• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // This pass injects code in a graphics shader to implement guarantees
16 // satisfying Vulkan's robustBufferAccess rules.  Robust access rules permit
17 // an out-of-bounds access to be redirected to an access of the same type
18 // (load, store, etc.) but within the same root object.
19 //
20 // We assume baseline functionality in Vulkan, i.e. the module uses
21 // logical addressing mode, without VK_KHR_variable_pointers.
22 //
23 //    - Logical addressing mode implies:
24 //      - Each root pointer (a pointer that exists other than by the
25 //        execution of a shader instruction) is the result of an OpVariable.
26 //
27 //      - Instructions that result in pointers are:
28 //          OpVariable
29 //          OpAccessChain
30 //          OpInBoundsAccessChain
31 //          OpFunctionParameter
32 //          OpImageTexelPointer
33 //          OpCopyObject
34 //
35 //      - Instructions that use a pointer are:
36 //          OpLoad
37 //          OpStore
38 //          OpAccessChain
39 //          OpInBoundsAccessChain
40 //          OpFunctionCall
41 //          OpImageTexelPointer
42 //          OpCopyMemory
43 //          OpCopyObject
44 //          all OpAtomic* instructions
45 //
46 // We classify pointer-users into:
47 //  - Accesses:
48 //    - OpLoad
49 //    - OpStore
50 //    - OpAtomic*
51 //    - OpCopyMemory
52 //
53 //  - Address calculations:
54 //    - OpAccessChain
55 //    - OpInBoundsAccessChain
56 //
57 //  - Pass-through:
58 //    - OpFunctionCall
59 //    - OpFunctionParameter
60 //    - OpCopyObject
61 //
62 // The strategy is:
63 //
64 //  - Handle only logical addressing mode. In particular, don't handle a module
65 //    if it uses one of the variable-pointers capabilities.
66 //
67 //  - Don't handle modules using capability RuntimeDescriptorArrayEXT.  So the
68 //    only runtime arrays are those that are the last member in a
69 //    Block-decorated struct.  This allows us to feasibly/easily compute the
70 //    length of the runtime array. See below.
71 //
72 //  - The memory locations accessed by OpLoad, OpStore, OpCopyMemory, and
73 //    OpAtomic* are determined by their pointer parameter or parameters.
74 //    Pointers are always (correctly) typed and so the address and number of
75 //    consecutive locations are fully determined by the pointer.
76 //
77 //  - A pointer value originates as one of few cases:
78 //
79 //    - OpVariable for an interface object or an array of them: image,
80 //      buffer (UBO or SSBO), sampler, sampled-image, push-constant, input
81 //      variable, output variable. The execution environment is responsible for
82 //      allocating the correct amount of storage for these, and for ensuring
83 //      each resource bound to such a variable is big enough to contain the
84 //      SPIR-V pointee type of the variable.
85 //
86 //    - OpVariable for a non-interface object.  These are variables in
87 //      Workgroup, Private, and Function storage classes.  The compiler ensures
88 //      the underlying allocation is big enough to store the entire SPIR-V
89 //      pointee type of the variable.
90 //
91 //    - An OpFunctionParameter. This always maps to a pointer parameter to an
92 //      OpFunctionCall.
93 //
94 //      - In logical addressing mode, these are severely limited:
95 //        "Any pointer operand to an OpFunctionCall must be:
96 //          - a memory object declaration, or
97 //          - a pointer to an element in an array that is a memory object
98 //          declaration, where the element type is OpTypeSampler or OpTypeImage"
99 //
100 //      - This has an important simplifying consequence:
101 //
102 //        - When looking for a pointer to the structure containing a runtime
103 //          array, you begin with a pointer to the runtime array and trace
104 //          backward in the function.  You never have to trace back beyond
105 //          your function call boundary.  So you can't take a partial access
106 //          chain into an SSBO, then pass that pointer into a function.  So
107 //          we don't resort to using fat pointers to compute array length.
108 //          We can trace back to a pointer to the containing structure,
109 //          and use that in an OpArrayLength instruction. (The structure type
110 //          gives us the member index of the runtime array.)
111 //
112 //        - Otherwise, the pointer type fully encodes the range of valid
113 //          addresses. In particular, the type of a pointer to an aggregate
114 //          value fully encodes the range of indices when indexing into
115 //          that aggregate.
116 //
117 //    - The pointer is the result of an access chain instruction.  We clamp
118 //      indices contributing to address calculations.  As noted above, the
119 //      valid ranges are either bound by the length of a runtime array, or
120 //      by the type of the base pointer.  The length of a runtime array is
121 //      the result of an OpArrayLength instruction acting on the pointer of
122 //      the containing structure as noted above.
123 //
124 //      - Access chain indices are always treated as signed, so:
125 //        - Clamp the upper bound at the signed integer maximum.
126 //        - Use SClamp for all clamping.
127 //
128 //    - TODO(dneto): OpImageTexelPointer:
129 //      - Clamp coordinate to the image size returned by OpImageQuerySize
130 //      - If multi-sampled, clamp the sample index to the count returned by
131 //        OpImageQuerySamples.
132 //      - If not multi-sampled, set the sample index to 0.
133 //
134 //  - Rely on the external validator to check that pointers are only
135 //    used by the instructions as above.
136 //
137 //  - Handles OpTypeRuntimeArray
138 //    Track pointer back to original resource (pointer to struct), so we can
139 //    query the runtime array size.
140 //
141 
142 #include "graphics_robust_access_pass.h"
143 
144 #include <algorithm>
145 #include <cstring>
146 #include <functional>
147 #include <initializer_list>
148 #include <limits>
149 #include <utility>
150 
151 #include "constants.h"
152 #include "def_use_manager.h"
153 #include "function.h"
154 #include "ir_context.h"
155 #include "module.h"
156 #include "pass.h"
157 #include "source/diagnostic.h"
158 #include "source/util/make_unique.h"
159 #include "spirv-tools/libspirv.h"
160 #include "spirv/unified1/GLSL.std.450.h"
161 #include "spirv/unified1/spirv.h"
162 #include "type_manager.h"
163 #include "types.h"
164 
165 namespace spvtools {
166 namespace opt {
167 
168 using opt::Instruction;
169 using opt::Operand;
170 using spvtools::MakeUnique;
171 
GraphicsRobustAccessPass()172 GraphicsRobustAccessPass::GraphicsRobustAccessPass() : module_status_() {}
173 
Process()174 Pass::Status GraphicsRobustAccessPass::Process() {
175   module_status_ = PerModuleState();
176 
177   ProcessCurrentModule();
178 
179   auto result = module_status_.failed
180                     ? Status::Failure
181                     : (module_status_.modified ? Status::SuccessWithChange
182                                                : Status::SuccessWithoutChange);
183 
184   return result;
185 }
186 
Fail()187 spvtools::DiagnosticStream GraphicsRobustAccessPass::Fail() {
188   module_status_.failed = true;
189   // We don't really have a position, and we'll ignore the result.
190   return std::move(
191       spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
192       << name() << ": ");
193 }
194 
IsCompatibleModule()195 spv_result_t GraphicsRobustAccessPass::IsCompatibleModule() {
196   auto* feature_mgr = context()->get_feature_mgr();
197   if (!feature_mgr->HasCapability(SpvCapabilityShader))
198     return Fail() << "Can only process Shader modules";
199   if (feature_mgr->HasCapability(SpvCapabilityVariablePointers))
200     return Fail() << "Can't process modules with VariablePointers capability";
201   if (feature_mgr->HasCapability(SpvCapabilityVariablePointersStorageBuffer))
202     return Fail() << "Can't process modules with VariablePointersStorageBuffer "
203                      "capability";
204   if (feature_mgr->HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) {
205     // These have a RuntimeArray outside of Block-decorated struct.  There
206     // is no way to compute the array length from within SPIR-V.
207     return Fail() << "Can't process modules with RuntimeDescriptorArrayEXT "
208                      "capability";
209   }
210 
211   {
212     auto* inst = context()->module()->GetMemoryModel();
213     const auto addressing_model = inst->GetSingleWordOperand(0);
214     if (addressing_model != SpvAddressingModelLogical)
215       return Fail() << "Addressing model must be Logical.  Found "
216                     << inst->PrettyPrint();
217   }
218   return SPV_SUCCESS;
219 }
220 
ProcessCurrentModule()221 spv_result_t GraphicsRobustAccessPass::ProcessCurrentModule() {
222   auto err = IsCompatibleModule();
223   if (err != SPV_SUCCESS) return err;
224 
225   ProcessFunction fn = [this](opt::Function* f) { return ProcessAFunction(f); };
226   module_status_.modified |= context()->ProcessReachableCallTree(fn);
227 
228   // Need something here.  It's the price we pay for easier failure paths.
229   return SPV_SUCCESS;
230 }
231 
ProcessAFunction(opt::Function * function)232 bool GraphicsRobustAccessPass::ProcessAFunction(opt::Function* function) {
233   // Ensure that all pointers computed inside a function are within bounds.
234   // Find the access chains in this block before trying to modify them.
235   std::vector<Instruction*> access_chains;
236   std::vector<Instruction*> image_texel_pointers;
237   for (auto& block : *function) {
238     for (auto& inst : block) {
239       switch (inst.opcode()) {
240         case SpvOpAccessChain:
241         case SpvOpInBoundsAccessChain:
242           access_chains.push_back(&inst);
243           break;
244         case SpvOpImageTexelPointer:
245           image_texel_pointers.push_back(&inst);
246           break;
247         default:
248           break;
249       }
250     }
251   }
252   for (auto* inst : access_chains) {
253     ClampIndicesForAccessChain(inst);
254     if (module_status_.failed) return module_status_.modified;
255   }
256 
257   for (auto* inst : image_texel_pointers) {
258     if (SPV_SUCCESS != ClampCoordinateForImageTexelPointer(inst)) break;
259   }
260   return module_status_.modified;
261 }
262 
ClampIndicesForAccessChain(Instruction * access_chain)263 void GraphicsRobustAccessPass::ClampIndicesForAccessChain(
264     Instruction* access_chain) {
265   Instruction& inst = *access_chain;
266 
267   auto* constant_mgr = context()->get_constant_mgr();
268   auto* def_use_mgr = context()->get_def_use_mgr();
269   auto* type_mgr = context()->get_type_mgr();
270   const bool have_int64_cap =
271       context()->get_feature_mgr()->HasCapability(SpvCapabilityInt64);
272 
273   // Replaces one of the OpAccessChain index operands with a new value.
274   // Updates def-use analysis.
275   auto replace_index = [this, &inst, def_use_mgr](uint32_t operand_index,
276                                                   Instruction* new_value) {
277     inst.SetOperand(operand_index, {new_value->result_id()});
278     def_use_mgr->AnalyzeInstUse(&inst);
279     module_status_.modified = true;
280     return SPV_SUCCESS;
281   };
282 
283   // Replaces one of the OpAccesssChain index operands with a clamped value.
284   // Replace the operand at |operand_index| with the value computed from
285   // signed_clamp(%old_value, %min_value, %max_value).  It also analyzes
286   // the new instruction and records that them module is modified.
287   // Assumes %min_value is signed-less-or-equal than %max_value. (All callees
288   // use 0 for %min_value).
289   auto clamp_index = [&inst, type_mgr, this, &replace_index](
290                          uint32_t operand_index, Instruction* old_value,
291                          Instruction* min_value, Instruction* max_value) {
292     auto* clamp_inst =
293         MakeSClampInst(*type_mgr, old_value, min_value, max_value, &inst);
294     return replace_index(operand_index, clamp_inst);
295   };
296 
297   // Ensures the specified index of access chain |inst| has a value that is
298   // at most |count| - 1.  If the index is already a constant value less than
299   // |count| then no change is made.
300   auto clamp_to_literal_count =
301       [&inst, this, &constant_mgr, &type_mgr, have_int64_cap, &replace_index,
302        &clamp_index](uint32_t operand_index, uint64_t count) -> spv_result_t {
303     Instruction* index_inst =
304         this->GetDef(inst.GetSingleWordOperand(operand_index));
305     const auto* index_type =
306         type_mgr->GetType(index_inst->type_id())->AsInteger();
307     assert(index_type);
308     const auto index_width = index_type->width();
309 
310     if (count <= 1) {
311       // Replace the index with 0.
312       return replace_index(operand_index, GetValueForType(0, index_type));
313     }
314 
315     uint64_t maxval = count - 1;
316 
317     // Compute the bit width of a viable type to hold |maxval|.
318     // Look for a bit width, up to 64 bits wide, to fit maxval.
319     uint32_t maxval_width = index_width;
320     while ((maxval_width < 64) && (0 != (maxval >> maxval_width))) {
321       maxval_width *= 2;
322     }
323     // Determine the type for |maxval|.
324     uint32_t next_id = context()->module()->IdBound();
325     analysis::Integer signed_type_for_query(maxval_width, true);
326     auto* maxval_type =
327         type_mgr->GetRegisteredType(&signed_type_for_query)->AsInteger();
328     if (next_id != context()->module()->IdBound()) {
329       module_status_.modified = true;
330     }
331     // Access chain indices are treated as signed, so limit the maximum value
332     // of the index so it will always be positive for a signed clamp operation.
333     maxval = std::min(maxval, ((uint64_t(1) << (maxval_width - 1)) - 1));
334 
335     if (index_width > 64) {
336       return this->Fail() << "Can't handle indices wider than 64 bits, found "
337                              "constant index with "
338                           << index_width << " bits as index number "
339                           << operand_index << " of access chain "
340                           << inst.PrettyPrint();
341     }
342 
343     // Split into two cases: the current index is a constant, or not.
344 
345     // If the index is a constant then |index_constant| will not be a null
346     // pointer.  (If index is an |OpConstantNull| then it |index_constant| will
347     // not be a null pointer.)  Since access chain indices must be scalar
348     // integers, this can't be a spec constant.
349     if (auto* index_constant = constant_mgr->GetConstantFromInst(index_inst)) {
350       auto* int_index_constant = index_constant->AsIntConstant();
351       int64_t value = 0;
352       // OpAccessChain indices are treated as signed.  So get the signed
353       // constant value here.
354       if (index_width <= 32) {
355         value = int64_t(int_index_constant->GetS32BitValue());
356       } else if (index_width <= 64) {
357         value = int_index_constant->GetS64BitValue();
358       }
359       if (value < 0) {
360         return replace_index(operand_index, GetValueForType(0, index_type));
361       } else if (uint64_t(value) <= maxval) {
362         // Nothing to do.
363         return SPV_SUCCESS;
364       } else {
365         // Replace with maxval.
366         assert(count > 0);  // Already took care of this case above.
367         return replace_index(operand_index,
368                              GetValueForType(maxval, maxval_type));
369       }
370     } else {
371       // Generate a clamp instruction.
372       assert(maxval >= 1);
373       assert(index_width <= 64);  // Otherwise, already returned above.
374       if (index_width >= 64 && !have_int64_cap) {
375         // An inconsistent module.
376         return Fail() << "Access chain index is wider than 64 bits, but Int64 "
377                          "is not declared: "
378                       << index_inst->PrettyPrint();
379       }
380       // Widen the index value if necessary
381       if (maxval_width > index_width) {
382         // Find the wider type.  We only need this case if a constant array
383         // bound is too big.
384 
385         // From how we calculated maxval_width, widening won't require adding
386         // the Int64 capability.
387         assert(have_int64_cap || maxval_width <= 32);
388         if (!have_int64_cap && maxval_width >= 64) {
389           // Be defensive, but this shouldn't happen.
390           return this->Fail()
391                  << "Clamping index would require adding Int64 capability. "
392                  << "Can't clamp 32-bit index " << operand_index
393                  << " of access chain " << inst.PrettyPrint();
394         }
395         index_inst = WidenInteger(index_type->IsSigned(), maxval_width,
396                                   index_inst, &inst);
397       }
398 
399       // Finally, clamp the index.
400       return clamp_index(operand_index, index_inst,
401                          GetValueForType(0, maxval_type),
402                          GetValueForType(maxval, maxval_type));
403     }
404     return SPV_SUCCESS;
405   };
406 
407   // Ensures the specified index of access chain |inst| has a value that is at
408   // most the value of |count_inst| minus 1, where |count_inst| is treated as an
409   // unsigned integer. This can log a failure.
410   auto clamp_to_count = [&inst, this, &constant_mgr, &clamp_to_literal_count,
411                          &clamp_index,
412                          &type_mgr](uint32_t operand_index,
413                                     Instruction* count_inst) -> spv_result_t {
414     Instruction* index_inst =
415         this->GetDef(inst.GetSingleWordOperand(operand_index));
416     const auto* index_type =
417         type_mgr->GetType(index_inst->type_id())->AsInteger();
418     const auto* count_type =
419         type_mgr->GetType(count_inst->type_id())->AsInteger();
420     assert(index_type);
421     if (const auto* count_constant =
422             constant_mgr->GetConstantFromInst(count_inst)) {
423       uint64_t value = 0;
424       const auto width = count_constant->type()->AsInteger()->width();
425       if (width <= 32) {
426         value = count_constant->AsIntConstant()->GetU32BitValue();
427       } else if (width <= 64) {
428         value = count_constant->AsIntConstant()->GetU64BitValue();
429       } else {
430         return this->Fail() << "Can't handle indices wider than 64 bits, found "
431                                "constant index with "
432                             << index_type->width() << "bits";
433       }
434       return clamp_to_literal_count(operand_index, value);
435     } else {
436       // Widen them to the same width.
437       const auto index_width = index_type->width();
438       const auto count_width = count_type->width();
439       const auto target_width = std::max(index_width, count_width);
440       // UConvert requires the result type to have 0 signedness.  So enforce
441       // that here.
442       auto* wider_type = index_width < count_width ? count_type : index_type;
443       if (index_type->width() < target_width) {
444         // Access chain indices are treated as signed integers.
445         index_inst = WidenInteger(true, target_width, index_inst, &inst);
446       } else if (count_type->width() < target_width) {
447         // Assume type sizes are treated as unsigned.
448         count_inst = WidenInteger(false, target_width, count_inst, &inst);
449       }
450       // Compute count - 1.
451       // It doesn't matter if 1 is signed or unsigned.
452       auto* one = GetValueForType(1, wider_type);
453       auto* count_minus_1 = InsertInst(
454           &inst, SpvOpISub, type_mgr->GetId(wider_type), TakeNextId(),
455           {{SPV_OPERAND_TYPE_ID, {count_inst->result_id()}},
456            {SPV_OPERAND_TYPE_ID, {one->result_id()}}});
457       auto* zero = GetValueForType(0, wider_type);
458       // Make sure we clamp to an upper bound that is at most the signed max
459       // for the target type.
460       const uint64_t max_signed_value =
461           ((uint64_t(1) << (target_width - 1)) - 1);
462       // Use unsigned-min to ensure that the result is always non-negative.
463       // That ensures we satisfy the invariant for SClamp, where the "min"
464       // argument we give it (zero), is no larger than the third argument.
465       auto* upper_bound =
466           MakeUMinInst(*type_mgr, count_minus_1,
467                        GetValueForType(max_signed_value, wider_type), &inst);
468       // Now clamp the index to this upper bound.
469       return clamp_index(operand_index, index_inst, zero, upper_bound);
470     }
471     return SPV_SUCCESS;
472   };
473 
474   const Instruction* base_inst = GetDef(inst.GetSingleWordInOperand(0));
475   const Instruction* base_type = GetDef(base_inst->type_id());
476   Instruction* pointee_type = GetDef(base_type->GetSingleWordInOperand(1));
477 
478   // Walk the indices from earliest to latest, replacing indices with a
479   // clamped value, and updating the pointee_type.  The order matters for
480   // the case when we have to compute the length of a runtime array.  In
481   // that the algorithm relies on the fact that that the earlier indices
482   // have already been clamped.
483   const uint32_t num_operands = inst.NumOperands();
484   for (uint32_t idx = 3; !module_status_.failed && idx < num_operands; ++idx) {
485     const uint32_t index_id = inst.GetSingleWordOperand(idx);
486     Instruction* index_inst = GetDef(index_id);
487 
488     switch (pointee_type->opcode()) {
489       case SpvOpTypeMatrix:  // Use column count
490       case SpvOpTypeVector:  // Use component count
491       {
492         const uint32_t count = pointee_type->GetSingleWordOperand(2);
493         clamp_to_literal_count(idx, count);
494         pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
495       } break;
496 
497       case SpvOpTypeArray: {
498         // The array length can be a spec constant, so go through the general
499         // case.
500         Instruction* array_len = GetDef(pointee_type->GetSingleWordOperand(2));
501         clamp_to_count(idx, array_len);
502         pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
503       } break;
504 
505       case SpvOpTypeStruct: {
506         // SPIR-V requires the index to be an OpConstant.
507         // We need to know the index literal value so we can compute the next
508         // pointee type.
509         if (index_inst->opcode() != SpvOpConstant ||
510             !constant_mgr->GetConstantFromInst(index_inst)
511                  ->type()
512                  ->AsInteger()) {
513           Fail() << "Member index into struct is not a constant integer: "
514                  << index_inst->PrettyPrint(
515                         SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
516                  << "\nin access chain: "
517                  << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
518           return;
519         }
520         const auto num_members = pointee_type->NumInOperands();
521         const auto* index_constant =
522             constant_mgr->GetConstantFromInst(index_inst);
523         // Get the sign-extended value, since access index is always treated as
524         // signed.
525         const auto index_value = index_constant->GetSignExtendedValue();
526         if (index_value < 0 || index_value >= num_members) {
527           Fail() << "Member index " << index_value
528                  << " is out of bounds for struct type: "
529                  << pointee_type->PrettyPrint(
530                         SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
531                  << "\nin access chain: "
532                  << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
533           return;
534         }
535         pointee_type = GetDef(pointee_type->GetSingleWordInOperand(
536             static_cast<uint32_t>(index_value)));
537         // No need to clamp this index.  We just checked that it's valid.
538       } break;
539 
540       case SpvOpTypeRuntimeArray: {
541         auto* array_len = MakeRuntimeArrayLengthInst(&inst, idx);
542         if (!array_len) {  // We've already signaled an error.
543           return;
544         }
545         clamp_to_count(idx, array_len);
546         if (module_status_.failed) return;
547         pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
548       } break;
549 
550       default:
551         Fail() << " Unhandled pointee type for access chain "
552                << pointee_type->PrettyPrint(
553                       SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
554     }
555   }
556 }
557 
GetGlslInsts()558 uint32_t GraphicsRobustAccessPass::GetGlslInsts() {
559   if (module_status_.glsl_insts_id == 0) {
560     // This string serves double-duty as raw data for a string and for a vector
561     // of 32-bit words
562     const char glsl[] = "GLSL.std.450";
563     // Use an existing import if we can.
564     for (auto& inst : context()->module()->ext_inst_imports()) {
565       if (inst.GetInOperand(0).AsString() == glsl) {
566         module_status_.glsl_insts_id = inst.result_id();
567       }
568     }
569     if (module_status_.glsl_insts_id == 0) {
570       // Make a new import instruction.
571       module_status_.glsl_insts_id = TakeNextId();
572       std::vector<uint32_t> words = spvtools::utils::MakeVector(glsl);
573       auto import_inst = MakeUnique<Instruction>(
574           context(), SpvOpExtInstImport, 0, module_status_.glsl_insts_id,
575           std::initializer_list<Operand>{
576               Operand{SPV_OPERAND_TYPE_LITERAL_STRING, std::move(words)}});
577       Instruction* inst = import_inst.get();
578       context()->module()->AddExtInstImport(std::move(import_inst));
579       module_status_.modified = true;
580       context()->AnalyzeDefUse(inst);
581       // Reanalyze the feature list, since we added an extended instruction
582       // set improt.
583       context()->get_feature_mgr()->Analyze(context()->module());
584     }
585   }
586   return module_status_.glsl_insts_id;
587 }
588 
GetValueForType(uint64_t value,const analysis::Integer * type)589 opt::Instruction* opt::GraphicsRobustAccessPass::GetValueForType(
590     uint64_t value, const analysis::Integer* type) {
591   auto* mgr = context()->get_constant_mgr();
592   assert(type->width() <= 64);
593   std::vector<uint32_t> words;
594   words.push_back(uint32_t(value));
595   if (type->width() > 32) {
596     words.push_back(uint32_t(value >> 32u));
597   }
598   const auto* constant = mgr->GetConstant(type, words);
599   return mgr->GetDefiningInstruction(
600       constant, context()->get_type_mgr()->GetTypeInstruction(type));
601 }
602 
WidenInteger(bool sign_extend,uint32_t bit_width,Instruction * value,Instruction * before_inst)603 opt::Instruction* opt::GraphicsRobustAccessPass::WidenInteger(
604     bool sign_extend, uint32_t bit_width, Instruction* value,
605     Instruction* before_inst) {
606   analysis::Integer unsigned_type_for_query(bit_width, false);
607   auto* type_mgr = context()->get_type_mgr();
608   auto* unsigned_type = type_mgr->GetRegisteredType(&unsigned_type_for_query);
609   auto type_id = context()->get_type_mgr()->GetId(unsigned_type);
610   auto conversion_id = TakeNextId();
611   auto* conversion = InsertInst(
612       before_inst, (sign_extend ? SpvOpSConvert : SpvOpUConvert), type_id,
613       conversion_id, {{SPV_OPERAND_TYPE_ID, {value->result_id()}}});
614   return conversion;
615 }
616 
MakeUMinInst(const analysis::TypeManager & tm,Instruction * x,Instruction * y,Instruction * where)617 Instruction* GraphicsRobustAccessPass::MakeUMinInst(
618     const analysis::TypeManager& tm, Instruction* x, Instruction* y,
619     Instruction* where) {
620   // Get IDs of instructions we'll be referencing. Evaluate them before calling
621   // the function so we force a deterministic ordering in case both of them need
622   // to take a new ID.
623   const uint32_t glsl_insts_id = GetGlslInsts();
624   uint32_t smin_id = TakeNextId();
625   const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
626   const auto ywidth = tm.GetType(y->type_id())->AsInteger()->width();
627   assert(xwidth == ywidth);
628   (void)xwidth;
629   (void)ywidth;
630   auto* smin_inst = InsertInst(
631       where, SpvOpExtInst, x->type_id(), smin_id,
632       {
633           {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
634           {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450UMin}},
635           {SPV_OPERAND_TYPE_ID, {x->result_id()}},
636           {SPV_OPERAND_TYPE_ID, {y->result_id()}},
637       });
638   return smin_inst;
639 }
640 
MakeSClampInst(const analysis::TypeManager & tm,Instruction * x,Instruction * min,Instruction * max,Instruction * where)641 Instruction* GraphicsRobustAccessPass::MakeSClampInst(
642     const analysis::TypeManager& tm, Instruction* x, Instruction* min,
643     Instruction* max, Instruction* where) {
644   // Get IDs of instructions we'll be referencing. Evaluate them before calling
645   // the function so we force a deterministic ordering in case both of them need
646   // to take a new ID.
647   const uint32_t glsl_insts_id = GetGlslInsts();
648   uint32_t clamp_id = TakeNextId();
649   const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
650   const auto minwidth = tm.GetType(min->type_id())->AsInteger()->width();
651   const auto maxwidth = tm.GetType(max->type_id())->AsInteger()->width();
652   assert(xwidth == minwidth);
653   assert(xwidth == maxwidth);
654   (void)xwidth;
655   (void)minwidth;
656   (void)maxwidth;
657   auto* clamp_inst = InsertInst(
658       where, SpvOpExtInst, x->type_id(), clamp_id,
659       {
660           {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
661           {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450SClamp}},
662           {SPV_OPERAND_TYPE_ID, {x->result_id()}},
663           {SPV_OPERAND_TYPE_ID, {min->result_id()}},
664           {SPV_OPERAND_TYPE_ID, {max->result_id()}},
665       });
666   return clamp_inst;
667 }
668 
MakeRuntimeArrayLengthInst(Instruction * access_chain,uint32_t operand_index)669 Instruction* GraphicsRobustAccessPass::MakeRuntimeArrayLengthInst(
670     Instruction* access_chain, uint32_t operand_index) {
671   // The Index parameter to the access chain at |operand_index| is indexing
672   // *into* the runtime-array.  To get the number of elements in the runtime
673   // array we need a pointer to the Block-decorated struct that contains the
674   // runtime array. So conceptually we have to go 2 steps backward in the
675   // access chain.  The two steps backward might forces us to traverse backward
676   // across multiple dominating instructions.
677   auto* type_mgr = context()->get_type_mgr();
678 
679   // How many access chain indices do we have to unwind to find the pointer
680   // to the struct containing the runtime array?
681   uint32_t steps_remaining = 2;
682   // Find or create an instruction computing the pointer to the structure
683   // containing the runtime array.
684   // Walk backward through pointer address calculations until we either get
685   // to exactly the right base pointer, or to an access chain instruction
686   // that we can replicate but truncate to compute the address of the right
687   // struct.
688   Instruction* current_access_chain = access_chain;
689   Instruction* pointer_to_containing_struct = nullptr;
690   while (steps_remaining > 0) {
691     switch (current_access_chain->opcode()) {
692       case SpvOpCopyObject:
693         // Whoops. Walk right through this one.
694         current_access_chain =
695             GetDef(current_access_chain->GetSingleWordInOperand(0));
696         break;
697       case SpvOpAccessChain:
698       case SpvOpInBoundsAccessChain: {
699         const int first_index_operand = 3;
700         // How many indices in this access chain contribute to getting us
701         // to an element in the runtime array?
702         const auto num_contributing_indices =
703             current_access_chain == access_chain
704                 ? operand_index - (first_index_operand - 1)
705                 : current_access_chain->NumInOperands() - 1 /* skip the base */;
706         Instruction* base =
707             GetDef(current_access_chain->GetSingleWordInOperand(0));
708         if (num_contributing_indices == steps_remaining) {
709           // The base pointer points to the structure.
710           pointer_to_containing_struct = base;
711           steps_remaining = 0;
712           break;
713         } else if (num_contributing_indices < steps_remaining) {
714           // Peel off the index and keep going backward.
715           steps_remaining -= num_contributing_indices;
716           current_access_chain = base;
717         } else {
718           // This access chain has more indices than needed.  Generate a new
719           // access chain instruction, but truncating the list of indices.
720           const int base_operand = 2;
721           // We'll use the base pointer and the indices up to but not including
722           // the one indexing into the runtime array.
723           Instruction::OperandList ops;
724           // Use the base pointer
725           ops.push_back(current_access_chain->GetOperand(base_operand));
726           const uint32_t num_indices_to_keep =
727               num_contributing_indices - steps_remaining - 1;
728           for (uint32_t i = 0; i <= num_indices_to_keep; i++) {
729             ops.push_back(
730                 current_access_chain->GetOperand(first_index_operand + i));
731           }
732           // Compute the type of the result of the new access chain.  Start at
733           // the base and walk the indices in a forward direction.
734           auto* constant_mgr = context()->get_constant_mgr();
735           std::vector<uint32_t> indices_for_type;
736           for (uint32_t i = 0; i < ops.size() - 1; i++) {
737             uint32_t index_for_type_calculation = 0;
738             Instruction* index =
739                 GetDef(current_access_chain->GetSingleWordOperand(
740                     first_index_operand + i));
741             if (auto* index_constant =
742                     constant_mgr->GetConstantFromInst(index)) {
743               // We only need 32 bits. For the type calculation, it's sufficient
744               // to take the zero-extended value. It only matters for the struct
745               // case, and struct member indices are unsigned.
746               index_for_type_calculation =
747                   uint32_t(index_constant->GetZeroExtendedValue());
748             } else {
749               // Indexing into a variably-sized thing like an array.  Use 0.
750               index_for_type_calculation = 0;
751             }
752             indices_for_type.push_back(index_for_type_calculation);
753           }
754           auto* base_ptr_type = type_mgr->GetType(base->type_id())->AsPointer();
755           auto* base_pointee_type = base_ptr_type->pointee_type();
756           auto* new_access_chain_result_pointee_type =
757               type_mgr->GetMemberType(base_pointee_type, indices_for_type);
758           const uint32_t new_access_chain_type_id = type_mgr->FindPointerToType(
759               type_mgr->GetId(new_access_chain_result_pointee_type),
760               base_ptr_type->storage_class());
761 
762           // Create the instruction and insert it.
763           const auto new_access_chain_id = TakeNextId();
764           auto* new_access_chain =
765               InsertInst(current_access_chain, current_access_chain->opcode(),
766                          new_access_chain_type_id, new_access_chain_id, ops);
767           pointer_to_containing_struct = new_access_chain;
768           steps_remaining = 0;
769           break;
770         }
771       } break;
772       default:
773         Fail() << "Unhandled access chain in logical addressing mode passes "
774                   "through "
775                << current_access_chain->PrettyPrint(
776                       SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET |
777                       SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
778         return nullptr;
779     }
780   }
781   assert(pointer_to_containing_struct);
782   auto* pointee_type =
783       type_mgr->GetType(pointer_to_containing_struct->type_id())
784           ->AsPointer()
785           ->pointee_type();
786 
787   auto* struct_type = pointee_type->AsStruct();
788   const uint32_t member_index_of_runtime_array =
789       uint32_t(struct_type->element_types().size() - 1);
790   // Create the length-of-array instruction before the original access chain,
791   // but after the generation of the pointer to the struct.
792   const auto array_len_id = TakeNextId();
793   analysis::Integer uint_type_for_query(32, false);
794   auto* uint_type = type_mgr->GetRegisteredType(&uint_type_for_query);
795   auto* array_len = InsertInst(
796       access_chain, SpvOpArrayLength, type_mgr->GetId(uint_type), array_len_id,
797       {{SPV_OPERAND_TYPE_ID, {pointer_to_containing_struct->result_id()}},
798        {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index_of_runtime_array}}});
799   return array_len;
800 }
801 
ClampCoordinateForImageTexelPointer(opt::Instruction * image_texel_pointer)802 spv_result_t GraphicsRobustAccessPass::ClampCoordinateForImageTexelPointer(
803     opt::Instruction* image_texel_pointer) {
804   // TODO(dneto): Write tests for this code.
805   // TODO(dneto): Use signed-clamp
806   (void)(image_texel_pointer);
807   return SPV_SUCCESS;
808 
809   // Do not compile this code until it is ready to be used.
810 #if 0
811   // Example:
812   //   %texel_ptr = OpImageTexelPointer %texel_ptr_type %image_ptr %coord
813   //   %sample
814   //
815   // We want to clamp %coord components between vector-0 and the result
816   // of OpImageQuerySize acting on the underlying image.  So insert:
817   //     %image = OpLoad %image_type %image_ptr
818   //     %query_size = OpImageQuerySize %query_size_type %image
819   //
820   // For a multi-sampled image, %sample is the sample index, and we need
821   // to clamp it between zero and the number of samples in the image.
822   //     %sample_count = OpImageQuerySamples %uint %image
823   //     %max_sample_index = OpISub %uint %sample_count %uint_1
824   // For non-multi-sampled images, the sample index must be constant zero.
825 
826   auto* def_use_mgr = context()->get_def_use_mgr();
827   auto* type_mgr = context()->get_type_mgr();
828   auto* constant_mgr = context()->get_constant_mgr();
829 
830   auto* image_ptr = GetDef(image_texel_pointer->GetSingleWordInOperand(0));
831   auto* image_ptr_type = GetDef(image_ptr->type_id());
832   auto image_type_id = image_ptr_type->GetSingleWordInOperand(1);
833   auto* image_type = GetDef(image_type_id);
834   auto* coord = GetDef(image_texel_pointer->GetSingleWordInOperand(1));
835   auto* samples = GetDef(image_texel_pointer->GetSingleWordInOperand(2));
836 
837   // We will modify the module, at least by adding image query instructions.
838   module_status_.modified = true;
839 
840   // Declare the ImageQuery capability if the module doesn't already have it.
841   auto* feature_mgr = context()->get_feature_mgr();
842   if (!feature_mgr->HasCapability(SpvCapabilityImageQuery)) {
843     auto cap = MakeUnique<Instruction>(
844         context(), SpvOpCapability, 0, 0,
845         std::initializer_list<Operand>{
846             {SPV_OPERAND_TYPE_CAPABILITY, {SpvCapabilityImageQuery}}});
847     def_use_mgr->AnalyzeInstDefUse(cap.get());
848     context()->AddCapability(std::move(cap));
849     feature_mgr->Analyze(context()->module());
850   }
851 
852   // OpImageTexelPointer is used to translate a coordinate and sample index
853   // into an address for use with an atomic operation.  That is, it may only
854   // used with what Vulkan calls a "storage image"
855   // (OpTypeImage parameter Sampled=2).
856   // Note: A storage image never has a level-of-detail associated with it.
857 
858   // Constraints on the sample id:
859   //  - Only 2D images can be multi-sampled: OpTypeImage parameter MS=1
860   //    only if Dim=2D.
861   //  - Non-multi-sampled images (OpTypeImage parameter MS=0) must use
862   //    sample ID to a constant 0.
863 
864   // The coordinate is treated as unsigned, and should be clamped against the
865   // image "size", returned by OpImageQuerySize. (Note: OpImageQuerySizeLod
866   // is only usable with a sampled image, i.e. its image type has Sampled=1).
867 
868   // Determine the result type for the OpImageQuerySize.
869   // For non-arrayed images:
870   //   non-Cube:
871   //     - Always the same as the coordinate type
872   //   Cube:
873   //     - Use all but the last component of the coordinate (which is the face
874   //       index from 0 to 5).
875   // For arrayed images (in Vulkan the Dim is 1D, 2D, or Cube):
876   //   non-Cube:
877   //     - A vector with the components in the coordinate, and one more for
878   //       the layer index.
879   //   Cube:
880   //     - The same as the coordinate type: 3-element integer vector.
881   //     - The third component from the size query is the layer count.
882   //     - The third component in the texel pointer calculation is
883   //       6 * layer + face, where 0 <= face < 6.
884   //   Cube: Use all but the last component of the coordinate (which is the face
885   //   index from 0 to 5).
886   const auto dim = SpvDim(image_type->GetSingleWordInOperand(1));
887   const bool arrayed = image_type->GetSingleWordInOperand(3) == 1;
888   const bool multisampled = image_type->GetSingleWordInOperand(4) != 0;
889   const auto query_num_components = [dim, arrayed, this]() -> int {
890     const int arrayness_bonus = arrayed ? 1 : 0;
891     int num_coords = 0;
892     switch (dim) {
893       case SpvDimBuffer:
894       case SpvDim1D:
895         num_coords = 1;
896         break;
897       case SpvDimCube:
898         // For cube, we need bounds for x, y, but not face.
899       case SpvDimRect:
900       case SpvDim2D:
901         num_coords = 2;
902         break;
903       case SpvDim3D:
904         num_coords = 3;
905         break;
906       case SpvDimSubpassData:
907       case SpvDimMax:
908         return Fail() << "Invalid image dimension for OpImageTexelPointer: "
909                       << int(dim);
910         break;
911     }
912     return num_coords + arrayness_bonus;
913   }();
914   const auto* coord_component_type = [type_mgr, coord]() {
915     const analysis::Type* coord_type = type_mgr->GetType(coord->type_id());
916     if (auto* vector_type = coord_type->AsVector()) {
917       return vector_type->element_type()->AsInteger();
918     }
919     return coord_type->AsInteger();
920   }();
921   // For now, only handle 32-bit case for coordinates.
922   if (!coord_component_type) {
923     return Fail() << " Coordinates for OpImageTexelPointer are not integral: "
924                   << image_texel_pointer->PrettyPrint(
925                          SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
926   }
927   if (coord_component_type->width() != 32) {
928     return Fail() << " Expected OpImageTexelPointer coordinate components to "
929                      "be 32-bits wide. They are "
930                   << coord_component_type->width() << " bits. "
931                   << image_texel_pointer->PrettyPrint(
932                          SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
933   }
934   const auto* query_size_type =
935       [type_mgr, coord_component_type,
936        query_num_components]() -> const analysis::Type* {
937     if (query_num_components == 1) return coord_component_type;
938     analysis::Vector proposed(coord_component_type, query_num_components);
939     return type_mgr->GetRegisteredType(&proposed);
940   }();
941 
942   const uint32_t image_id = TakeNextId();
943   auto* image =
944       InsertInst(image_texel_pointer, SpvOpLoad, image_type_id, image_id,
945                  {{SPV_OPERAND_TYPE_ID, {image_ptr->result_id()}}});
946 
947   const uint32_t query_size_id = TakeNextId();
948   auto* query_size =
949       InsertInst(image_texel_pointer, SpvOpImageQuerySize,
950                  type_mgr->GetTypeInstruction(query_size_type), query_size_id,
951                  {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
952 
953   auto* component_1 = constant_mgr->GetConstant(coord_component_type, {1});
954   const uint32_t component_1_id =
955       constant_mgr->GetDefiningInstruction(component_1)->result_id();
956   auto* component_0 = constant_mgr->GetConstant(coord_component_type, {0});
957   const uint32_t component_0_id =
958       constant_mgr->GetDefiningInstruction(component_0)->result_id();
959 
960   // If the image is a cube array, then the last component of the queried
961   // size is the layer count.  In the query, we have to accommodate folding
962   // in the face index ranging from 0 through 5. The inclusive upper bound
963   // on the third coordinate therefore is multiplied by 6.
964   auto* query_size_including_faces = query_size;
965   if (arrayed && (dim == SpvDimCube)) {
966     // Multiply the last coordinate by 6.
967     auto* component_6 = constant_mgr->GetConstant(coord_component_type, {6});
968     const uint32_t component_6_id =
969         constant_mgr->GetDefiningInstruction(component_6)->result_id();
970     assert(query_num_components == 3);
971     auto* multiplicand = constant_mgr->GetConstant(
972         query_size_type, {component_1_id, component_1_id, component_6_id});
973     auto* multiplicand_inst =
974         constant_mgr->GetDefiningInstruction(multiplicand);
975     const auto query_size_including_faces_id = TakeNextId();
976     query_size_including_faces = InsertInst(
977         image_texel_pointer, SpvOpIMul,
978         type_mgr->GetTypeInstruction(query_size_type),
979         query_size_including_faces_id,
980         {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
981          {SPV_OPERAND_TYPE_ID, {multiplicand_inst->result_id()}}});
982   }
983 
984   // Make a coordinate-type with all 1 components.
985   auto* coordinate_1 =
986       query_num_components == 1
987           ? component_1
988           : constant_mgr->GetConstant(
989                 query_size_type,
990                 std::vector<uint32_t>(query_num_components, component_1_id));
991   // Make a coordinate-type with all 1 components.
992   auto* coordinate_0 =
993       query_num_components == 0
994           ? component_0
995           : constant_mgr->GetConstant(
996                 query_size_type,
997                 std::vector<uint32_t>(query_num_components, component_0_id));
998 
999   const uint32_t query_max_including_faces_id = TakeNextId();
1000   auto* query_max_including_faces = InsertInst(
1001       image_texel_pointer, SpvOpISub,
1002       type_mgr->GetTypeInstruction(query_size_type),
1003       query_max_including_faces_id,
1004       {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
1005        {SPV_OPERAND_TYPE_ID,
1006         {constant_mgr->GetDefiningInstruction(coordinate_1)->result_id()}}});
1007 
1008   // Clamp the coordinate
1009   auto* clamp_coord = MakeSClampInst(
1010       *type_mgr, coord, constant_mgr->GetDefiningInstruction(coordinate_0),
1011       query_max_including_faces, image_texel_pointer);
1012   image_texel_pointer->SetInOperand(1, {clamp_coord->result_id()});
1013 
1014   // Clamp the sample index
1015   if (multisampled) {
1016     // Get the sample count via OpImageQuerySamples
1017     const auto query_samples_id = TakeNextId();
1018     auto* query_samples = InsertInst(
1019         image_texel_pointer, SpvOpImageQuerySamples,
1020         constant_mgr->GetDefiningInstruction(component_0)->type_id(),
1021         query_samples_id, {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
1022 
1023     const auto max_samples_id = TakeNextId();
1024     auto* max_samples = InsertInst(image_texel_pointer, SpvOpImageQuerySamples,
1025                                    query_samples->type_id(), max_samples_id,
1026                                    {{SPV_OPERAND_TYPE_ID, {query_samples_id}},
1027                                     {SPV_OPERAND_TYPE_ID, {component_1_id}}});
1028 
1029     auto* clamp_samples = MakeSClampInst(
1030         *type_mgr, samples, constant_mgr->GetDefiningInstruction(coordinate_0),
1031         max_samples, image_texel_pointer);
1032     image_texel_pointer->SetInOperand(2, {clamp_samples->result_id()});
1033 
1034   } else {
1035     // Just replace it with 0.  Don't even check what was there before.
1036     image_texel_pointer->SetInOperand(2, {component_0_id});
1037   }
1038 
1039   def_use_mgr->AnalyzeInstUse(image_texel_pointer);
1040 
1041   return SPV_SUCCESS;
1042 #endif
1043 }
1044 
InsertInst(opt::Instruction * where_inst,SpvOp opcode,uint32_t type_id,uint32_t result_id,const Instruction::OperandList & operands)1045 opt::Instruction* GraphicsRobustAccessPass::InsertInst(
1046     opt::Instruction* where_inst, SpvOp opcode, uint32_t type_id,
1047     uint32_t result_id, const Instruction::OperandList& operands) {
1048   module_status_.modified = true;
1049   auto* result = where_inst->InsertBefore(
1050       MakeUnique<Instruction>(context(), opcode, type_id, result_id, operands));
1051   context()->get_def_use_mgr()->AnalyzeInstDefUse(result);
1052   auto* basic_block = context()->get_instr_block(where_inst);
1053   context()->set_instr_block(result, basic_block);
1054   return result;
1055 }
1056 
1057 }  // namespace opt
1058 }  // namespace spvtools
1059