHAR from config 22# line results in ~40% improvement (yes, even for C implementation). 23# Presumably it has everything to do with AMD cache architecture and 24# RAW or whatever penalties. Once again! The module *requires* config 25# line *without* RC4_CHAR! As for coding "secret," I bet on partial 26# register arithmetics. For example instead of 'inc %r8; and $255,%r8' 27# I simply 'inc %r8b'. Even though optimization manual discourages 28# to operate on partial registers, it turned out to be the best bet. 29# At least for AMD... How IA32E would perform remains to be seen... 30 31# November 2004 32# 33# As was shown by Marc Bevand reordering of couple of load operations 34# results in even higher performance gain of 3.3x:-) At least on 35# Opteron... For reference, 1x in this case is RC4_CHAR C-code 36# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. 37# Latter means that if you want to *estimate* what to expect from 38# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. 39 40# November 2004 41# 42# Intel P4 EM64T core was found to run the AMD64 code really slow... 43# The only way to achieve comparable performance on P4 was to keep 44# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to 45# compose blended code, which would perform even within 30% marginal 46# on either AMD and Intel platforms, I implement both cases. See 47# rc4_skey.c for further details... 48 49# April 2005 50# 51# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing 52# those with add/sub results in 50% performance improvement of folded 53# loop... 54 55# May 2005 56# 57# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T 58# performance by >30% [unlike P4 32-bit case that is]. But this is 59# provided that loads are reordered even more aggressively! Both code 60# paths, AMD64 and EM64T, reorder loads in essentially same manner 61# as my IA-64 implementation. On Opteron this resulted in modest 5% 62# improvement [I had to test it], while final Intel P4 performance 63# achieves respectful 432MBps on 2.8GHz processor now. For reference. 64# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than 65# RC4_INT code-path. While if executed on Opteron, it's only 25% 66# slower than the RC4_INT one [meaning that if CPU µ-arch detection 67# is not implemented, then this final RC4_CHAR code-path should be 68# preferred, as it provides better *all-round* performance]. 69 70# March 2007 71# 72# Intel Core2 was observed to perform poorly on both code paths:-( It 73# apparently suffers from some kind of partial register stall, which 74# occurs in 64-bit mode only [as virtually identical 32-bit loop was 75# observed to outperform 64-bit one by almost 50%]. Adding two movzb to 76# cloop1 boosts its performance by 80%! This loop appears to be optimal 77# fit for Core2 and therefore the code was modified to skip cloop8 on 78# this CPU. 79 80# May 2010 81# 82# Intel Westmere was observed to perform suboptimally. Adding yet 83# another movzb to cloop1 improved performance by almost 50%! Core2 84# performance is improved too, but nominally... 85 86# May 2011 87# 88# The only code path that was not modified is P4-specific one. Non-P4 89# Intel code path optimization is heavily based on submission by Maxim 90# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used 91# some of the ideas even in attempt to optimize the original RC4_INT 92# code path... Current performance in cycles per processed byte (less 93# is better) and improvement coefficients relative to previous 94# version of this module are: 95# 96# Opteron 5.3/+0%(*) 97# P4 6.5 98# Core2 6.2/+15%(**) 99# Westmere 4.2/+60% 100# Sandy Bridge 4.2/+120% 101# Atom 9.3/+80% 102# VIA Nano 6.4/+4% 103# Ivy Bridge 4.1/+30% 104# Bulldozer 4.5/+30%(*) 105# 106# (*) But corresponding loop has less instructions, which should have 107# positive effect on upcoming Bulldozer, which has one less ALU. 108# For reference, Intel code runs at 6.8 cpb rate on Opteron. 109# (**) Note that Core2 result is ~15% lower than corresponding result 110# for 32-bit code, meaning that it's possible to improve it, 111# but more than likely at the cost of the others (see rc4-586.pl 112# to get the idea)... 113 114# $output is the last argument if it looks like a file (it has an extension) 115# $flavour is the first argument if it doesn't look like a file 116$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; 117$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; 118 119$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 120 121$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 122( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 123( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 124die "can't locate x86_64-xlate.pl"; 125 126open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"" 127 or die "can't call $xlate: $!"; 128*STDOUT=*OUT; 129 130$dat="%rdi"; # arg1 131$len="%rsi"; # arg2 132$inp="%rdx"; # arg3 133$out="%rcx"; # arg4 134 135{ 136$code=<<___; 137.text 138.extern OPENSSL_ia32cap_P 139 140.globl RC4 141.type RC4,\@function,4 142.align 16 143RC4: 144.cfi_startproc 145 endbranch 146 or $len,$len 147 jne .Lentry 148 ret 149.Lentry: 150 push %rbx 151.cfi_push %rbx 152 push %r12 153.cfi_push %r12 154 push %r13 155.cfi_push %r13 156.Lprologue: 157 mov $len,%r11 158 mov $inp,%r12 159 mov $out,%r13 160___ 161my $len="%r11"; # reassign input arguments 162my $inp="%r12"; 163my $out="%r13"; 164 165my @XX=("%r10","%rsi"); 166my @TX=("%rax","%rbx"); 167my $YY="%rcx"; 168my $TY="%rdx"; 169 170$code.=<<___; 171 xor $XX[0],$XX[0] 172 xor $YY,$YY 173 174 lea 8($dat),$dat 175 mov -8($dat),$XX[0]#b 176 mov -4($dat),$YY#b 177 cmpl \$-1,256($dat) 178 je .LRC4_CHAR 179 mov OPENSSL_ia32cap_P(%rip),%r8d 180 xor $TX[1],$TX[1] 181 inc $XX[0]#b 182 sub $XX[0],$TX[1] 183 sub $inp,$out 184 movl ($dat,$XX[0],4),$TX[0]#d 185 test \$-16,$len 186 jz .Lloop1 187 bt \$30,%r8d # Intel CPU? 188 jc .Lintel 189 and \$7,$TX[1] 190 lea 1($XX[0]),$XX[1] 191 jz .Loop8 192 sub $TX[1],$len 193.Loop8_warmup: 194 add $TX[0]#b,$YY#b 195 movl ($dat,$YY,4),$TY#d 196 movl $TX[0]#d,($dat,$YY,4) 197 movl $TY#d,($dat,$XX[0],4) 198 add $TY#b,$TX[0]#b 199 inc $XX[0]#b 200 movl ($dat,$TX[0],4),$TY#d 201 movl ($dat,$XX[0],4),$TX[0]#d 202 xorb ($inp),$TY#b 203 movb $TY#b,($out,$inp) 204 lea 1($inp),$inp 205 dec $TX[1] 206 jnz .Loop8_warmup 207 208 lea 1($XX[0]),$XX[1] 209 jmp .Loop8 210.align 16 211.Loop8: 212___ 213for ($i=0;$i<8;$i++) { 214$code.=<<___ if ($i==7); 215 add \$8,$XX[1]#b 216___ 217$code.=<<___; 218 add $TX[0]#b,$YY#b 219 movl ($dat,$YY,4),$TY#d 220 movl $TX[0]#d,($dat,$YY,4) 221 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d 222 ror \$8,%r8 # ror is redundant when $i=0 223 movl $TY#d,4*$i($dat,$XX[0],4) 224 add $TX[0]#b,$TY#b 225 movb ($dat,$TY,4),%r8b 226___ 227push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers 228} 229$code.=<<___; 230 add \$8,$XX[0]#b 231 ror \$8,%r8 232 sub \$8,$len 233 234 xor ($inp),%r8 235 mov %r8,($out,$inp) 236 lea 8($inp),$inp 237 238 test \$-8,$len 239 jnz .Loop8 240 cmp \$0,$len 241 jne .Lloop1 242 jmp .Lexit 243 244.align 16 245.Lintel: 246 test \$-32,$len 247 jz .Lloop1 248 and \$15,$TX[1] 249 jz .Loop16_is_hot 250 sub $TX[1],$len 251.Loop16_warmup: 252 add $TX[0]#b,$YY#b 253 movl ($dat,$YY,4),$TY#d 254 movl $TX[0]#d,($dat,$YY,4) 255 movl $TY#d,($dat,$XX[0],4) 256 add $TY#b,$TX[0]#b 257 inc $XX[0]#b 258 movl ($dat,$TX[0],4),$TY#d 259 movl ($dat,$XX[0],4),$TX[0]#d 260 xorb ($inp),$TY#b 261 movb $TY#b,($out,$inp) 262 lea 1($inp),$inp 263 dec $TX[1] 264 jnz .Loop16_warmup 265 266 mov $YY,$TX[1] 267 xor $YY,$YY 268 mov $TX[1]#b,$YY#b 269 270.Loop16_is_hot: 271 lea ($dat,$XX[0],4),$XX[1] 272___ 273sub RC4_loop { 274 my $i=shift; 275 my $j=$i<0?0:$i; 276 my $xmm="%xmm".($j&1); 277 278 $code.=" add \$16,$XX[0]#b\n" if ($i==15); 279 $code.=" movdqu ($inp),%xmm2\n" if ($i==15); 280 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); 281 $code.=" movl ($dat,$YY,4),$TY#d\n"; 282 $code.=" pxor %xmm0,%xmm2\n" if ($i==0); 283 $code.=" psllq \$8,%xmm1\n" if ($i==0); 284 $code.=" pxor $xmm,$xmm\n" if ($i<=1); 285 $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; 286 $code.=" add $TY#b,$TX[0]#b\n"; 287 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); 288 $code.=" movz $TX[0]#b,$TX[0]#d\n"; 289 $code.=" movl $TY#d,4*$j($XX[1])\n"; 290 $code.=" pxor %xmm1,%xmm2\n" if ($i==0); 291 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); 292 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); 293 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; 294 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); 295 $code.=" lea 16($inp),$inp\n" if ($i==0); 296 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); 297} 298 RC4_loop(-1); 299$code.=<<___; 300 jmp .Loop16_enter 301.align 16 302.Loop16: 303___ 304 305for ($i=0;$i<16;$i++) { 306 $code.=".Loop16_enter:\n" if ($i==1); 307 RC4_loop($i); 308 push(@TX,shift(@TX)); # "rotate" registers 309} 310$code.=<<___; 311 mov $YY,$TX[1] 312 xor $YY,$YY # keyword to partial register 313 sub \$16,$len 314 mov $TX[1]#b,$YY#b 315 test \$-16,$len 316 jnz .Loop16 317 318 psllq \$8,%xmm1 319 pxor %xmm0,%xmm2 320 pxor %xmm1,%xmm2 321 movdqu %xmm2,($out,$inp) 322 lea 16($inp),$inp 323 324 cmp \$0,$len 325 jne .Lloop1 326 jmp .Lexit 327 328.align 16 329.Lloop1: 330 add $TX[0]#b,$YY#b 331 movl ($dat,$YY,4),$TY#d 332 movl $TX[0]#d,($dat,$YY,4) 333 movl $TY#d,($dat,$XX[0],4) 334 add $TY#b,$TX[0]#b 335 inc $XX[0]#b 336 movl ($dat,$TX[0],4),$TY#d 337 movl ($dat,$XX[0],4),$TX[0]#d 338 xorb ($inp),$TY#b 339 movb $TY#b,($out,$inp) 340 lea 1($inp),$inp 341 dec $len 342 jnz .Lloop1 343 jmp .Lexit 344 345.align 16 346.LRC4_CHAR: 347 add \$1,$XX[0]#b 348 movzb ($dat,$XX[0]),$TX[0]#d 349 test \$-8,$len 350 jz .Lcloop1 351 jmp .Lcloop8 352.align 16 353.Lcloop8: 354 mov ($inp),%r8d 355 mov 4($inp),%r9d 356___ 357# unroll 2x4-wise, because 64-bit rotates kill Intel P4... 358for ($i=0;$i<4;$i++) { 359$code.=<<___; 360 add $TX[0]#b,$YY#b 361 lea 1($XX[0]),$XX[1] 362 movzb ($dat,$YY),$TY#d 363 movzb $XX[1]#b,$XX[1]#d 364 movzb ($dat,$XX[1]),$TX[1]#d 365 movb $TX[0]#b,($dat,$YY) 366 cmp $XX[1],$YY 367 movb $TY#b,($dat,$XX[0]) 368 jne .Lcmov$i # Intel cmov is sloooow... 369 mov $TX[0],$TX[1] 370.Lcmov$i: 371 add $TX[0]#b,$TY#b 372 xor ($dat,$TY),%r8b 373 ror \$8,%r8d 374___ 375push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 376} 377for ($i=4;$i<8;$i++) { 378$code.=<<___; 379 add $TX[0]#b,$YY#b 380 lea 1($XX[0]),$XX[1] 381 movzb ($dat,$YY),$TY#d 382 movzb $XX[1]#b,$XX[1]#d 383 movzb ($dat,$XX[1]),$TX[1]#d 384 movb $TX[0]#b,($dat,$YY) 385 cmp $XX[1],$YY 386 movb $TY#b,($dat,$XX[0]) 387 jne .Lcmov$i # Intel cmov is sloooow... 388 mov $TX[0],$TX[1] 389.Lcmov$i: 390 add $TX[0]#b,$TY#b 391 xor ($dat,$TY),%r9b 392 ror \$8,%r9d 393___ 394push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 395} 396$code.=<<___; 397 lea -8($len),$len 398 mov %r8d,($out) 399 lea 8($inp),$inp 400 mov %r9d,4($out) 401 lea 8($out),$out 402 403 test \$-8,$len 404 jnz .Lcloop8 405 cmp \$0,$len 406 jne .Lcloop1 407 jmp .Lexit 408___ 409$code.=<<___; 410.align 16 411.Lcloop1: 412 add $TX[0]#b,$YY#b 413 movzb $YY#b,$YY#d 414 movzb ($dat,$YY),$TY#d 415 movb $TX[0]#b,($dat,$YY) 416 movb $TY#b,($dat,$XX[0]) 417 add $TX[0]#b,$TY#b 418 add \$1,$XX[0]#b 419 movzb $TY#b,$TY#d 420 movzb $XX[0]#b,$XX[0]#d 421 movzb ($dat,$TY),$TY#d 422 movzb ($dat,$XX[0]),$TX[0]#d 423 xorb ($inp),$TY#b 424 lea 1($inp),$inp 425 movb $TY#b,($out) 426 lea 1($out),$out 427 sub \$1,$len 428 jnz .Lcloop1 429 jmp .Lexit 430 431.align 16 432.Lexit: 433 sub \$1,$XX[0]#b 434 movl $XX[0]#d,-8($dat) 435 movl $YY#d,-4($dat) 436 437 mov (%rsp),%r13 438.cfi_restore %r13 439 mov 8(%rsp),%r12 440.cfi_restore %r12 441 mov 16(%rsp),%rbx 442.cfi_restore %rbx 443 add \$24,%rsp 444.cfi_adjust_cfa_offset -24 445.Lepilogue: 446 ret 447.cfi_endproc 448.size RC4,.-RC4 449___ 450} 451 452$idx="%r8"; 453$ido="%r9"; 454 455$code.=<<___; 456.globl RC4_set_key 457.type RC4_set_key,\@function,3 458.align 16 459RC4_set_key: 460.cfi_startproc 461 endbranch 462 lea 8($dat),$dat 463 lea ($inp,$len),$inp 464 neg $len 465 mov $len,%rcx 466 xor %eax,%eax 467 xor $ido,$ido 468 xor %r10,%r10 469 xor %r11,%r11 470 471 mov OPENSSL_ia32cap_P(%rip),$idx#d 472 bt \$20,$idx#d # RC4_CHAR? 473 jc .Lc1stloop 474 jmp .Lw1stloop 475 476.align 16 477.Lw1stloop: 478 mov %eax,($dat,%rax,4) 479 add \$1,%al 480 jnc .Lw1stloop 481 482 xor $ido,$ido 483 xor $idx,$idx 484.align 16 485.Lw2ndloop: 486 mov ($dat,$ido,4),%r10d 487 add ($inp,$len,1),$idx#b 488 add %r10b,$idx#b 489 add \$1,$len 490 mov ($dat,$idx,4),%r11d 491 cmovz %rcx,$len 492 mov %r10d,($dat,$idx,4) 493 mov %r11d,($dat,$ido,4) 494 add \$1,$ido#b 495 jnc .Lw2ndloop 496 jmp .Lexit_key 497 498.align 16 499.Lc1stloop: 500 mov %al,($dat,%rax) 501 add \$1,%al 502 jnc .Lc1stloop 503 504 xor $ido,$ido 505 xor $idx,$idx 506.align 16 507.Lc2ndloop: 508 mov ($dat,$ido),%r10b 509 add ($inp,$len),$idx#b 510 add %r10b,$idx#b 511 add \$1,$len 512 mov ($dat,$idx),%r11b 513 jnz .Lcnowrap 514 mov %rcx,$len 515.Lcnowrap: 516 mov %r10b,($dat,$idx) 517 mov %r11b,($dat,$ido) 518 add \$1,$ido#b 519 jnc .Lc2ndloop 520 movl \$-1,256($dat) 521 522.align 16 523.Lexit_key: 524 xor %eax,%eax 525 mov %eax,-8($dat) 526 mov %eax,-4($dat) 527 ret 528.cfi_endproc 529.size RC4_set_key,.-RC4_set_key 530 531.globl RC4_options 532.type RC4_options,\@abi-omnipotent 533.align 16 534RC4_options: 535.cfi_startproc 536 endbranch 537 lea .Lopts(%rip),%rax 538 mov OPENSSL_ia32cap_P(%rip),%edx 539 bt \$20,%edx 540 jc .L8xchar 541 bt \$30,%edx 542 jnc .Ldone 543 add \$25,%rax 544 ret 545.L8xchar: 546 add \$12,%rax 547.Ldone: 548 ret 549.cfi_endproc 550.align 64 551.Lopts: 552.asciz "rc4(8x,int)" 553.asciz "rc4(8x,char)" 554.asciz "rc4(16x,int)" 555.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 556.align 64 557.size RC4_options,.-RC4_options 558___ 559 560# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 561# CONTEXT *context,DISPATCHER_CONTEXT *disp) 562if ($win64) { 563$rec="%rcx"; 564$frame="%rdx"; 565$context="%r8"; 566$disp="%r9"; 567 568$code.=<<___; 569.extern __imp_RtlVirtualUnwind 570.type stream_se_handler,\@abi-omnipotent 571.align 16 572stream_se_handler: 573 push %rsi 574 push %rdi 575 push %rbx 576 push %rbp 577 push %r12 578 push %r13 579 push %r14 580 push %r15 581 pushfq 582 sub \$64,%rsp 583 584 mov 120($context),%rax # pull context->Rax 585 mov 248($context),%rbx # pull context->Rip 586 587 lea .Lprologue(%rip),%r10 588 cmp %r10,%rbx # context->Rip<prologue label 589 jb .Lin_prologue 590 591 mov 152($context),%rax # pull context->Rsp 592 593 lea .Lepilogue(%rip),%r10 594 cmp %r10,%rbx # context->Rip>=epilogue label 595 jae .Lin_prologue 596 597 lea 24(%rax),%rax 598 599 mov -8(%rax),%rbx 600 mov -16(%rax),%r12 601 mov -24(%rax),%r13 602 mov %rbx,144($context) # restore context->Rbx 603 mov %r12,216($context) # restore context->R12 604 mov %r13,224($context) # restore context->R13 605 606.Lin_prologue: 607 mov 8(%rax),%rdi 608 mov 16(%rax),%rsi 609 mov %rax,152($context) # restore context->Rsp 610 mov %rsi,168($context) # restore context->Rsi 611 mov %rdi,176($context) # restore context->Rdi 612 613 jmp .Lcommon_seh_exit 614.size stream_se_handler,.-stream_se_handler 615 616.type key_se_handler,\@abi-omnipotent 617.align 16 618key_se_handler: 619 push %rsi 620 push %rdi 621 push %rbx 622 push %rbp 623 push %r12 624 push %r13 625 push %r14 626 push %r15 627 pushfq 628 sub \$64,%rsp 629 630 mov 152($context),%rax # pull context->Rsp 631 mov 8(%rax),%rdi 632 mov 16(%rax),%rsi 633 mov %rsi,168($context) # restore context->Rsi 634 mov %rdi,176($context) # restore context->Rdi 635 636.Lcommon_seh_exit: 637 638 mov 40($disp),%rdi # disp->ContextRecord 639 mov $context,%rsi # context 640 mov \$154,%ecx # sizeof(CONTEXT) 641 .long 0xa548f3fc # cld; rep movsq 642 643 mov $disp,%rsi 644 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 645 mov 8(%rsi),%rdx # arg2, disp->ImageBase 646 mov 0(%rsi),%r8 # arg3, disp->ControlPc 647 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 648 mov 40(%rsi),%r10 # disp->ContextRecord 649 lea 56(%rsi),%r11 # &disp->HandlerData 650 lea 24(%rsi),%r12 # &disp->EstablisherFrame 651 mov %r10,32(%rsp) # arg5 652 mov %r11,40(%rsp) # arg6 653 mov %r12,48(%rsp) # arg7 654 mov %rcx,56(%rsp) # arg8, (NULL) 655 call *__imp_RtlVirtualUnwind(%rip) 656 657 mov \$1,%eax # ExceptionContinueSearch 658 add \$64,%rsp 659 popfq 660 pop %r15 661 pop %r14 662 pop %r13 663 pop %r12 664 pop %rbp 665 pop %rbx 666 pop %rdi 667 pop %rsi 668 ret 669.size key_se_handler,.-key_se_handler 670 671.section .pdata 672.align 4 673 .rva .LSEH_begin_RC4 674 .rva .LSEH_end_RC4 675 .rva .LSEH_info_RC4 676 677 .rva .LSEH_begin_RC4_set_key 678 .rva .LSEH_end_RC4_set_key 679 .rva .LSEH_info_RC4_set_key 680 681.section .xdata 682.align 8 683.LSEH_info_RC4: 684 .byte 9,0,0,0 685 .rva stream_se_handler 686.LSEH_info_RC4_set_key: 687 .byte 9,0,0,0 688 .rva key_se_handler 689___ 690} 691 692sub reg_part { 693my ($reg,$conv)=@_; 694 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } 695 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } 696 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } 697 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } 698 return $reg; 699} 700 701$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; 702$code =~ s/\`([^\`]*)\`/eval $1/gem; 703 704print $code; 705 706close STDOUT or die "error closing STDOUT: $!"; 707