• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/utils/SkPatchUtils.h"
9 
10 #include "include/core/SkVertices.h"
11 #include "include/private/SkColorData.h"
12 #include "include/private/SkTPin.h"
13 #include "include/private/SkTo.h"
14 #include "src/core/SkArenaAlloc.h"
15 #include "src/core/SkColorSpacePriv.h"
16 #include "src/core/SkConvertPixels.h"
17 #include "src/core/SkGeometry.h"
18 
19 namespace {
20     enum CubicCtrlPts {
21         kTopP0_CubicCtrlPts = 0,
22         kTopP1_CubicCtrlPts = 1,
23         kTopP2_CubicCtrlPts = 2,
24         kTopP3_CubicCtrlPts = 3,
25 
26         kRightP0_CubicCtrlPts = 3,
27         kRightP1_CubicCtrlPts = 4,
28         kRightP2_CubicCtrlPts = 5,
29         kRightP3_CubicCtrlPts = 6,
30 
31         kBottomP0_CubicCtrlPts = 9,
32         kBottomP1_CubicCtrlPts = 8,
33         kBottomP2_CubicCtrlPts = 7,
34         kBottomP3_CubicCtrlPts = 6,
35 
36         kLeftP0_CubicCtrlPts = 0,
37         kLeftP1_CubicCtrlPts = 11,
38         kLeftP2_CubicCtrlPts = 10,
39         kLeftP3_CubicCtrlPts = 9,
40     };
41 
42     // Enum for corner also clockwise.
43     enum Corner {
44         kTopLeft_Corner = 0,
45         kTopRight_Corner,
46         kBottomRight_Corner,
47         kBottomLeft_Corner
48     };
49 }  // namespace
50 
51 /**
52  * Evaluator to sample the values of a cubic bezier using forward differences.
53  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
54  * adding precalculated values.
55  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
56  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
57  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
58  * obtaining this value (mh) we could just add this constant step to our first sampled point
59  * to compute the next one.
60  *
61  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
62  * apply again forward differences and get linear function to which we can apply again forward
63  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
64  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
65  * difference values.
66  */
67 
68 class FwDCubicEvaluator {
69 
70 public:
71 
72     /**
73      * Receives the 4 control points of the cubic bezier.
74      */
75 
FwDCubicEvaluator(const SkPoint points[4])76     explicit FwDCubicEvaluator(const SkPoint points[4])
77             : fCoefs(points) {
78         memcpy(fPoints, points, 4 * sizeof(SkPoint));
79 
80         this->restart(1);
81     }
82 
83     /**
84      * Restarts the forward differences evaluator to the first value of t = 0.
85      */
restart(int divisions)86     void restart(int divisions)  {
87         fDivisions = divisions;
88         fCurrent    = 0;
89         fMax        = fDivisions + 1;
90         Sk2s h  = Sk2s(1.f / fDivisions);
91         Sk2s h2 = h * h;
92         Sk2s h3 = h2 * h;
93         Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3;
94         fFwDiff[3] = to_point(fwDiff3);
95         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
96         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
97         fFwDiff[0] = to_point(fCoefs.fD);
98     }
99 
100     /**
101      * Check if the evaluator is still within the range of 0<=t<=1
102      */
done() const103     bool done() const {
104         return fCurrent > fMax;
105     }
106 
107     /**
108      * Call next to obtain the SkPoint sampled and move to the next one.
109      */
next()110     SkPoint next() {
111         SkPoint point = fFwDiff[0];
112         fFwDiff[0]    += fFwDiff[1];
113         fFwDiff[1]    += fFwDiff[2];
114         fFwDiff[2]    += fFwDiff[3];
115         fCurrent++;
116         return point;
117     }
118 
getCtrlPoints() const119     const SkPoint* getCtrlPoints() const {
120         return fPoints;
121     }
122 
123 private:
124     SkCubicCoeff fCoefs;
125     int fMax, fCurrent, fDivisions;
126     SkPoint fFwDiff[4], fPoints[4];
127 };
128 
129 ////////////////////////////////////////////////////////////////////////////////
130 
131 // size in pixels of each partition per axis, adjust this knob
132 static const int kPartitionSize = 10;
133 
134 /**
135  *  Calculate the approximate arc length given a bezier curve's control points.
136  *  Returns -1 if bad calc (i.e. non-finite)
137  */
approx_arc_length(const SkPoint points[],int count)138 static SkScalar approx_arc_length(const SkPoint points[], int count) {
139     if (count < 2) {
140         return 0;
141     }
142     SkScalar arcLength = 0;
143     for (int i = 0; i < count - 1; i++) {
144         arcLength += SkPoint::Distance(points[i], points[i + 1]);
145     }
146     return SkScalarIsFinite(arcLength) ? arcLength : -1;
147 }
148 
bilerp(SkScalar tx,SkScalar ty,SkScalar c00,SkScalar c10,SkScalar c01,SkScalar c11)149 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
150                        SkScalar c11) {
151     SkScalar a = c00 * (1.f - tx) + c10 * tx;
152     SkScalar b = c01 * (1.f - tx) + c11 * tx;
153     return a * (1.f - ty) + b * ty;
154 }
155 
bilerp(SkScalar tx,SkScalar ty,const Sk4f & c00,const Sk4f & c10,const Sk4f & c01,const Sk4f & c11)156 static Sk4f bilerp(SkScalar tx, SkScalar ty,
157                    const Sk4f& c00, const Sk4f& c10, const Sk4f& c01, const Sk4f& c11) {
158     Sk4f a = c00 * (1.f - tx) + c10 * tx;
159     Sk4f b = c01 * (1.f - tx) + c11 * tx;
160     return a * (1.f - ty) + b * ty;
161 }
162 
GetLevelOfDetail(const SkPoint cubics[12],const SkMatrix * matrix)163 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
164     // Approximate length of each cubic.
165     SkPoint pts[kNumPtsCubic];
166     SkPatchUtils::GetTopCubic(cubics, pts);
167     matrix->mapPoints(pts, kNumPtsCubic);
168     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
169 
170     SkPatchUtils::GetBottomCubic(cubics, pts);
171     matrix->mapPoints(pts, kNumPtsCubic);
172     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
173 
174     SkPatchUtils::GetLeftCubic(cubics, pts);
175     matrix->mapPoints(pts, kNumPtsCubic);
176     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
177 
178     SkPatchUtils::GetRightCubic(cubics, pts);
179     matrix->mapPoints(pts, kNumPtsCubic);
180     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
181 
182     if (topLength < 0 || bottomLength < 0 || leftLength < 0 || rightLength < 0) {
183         return {0, 0};  // negative length is a sentinel for bad length (i.e. non-finite)
184     }
185 
186     // Level of detail per axis, based on the larger side between top and bottom or left and right
187     int lodX = static_cast<int>(std::max(topLength, bottomLength) / kPartitionSize);
188     int lodY = static_cast<int>(std::max(leftLength, rightLength) / kPartitionSize);
189 
190     return SkISize::Make(std::max(8, lodX), std::max(8, lodY));
191 }
192 
GetTopCubic(const SkPoint cubics[12],SkPoint points[4])193 void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
194     points[0] = cubics[kTopP0_CubicCtrlPts];
195     points[1] = cubics[kTopP1_CubicCtrlPts];
196     points[2] = cubics[kTopP2_CubicCtrlPts];
197     points[3] = cubics[kTopP3_CubicCtrlPts];
198 }
199 
GetBottomCubic(const SkPoint cubics[12],SkPoint points[4])200 void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
201     points[0] = cubics[kBottomP0_CubicCtrlPts];
202     points[1] = cubics[kBottomP1_CubicCtrlPts];
203     points[2] = cubics[kBottomP2_CubicCtrlPts];
204     points[3] = cubics[kBottomP3_CubicCtrlPts];
205 }
206 
GetLeftCubic(const SkPoint cubics[12],SkPoint points[4])207 void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
208     points[0] = cubics[kLeftP0_CubicCtrlPts];
209     points[1] = cubics[kLeftP1_CubicCtrlPts];
210     points[2] = cubics[kLeftP2_CubicCtrlPts];
211     points[3] = cubics[kLeftP3_CubicCtrlPts];
212 }
213 
GetRightCubic(const SkPoint cubics[12],SkPoint points[4])214 void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
215     points[0] = cubics[kRightP0_CubicCtrlPts];
216     points[1] = cubics[kRightP1_CubicCtrlPts];
217     points[2] = cubics[kRightP2_CubicCtrlPts];
218     points[3] = cubics[kRightP3_CubicCtrlPts];
219 }
220 
skcolor_to_float(SkPMColor4f * dst,const SkColor * src,int count,SkColorSpace * dstCS)221 static void skcolor_to_float(SkPMColor4f* dst, const SkColor* src, int count, SkColorSpace* dstCS) {
222     SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
223                                             kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
224     SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
225                                             kPremul_SkAlphaType, sk_ref_sp(dstCS));
226     SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
227 }
228 
float_to_skcolor(SkColor * dst,const SkPMColor4f * src,int count,SkColorSpace * srcCS)229 static void float_to_skcolor(SkColor* dst, const SkPMColor4f* src, int count, SkColorSpace* srcCS) {
230     SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
231                                             kPremul_SkAlphaType, sk_ref_sp(srcCS));
232     SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
233                                             kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
234     SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
235 }
236 
MakeVertices(const SkPoint cubics[12],const SkColor srcColors[4],const SkPoint srcTexCoords[4],int lodX,int lodY,SkColorSpace * colorSpace)237 sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
238                                              const SkPoint srcTexCoords[4], int lodX, int lodY,
239                                              SkColorSpace* colorSpace) {
240     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
241         return nullptr;
242     }
243 
244     // check for overflow in multiplication
245     const int64_t lodX64 = (lodX + 1),
246     lodY64 = (lodY + 1),
247     mult64 = lodX64 * lodY64;
248     if (mult64 > SK_MaxS32) {
249         return nullptr;
250     }
251 
252     // Treat null interpolation space as sRGB.
253     if (!colorSpace) {
254         colorSpace = sk_srgb_singleton();
255     }
256 
257     int vertexCount = SkToS32(mult64);
258     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
259     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
260     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
261         float weightX = static_cast<float>(lodX) / (lodX + lodY);
262         float weightY = static_cast<float>(lodY) / (lodX + lodY);
263 
264         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
265         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
266         // Need a min of 1 since we later divide by lod
267         lodX = std::max(1, sk_float_floor2int_no_saturate(weightX * 200));
268         lodY = std::max(1, sk_float_floor2int_no_saturate(weightY * 200));
269         vertexCount = (lodX + 1) * (lodY + 1);
270     }
271     const int indexCount = lodX * lodY * 6;
272     uint32_t flags = 0;
273     if (srcTexCoords) {
274         flags |= SkVertices::kHasTexCoords_BuilderFlag;
275     }
276     if (srcColors) {
277         flags |= SkVertices::kHasColors_BuilderFlag;
278     }
279 
280     SkSTArenaAlloc<2048> alloc;
281     SkPMColor4f* cornerColors = srcColors ? alloc.makeArray<SkPMColor4f>(4) : nullptr;
282     SkPMColor4f* tmpColors = srcColors ? alloc.makeArray<SkPMColor4f>(vertexCount) : nullptr;
283 
284     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
285     SkPoint* pos = builder.positions();
286     SkPoint* texs = builder.texCoords();
287     uint16_t* indices = builder.indices();
288 
289     if (cornerColors) {
290         skcolor_to_float(cornerColors, srcColors, kNumCorners, colorSpace);
291     }
292 
293     SkPoint pts[kNumPtsCubic];
294     SkPatchUtils::GetBottomCubic(cubics, pts);
295     FwDCubicEvaluator fBottom(pts);
296     SkPatchUtils::GetTopCubic(cubics, pts);
297     FwDCubicEvaluator fTop(pts);
298     SkPatchUtils::GetLeftCubic(cubics, pts);
299     FwDCubicEvaluator fLeft(pts);
300     SkPatchUtils::GetRightCubic(cubics, pts);
301     FwDCubicEvaluator fRight(pts);
302 
303     fBottom.restart(lodX);
304     fTop.restart(lodX);
305 
306     SkScalar u = 0.0f;
307     int stride = lodY + 1;
308     for (int x = 0; x <= lodX; x++) {
309         SkPoint bottom = fBottom.next(), top = fTop.next();
310         fLeft.restart(lodY);
311         fRight.restart(lodY);
312         SkScalar v = 0.f;
313         for (int y = 0; y <= lodY; y++) {
314             int dataIndex = x * (lodY + 1) + y;
315 
316             SkPoint left = fLeft.next(), right = fRight.next();
317 
318             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
319                                        (1.0f - v) * top.y() + v * bottom.y());
320             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
321                                        (1.0f - u) * left.y() + u * right.y());
322             SkPoint s2 = SkPoint::Make(
323                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
324                                                      + u * fTop.getCtrlPoints()[3].x())
325                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
326                                               + u * fBottom.getCtrlPoints()[3].x()),
327                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
328                                                      + u * fTop.getCtrlPoints()[3].y())
329                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
330                                               + u * fBottom.getCtrlPoints()[3].y()));
331             pos[dataIndex] = s0 + s1 - s2;
332 
333             if (cornerColors) {
334                 bilerp(u, v, Sk4f::Load(cornerColors[kTopLeft_Corner].vec()),
335                              Sk4f::Load(cornerColors[kTopRight_Corner].vec()),
336                              Sk4f::Load(cornerColors[kBottomLeft_Corner].vec()),
337                              Sk4f::Load(cornerColors[kBottomRight_Corner].vec()))
338                     .store(tmpColors[dataIndex].vec());
339             }
340 
341             if (texs) {
342                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
343                                                        srcTexCoords[kTopRight_Corner].x(),
344                                                        srcTexCoords[kBottomLeft_Corner].x(),
345                                                        srcTexCoords[kBottomRight_Corner].x()),
346                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
347                                                        srcTexCoords[kTopRight_Corner].y(),
348                                                        srcTexCoords[kBottomLeft_Corner].y(),
349                                                        srcTexCoords[kBottomRight_Corner].y()));
350 
351             }
352 
353             if(x < lodX && y < lodY) {
354                 int i = 6 * (x * lodY + y);
355                 indices[i] = x * stride + y;
356                 indices[i + 1] = x * stride + 1 + y;
357                 indices[i + 2] = (x + 1) * stride + 1 + y;
358                 indices[i + 3] = indices[i];
359                 indices[i + 4] = indices[i + 2];
360                 indices[i + 5] = (x + 1) * stride + y;
361             }
362             v = SkTPin(v + 1.f / lodY, 0.0f, 1.0f);
363         }
364         u = SkTPin(u + 1.f / lodX, 0.0f, 1.0f);
365     }
366 
367     if (tmpColors) {
368         float_to_skcolor(builder.colors(), tmpColors, vertexCount, colorSpace);
369     }
370     return builder.detach();
371 }
372