• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/core/SkCompressedDataUtils.h"
9 
10 #include "include/core/SkBitmap.h"
11 #include "include/core/SkColorPriv.h"
12 #include "include/core/SkData.h"
13 #include "include/private/SkColorData.h"
14 #include "include/private/SkTPin.h"
15 #include "src/core/SkMathPriv.h"
16 #include "src/core/SkMipmap.h"
17 
18 struct ETC1Block {
19     uint32_t fHigh;
20     uint32_t fLow;
21 };
22 
23 constexpr uint32_t kFlipBit = 0x1; // set -> T/B sub-blocks; not-set -> L/R sub-blocks
24 constexpr uint32_t kDiffBit = 0x2; // set -> differential; not-set -> individual
25 
extend_4To8bits(int b)26 static inline int extend_4To8bits(int b) {
27     int c = b & 0xf;
28     return (c << 4) | c;
29 }
30 
extend_5To8bits(int b)31 static inline int extend_5To8bits(int b) {
32     int c = b & 0x1f;
33     return (c << 3) | (c >> 2);
34 }
35 
extend_5plus3To8Bits(int base,int diff)36 static inline int extend_5plus3To8Bits(int base, int diff) {
37     static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 };
38 
39     return extend_5To8bits((0x1f & base) + kLookup[0x7 & diff]);
40 }
41 
42 static const int kNumETC1ModifierTables = 8;
43 static const int kNumETC1PixelIndices = 4;
44 
45 // The index of each row in this table is the ETC1 table codeword
46 // The index of each column in this table is the ETC1 pixel index value
47 static const int kETC1ModifierTables[kNumETC1ModifierTables][kNumETC1PixelIndices] = {
48     /* 0 */ { 2,    8,  -2,   -8 },
49     /* 1 */ { 5,   17,  -5,  -17 },
50     /* 2 */ { 9,   29,  -9,  -29 },
51     /* 3 */ { 13,  42, -13,  -42 },
52     /* 4 */ { 18,  60, -18,  -60 },
53     /* 5 */ { 24,  80, -24,  -80 },
54     /* 6 */ { 33, 106, -33, -106 },
55     /* 7 */ { 47, 183, -47, -183 }
56 };
57 
num_4x4_blocks(int size)58 static int num_4x4_blocks(int size) {
59     return ((size + 3) & ~3) >> 2;
60 }
61 
62 // Return which sub-block a given x,y location in the overall 4x4 block belongs to
xy_to_subblock_index(int x,int y,bool flip)63 static int xy_to_subblock_index(int x, int y, bool flip) {
64     SkASSERT(x >= 0 && x < 4);
65     SkASSERT(y >= 0 && y < 4);
66 
67     if (flip) {
68         return y < 2 ? 0 : 1; // sub-block 1 is on top of sub-block 2
69     } else {
70         return x < 2 ? 0 : 1; // sub-block 1 is to the left of sub-block 2
71     }
72 }
73 
74 struct IColor {
75     int fR, fG, fB;
76 };
77 
add_delta_and_clamp(const IColor & col,int delta)78 static SkPMColor add_delta_and_clamp(const IColor& col, int delta) {
79     int r8 = SkTPin(col.fR + delta, 0, 255);
80     int g8 = SkTPin(col.fG + delta, 0, 255);
81     int b8 = SkTPin(col.fB + delta, 0, 255);
82 
83     return SkPackARGB32(0xFF, r8, g8, b8);
84 }
85 
decompress_etc1(SkISize dimensions,const uint8_t * srcData,SkBitmap * dst)86 static bool decompress_etc1(SkISize dimensions, const uint8_t* srcData, SkBitmap* dst) {
87     const ETC1Block* srcBlocks = reinterpret_cast<const ETC1Block*>(srcData);
88 
89     int numXBlocks = num_4x4_blocks(dimensions.width());
90     int numYBlocks = num_4x4_blocks(dimensions.height());
91 
92     for (int y = 0; y < numYBlocks; ++y) {
93         for (int x = 0; x < numXBlocks; ++x) {
94             const ETC1Block* curBlock1 = &srcBlocks[y * numXBlocks + x];
95             uint32_t high = SkBSwap32(curBlock1->fHigh);
96             uint32_t low = SkBSwap32(curBlock1->fLow);
97 
98             bool flipped = SkToBool(high & kFlipBit);
99             bool differential = SkToBool(high & kDiffBit);
100 
101             IColor colors[2];
102 
103             if (differential) {
104                 colors[0].fR = extend_5To8bits(high >> 27);
105                 colors[1].fR = extend_5plus3To8Bits(high >> 27, high >> 24);
106                 colors[0].fG = extend_5To8bits(high >> 19);
107                 colors[1].fG = extend_5plus3To8Bits(high >> 19, high >> 16);
108                 colors[0].fB = extend_5To8bits(high >> 11);
109                 colors[1].fB = extend_5plus3To8Bits(high >> 11, high >> 8);
110             } else {
111                 colors[0].fR = extend_4To8bits(high >> 28);
112                 colors[1].fR = extend_4To8bits(high >> 24);
113                 colors[0].fG = extend_4To8bits(high >> 20);
114                 colors[1].fG = extend_4To8bits(high >> 16);
115                 colors[0].fB = extend_4To8bits(high >> 12);
116                 colors[1].fB = extend_4To8bits(high >> 8);
117             }
118 
119             int tableIndex0 = (high >> 5) & 0x7;
120             int tableIndex1 = (high >> 2) & 0x7;
121             const int* tables[2] = {
122                 kETC1ModifierTables[tableIndex0],
123                 kETC1ModifierTables[tableIndex1]
124             };
125 
126             int baseShift = 0;
127             int offsetX = 4 * x, offsetY = 4 * y;
128             for (int i = 0; i < 4; ++i, ++baseShift) {
129                 for (int j = 0; j < 4; ++j) {
130                     if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) {
131                         // This can happen for the topmost levels of a mipmap and for
132                         // non-multiple of 4 textures
133                         continue;
134                     }
135 
136                     int subBlockIndex = xy_to_subblock_index(j, i, flipped);
137                     int pixelIndex = ((low >> (baseShift+(j*4))) & 0x1) |
138                                      (low >> (baseShift+(j*4)+15) & 0x2);
139 
140                     SkASSERT(subBlockIndex == 0 || subBlockIndex == 1);
141                     SkASSERT(pixelIndex >= 0 && pixelIndex < 4);
142 
143                     int delta = tables[subBlockIndex][pixelIndex];
144                     *dst->getAddr32(offsetX + j, offsetY + i) =
145                                                 add_delta_and_clamp(colors[subBlockIndex], delta);
146                 }
147             }
148         }
149     }
150 
151     return true;
152 }
153 
154 //------------------------------------------------------------------------------------------------
155 struct BC1Block {
156     uint16_t fColor0;
157     uint16_t fColor1;
158     uint32_t fIndices;
159 };
160 
from565(uint16_t rgb565)161 static SkPMColor from565(uint16_t rgb565) {
162     uint8_t r8 = SkR16ToR32((rgb565 >> 11) & 0x1F);
163     uint8_t g8 = SkG16ToG32((rgb565 >> 5) & 0x3F);
164     uint8_t b8 = SkB16ToB32(rgb565 & 0x1F);
165 
166     return SkPackARGB32(0xFF, r8, g8, b8);
167 }
168 
169 // return t*col0 + (1-t)*col1
lerp(float t,SkPMColor col0,SkPMColor col1)170 static SkPMColor lerp(float t, SkPMColor col0, SkPMColor col1) {
171     SkASSERT(SkGetPackedA32(col0) == 0xFF && SkGetPackedA32(col1) == 0xFF);
172 
173     // TODO: given 't' is only either 1/3 or 2/3 this could be done faster
174     uint8_t r8 = SkScalarRoundToInt(t * SkGetPackedR32(col0) + (1.0f - t) * SkGetPackedR32(col1));
175     uint8_t g8 = SkScalarRoundToInt(t * SkGetPackedG32(col0) + (1.0f - t) * SkGetPackedG32(col1));
176     uint8_t b8 = SkScalarRoundToInt(t * SkGetPackedB32(col0) + (1.0f - t) * SkGetPackedB32(col1));
177     return SkPackARGB32(0xFF, r8, g8, b8);
178 }
179 
decompress_bc1(SkISize dimensions,const uint8_t * srcData,bool isOpaque,SkBitmap * dst)180 static bool decompress_bc1(SkISize dimensions, const uint8_t* srcData,
181                            bool isOpaque, SkBitmap* dst) {
182     const BC1Block* srcBlocks = reinterpret_cast<const BC1Block*>(srcData);
183 
184     int numXBlocks = num_4x4_blocks(dimensions.width());
185     int numYBlocks = num_4x4_blocks(dimensions.height());
186 
187     SkPMColor colors[4];
188 
189     for (int y = 0; y < numYBlocks; ++y) {
190         for (int x = 0; x < numXBlocks; ++x) {
191             const BC1Block* curBlock = &srcBlocks[y * numXBlocks + x];
192 
193             colors[0] = from565(curBlock->fColor0);
194             colors[1] = from565(curBlock->fColor1);
195             if (curBlock->fColor0 <= curBlock->fColor1) {        // signal for a transparent block
196                 colors[2] = SkPackARGB32(
197                     0xFF,
198                     (SkGetPackedR32(colors[0]) + SkGetPackedR32(colors[1])) >> 1,
199                     (SkGetPackedG32(colors[0]) + SkGetPackedG32(colors[1])) >> 1,
200                     (SkGetPackedB32(colors[0]) + SkGetPackedB32(colors[1])) >> 1);
201                 // The opacity of the overall texture trumps the per-block transparency
202                 colors[3] = SkPackARGB32(isOpaque ? 0xFF : 0, 0, 0, 0);
203             } else {
204                 colors[2] = lerp(2.0f/3.0f, colors[0], colors[1]);
205                 colors[3] = lerp(1.0f/3.0f, colors[0], colors[1]);
206             }
207 
208             int shift = 0;
209             int offsetX = 4 * x, offsetY = 4 * y;
210             for (int i = 0; i < 4; ++i) {
211                 for (int j = 0; j < 4; ++j, shift += 2) {
212                     if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) {
213                         // This can happen for the topmost levels of a mipmap and for
214                         // non-multiple of 4 textures
215                         continue;
216                     }
217 
218                     int index = (curBlock->fIndices >> shift) & 0x3;
219                     *dst->getAddr32(offsetX + j, offsetY + i) = colors[index];
220                 }
221             }
222         }
223     }
224 
225     return true;
226 }
227 
SkDecompress(sk_sp<SkData> data,SkISize dimensions,SkImage::CompressionType compressionType,SkBitmap * dst)228 bool SkDecompress(sk_sp<SkData> data,
229                   SkISize dimensions,
230                   SkImage::CompressionType compressionType,
231                   SkBitmap* dst) {
232     using Type = SkImage::CompressionType;
233 
234     const uint8_t* bytes = data->bytes();
235     switch (compressionType) {
236         case Type::kNone:             return false;
237         case Type::kETC2_RGB8_UNORM:  return decompress_etc1(dimensions, bytes, dst);
238         case Type::kBC1_RGB8_UNORM:   return decompress_bc1(dimensions, bytes, true, dst);
239         case Type::kBC1_RGBA8_UNORM:  return decompress_bc1(dimensions, bytes, false, dst);
240         case Type::kASTC_RGBA8_UNORM: return false;
241     }
242 
243     SkUNREACHABLE;
244     return false;
245 }
246 
SkCompressedDataSize(SkImage::CompressionType type,SkISize dimensions,SkTArray<size_t> * individualMipOffsets,bool mipMapped)247 size_t SkCompressedDataSize(SkImage::CompressionType type, SkISize dimensions,
248                             SkTArray<size_t>* individualMipOffsets, bool mipMapped) {
249     SkASSERT(!individualMipOffsets || !individualMipOffsets->count());
250 
251     int numMipLevels = 1;
252     if (mipMapped) {
253         numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
254     }
255 
256     size_t totalSize = 0;
257     switch (type) {
258         case SkImage::CompressionType::kNone:
259             break;
260         case SkImage::CompressionType::kETC2_RGB8_UNORM:
261         case SkImage::CompressionType::kBC1_RGB8_UNORM:
262         case SkImage::CompressionType::kBC1_RGBA8_UNORM: {
263             for (int i = 0; i < numMipLevels; ++i) {
264                 int numBlocks = num_4x4_blocks(dimensions.width()) *
265                                 num_4x4_blocks(dimensions.height());
266 
267                 if (individualMipOffsets) {
268                     individualMipOffsets->push_back(totalSize);
269                 }
270 
271                 static_assert(sizeof(ETC1Block) == sizeof(BC1Block));
272                 totalSize += numBlocks * sizeof(ETC1Block);
273 
274                 dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)};
275             }
276             break;
277         }
278         case SkImage::CompressionType::kASTC_RGBA8_UNORM: {
279             // The evil number 16 here is the size of each ASTC block, which is constant for the ASTC 4x4 format,
280             // while the ASTC 4x4 format also explain the evil number 4.0f above
281             totalSize = std::ceil(dimensions.width() / 4.0f) * std::ceil(dimensions.height() / 4.0f) * 16;
282             break;
283         }
284     }
285 
286     return totalSize;
287 }
288 
SkCompressedBlockSize(SkImage::CompressionType type)289 size_t SkCompressedBlockSize(SkImage::CompressionType type) {
290     switch (type) {
291         case SkImage::CompressionType::kNone:
292             return 0;
293         case SkImage::CompressionType::kETC2_RGB8_UNORM:
294             return sizeof(ETC1Block);
295         case SkImage::CompressionType::kBC1_RGB8_UNORM:
296         case SkImage::CompressionType::kBC1_RGBA8_UNORM:
297             return sizeof(BC1Block);
298         case SkImage::CompressionType::kASTC_RGBA8_UNORM:
299             // The evil number 16 here is the constant size of ASTC 4x4 format
300             return 16;
301     }
302     SkUNREACHABLE;
303 }
304 
SkCompressedFormatDataSize(SkImage::CompressionType compressionType,SkISize dimensions,bool mipMapped)305 size_t SkCompressedFormatDataSize(SkImage::CompressionType compressionType,
306                                   SkISize dimensions, bool mipMapped) {
307     return SkCompressedDataSize(compressionType, dimensions, nullptr, mipMapped);
308 }
309