1 /*
2 * Copyright 2008 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/core/SkMathPriv.h"
9 #include "src/core/SkPointPriv.h"
10
11 ///////////////////////////////////////////////////////////////////////////////
dump(std::string & desc,int depth) const12 void SkPoint::dump(std::string& desc, int depth) const {
13 std::string split(depth, '\t');
14 desc += split + "\n SkPoint:{ \n";
15 desc += split + "\t fX: " + std::to_string(fX) + "\n";
16 desc += split + "\t fY: " + std::to_string(fY) + "\n";
17 desc += split + "}\n";
18 }
19
scale(SkScalar scale,SkPoint * dst) const20 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
21 SkASSERT(dst);
22 dst->set(fX * scale, fY * scale);
23 }
24
normalize()25 bool SkPoint::normalize() {
26 return this->setLength(fX, fY, SK_Scalar1);
27 }
28
setNormalize(SkScalar x,SkScalar y)29 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
30 return this->setLength(x, y, SK_Scalar1);
31 }
32
setLength(SkScalar length)33 bool SkPoint::setLength(SkScalar length) {
34 return this->setLength(fX, fY, length);
35 }
36
37 /*
38 * We have to worry about 2 tricky conditions:
39 * 1. underflow of mag2 (compared against nearlyzero^2)
40 * 2. overflow of mag2 (compared w/ isfinite)
41 *
42 * If we underflow, we return false. If we overflow, we compute again using
43 * doubles, which is much slower (3x in a desktop test) but will not overflow.
44 */
set_point_length(SkPoint * pt,float x,float y,float length,float * orig_length=nullptr)45 template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length,
46 float* orig_length = nullptr) {
47 SkASSERT(!use_rsqrt || (orig_length == nullptr));
48
49 // our mag2 step overflowed to infinity, so use doubles instead.
50 // much slower, but needed when x or y are very large, other wise we
51 // divide by inf. and return (0,0) vector.
52 double xx = x;
53 double yy = y;
54 double dmag = sqrt(xx * xx + yy * yy);
55 double dscale = sk_ieee_double_divide(length, dmag);
56 x *= dscale;
57 y *= dscale;
58 // check if we're not finite, or we're zero-length
59 if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) {
60 pt->set(0, 0);
61 return false;
62 }
63 float mag = 0;
64 if (orig_length) {
65 mag = sk_double_to_float(dmag);
66 }
67 pt->set(x, y);
68 if (orig_length) {
69 *orig_length = mag;
70 }
71 return true;
72 }
73
Normalize(SkPoint * pt)74 SkScalar SkPoint::Normalize(SkPoint* pt) {
75 float mag;
76 if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) {
77 return mag;
78 }
79 return 0;
80 }
81
Length(SkScalar dx,SkScalar dy)82 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
83 float mag2 = dx * dx + dy * dy;
84 if (SkScalarIsFinite(mag2)) {
85 return sk_float_sqrt(mag2);
86 } else {
87 double xx = dx;
88 double yy = dy;
89 return sk_double_to_float(sqrt(xx * xx + yy * yy));
90 }
91 }
92
setLength(float x,float y,float length)93 bool SkPoint::setLength(float x, float y, float length) {
94 return set_point_length<false>(this, x, y, length);
95 }
96
SetLengthFast(SkPoint * pt,float length)97 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
98 return set_point_length<true>(pt, pt->fX, pt->fY, length);
99 }
100
101
102 ///////////////////////////////////////////////////////////////////////////////
103
DistanceToLineBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b,Side * side)104 SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
105 const SkPoint& b,
106 Side* side) {
107
108 SkVector u = b - a;
109 SkVector v = pt - a;
110
111 SkScalar uLengthSqd = LengthSqd(u);
112 SkScalar det = u.cross(v);
113 if (side) {
114 SkASSERT(-1 == kLeft_Side &&
115 0 == kOn_Side &&
116 1 == kRight_Side);
117 *side = (Side) SkScalarSignAsInt(det);
118 }
119 SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
120 temp *= det;
121 // It's possible we have a degenerate line vector, or we're so far away it looks degenerate
122 // In this case, return squared distance to point A.
123 if (!SkScalarIsFinite(temp)) {
124 return LengthSqd(v);
125 }
126 return temp;
127 }
128
DistanceToLineSegmentBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b)129 SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
130 const SkPoint& b) {
131 // See comments to distanceToLineBetweenSqd. If the projection of c onto
132 // u is between a and b then this returns the same result as that
133 // function. Otherwise, it returns the distance to the closer of a and
134 // b. Let the projection of v onto u be v'. There are three cases:
135 // 1. v' points opposite to u. c is not between a and b and is closer
136 // to a than b.
137 // 2. v' points along u and has magnitude less than y. c is between
138 // a and b and the distance to the segment is the same as distance
139 // to the line ab.
140 // 3. v' points along u and has greater magnitude than u. c is not
141 // not between a and b and is closer to b than a.
142 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
143 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
144 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
145 // avoid a sqrt to compute |u|.
146
147 SkVector u = b - a;
148 SkVector v = pt - a;
149
150 SkScalar uLengthSqd = LengthSqd(u);
151 SkScalar uDotV = SkPoint::DotProduct(u, v);
152
153 // closest point is point A
154 if (uDotV <= 0) {
155 return LengthSqd(v);
156 // closest point is point B
157 } else if (uDotV > uLengthSqd) {
158 return DistanceToSqd(b, pt);
159 // closest point is inside segment
160 } else {
161 SkScalar det = u.cross(v);
162 SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
163 temp *= det;
164 // It's possible we have a degenerate segment, or we're so far away it looks degenerate
165 // In this case, return squared distance to point A.
166 if (!SkScalarIsFinite(temp)) {
167 return LengthSqd(v);
168 }
169 return temp;
170 }
171 }
172