• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 #ifndef __NUMBER_DECIMALQUANTITY_H__
8 #define __NUMBER_DECIMALQUANTITY_H__
9 
10 #include <cstdint>
11 #include "unicode/umachine.h"
12 #include "standardplural.h"
13 #include "plurrule_impl.h"
14 #include "number_types.h"
15 
16 U_NAMESPACE_BEGIN namespace number {
17 namespace impl {
18 
19 // Forward-declare (maybe don't want number_utils.h included here):
20 class DecNum;
21 
22 /**
23  * A class for representing a number to be processed by the decimal formatting pipeline. Includes
24  * methods for rounding, plural rules, and decimal digit extraction.
25  *
26  * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27  * object holding state during a pass through the decimal formatting pipeline.
28  *
29  * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30  *
31  * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32  */
33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34   public:
35     /** Copy constructor. */
36     DecimalQuantity(const DecimalQuantity &other);
37 
38     /** Move constructor. */
39     DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT;
40 
41     DecimalQuantity();
42 
43     ~DecimalQuantity() override;
44 
45     /**
46      * Sets this instance to be equal to another instance.
47      *
48      * @param other The instance to copy from.
49      */
50     DecimalQuantity &operator=(const DecimalQuantity &other);
51 
52     /** Move assignment */
53     DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT;
54 
55     /**
56      * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
57      * This method does not perform rounding.
58      *
59      * @param minInt The minimum number of integer digits.
60      */
61     void setMinInteger(int32_t minInt);
62 
63     /**
64      * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
65      * This method does not perform rounding.
66      *
67      * @param minFrac The minimum number of fraction digits.
68      */
69     void setMinFraction(int32_t minFrac);
70 
71     /**
72      * Truncates digits from the upper magnitude of the number in order to satisfy the
73      * specified maximum number of integer digits.
74      *
75      * @param maxInt The maximum number of integer digits.
76      */
77     void applyMaxInteger(int32_t maxInt);
78 
79     /**
80      * Rounds the number to a specified interval, such as 0.05.
81      *
82      * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
83      *
84      * @param roundingIncrement The increment to which to round.
85      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
86      */
87     void roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
88                           UErrorCode& status);
89 
90     /** Removes all fraction digits. */
91     void truncate();
92 
93     /**
94      * Rounds the number to the nearest multiple of 5 at the specified magnitude.
95      * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
96      *
97      * @param magnitude The magnitude at which the digit should become either 0 or 5.
98      * @param roundingMode Rounding strategy.
99      */
100     void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
101 
102     /**
103      * Rounds the number to a specified magnitude (power of ten).
104      *
105      * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
106      *     round to 2 decimal places.
107      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
108      */
109     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
110 
111     /**
112      * Rounds the number to an infinite number of decimal points. This has no effect except for
113      * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
114      */
115     void roundToInfinity();
116 
117     /**
118      * Multiply the internal value. Uses decNumber.
119      *
120      * @param multiplicand The value by which to multiply.
121      */
122     void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
123 
124     /**
125      * Divide the internal value. Uses decNumber.
126      *
127      * @param multiplicand The value by which to multiply.
128      */
129     void divideBy(const DecNum& divisor, UErrorCode& status);
130 
131     /** Flips the sign from positive to negative and back. */
132     void negate();
133 
134     /**
135      * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
136      * this method with delta=-3 will change the value to "1.23456".
137      *
138      * @param delta The number of magnitudes of ten to change by.
139      * @return true if integer overflow occured; false otherwise.
140      */
141     bool adjustMagnitude(int32_t delta);
142 
143     /**
144      * @return The power of ten corresponding to the most significant nonzero digit.
145      * The number must not be zero.
146      */
147     int32_t getMagnitude() const;
148 
149     /**
150      * @return The value of the (suppressed) exponent after the number has been
151      * put into a notation with exponents (ex: compact, scientific).  Ex: given
152      * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
153      */
154     int32_t getExponent() const;
155 
156     /**
157      * Adjusts the value for the (suppressed) exponent stored when using
158      * notation with exponents (ex: compact, scientific).
159      *
160      * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
161      * order to allow flexibility for {@link StandardPlural} to be selected in
162      * formatting (ex: for compact notation) either with or without the exponent
163      * applied in the value of the number.
164      * @param delta
165      *             The value to adjust the exponent by.
166      */
167     void adjustExponent(int32_t delta);
168 
169     /**
170      * @return Whether the value represented by this {@link DecimalQuantity} is
171      * zero, infinity, or NaN.
172      */
173     bool isZeroish() const;
174 
175     /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
176     bool isNegative() const;
177 
178     /** @return The appropriate value from the Signum enum. */
179     Signum signum() const;
180 
181     /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
182     bool isInfinite() const U_OVERRIDE;
183 
184     /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
185     bool isNaN() const U_OVERRIDE;
186 
187     /**
188      * Note: this method incorporates the value of {@code exponent}
189      * (for cases such as compact notation) to return the proper long value
190      * represented by the result.
191      * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
192      */
193     int64_t toLong(bool truncateIfOverflow = false) const;
194 
195     /**
196      * Note: this method incorporates the value of {@code exponent}
197      * (for cases such as compact notation) to return the proper long value
198      * represented by the result.
199      */
200     uint64_t toFractionLong(bool includeTrailingZeros) const;
201 
202     /**
203      * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
204      * @param ignoreFraction if true, silently ignore digits after the decimal place.
205      */
206     bool fitsInLong(bool ignoreFraction = false) const;
207 
208     /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
209     double toDouble() const;
210 
211     /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
212     DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
213 
214     DecimalQuantity &setToInt(int32_t n);
215 
216     DecimalQuantity &setToLong(int64_t n);
217 
218     DecimalQuantity &setToDouble(double n);
219 
220     /**
221      * Produces a DecimalQuantity that was parsed from a string by the decNumber
222      * C Library.
223      *
224      * decNumber is similar to BigDecimal in Java, and supports parsing strings
225      * such as "123.456621E+40".
226      */
227     DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
228 
229     /** Internal method if the caller already has a DecNum. */
230     DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
231 
232     /**
233      * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
234      * by this DecimalQuantity.
235      *
236      * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
237      * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
238      *
239      * @param value The digit to append.
240      * @param leadingZeros The number of zeros to append before the digit. For example, if the value
241      *     in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
242      *     12.304.
243      * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
244      *     new digit. If false, append to the end like a fraction digit. If true, there must not be
245      *     any fraction digits already in the number.
246      * @internal
247      * @deprecated This API is ICU internal only.
248      */
249     void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
250 
251     double getPluralOperand(PluralOperand operand) const U_OVERRIDE;
252 
253     bool hasIntegerValue() const U_OVERRIDE;
254 
255     /**
256      * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
257      * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
258      *
259      * @param magnitude The magnitude of the digit.
260      * @return The digit at the specified magnitude.
261      */
262     int8_t getDigit(int32_t magnitude) const;
263 
264     /**
265      * Gets the largest power of ten that needs to be displayed. The value returned by this function
266      * will be bounded between minInt and maxInt.
267      *
268      * @return The highest-magnitude digit to be displayed.
269      */
270     int32_t getUpperDisplayMagnitude() const;
271 
272     /**
273      * Gets the smallest power of ten that needs to be displayed. The value returned by this function
274      * will be bounded between -minFrac and -maxFrac.
275      *
276      * @return The lowest-magnitude digit to be displayed.
277      */
278     int32_t getLowerDisplayMagnitude() const;
279 
280     int32_t fractionCount() const;
281 
282     int32_t fractionCountWithoutTrailingZeros() const;
283 
284     void clear();
285 
286     /** This method is for internal testing only. */
287     uint64_t getPositionFingerprint() const;
288 
289 //    /**
290 //     * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
291 //     * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
292 //     * happens.
293 //     *
294 //     * @param fp The {@link UFieldPosition} to populate.
295 //     */
296 //    void populateUFieldPosition(FieldPosition fp);
297 
298     /**
299      * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
300      *
301      * @return An error message if this instance is invalid, or null if this instance is healthy.
302      */
303     const char16_t* checkHealth() const;
304 
305     UnicodeString toString() const;
306 
307     /** Returns the string in standard exponential notation. */
308     UnicodeString toScientificString() const;
309 
310     /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
311     UnicodeString toPlainString() const;
312 
313     /** Visible for testing */
isUsingBytes()314     inline bool isUsingBytes() { return usingBytes; }
315 
316     /** Visible for testing */
isExplicitExactDouble()317     inline bool isExplicitExactDouble() { return explicitExactDouble; }
318 
319     bool operator==(const DecimalQuantity& other) const;
320 
321     inline bool operator!=(const DecimalQuantity& other) const {
322         return !(*this == other);
323     }
324 
325     /**
326      * Bogus flag for when a DecimalQuantity is stored on the stack.
327      */
328     bool bogus = false;
329 
330   private:
331     /**
332      * The power of ten corresponding to the least significant digit in the BCD. For example, if this
333      * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
334      *
335      * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
336      * digits after the decimal place, which is the negative of our definition of scale.
337      */
338     int32_t scale;
339 
340     /**
341      * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
342      * maximum precision is 16 since a long can hold only 16 digits.
343      *
344      * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
345      * #computePrecisionAndCompact()}.
346      */
347     int32_t precision;
348 
349     /**
350      * A bitmask of properties relating to the number represented by this object.
351      *
352      * @see #NEGATIVE_FLAG
353      * @see #INFINITY_FLAG
354      * @see #NAN_FLAG
355      */
356     int8_t flags;
357 
358     // The following three fields relate to the double-to-ascii fast path algorithm.
359     // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
360     // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
361     // of rounding the number ensures that the converted digits are correct, falling back to a slow-
362     // path algorithm if required.  Therefore, if a DecimalQuantity is constructed from a double, it
363     // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
364     // you don't round, assertions will fail in certain other methods if you try calling them.
365 
366     /**
367      * Whether the value in the BCD comes from the double fast path without having been rounded to
368      * ensure correctness
369      */
370     UBool isApproximate;
371 
372     /**
373      * The original number provided by the user and which is represented in BCD. Used when we need to
374      * re-compute the BCD for an exact double representation.
375      */
376     double origDouble;
377 
378     /**
379      * The change in magnitude relative to the original double. Used when we need to re-compute the
380      * BCD for an exact double representation.
381      */
382     int32_t origDelta;
383 
384     // Positions to keep track of leading and trailing zeros.
385     // lReqPos is the magnitude of the first required leading zero.
386     // rReqPos is the magnitude of the last required trailing zero.
387     int32_t lReqPos = 0;
388     int32_t rReqPos = 0;
389 
390     // The value of the (suppressed) exponent after the number has been put into
391     // a notation with exponents (ex: compact, scientific).
392     int32_t exponent = 0;
393 
394     /**
395      * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
396      * to one digit. For example, the number "12345" in BCD is "0x12345".
397      *
398      * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
399      * like setting the digit to zero.
400      */
401     union {
402         struct {
403             int8_t *ptr;
404             int32_t len;
405         } bcdBytes;
406         uint64_t bcdLong;
407     } fBCD;
408 
409     bool usingBytes = false;
410 
411     /**
412      * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
413      * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
414      * Used for testing.
415      */
416     bool explicitExactDouble = false;
417 
418     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
419 
420     /**
421      * Returns a single digit from the BCD list. No internal state is changed by calling this method.
422      *
423      * @param position The position of the digit to pop, counted in BCD units from the least
424      *     significant digit. If outside the range supported by the implementation, zero is returned.
425      * @return The digit at the specified location.
426      */
427     int8_t getDigitPos(int32_t position) const;
428 
429     /**
430      * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
431      * responsibility to call {@link #compact} after setting the digit.
432      *
433      * @param position The position of the digit to pop, counted in BCD units from the least
434      *     significant digit. If outside the range supported by the implementation, an AssertionError
435      *     is thrown.
436      * @param value The digit to set at the specified location.
437      */
438     void setDigitPos(int32_t position, int8_t value);
439 
440     /**
441      * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
442      * the caller's responsibility to do further manipulation and then call {@link #compact}.
443      *
444      * @param numDigits The number of zeros to add.
445      */
446     void shiftLeft(int32_t numDigits);
447 
448     /**
449      * Directly removes digits from the end of the BCD list.
450      * Updates the scale and precision.
451      *
452      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
453      */
454     void shiftRight(int32_t numDigits);
455 
456     /**
457      * Directly removes digits from the front of the BCD list.
458      * Updates precision.
459      *
460      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
461      */
462     void popFromLeft(int32_t numDigits);
463 
464     /**
465      * Sets the internal representation to zero. Clears any values stored in scale, precision,
466      * hasDouble, origDouble, origDelta, exponent, and BCD data.
467      */
468     void setBcdToZero();
469 
470     /**
471      * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
472      * be either positive. The internal state is guaranteed to be empty when this method is called.
473      *
474      * @param n The value to consume.
475      */
476     void readIntToBcd(int32_t n);
477 
478     /**
479      * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
480      * be either positive. The internal state is guaranteed to be empty when this method is called.
481      *
482      * @param n The value to consume.
483      */
484     void readLongToBcd(int64_t n);
485 
486     void readDecNumberToBcd(const DecNum& dn);
487 
488     void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
489 
490     void copyFieldsFrom(const DecimalQuantity& other);
491 
492     void copyBcdFrom(const DecimalQuantity &other);
493 
494     void moveBcdFrom(DecimalQuantity& src);
495 
496     /**
497      * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
498      * precision. The precision is the number of digits in the number up through the greatest nonzero
499      * digit.
500      *
501      * <p>This method must always be called when bcd changes in order for assumptions to be correct in
502      * methods like {@link #fractionCount()}.
503      */
504     void compact();
505 
506     void _setToInt(int32_t n);
507 
508     void _setToLong(int64_t n);
509 
510     void _setToDoubleFast(double n);
511 
512     void _setToDecNum(const DecNum& dn, UErrorCode& status);
513 
514     void convertToAccurateDouble();
515 
516     /** Ensure that a byte array of at least 40 digits is allocated. */
517     void ensureCapacity();
518 
519     void ensureCapacity(int32_t capacity);
520 
521     /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
522     void switchStorage();
523 };
524 
525 } // namespace impl
526 } // namespace number
527 U_NAMESPACE_END
528 
529 
530 #endif //__NUMBER_DECIMALQUANTITY_H__
531 
532 #endif /* #if !UCONFIG_NO_FORMATTING */
533