1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "Renderer.hpp"
16
17 #include "Clipper.hpp"
18 #include "Polygon.hpp"
19 #include "Primitive.hpp"
20 #include "Vertex.hpp"
21 #include "Pipeline/Constants.hpp"
22 #include "Pipeline/SpirvShader.hpp"
23 #include "Reactor/Reactor.hpp"
24 #include "System/Debug.hpp"
25 #include "System/Half.hpp"
26 #include "System/Math.hpp"
27 #include "System/Memory.hpp"
28 #include "System/Timer.hpp"
29 #include "Vulkan/VkConfig.hpp"
30 #include "Vulkan/VkDescriptorSet.hpp"
31 #include "Vulkan/VkDevice.hpp"
32 #include "Vulkan/VkFence.hpp"
33 #include "Vulkan/VkImageView.hpp"
34 #include "Vulkan/VkPipelineLayout.hpp"
35 #include "Vulkan/VkQueryPool.hpp"
36
37 #include "marl/containers.h"
38 #include "marl/defer.h"
39 #include "marl/trace.h"
40
41 #undef max
42
43 #ifndef NDEBUG
44 unsigned int minPrimitives = 1;
45 unsigned int maxPrimitives = 1 << 21;
46 #endif
47
48 namespace sw {
49
50 template<typename T>
setBatchIndices(unsigned int batch[128][3],VkPrimitiveTopology topology,VkProvokingVertexModeEXT provokingVertexMode,T indices,unsigned int start,unsigned int triangleCount)51 inline bool setBatchIndices(unsigned int batch[128][3], VkPrimitiveTopology topology, VkProvokingVertexModeEXT provokingVertexMode, T indices, unsigned int start, unsigned int triangleCount)
52 {
53 bool provokeFirst = (provokingVertexMode == VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT);
54
55 switch(topology)
56 {
57 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
58 {
59 auto index = start;
60 auto pointBatch = &(batch[0][0]);
61 for(unsigned int i = 0; i < triangleCount; i++)
62 {
63 *pointBatch++ = indices[index++];
64 }
65
66 // Repeat the last index to allow for SIMD width overrun.
67 index--;
68 for(unsigned int i = 0; i < 3; i++)
69 {
70 *pointBatch++ = indices[index];
71 }
72 }
73 break;
74 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
75 {
76 auto index = 2 * start;
77 for(unsigned int i = 0; i < triangleCount; i++)
78 {
79 batch[i][0] = indices[index + (provokeFirst ? 0 : 1)];
80 batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
81 batch[i][2] = indices[index + 1];
82
83 index += 2;
84 }
85 }
86 break;
87 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
88 {
89 auto index = start;
90 for(unsigned int i = 0; i < triangleCount; i++)
91 {
92 batch[i][0] = indices[index + (provokeFirst ? 0 : 1)];
93 batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
94 batch[i][2] = indices[index + 1];
95
96 index += 1;
97 }
98 }
99 break;
100 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
101 {
102 auto index = 3 * start;
103 for(unsigned int i = 0; i < triangleCount; i++)
104 {
105 batch[i][0] = indices[index + (provokeFirst ? 0 : 2)];
106 batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
107 batch[i][2] = indices[index + (provokeFirst ? 2 : 1)];
108
109 index += 3;
110 }
111 }
112 break;
113 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
114 {
115 auto index = start;
116 for(unsigned int i = 0; i < triangleCount; i++)
117 {
118 batch[i][0] = indices[index + (provokeFirst ? 0 : 2)];
119 batch[i][1] = indices[index + ((start + i) & 1) + (provokeFirst ? 1 : 0)];
120 batch[i][2] = indices[index + (~(start + i) & 1) + (provokeFirst ? 1 : 0)];
121
122 index += 1;
123 }
124 }
125 break;
126 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
127 {
128 auto index = start + 1;
129 for(unsigned int i = 0; i < triangleCount; i++)
130 {
131 batch[i][provokeFirst ? 0 : 2] = indices[index + 0];
132 batch[i][provokeFirst ? 1 : 0] = indices[index + 1];
133 batch[i][provokeFirst ? 2 : 1] = indices[0];
134
135 index += 1;
136 }
137 }
138 break;
139 default:
140 ASSERT(false);
141 return false;
142 }
143
144 return true;
145 }
146
DrawCall()147 DrawCall::DrawCall()
148 {
149 // TODO(b/140991626): Use allocateUninitialized() instead of allocateZeroOrPoison() to improve startup peformance.
150 data = (DrawData *)sw::allocateZeroOrPoison(sizeof(DrawData));
151 }
152
~DrawCall()153 DrawCall::~DrawCall()
154 {
155 sw::freeMemory(data);
156 }
157
Renderer(vk::Device * device)158 Renderer::Renderer(vk::Device *device)
159 : device(device)
160 {
161 vertexProcessor.setRoutineCacheSize(1024);
162 pixelProcessor.setRoutineCacheSize(1024);
163 setupProcessor.setRoutineCacheSize(1024);
164 }
165
~Renderer()166 Renderer::~Renderer()
167 {
168 drawTickets.take().wait();
169 }
170
171 // Renderer objects have to be mem aligned to the alignment provided in the class declaration
operator new(size_t size)172 void *Renderer::operator new(size_t size)
173 {
174 ASSERT(size == sizeof(Renderer)); // This operator can't be called from a derived class
175 return vk::allocateHostMemory(sizeof(Renderer), alignof(Renderer), vk::NULL_ALLOCATION_CALLBACKS, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
176 }
177
operator delete(void * mem)178 void Renderer::operator delete(void *mem)
179 {
180 vk::freeHostMemory(mem, vk::NULL_ALLOCATION_CALLBACKS);
181 }
182
draw(const vk::GraphicsPipeline * pipeline,const vk::DynamicState & dynamicState,unsigned int count,int baseVertex,CountedEvent * events,int instanceID,int viewID,void * indexBuffer,const VkExtent3D & framebufferExtent,vk::Pipeline::PushConstantStorage const & pushConstants,bool update)183 void Renderer::draw(const vk::GraphicsPipeline *pipeline, const vk::DynamicState &dynamicState, unsigned int count, int baseVertex,
184 CountedEvent *events, int instanceID, int viewID, void *indexBuffer, const VkExtent3D &framebufferExtent,
185 vk::Pipeline::PushConstantStorage const &pushConstants, bool update)
186 {
187 if(count == 0) { return; }
188
189 auto id = nextDrawID++;
190 MARL_SCOPED_EVENT("draw %d", id);
191
192 marl::Pool<sw::DrawCall>::Loan draw;
193 {
194 MARL_SCOPED_EVENT("drawCallPool.borrow()");
195 draw = drawCallPool.borrow();
196 }
197 draw->id = id;
198
199 const vk::GraphicsState &pipelineState = pipeline->getState(dynamicState);
200 pixelProcessor.setBlendConstant(pipelineState.getBlendConstants());
201
202 const vk::Inputs &inputs = pipeline->getInputs();
203
204 if(update)
205 {
206 MARL_SCOPED_EVENT("update");
207
208 const sw::SpirvShader *fragmentShader = pipeline->getShader(VK_SHADER_STAGE_FRAGMENT_BIT).get();
209 const sw::SpirvShader *vertexShader = pipeline->getShader(VK_SHADER_STAGE_VERTEX_BIT).get();
210
211 const vk::Attachments attachments = pipeline->getAttachments();
212
213 vertexState = vertexProcessor.update(pipelineState, vertexShader, inputs);
214 setupState = setupProcessor.update(pipelineState, fragmentShader, vertexShader, attachments);
215 pixelState = pixelProcessor.update(pipelineState, fragmentShader, vertexShader, attachments, hasOcclusionQuery());
216
217 vertexRoutine = vertexProcessor.routine(vertexState, pipelineState.getPipelineLayout(), vertexShader, inputs.getDescriptorSets());
218 setupRoutine = setupProcessor.routine(setupState);
219 pixelRoutine = pixelProcessor.routine(pixelState, pipelineState.getPipelineLayout(), fragmentShader, inputs.getDescriptorSets());
220 }
221
222 draw->containsImageWrite = pipeline->containsImageWrite();
223
224 DrawCall::SetupFunction setupPrimitives = nullptr;
225 int ms = pipelineState.getSampleCount();
226 unsigned int numPrimitivesPerBatch = MaxBatchSize / ms;
227
228 if(pipelineState.isDrawTriangle(false))
229 {
230 switch(pipelineState.getPolygonMode())
231 {
232 case VK_POLYGON_MODE_FILL:
233 setupPrimitives = &DrawCall::setupSolidTriangles;
234 break;
235 case VK_POLYGON_MODE_LINE:
236 setupPrimitives = &DrawCall::setupWireframeTriangles;
237 numPrimitivesPerBatch /= 3;
238 break;
239 case VK_POLYGON_MODE_POINT:
240 setupPrimitives = &DrawCall::setupPointTriangles;
241 numPrimitivesPerBatch /= 3;
242 break;
243 default:
244 UNSUPPORTED("polygon mode: %d", int(pipelineState.getPolygonMode()));
245 return;
246 }
247 }
248 else if(pipelineState.isDrawLine(false))
249 {
250 setupPrimitives = &DrawCall::setupLines;
251 }
252 else // Point primitive topology
253 {
254 setupPrimitives = &DrawCall::setupPoints;
255 }
256
257 DrawData *data = draw->data;
258 draw->occlusionQuery = occlusionQuery;
259 draw->batchDataPool = &batchDataPool;
260 draw->numPrimitives = count;
261 draw->numPrimitivesPerBatch = numPrimitivesPerBatch;
262 draw->numBatches = (count + draw->numPrimitivesPerBatch - 1) / draw->numPrimitivesPerBatch;
263 draw->topology = pipelineState.getTopology();
264 draw->provokingVertexMode = pipelineState.getProvokingVertexMode();
265 draw->indexType = pipeline->getIndexBuffer().getIndexType();
266 draw->lineRasterizationMode = pipelineState.getLineRasterizationMode();
267 draw->descriptorSetObjects = inputs.getDescriptorSetObjects();
268 draw->pipelineLayout = pipelineState.getPipelineLayout();
269 draw->depthClipEnable = pipelineState.getDepthClipEnable();
270
271 draw->vertexRoutine = vertexRoutine;
272 draw->setupRoutine = setupRoutine;
273 draw->pixelRoutine = pixelRoutine;
274 draw->setupPrimitives = setupPrimitives;
275 draw->setupState = setupState;
276
277 data->descriptorSets = inputs.getDescriptorSets();
278 data->descriptorDynamicOffsets = inputs.getDescriptorDynamicOffsets();
279
280 for(int i = 0; i < MAX_INTERFACE_COMPONENTS / 4; i++)
281 {
282 const sw::Stream &stream = inputs.getStream(i);
283 data->input[i] = stream.buffer;
284 data->robustnessSize[i] = stream.robustnessSize;
285 data->stride[i] = stream.vertexStride;
286 }
287
288 data->indices = indexBuffer;
289 data->viewID = viewID;
290 data->instanceID = instanceID;
291 data->baseVertex = baseVertex;
292
293 if(pixelState.stencilActive)
294 {
295 data->stencil[0].set(pipelineState.getFrontStencil().reference, pipelineState.getFrontStencil().compareMask, pipelineState.getFrontStencil().writeMask);
296 data->stencil[1].set(pipelineState.getBackStencil().reference, pipelineState.getBackStencil().compareMask, pipelineState.getBackStencil().writeMask);
297 }
298
299 data->lineWidth = pipelineState.getLineWidth();
300
301 data->factor = pixelProcessor.factor;
302
303 if(pixelState.alphaToCoverage)
304 {
305 if(ms == 4)
306 {
307 data->a2c0 = float4(0.2f);
308 data->a2c1 = float4(0.4f);
309 data->a2c2 = float4(0.6f);
310 data->a2c3 = float4(0.8f);
311 }
312 else if(ms == 2)
313 {
314 data->a2c0 = float4(0.25f);
315 data->a2c1 = float4(0.75f);
316 }
317 else if(ms == 1)
318 {
319 data->a2c0 = float4(0.5f);
320 }
321 else
322 ASSERT(false);
323 }
324
325 if(pixelState.occlusionEnabled)
326 {
327 for(int cluster = 0; cluster < MaxClusterCount; cluster++)
328 {
329 data->occlusion[cluster] = 0;
330 }
331 }
332
333 // Viewport
334 {
335 const VkViewport &viewport = pipelineState.getViewport();
336
337 float W = 0.5f * viewport.width;
338 float H = 0.5f * viewport.height;
339 float X0 = viewport.x + W;
340 float Y0 = viewport.y + H;
341 float N = viewport.minDepth;
342 float F = viewport.maxDepth;
343 float Z = F - N;
344 constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR;
345
346 data->WxF = float4(W * subPixF);
347 data->HxF = float4(H * subPixF);
348 data->X0xF = float4(X0 * subPixF - subPixF / 2);
349 data->Y0xF = float4(Y0 * subPixF - subPixF / 2);
350 data->halfPixelX = float4(0.5f / W);
351 data->halfPixelY = float4(0.5f / H);
352 data->viewportHeight = abs(viewport.height);
353 data->depthRange = Z;
354 data->depthNear = N;
355 data->constantDepthBias = pipelineState.getConstantDepthBias();
356 data->slopeDepthBias = pipelineState.getSlopeDepthBias();
357 data->depthBiasClamp = pipelineState.getDepthBiasClamp();
358 data->depthClipEnable = pipelineState.getDepthClipEnable();
359
360 const vk::Attachments attachments = pipeline->getAttachments();
361 if(attachments.depthBuffer)
362 {
363 switch(attachments.depthBuffer->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT))
364 {
365 case VK_FORMAT_D16_UNORM:
366 data->minimumResolvableDepthDifference = 1.0f / 0xFFFF;
367 break;
368 case VK_FORMAT_D32_SFLOAT:
369 // The minimum resolvable depth difference is determined per-polygon for floating-point depth
370 // buffers. DrawData::minimumResolvableDepthDifference is unused.
371 break;
372 default:
373 UNSUPPORTED("Depth format: %d", int(attachments.depthBuffer->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT)));
374 }
375 }
376 }
377
378 // Target
379 {
380 const vk::Attachments attachments = pipeline->getAttachments();
381
382 for(int index = 0; index < MAX_COLOR_BUFFERS; index++)
383 {
384 draw->colorBuffer[index] = attachments.colorBuffer[index];
385
386 if(draw->colorBuffer[index])
387 {
388 data->colorBuffer[index] = (unsigned int *)attachments.colorBuffer[index]->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_COLOR_BIT, 0, data->viewID);
389 data->colorPitchB[index] = attachments.colorBuffer[index]->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
390 data->colorSliceB[index] = attachments.colorBuffer[index]->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
391 }
392 }
393
394 draw->depthBuffer = attachments.depthBuffer;
395 draw->stencilBuffer = attachments.stencilBuffer;
396
397 if(draw->depthBuffer)
398 {
399 data->depthBuffer = (float *)attachments.depthBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, data->viewID);
400 data->depthPitchB = attachments.depthBuffer->rowPitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0);
401 data->depthSliceB = attachments.depthBuffer->slicePitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0);
402 }
403
404 if(draw->stencilBuffer)
405 {
406 data->stencilBuffer = (unsigned char *)attachments.stencilBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, data->viewID);
407 data->stencilPitchB = attachments.stencilBuffer->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
408 data->stencilSliceB = attachments.stencilBuffer->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
409 }
410 }
411
412 // Scissor
413 {
414 const VkRect2D &scissor = pipelineState.getScissor();
415
416 data->scissorX0 = clamp<int>(scissor.offset.x, 0, framebufferExtent.width);
417 data->scissorX1 = clamp<int>(scissor.offset.x + scissor.extent.width, 0, framebufferExtent.width);
418 data->scissorY0 = clamp<int>(scissor.offset.y, 0, framebufferExtent.height);
419 data->scissorY1 = clamp<int>(scissor.offset.y + scissor.extent.height, 0, framebufferExtent.height);
420 }
421
422 // Push constants
423 {
424 data->pushConstants = pushConstants;
425 }
426
427 draw->events = events;
428
429 vk::DescriptorSet::PrepareForSampling(draw->descriptorSetObjects, draw->pipelineLayout, device);
430
431 DrawCall::run(device, draw, &drawTickets, clusterQueues);
432 }
433
setup()434 void DrawCall::setup()
435 {
436 if(occlusionQuery != nullptr)
437 {
438 occlusionQuery->start();
439 }
440
441 if(events)
442 {
443 events->add();
444 }
445 }
446
teardown(vk::Device * device)447 void DrawCall::teardown(vk::Device *device)
448 {
449 if(events)
450 {
451 events->done();
452 events = nullptr;
453 }
454
455 if(occlusionQuery != nullptr)
456 {
457 for(int cluster = 0; cluster < MaxClusterCount; cluster++)
458 {
459 occlusionQuery->add(data->occlusion[cluster]);
460 }
461 occlusionQuery->finish();
462 }
463
464 vertexRoutine = {};
465 setupRoutine = {};
466 pixelRoutine = {};
467
468 for(auto *target : colorBuffer)
469 {
470 if(target)
471 {
472 target->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS);
473 }
474 }
475
476 if(containsImageWrite)
477 {
478 vk::DescriptorSet::ContentsChanged(descriptorSetObjects, pipelineLayout, device);
479 }
480 }
481
run(vk::Device * device,const marl::Loan<DrawCall> & draw,marl::Ticket::Queue * tickets,marl::Ticket::Queue clusterQueues[MaxClusterCount])482 void DrawCall::run(vk::Device *device, const marl::Loan<DrawCall> &draw, marl::Ticket::Queue *tickets, marl::Ticket::Queue clusterQueues[MaxClusterCount])
483 {
484 draw->setup();
485
486 auto const numPrimitives = draw->numPrimitives;
487 auto const numPrimitivesPerBatch = draw->numPrimitivesPerBatch;
488 auto const numBatches = draw->numBatches;
489
490 auto ticket = tickets->take();
491 auto finally = marl::make_shared_finally([device, draw, ticket] {
492 MARL_SCOPED_EVENT("FINISH draw %d", draw->id);
493 draw->teardown(device);
494 ticket.done();
495 });
496
497 for(unsigned int batchId = 0; batchId < numBatches; batchId++)
498 {
499 auto batch = draw->batchDataPool->borrow();
500 batch->id = batchId;
501 batch->firstPrimitive = batch->id * numPrimitivesPerBatch;
502 batch->numPrimitives = std::min(batch->firstPrimitive + numPrimitivesPerBatch, numPrimitives) - batch->firstPrimitive;
503
504 for(int cluster = 0; cluster < MaxClusterCount; cluster++)
505 {
506 batch->clusterTickets[cluster] = std::move(clusterQueues[cluster].take());
507 }
508
509 marl::schedule([device, draw, batch, finally] {
510 processVertices(device, draw.get(), batch.get());
511
512 if(!draw->setupState.rasterizerDiscard)
513 {
514 processPrimitives(device, draw.get(), batch.get());
515
516 if(batch->numVisible > 0)
517 {
518 processPixels(device, draw, batch, finally);
519 return;
520 }
521 }
522
523 for(int cluster = 0; cluster < MaxClusterCount; cluster++)
524 {
525 batch->clusterTickets[cluster].done();
526 }
527 });
528 }
529 }
530
processVertices(vk::Device * device,DrawCall * draw,BatchData * batch)531 void DrawCall::processVertices(vk::Device *device, DrawCall *draw, BatchData *batch)
532 {
533 MARL_SCOPED_EVENT("VERTEX draw %d, batch %d", draw->id, batch->id);
534
535 unsigned int triangleIndices[MaxBatchSize + 1][3]; // One extra for SIMD width overrun. TODO: Adjust to dynamic batch size.
536 {
537 MARL_SCOPED_EVENT("processPrimitiveVertices");
538 processPrimitiveVertices(
539 triangleIndices,
540 draw->data->indices,
541 draw->indexType,
542 batch->firstPrimitive,
543 batch->numPrimitives,
544 draw->topology,
545 draw->provokingVertexMode);
546 }
547
548 auto &vertexTask = batch->vertexTask;
549 vertexTask.primitiveStart = batch->firstPrimitive;
550 // We're only using batch compaction for points, not lines
551 vertexTask.vertexCount = batch->numPrimitives * ((draw->topology == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) ? 1 : 3);
552 if(vertexTask.vertexCache.drawCall != draw->id)
553 {
554 vertexTask.vertexCache.clear();
555 vertexTask.vertexCache.drawCall = draw->id;
556 }
557
558 draw->vertexRoutine(device, &batch->triangles.front().v0, &triangleIndices[0][0], &vertexTask, draw->data);
559 }
560
processPrimitives(vk::Device * device,DrawCall * draw,BatchData * batch)561 void DrawCall::processPrimitives(vk::Device *device, DrawCall *draw, BatchData *batch)
562 {
563 MARL_SCOPED_EVENT("PRIMITIVES draw %d batch %d", draw->id, batch->id);
564 auto triangles = &batch->triangles[0];
565 auto primitives = &batch->primitives[0];
566 batch->numVisible = draw->setupPrimitives(device, triangles, primitives, draw, batch->numPrimitives);
567 }
568
processPixels(vk::Device * device,const marl::Loan<DrawCall> & draw,const marl::Loan<BatchData> & batch,const std::shared_ptr<marl::Finally> & finally)569 void DrawCall::processPixels(vk::Device *device, const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally)
570 {
571 struct Data
572 {
573 Data(const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally)
574 : draw(draw)
575 , batch(batch)
576 , finally(finally)
577 {}
578 marl::Loan<DrawCall> draw;
579 marl::Loan<BatchData> batch;
580 std::shared_ptr<marl::Finally> finally;
581 };
582 auto data = std::make_shared<Data>(draw, batch, finally);
583 for(int cluster = 0; cluster < MaxClusterCount; cluster++)
584 {
585 batch->clusterTickets[cluster].onCall([device, data, cluster] {
586 auto &draw = data->draw;
587 auto &batch = data->batch;
588 MARL_SCOPED_EVENT("PIXEL draw %d, batch %d, cluster %d", draw->id, batch->id, cluster);
589 draw->pixelRoutine(device, &batch->primitives.front(), batch->numVisible, cluster, MaxClusterCount, draw->data);
590 batch->clusterTickets[cluster].done();
591 });
592 }
593 }
594
synchronize()595 void Renderer::synchronize()
596 {
597 MARL_SCOPED_EVENT("synchronize");
598 auto ticket = drawTickets.take();
599 ticket.wait();
600 device->updateSamplingRoutineSnapshotCache();
601 ticket.done();
602 }
603
processPrimitiveVertices(unsigned int triangleIndicesOut[MaxBatchSize+1][3],const void * primitiveIndices,VkIndexType indexType,unsigned int start,unsigned int triangleCount,VkPrimitiveTopology topology,VkProvokingVertexModeEXT provokingVertexMode)604 void DrawCall::processPrimitiveVertices(
605 unsigned int triangleIndicesOut[MaxBatchSize + 1][3],
606 const void *primitiveIndices,
607 VkIndexType indexType,
608 unsigned int start,
609 unsigned int triangleCount,
610 VkPrimitiveTopology topology,
611 VkProvokingVertexModeEXT provokingVertexMode)
612 {
613 if(!primitiveIndices)
614 {
615 struct LinearIndex
616 {
617 unsigned int operator[](unsigned int i) { return i; }
618 };
619
620 if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, LinearIndex(), start, triangleCount))
621 {
622 return;
623 }
624 }
625 else
626 {
627 switch(indexType)
628 {
629 case VK_INDEX_TYPE_UINT16:
630 if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint16_t *>(primitiveIndices), start, triangleCount))
631 {
632 return;
633 }
634 break;
635 case VK_INDEX_TYPE_UINT32:
636 if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint32_t *>(primitiveIndices), start, triangleCount))
637 {
638 return;
639 }
640 break;
641 break;
642 default:
643 ASSERT(false);
644 return;
645 }
646 }
647
648 // setBatchIndices() takes care of the point case, since it's different due to the compaction
649 if(topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST)
650 {
651 // Repeat the last index to allow for SIMD width overrun.
652 triangleIndicesOut[triangleCount][0] = triangleIndicesOut[triangleCount - 1][2];
653 triangleIndicesOut[triangleCount][1] = triangleIndicesOut[triangleCount - 1][2];
654 triangleIndicesOut[triangleCount][2] = triangleIndicesOut[triangleCount - 1][2];
655 }
656 }
657
setupSolidTriangles(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)658 int DrawCall::setupSolidTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
659 {
660 auto &state = drawCall->setupState;
661
662 int ms = state.multiSampleCount;
663 const DrawData *data = drawCall->data;
664 int visible = 0;
665
666 for(int i = 0; i < count; i++, triangles++)
667 {
668 Vertex &v0 = triangles->v0;
669 Vertex &v1 = triangles->v1;
670 Vertex &v2 = triangles->v2;
671
672 Polygon polygon(&v0.position, &v1.position, &v2.position);
673
674 if((v0.cullMask | v1.cullMask | v2.cullMask) == 0)
675 {
676 continue;
677 }
678
679 if((v0.clipFlags & v1.clipFlags & v2.clipFlags) != Clipper::CLIP_FINITE)
680 {
681 continue;
682 }
683
684 int clipFlagsOr = v0.clipFlags | v1.clipFlags | v2.clipFlags;
685 if(clipFlagsOr != Clipper::CLIP_FINITE)
686 {
687 if(!Clipper::Clip(polygon, clipFlagsOr, *drawCall))
688 {
689 continue;
690 }
691 }
692
693 if(drawCall->setupRoutine(device, primitives, triangles, &polygon, data))
694 {
695 primitives += ms;
696 visible++;
697 }
698 }
699
700 return visible;
701 }
702
setupWireframeTriangles(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)703 int DrawCall::setupWireframeTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
704 {
705 auto &state = drawCall->setupState;
706
707 int ms = state.multiSampleCount;
708 int visible = 0;
709
710 for(int i = 0; i < count; i++)
711 {
712 const Vertex &v0 = triangles[i].v0;
713 const Vertex &v1 = triangles[i].v1;
714 const Vertex &v2 = triangles[i].v2;
715
716 float A = ((float)v0.projected.y - (float)v2.projected.y) * (float)v1.projected.x +
717 ((float)v2.projected.y - (float)v1.projected.y) * (float)v0.projected.x +
718 ((float)v1.projected.y - (float)v0.projected.y) * (float)v2.projected.x; // Area
719
720 int w0w1w2 = bit_cast<int>(v0.w) ^
721 bit_cast<int>(v1.w) ^
722 bit_cast<int>(v2.w);
723
724 A = w0w1w2 < 0 ? -A : A;
725
726 bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (A >= 0.0f) : (A <= 0.0f);
727
728 if(state.cullMode & VK_CULL_MODE_FRONT_BIT)
729 {
730 if(frontFacing) continue;
731 }
732 if(state.cullMode & VK_CULL_MODE_BACK_BIT)
733 {
734 if(!frontFacing) continue;
735 }
736
737 Triangle lines[3];
738 lines[0].v0 = v0;
739 lines[0].v1 = v1;
740 lines[1].v0 = v1;
741 lines[1].v1 = v2;
742 lines[2].v0 = v2;
743 lines[2].v1 = v0;
744
745 for(int i = 0; i < 3; i++)
746 {
747 if(setupLine(device, *primitives, lines[i], *drawCall))
748 {
749 primitives += ms;
750 visible++;
751 }
752 }
753 }
754
755 return visible;
756 }
757
setupPointTriangles(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)758 int DrawCall::setupPointTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
759 {
760 auto &state = drawCall->setupState;
761
762 int ms = state.multiSampleCount;
763 int visible = 0;
764
765 for(int i = 0; i < count; i++)
766 {
767 const Vertex &v0 = triangles[i].v0;
768 const Vertex &v1 = triangles[i].v1;
769 const Vertex &v2 = triangles[i].v2;
770
771 float d = (v0.y * v1.x - v0.x * v1.y) * v2.w +
772 (v0.x * v2.y - v0.y * v2.x) * v1.w +
773 (v2.x * v1.y - v1.x * v2.y) * v0.w;
774
775 bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (d > 0) : (d < 0);
776 if(state.cullMode & VK_CULL_MODE_FRONT_BIT)
777 {
778 if(frontFacing) continue;
779 }
780 if(state.cullMode & VK_CULL_MODE_BACK_BIT)
781 {
782 if(!frontFacing) continue;
783 }
784
785 Triangle points[3];
786 points[0].v0 = v0;
787 points[1].v0 = v1;
788 points[2].v0 = v2;
789
790 for(int i = 0; i < 3; i++)
791 {
792 if(setupPoint(device, *primitives, points[i], *drawCall))
793 {
794 primitives += ms;
795 visible++;
796 }
797 }
798 }
799
800 return visible;
801 }
802
setupLines(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)803 int DrawCall::setupLines(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
804 {
805 auto &state = drawCall->setupState;
806
807 int visible = 0;
808 int ms = state.multiSampleCount;
809
810 for(int i = 0; i < count; i++)
811 {
812 if(setupLine(device, *primitives, *triangles, *drawCall))
813 {
814 primitives += ms;
815 visible++;
816 }
817
818 triangles++;
819 }
820
821 return visible;
822 }
823
setupPoints(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)824 int DrawCall::setupPoints(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
825 {
826 auto &state = drawCall->setupState;
827
828 int visible = 0;
829 int ms = state.multiSampleCount;
830
831 for(int i = 0; i < count; i++)
832 {
833 if(setupPoint(device, *primitives, *triangles, *drawCall))
834 {
835 primitives += ms;
836 visible++;
837 }
838
839 triangles++;
840 }
841
842 return visible;
843 }
844
setupLine(vk::Device * device,Primitive & primitive,Triangle & triangle,const DrawCall & draw)845 bool DrawCall::setupLine(vk::Device *device, Primitive &primitive, Triangle &triangle, const DrawCall &draw)
846 {
847 const DrawData &data = *draw.data;
848
849 float lineWidth = data.lineWidth;
850
851 Vertex &v0 = triangle.v0;
852 Vertex &v1 = triangle.v1;
853
854 if((v0.cullMask | v1.cullMask) == 0)
855 {
856 return false;
857 }
858
859 const float4 &P0 = v0.position;
860 const float4 &P1 = v1.position;
861
862 if(P0.w <= 0 && P1.w <= 0)
863 {
864 return false;
865 }
866
867 constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR;
868
869 const float W = data.WxF[0] * (1.0f / subPixF);
870 const float H = data.HxF[0] * (1.0f / subPixF);
871
872 float dx = W * (P1.x / P1.w - P0.x / P0.w);
873 float dy = H * (P1.y / P1.w - P0.y / P0.w);
874
875 if(dx == 0 && dy == 0)
876 {
877 return false;
878 }
879
880 if(draw.lineRasterizationMode != VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT)
881 {
882 // Rectangle centered on the line segment
883
884 float4 P[4];
885 int C[4];
886
887 P[0] = P0;
888 P[1] = P1;
889 P[2] = P1;
890 P[3] = P0;
891
892 float scale = lineWidth * 0.5f / sqrt(dx * dx + dy * dy);
893
894 dx *= scale;
895 dy *= scale;
896
897 float dx0h = dx * P0.w / H;
898 float dy0w = dy * P0.w / W;
899
900 float dx1h = dx * P1.w / H;
901 float dy1w = dy * P1.w / W;
902
903 P[0].x += -dy0w;
904 P[0].y += +dx0h;
905 C[0] = Clipper::ComputeClipFlags(P[0], draw.depthClipEnable);
906
907 P[1].x += -dy1w;
908 P[1].y += +dx1h;
909 C[1] = Clipper::ComputeClipFlags(P[1], draw.depthClipEnable);
910
911 P[2].x += +dy1w;
912 P[2].y += -dx1h;
913 C[2] = Clipper::ComputeClipFlags(P[2], draw.depthClipEnable);
914
915 P[3].x += +dy0w;
916 P[3].y += -dx0h;
917 C[3] = Clipper::ComputeClipFlags(P[3], draw.depthClipEnable);
918
919 if((C[0] & C[1] & C[2] & C[3]) == Clipper::CLIP_FINITE)
920 {
921 Polygon polygon(P, 4);
922
923 int clipFlagsOr = C[0] | C[1] | C[2] | C[3];
924
925 if(clipFlagsOr != Clipper::CLIP_FINITE)
926 {
927 if(!Clipper::Clip(polygon, clipFlagsOr, draw))
928 {
929 return false;
930 }
931 }
932
933 return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
934 }
935 }
936 else if(false) // TODO(b/80135519): Deprecate
937 {
938 // Connecting diamonds polygon
939 // This shape satisfies the diamond test convention, except for the exit rule part.
940 // Line segments with overlapping endpoints have duplicate fragments.
941 // The ideal algorithm requires half-open line rasterization (b/80135519).
942
943 float4 P[8];
944 int C[8];
945
946 P[0] = P0;
947 P[1] = P0;
948 P[2] = P0;
949 P[3] = P0;
950 P[4] = P1;
951 P[5] = P1;
952 P[6] = P1;
953 P[7] = P1;
954
955 float dx0 = lineWidth * 0.5f * P0.w / W;
956 float dy0 = lineWidth * 0.5f * P0.w / H;
957
958 float dx1 = lineWidth * 0.5f * P1.w / W;
959 float dy1 = lineWidth * 0.5f * P1.w / H;
960
961 P[0].x += -dx0;
962 C[0] = Clipper::ComputeClipFlags(P[0], draw.depthClipEnable);
963
964 P[1].y += +dy0;
965 C[1] = Clipper::ComputeClipFlags(P[1], draw.depthClipEnable);
966
967 P[2].x += +dx0;
968 C[2] = Clipper::ComputeClipFlags(P[2], draw.depthClipEnable);
969
970 P[3].y += -dy0;
971 C[3] = Clipper::ComputeClipFlags(P[3], draw.depthClipEnable);
972
973 P[4].x += -dx1;
974 C[4] = Clipper::ComputeClipFlags(P[4], draw.depthClipEnable);
975
976 P[5].y += +dy1;
977 C[5] = Clipper::ComputeClipFlags(P[5], draw.depthClipEnable);
978
979 P[6].x += +dx1;
980 C[6] = Clipper::ComputeClipFlags(P[6], draw.depthClipEnable);
981
982 P[7].y += -dy1;
983 C[7] = Clipper::ComputeClipFlags(P[7], draw.depthClipEnable);
984
985 if((C[0] & C[1] & C[2] & C[3] & C[4] & C[5] & C[6] & C[7]) == Clipper::CLIP_FINITE)
986 {
987 float4 L[6];
988
989 if(dx > -dy)
990 {
991 if(dx > dy) // Right
992 {
993 L[0] = P[0];
994 L[1] = P[1];
995 L[2] = P[5];
996 L[3] = P[6];
997 L[4] = P[7];
998 L[5] = P[3];
999 }
1000 else // Down
1001 {
1002 L[0] = P[0];
1003 L[1] = P[4];
1004 L[2] = P[5];
1005 L[3] = P[6];
1006 L[4] = P[2];
1007 L[5] = P[3];
1008 }
1009 }
1010 else
1011 {
1012 if(dx > dy) // Up
1013 {
1014 L[0] = P[0];
1015 L[1] = P[1];
1016 L[2] = P[2];
1017 L[3] = P[6];
1018 L[4] = P[7];
1019 L[5] = P[4];
1020 }
1021 else // Left
1022 {
1023 L[0] = P[1];
1024 L[1] = P[2];
1025 L[2] = P[3];
1026 L[3] = P[7];
1027 L[4] = P[4];
1028 L[5] = P[5];
1029 }
1030 }
1031
1032 Polygon polygon(L, 6);
1033
1034 int clipFlagsOr = C[0] | C[1] | C[2] | C[3] | C[4] | C[5] | C[6] | C[7];
1035
1036 if(clipFlagsOr != Clipper::CLIP_FINITE)
1037 {
1038 if(!Clipper::Clip(polygon, clipFlagsOr, draw))
1039 {
1040 return false;
1041 }
1042 }
1043
1044 return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
1045 }
1046 }
1047 else
1048 {
1049 // Parallelogram approximating Bresenham line
1050 // This algorithm does not satisfy the ideal diamond-exit rule, but does avoid the
1051 // duplicate fragment rasterization problem and satisfies all of Vulkan's minimum
1052 // requirements for Bresenham line segment rasterization.
1053
1054 float4 P[8];
1055 P[0] = P0;
1056 P[1] = P0;
1057 P[2] = P0;
1058 P[3] = P0;
1059 P[4] = P1;
1060 P[5] = P1;
1061 P[6] = P1;
1062 P[7] = P1;
1063
1064 float dx0 = lineWidth * 0.5f * P0.w / W;
1065 float dy0 = lineWidth * 0.5f * P0.w / H;
1066
1067 float dx1 = lineWidth * 0.5f * P1.w / W;
1068 float dy1 = lineWidth * 0.5f * P1.w / H;
1069
1070 P[0].x += -dx0;
1071 P[1].y += +dy0;
1072 P[2].x += +dx0;
1073 P[3].y += -dy0;
1074 P[4].x += -dx1;
1075 P[5].y += +dy1;
1076 P[6].x += +dx1;
1077 P[7].y += -dy1;
1078
1079 float4 L[4];
1080
1081 if(dx > -dy)
1082 {
1083 if(dx > dy) // Right
1084 {
1085 L[0] = P[1];
1086 L[1] = P[5];
1087 L[2] = P[7];
1088 L[3] = P[3];
1089 }
1090 else // Down
1091 {
1092 L[0] = P[0];
1093 L[1] = P[4];
1094 L[2] = P[6];
1095 L[3] = P[2];
1096 }
1097 }
1098 else
1099 {
1100 if(dx > dy) // Up
1101 {
1102 L[0] = P[0];
1103 L[1] = P[2];
1104 L[2] = P[6];
1105 L[3] = P[4];
1106 }
1107 else // Left
1108 {
1109 L[0] = P[1];
1110 L[1] = P[3];
1111 L[2] = P[7];
1112 L[3] = P[5];
1113 }
1114 }
1115
1116 int C0 = Clipper::ComputeClipFlags(L[0], draw.depthClipEnable);
1117 int C1 = Clipper::ComputeClipFlags(L[1], draw.depthClipEnable);
1118 int C2 = Clipper::ComputeClipFlags(L[2], draw.depthClipEnable);
1119 int C3 = Clipper::ComputeClipFlags(L[3], draw.depthClipEnable);
1120
1121 if((C0 & C1 & C2 & C3) == Clipper::CLIP_FINITE)
1122 {
1123 Polygon polygon(L, 4);
1124
1125 int clipFlagsOr = C0 | C1 | C2 | C3;
1126
1127 if(clipFlagsOr != Clipper::CLIP_FINITE)
1128 {
1129 if(!Clipper::Clip(polygon, clipFlagsOr, draw))
1130 {
1131 return false;
1132 }
1133 }
1134
1135 return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
1136 }
1137 }
1138
1139 return false;
1140 }
1141
setupPoint(vk::Device * device,Primitive & primitive,Triangle & triangle,const DrawCall & draw)1142 bool DrawCall::setupPoint(vk::Device *device, Primitive &primitive, Triangle &triangle, const DrawCall &draw)
1143 {
1144 const DrawData &data = *draw.data;
1145
1146 Vertex &v = triangle.v0;
1147
1148 if(v.cullMask == 0)
1149 {
1150 return false;
1151 }
1152
1153 float pSize = v.pointSize;
1154
1155 pSize = clamp(pSize, 1.0f, static_cast<float>(vk::MAX_POINT_SIZE));
1156
1157 float4 P[4];
1158 int C[4];
1159
1160 P[0] = v.position;
1161 P[1] = v.position;
1162 P[2] = v.position;
1163 P[3] = v.position;
1164
1165 const float X = pSize * P[0].w * data.halfPixelX[0];
1166 const float Y = pSize * P[0].w * data.halfPixelY[0];
1167
1168 P[0].x -= X;
1169 P[0].y += Y;
1170 C[0] = Clipper::ComputeClipFlags(P[0], draw.depthClipEnable);
1171
1172 P[1].x += X;
1173 P[1].y += Y;
1174 C[1] = Clipper::ComputeClipFlags(P[1], draw.depthClipEnable);
1175
1176 P[2].x += X;
1177 P[2].y -= Y;
1178 C[2] = Clipper::ComputeClipFlags(P[2], draw.depthClipEnable);
1179
1180 P[3].x -= X;
1181 P[3].y -= Y;
1182 C[3] = Clipper::ComputeClipFlags(P[3], draw.depthClipEnable);
1183
1184 Polygon polygon(P, 4);
1185
1186 if((C[0] & C[1] & C[2] & C[3]) == Clipper::CLIP_FINITE)
1187 {
1188 int clipFlagsOr = C[0] | C[1] | C[2] | C[3];
1189
1190 if(clipFlagsOr != Clipper::CLIP_FINITE)
1191 {
1192 if(!Clipper::Clip(polygon, clipFlagsOr, draw))
1193 {
1194 return false;
1195 }
1196 }
1197
1198 primitive.pointSizeInv = 1.0f / pSize;
1199
1200 return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
1201 }
1202
1203 return false;
1204 }
1205
addQuery(vk::Query * query)1206 void Renderer::addQuery(vk::Query *query)
1207 {
1208 ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION);
1209 ASSERT(!occlusionQuery);
1210
1211 occlusionQuery = query;
1212 }
1213
removeQuery(vk::Query * query)1214 void Renderer::removeQuery(vk::Query *query)
1215 {
1216 ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION);
1217 ASSERT(occlusionQuery == query);
1218
1219 occlusionQuery = nullptr;
1220 }
1221
1222 } // namespace sw
1223