1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/core/SkWriteBuffer.h"
9
10 #include "include/core/SkBitmap.h"
11 #include "include/core/SkData.h"
12 #include "include/core/SkM44.h"
13 #include "include/core/SkStream.h"
14 #include "include/core/SkTypeface.h"
15 #include "include/private/SkTo.h"
16 #include "src/core/SkImagePriv.h"
17 #include "src/core/SkMatrixPriv.h"
18 #include "src/core/SkPaintPriv.h"
19 #include "src/core/SkPtrRecorder.h"
20
21 ///////////////////////////////////////////////////////////////////////////////////////////////////
22
SkBinaryWriteBuffer()23 SkBinaryWriteBuffer::SkBinaryWriteBuffer()
24 : fFactorySet(nullptr)
25 , fTFSet(nullptr) {
26 }
27
SkBinaryWriteBuffer(void * storage,size_t storageSize)28 SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize)
29 : fFactorySet(nullptr)
30 , fTFSet(nullptr)
31 , fWriter(storage, storageSize)
32 {}
33
~SkBinaryWriteBuffer()34 SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {}
35
usingInitialStorage() const36 bool SkBinaryWriteBuffer::usingInitialStorage() const {
37 return fWriter.usingInitialStorage();
38 }
39
writeByteArray(const void * data,size_t size)40 void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) {
41 fWriter.write32(SkToU32(size));
42 fWriter.writePad(data, size);
43 }
44
writeBool(bool value)45 void SkBinaryWriteBuffer::writeBool(bool value) {
46 fWriter.writeBool(value);
47 }
48
writeScalar(SkScalar value)49 void SkBinaryWriteBuffer::writeScalar(SkScalar value) {
50 fWriter.writeScalar(value);
51 }
52
writeScalarArray(const SkScalar * value,uint32_t count)53 void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
54 fWriter.write32(count);
55 fWriter.write(value, count * sizeof(SkScalar));
56 }
57
writeInt(int32_t value)58 void SkBinaryWriteBuffer::writeInt(int32_t value) {
59 fWriter.write32(value);
60 }
61
writeIntArray(const int32_t * value,uint32_t count)62 void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
63 fWriter.write32(count);
64 fWriter.write(value, count * sizeof(int32_t));
65 }
66
writeUInt(uint32_t value)67 void SkBinaryWriteBuffer::writeUInt(uint32_t value) {
68 fWriter.write32(value);
69 }
70
writeString(const char * value)71 void SkBinaryWriteBuffer::writeString(const char* value) {
72 fWriter.writeString(value);
73 }
74
writeColor(SkColor color)75 void SkBinaryWriteBuffer::writeColor(SkColor color) {
76 fWriter.write32(color);
77 }
78
writeColorArray(const SkColor * color,uint32_t count)79 void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
80 fWriter.write32(count);
81 fWriter.write(color, count * sizeof(SkColor));
82 }
83
writeColor4f(const SkColor4f & color)84 void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) {
85 fWriter.write(&color, sizeof(SkColor4f));
86 }
87
writeColor4fArray(const SkColor4f * color,uint32_t count)88 void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) {
89 fWriter.write32(count);
90 fWriter.write(color, count * sizeof(SkColor4f));
91 }
92
writePoint(const SkPoint & point)93 void SkBinaryWriteBuffer::writePoint(const SkPoint& point) {
94 fWriter.writeScalar(point.fX);
95 fWriter.writeScalar(point.fY);
96 }
97
writePoint3(const SkPoint3 & point)98 void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) {
99 this->writePad32(&point, sizeof(SkPoint3));
100 }
101
writePointArray(const SkPoint * point,uint32_t count)102 void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
103 fWriter.write32(count);
104 fWriter.write(point, count * sizeof(SkPoint));
105 }
106
write(const SkM44 & matrix)107 void SkBinaryWriteBuffer::write(const SkM44& matrix) {
108 fWriter.write(SkMatrixPriv::M44ColMajor(matrix), sizeof(float) * 16);
109 }
110
writeMatrix(const SkMatrix & matrix)111 void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) {
112 fWriter.writeMatrix(matrix);
113 }
114
writeIRect(const SkIRect & rect)115 void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) {
116 fWriter.write(&rect, sizeof(SkIRect));
117 }
118
writeRect(const SkRect & rect)119 void SkBinaryWriteBuffer::writeRect(const SkRect& rect) {
120 fWriter.writeRect(rect);
121 }
122
writeRegion(const SkRegion & region)123 void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) {
124 fWriter.writeRegion(region);
125 }
126
writePath(const SkPath & path)127 void SkBinaryWriteBuffer::writePath(const SkPath& path) {
128 fWriter.writePath(path);
129 }
130
writeStream(SkStream * stream,size_t length)131 size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) {
132 fWriter.write32(SkToU32(length));
133 size_t bytesWritten = fWriter.readFromStream(stream, length);
134 if (bytesWritten < length) {
135 fWriter.reservePad(length - bytesWritten);
136 }
137 return bytesWritten;
138 }
139
writeToStream(SkWStream * stream) const140 bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const {
141 return fWriter.writeToStream(stream);
142 }
143
144 #include "src/image/SkImage_Base.h"
145
146 /* Format:
147 * flags: U32
148 * encoded : size_32 + data[]
149 * [subset: IRect]
150 * [mips] : size_32 + data[]
151 */
writeImage(const SkImage * image)152 void SkBinaryWriteBuffer::writeImage(const SkImage* image) {
153 uint32_t flags = 0;
154 const SkMipmap* mips = as_IB(image)->onPeekMips();
155 if (mips) {
156 flags |= SkWriteBufferImageFlags::kHasMipmap;
157 }
158
159 this->write32(flags);
160
161 sk_sp<SkData> data;
162 if (fProcs.fImageProc) {
163 data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx);
164 }
165 if (!data) {
166 data = image->encodeToData();
167 }
168 this->writeDataAsByteArray(data.get());
169
170 if (flags & SkWriteBufferImageFlags::kHasMipmap) {
171 this->writeDataAsByteArray(mips->serialize().get());
172 }
173 }
174
writeTypeface(SkTypeface * obj)175 void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) {
176 // Write 32 bits (signed)
177 // 0 -- default font
178 // >0 -- index
179 // <0 -- custom (serial procs)
180
181 if (obj == nullptr) {
182 fWriter.write32(0);
183 } else if (fProcs.fTypefaceProc) {
184 auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx);
185 if (data) {
186 size_t size = data->size();
187 if (!SkTFitsIn<int32_t>(size)) {
188 size = 0; // fall back to default font
189 }
190 int32_t ssize = SkToS32(size);
191 fWriter.write32(-ssize); // negative to signal custom
192 if (size) {
193 this->writePad32(data->data(), size);
194 }
195 return;
196 }
197 // no data means fall through for std behavior
198 }
199 fWriter.write32(fTFSet ? fTFSet->add(obj) : 0);
200 }
201
writePaint(const SkPaint & paint)202 void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) {
203 SkPaintPriv::Flatten(paint, *this);
204 }
205
setFactoryRecorder(sk_sp<SkFactorySet> rec)206 void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) {
207 fFactorySet = std::move(rec);
208 }
209
setTypefaceRecorder(sk_sp<SkRefCntSet> rec)210 void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) {
211 fTFSet = std::move(rec);
212 }
213
writeFlattenable(const SkFlattenable * flattenable)214 void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
215 if (nullptr == flattenable) {
216 this->write32(0);
217 return;
218 }
219
220 /*
221 * We can write 1 of 2 versions of the flattenable:
222 *
223 * 1. index into fFactorySet: This assumes the writer will later resolve the function-ptrs
224 * into strings for its reader. SkPicture does exactly this, by writing a table of names
225 * (matching the indices) up front in its serialized form.
226 *
227 * 2. string name of the flattenable or index into fFlattenableDict: We store the string to
228 * allow the reader to specify its own factories after write time. In order to improve
229 * compression, if we have already written the string, we write its index instead.
230 */
231
232 if (SkFlattenable::Factory factory = flattenable->getFactory(); factory && fFactorySet) {
233 this->write32(fFactorySet->add(factory));
234 } else {
235 const char* name = flattenable->getTypeName();
236 SkASSERT(name);
237 SkASSERT(0 != strcmp("", name));
238
239 if (uint32_t* indexPtr = fFlattenableDict.find(name)) {
240 // We will write the index as a 32-bit int. We want the first byte
241 // that we send to be zero - this will act as a sentinel that we
242 // have an index (not a string). This means that we will send the
243 // the index shifted left by 8. The remaining 24-bits should be
244 // plenty to store the index. Note that this strategy depends on
245 // being little endian, and type names being non-empty.
246 SkASSERT(0 == *indexPtr >> 24);
247 this->write32(*indexPtr << 8);
248 } else {
249 this->writeString(name);
250 fFlattenableDict.set(name, fFlattenableDict.count() + 1);
251 }
252 }
253
254 // make room for the size of the flattened object
255 (void)fWriter.reserve(sizeof(uint32_t));
256 // record the current size, so we can subtract after the object writes.
257 size_t offset = fWriter.bytesWritten();
258 // now flatten the object
259 flattenable->flatten(*this);
260 size_t objSize = fWriter.bytesWritten() - offset;
261 // record the obj's size
262 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
263 }
264