1 //! Implement syscalls using the vDSO.
2 //!
3 //! <https://man7.org/linux/man-pages/man7/vdso.7.html>
4 //!
5 //! # Safety
6 //!
7 //! Similar to syscalls.rs, this file performs raw system calls, and sometimes
8 //! passes them uninitialized memory buffers. This file also calls vDSO
9 //! functions.
10 #![allow(unsafe_code)]
11
12 use super::conv::{c_int, ret};
13 #[cfg(target_arch = "x86")]
14 use super::reg::{ArgReg, RetReg, SyscallNumber, A0, A1, A2, A3, A4, A5, R0};
15 use super::time::types::{ClockId, DynamicClockId, Timespec};
16 use super::{c, vdso};
17 use crate::io;
18 #[cfg(all(asm, target_arch = "x86"))]
19 use core::arch::asm;
20 use core::mem::{transmute, MaybeUninit};
21 use core::ptr::null_mut;
22 use core::sync::atomic::AtomicPtr;
23 use core::sync::atomic::Ordering::Relaxed;
24 #[cfg(target_pointer_width = "32")]
25 use linux_raw_sys::general::timespec as __kernel_old_timespec;
26 use linux_raw_sys::general::{__kernel_clockid_t, __kernel_timespec};
27
28 #[inline]
clock_gettime(which_clock: ClockId) -> __kernel_timespec29 pub(crate) fn clock_gettime(which_clock: ClockId) -> __kernel_timespec {
30 // Safety: `CLOCK_GETTIME` contains either null or the address of a
31 // function with an ABI like libc `clock_gettime`, and calling it has
32 // the side effect of writing to the result buffer, and no others.
33 unsafe {
34 let mut result = MaybeUninit::<__kernel_timespec>::uninit();
35 let callee = match transmute(CLOCK_GETTIME.load(Relaxed)) {
36 Some(callee) => callee,
37 None => init_clock_gettime(),
38 };
39 let r0 = callee(which_clock as c::c_int, result.as_mut_ptr());
40 assert_eq!(r0, 0);
41 result.assume_init()
42 }
43 }
44
45 #[inline]
clock_gettime_dynamic(which_clock: DynamicClockId<'_>) -> io::Result<Timespec>46 pub(crate) fn clock_gettime_dynamic(which_clock: DynamicClockId<'_>) -> io::Result<Timespec> {
47 let id = match which_clock {
48 DynamicClockId::Known(id) => id as __kernel_clockid_t,
49
50 DynamicClockId::Dynamic(fd) => {
51 // See `FD_TO_CLOCKID` in Linux's `clock_gettime` documentation.
52 use crate::backend::fd::AsRawFd;
53 const CLOCKFD: i32 = 3;
54 ((!fd.as_raw_fd() << 3) | CLOCKFD) as __kernel_clockid_t
55 }
56
57 DynamicClockId::RealtimeAlarm => {
58 linux_raw_sys::general::CLOCK_REALTIME_ALARM as __kernel_clockid_t
59 }
60 DynamicClockId::Tai => linux_raw_sys::general::CLOCK_TAI as __kernel_clockid_t,
61 DynamicClockId::Boottime => linux_raw_sys::general::CLOCK_BOOTTIME as __kernel_clockid_t,
62 DynamicClockId::BoottimeAlarm => {
63 linux_raw_sys::general::CLOCK_BOOTTIME_ALARM as __kernel_clockid_t
64 }
65 };
66
67 // Safety: `CLOCK_GETTIME` contains either null or the address of a
68 // function with an ABI like libc `clock_gettime`, and calling it has
69 // the side effect of writing to the result buffer, and no others.
70 unsafe {
71 const EINVAL: c::c_int = -(c::EINVAL as c::c_int);
72 let mut timespec = MaybeUninit::<Timespec>::uninit();
73 let callee = match transmute(CLOCK_GETTIME.load(Relaxed)) {
74 Some(callee) => callee,
75 None => init_clock_gettime(),
76 };
77 match callee(id, timespec.as_mut_ptr()) {
78 0 => (),
79 EINVAL => return Err(io::Errno::INVAL),
80 _ => _rustix_clock_gettime_via_syscall(id, timespec.as_mut_ptr())?,
81 }
82 Ok(timespec.assume_init())
83 }
84 }
85
86 #[cfg(target_arch = "x86")]
87 pub(super) mod x86_via_vdso {
88 use super::{transmute, ArgReg, Relaxed, RetReg, SyscallNumber, A0, A1, A2, A3, A4, A5, R0};
89 use crate::backend::arch::asm;
90
91 #[inline]
syscall0(nr: SyscallNumber<'_>) -> RetReg<R0>92 pub(in crate::backend) unsafe fn syscall0(nr: SyscallNumber<'_>) -> RetReg<R0> {
93 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
94 Some(callee) => callee,
95 None => super::init_syscall(),
96 };
97 asm::indirect_syscall0(callee, nr)
98 }
99
100 #[inline]
syscall1<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, ) -> RetReg<R0>101 pub(in crate::backend) unsafe fn syscall1<'a>(
102 nr: SyscallNumber<'a>,
103 a0: ArgReg<'a, A0>,
104 ) -> RetReg<R0> {
105 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
106 Some(callee) => callee,
107 None => super::init_syscall(),
108 };
109 asm::indirect_syscall1(callee, nr, a0)
110 }
111
112 #[inline]
syscall1_noreturn<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, ) -> !113 pub(in crate::backend) unsafe fn syscall1_noreturn<'a>(
114 nr: SyscallNumber<'a>,
115 a0: ArgReg<'a, A0>,
116 ) -> ! {
117 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
118 Some(callee) => callee,
119 None => super::init_syscall(),
120 };
121 asm::indirect_syscall1_noreturn(callee, nr, a0)
122 }
123
124 #[inline]
syscall2<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, ) -> RetReg<R0>125 pub(in crate::backend) unsafe fn syscall2<'a>(
126 nr: SyscallNumber<'a>,
127 a0: ArgReg<'a, A0>,
128 a1: ArgReg<'a, A1>,
129 ) -> RetReg<R0> {
130 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
131 Some(callee) => callee,
132 None => super::init_syscall(),
133 };
134 asm::indirect_syscall2(callee, nr, a0, a1)
135 }
136
137 #[inline]
syscall3<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, ) -> RetReg<R0>138 pub(in crate::backend) unsafe fn syscall3<'a>(
139 nr: SyscallNumber<'a>,
140 a0: ArgReg<'a, A0>,
141 a1: ArgReg<'a, A1>,
142 a2: ArgReg<'a, A2>,
143 ) -> RetReg<R0> {
144 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
145 Some(callee) => callee,
146 None => super::init_syscall(),
147 };
148 asm::indirect_syscall3(callee, nr, a0, a1, a2)
149 }
150
151 #[inline]
syscall4<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, a3: ArgReg<'a, A3>, ) -> RetReg<R0>152 pub(in crate::backend) unsafe fn syscall4<'a>(
153 nr: SyscallNumber<'a>,
154 a0: ArgReg<'a, A0>,
155 a1: ArgReg<'a, A1>,
156 a2: ArgReg<'a, A2>,
157 a3: ArgReg<'a, A3>,
158 ) -> RetReg<R0> {
159 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
160 Some(callee) => callee,
161 None => super::init_syscall(),
162 };
163 asm::indirect_syscall4(callee, nr, a0, a1, a2, a3)
164 }
165
166 #[inline]
syscall5<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, a3: ArgReg<'a, A3>, a4: ArgReg<'a, A4>, ) -> RetReg<R0>167 pub(in crate::backend) unsafe fn syscall5<'a>(
168 nr: SyscallNumber<'a>,
169 a0: ArgReg<'a, A0>,
170 a1: ArgReg<'a, A1>,
171 a2: ArgReg<'a, A2>,
172 a3: ArgReg<'a, A3>,
173 a4: ArgReg<'a, A4>,
174 ) -> RetReg<R0> {
175 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
176 Some(callee) => callee,
177 None => super::init_syscall(),
178 };
179 asm::indirect_syscall5(callee, nr, a0, a1, a2, a3, a4)
180 }
181
182 #[inline]
syscall6<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, a3: ArgReg<'a, A3>, a4: ArgReg<'a, A4>, a5: ArgReg<'a, A5>, ) -> RetReg<R0>183 pub(in crate::backend) unsafe fn syscall6<'a>(
184 nr: SyscallNumber<'a>,
185 a0: ArgReg<'a, A0>,
186 a1: ArgReg<'a, A1>,
187 a2: ArgReg<'a, A2>,
188 a3: ArgReg<'a, A3>,
189 a4: ArgReg<'a, A4>,
190 a5: ArgReg<'a, A5>,
191 ) -> RetReg<R0> {
192 let callee = match transmute(super::SYSCALL.load(Relaxed)) {
193 Some(callee) => callee,
194 None => super::init_syscall(),
195 };
196 asm::indirect_syscall6(callee, nr, a0, a1, a2, a3, a4, a5)
197 }
198
199 // With the indirect call, it isn't meaningful to do a separate
200 // `_readonly` optimization.
201 pub(in crate::backend) use {
202 syscall0 as syscall0_readonly, syscall1 as syscall1_readonly,
203 syscall2 as syscall2_readonly, syscall3 as syscall3_readonly,
204 syscall4 as syscall4_readonly, syscall5 as syscall5_readonly,
205 syscall6 as syscall6_readonly,
206 };
207 }
208
209 type ClockGettimeType = unsafe extern "C" fn(c::c_int, *mut Timespec) -> c::c_int;
210
211 /// The underlying syscall functions are only called from asm, using the
212 /// special syscall calling convention to pass arguments and return values,
213 /// which the signature here doesn't reflect.
214 #[cfg(target_arch = "x86")]
215 pub(super) type SyscallType = unsafe extern "C" fn();
216
217 /// Initialize `CLOCK_GETTIME` and return its value.
init_clock_gettime() -> ClockGettimeType218 fn init_clock_gettime() -> ClockGettimeType {
219 init();
220 // Safety: Load the function address from static storage that we
221 // just initialized.
222 unsafe { transmute(CLOCK_GETTIME.load(Relaxed)) }
223 }
224
225 /// Initialize `SYSCALL` and return its value.
226 #[cfg(target_arch = "x86")]
init_syscall() -> SyscallType227 fn init_syscall() -> SyscallType {
228 init();
229 // Safety: Load the function address from static storage that we
230 // just initialized.
231 unsafe { transmute(SYSCALL.load(Relaxed)) }
232 }
233
234 /// `AtomicPtr` can't hold a `fn` pointer, so we use a `*` pointer to this
235 /// placeholder type, and cast it as needed.
236 struct Function;
237 static mut CLOCK_GETTIME: AtomicPtr<Function> = AtomicPtr::new(null_mut());
238 #[cfg(target_arch = "x86")]
239 static mut SYSCALL: AtomicPtr<Function> = AtomicPtr::new(null_mut());
240
rustix_clock_gettime_via_syscall( clockid: c::c_int, res: *mut Timespec, ) -> c::c_int241 unsafe extern "C" fn rustix_clock_gettime_via_syscall(
242 clockid: c::c_int,
243 res: *mut Timespec,
244 ) -> c::c_int {
245 match _rustix_clock_gettime_via_syscall(clockid, res) {
246 Ok(()) => 0,
247 Err(err) => err.raw_os_error().wrapping_neg(),
248 }
249 }
250
251 #[cfg(target_pointer_width = "32")]
_rustix_clock_gettime_via_syscall( clockid: c::c_int, res: *mut Timespec, ) -> io::Result<()>252 unsafe fn _rustix_clock_gettime_via_syscall(
253 clockid: c::c_int,
254 res: *mut Timespec,
255 ) -> io::Result<()> {
256 let r0 = syscall!(__NR_clock_gettime64, c_int(clockid), res);
257 match ret(r0) {
258 Err(io::Errno::NOSYS) => _rustix_clock_gettime_via_syscall_old(clockid, res),
259 otherwise => otherwise,
260 }
261 }
262
263 #[cfg(target_pointer_width = "32")]
_rustix_clock_gettime_via_syscall_old( clockid: c::c_int, res: *mut Timespec, ) -> io::Result<()>264 unsafe fn _rustix_clock_gettime_via_syscall_old(
265 clockid: c::c_int,
266 res: *mut Timespec,
267 ) -> io::Result<()> {
268 // Ordinarily `rustix` doesn't like to emulate system calls, but in
269 // the case of time APIs, it's specific to Linux, specific to
270 // 32-bit architectures *and* specific to old kernel versions, and
271 // it's not that hard to fix up here, so that no other code needs
272 // to worry about this.
273 let mut old_result = MaybeUninit::<__kernel_old_timespec>::uninit();
274 let r0 = syscall!(__NR_clock_gettime, c_int(clockid), &mut old_result);
275 match ret(r0) {
276 Ok(()) => {
277 let old_result = old_result.assume_init();
278 *res = Timespec {
279 tv_sec: old_result.tv_sec.into(),
280 tv_nsec: old_result.tv_nsec.into(),
281 };
282 Ok(())
283 }
284 otherwise => otherwise,
285 }
286 }
287
288 #[cfg(target_pointer_width = "64")]
_rustix_clock_gettime_via_syscall( clockid: c::c_int, res: *mut Timespec, ) -> io::Result<()>289 unsafe fn _rustix_clock_gettime_via_syscall(
290 clockid: c::c_int,
291 res: *mut Timespec,
292 ) -> io::Result<()> {
293 ret(syscall!(__NR_clock_gettime, c_int(clockid), res))
294 }
295
296 /// A symbol pointing to an `int 0x80` instruction. This "function" is only
297 /// called from assembly, and only with the x86 syscall calling convention,
298 /// so its signature here is not its true signature.
299 #[cfg(all(asm, target_arch = "x86"))]
300 #[naked]
rustix_int_0x80()301 unsafe extern "C" fn rustix_int_0x80() {
302 asm!("int $$0x80", "ret", options(noreturn))
303 }
304
305 // The outline version of the `rustix_int_0x80` above.
306 #[cfg(all(not(asm), target_arch = "x86"))]
307 extern "C" {
rustix_int_0x80()308 fn rustix_int_0x80();
309 }
310
minimal_init()311 fn minimal_init() {
312 // Safety: Store default function addresses in static storage so that if we
313 // end up making any system calls while we read the vDSO, they'll work.
314 // If the memory happens to already be initialized, this is redundant, but
315 // not harmful.
316 unsafe {
317 CLOCK_GETTIME
318 .compare_exchange(
319 null_mut(),
320 rustix_clock_gettime_via_syscall as *mut Function,
321 Relaxed,
322 Relaxed,
323 )
324 .ok();
325 #[cfg(target_arch = "x86")]
326 {
327 SYSCALL
328 .compare_exchange(
329 null_mut(),
330 rustix_int_0x80 as *mut Function,
331 Relaxed,
332 Relaxed,
333 )
334 .ok();
335 }
336 }
337 }
338
init()339 fn init() {
340 minimal_init();
341
342 if let Some(vdso) = vdso::Vdso::new() {
343 // Look up the platform-specific `clock_gettime` symbol as documented
344 // [here], except on 32-bit platforms where we look up the
345 // `64`-suffixed variant and fail if we don't find it.
346 //
347 // [here]: https://man7.org/linux/man-pages/man7/vdso.7.html
348 #[cfg(target_arch = "x86_64")]
349 let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime"));
350 #[cfg(target_arch = "arm")]
351 let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
352 #[cfg(target_arch = "aarch64")]
353 let ptr = vdso.sym(cstr!("LINUX_2.6.39"), cstr!("__kernel_clock_gettime"));
354 #[cfg(target_arch = "x86")]
355 let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
356 #[cfg(target_arch = "riscv64")]
357 let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_clock_gettime"));
358 #[cfg(target_arch = "powerpc64")]
359 let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_clock_gettime"));
360 #[cfg(target_arch = "mips")]
361 let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
362 #[cfg(target_arch = "mips64")]
363 let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime"));
364
365 // On all 64-bit platforms, the 64-bit `clock_gettime` symbols are
366 // always available.
367 #[cfg(target_pointer_width = "64")]
368 let ok = true;
369
370 // On some 32-bit platforms, the 64-bit `clock_gettime` symbols are not
371 // available on older kernel versions.
372 #[cfg(any(target_arch = "arm", target_arch = "mips", target_arch = "x86"))]
373 let ok = !ptr.is_null();
374
375 if ok {
376 assert!(!ptr.is_null());
377
378 // Safety: Store the computed function addresses in static storage
379 // so that we don't need to compute it again (but if we do, it doesn't
380 // hurt anything).
381 unsafe {
382 CLOCK_GETTIME.store(ptr.cast(), Relaxed);
383 }
384 }
385
386 // On x86, also look up the vsyscall entry point.
387 #[cfg(target_arch = "x86")]
388 {
389 let ptr = vdso.sym(cstr!("LINUX_2.5"), cstr!("__kernel_vsyscall"));
390 assert!(!ptr.is_null());
391
392 // Safety: As above, store the computed function addresses in
393 // static storage.
394 unsafe {
395 SYSCALL.store(ptr.cast(), Relaxed);
396 }
397 }
398 }
399 }
400