1 // Copyright (c) 2018 The Khronos Group Inc.
2 // Copyright (c) 2018 Valve Corporation
3 // Copyright (c) 2018 LunarG Inc.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16
17 #include "instrument_pass.h"
18
19 #include "source/cfa.h"
20 #include "source/spirv_constant.h"
21
22 namespace {
23
24 // Common Parameter Positions
25 static const int kInstCommonParamInstIdx = 0;
26 static const int kInstCommonParamCnt = 1;
27
28 // Indices of operands in SPIR-V instructions
29 static const int kEntryPointExecutionModelInIdx = 0;
30 static const int kEntryPointFunctionIdInIdx = 1;
31
32 } // anonymous namespace
33
34 namespace spvtools {
35 namespace opt {
36
MovePreludeCode(BasicBlock::iterator ref_inst_itr,UptrVectorIterator<BasicBlock> ref_block_itr,std::unique_ptr<BasicBlock> * new_blk_ptr)37 void InstrumentPass::MovePreludeCode(
38 BasicBlock::iterator ref_inst_itr,
39 UptrVectorIterator<BasicBlock> ref_block_itr,
40 std::unique_ptr<BasicBlock>* new_blk_ptr) {
41 same_block_pre_.clear();
42 same_block_post_.clear();
43 // Initialize new block. Reuse label from original block.
44 new_blk_ptr->reset(new BasicBlock(std::move(ref_block_itr->GetLabel())));
45 // Move contents of original ref block up to ref instruction.
46 for (auto cii = ref_block_itr->begin(); cii != ref_inst_itr;
47 cii = ref_block_itr->begin()) {
48 Instruction* inst = &*cii;
49 inst->RemoveFromList();
50 std::unique_ptr<Instruction> mv_ptr(inst);
51 // Remember same-block ops for possible regeneration.
52 if (IsSameBlockOp(&*mv_ptr)) {
53 auto* sb_inst_ptr = mv_ptr.get();
54 same_block_pre_[mv_ptr->result_id()] = sb_inst_ptr;
55 }
56 (*new_blk_ptr)->AddInstruction(std::move(mv_ptr));
57 }
58 }
59
MovePostludeCode(UptrVectorIterator<BasicBlock> ref_block_itr,BasicBlock * new_blk_ptr)60 void InstrumentPass::MovePostludeCode(
61 UptrVectorIterator<BasicBlock> ref_block_itr, BasicBlock* new_blk_ptr) {
62 // new_blk_ptr->reset(new BasicBlock(NewLabel(ref_block_itr->id())));
63 // Move contents of original ref block.
64 for (auto cii = ref_block_itr->begin(); cii != ref_block_itr->end();
65 cii = ref_block_itr->begin()) {
66 Instruction* inst = &*cii;
67 inst->RemoveFromList();
68 std::unique_ptr<Instruction> mv_inst(inst);
69 // Regenerate any same-block instruction that has not been seen in the
70 // current block.
71 if (same_block_pre_.size() > 0) {
72 CloneSameBlockOps(&mv_inst, &same_block_post_, &same_block_pre_,
73 new_blk_ptr);
74 // Remember same-block ops in this block.
75 if (IsSameBlockOp(&*mv_inst)) {
76 const uint32_t rid = mv_inst->result_id();
77 same_block_post_[rid] = rid;
78 }
79 }
80 new_blk_ptr->AddInstruction(std::move(mv_inst));
81 }
82 }
83
NewLabel(uint32_t label_id)84 std::unique_ptr<Instruction> InstrumentPass::NewLabel(uint32_t label_id) {
85 std::unique_ptr<Instruction> newLabel(
86 new Instruction(context(), SpvOpLabel, 0, label_id, {}));
87 get_def_use_mgr()->AnalyzeInstDefUse(&*newLabel);
88 return newLabel;
89 }
90
NewName(uint32_t id,const std::string & name_str)91 std::unique_ptr<Instruction> InstrumentPass::NewName(
92 uint32_t id, const std::string& name_str) {
93 std::unique_ptr<Instruction> new_name(new Instruction(
94 context(), SpvOpName, 0, 0,
95 std::initializer_list<Operand>{
96 {SPV_OPERAND_TYPE_ID, {id}},
97 {SPV_OPERAND_TYPE_LITERAL_STRING, utils::MakeVector(name_str)}}));
98
99 return new_name;
100 }
101
NewGlobalName(uint32_t id,const std::string & name_str)102 std::unique_ptr<Instruction> InstrumentPass::NewGlobalName(
103 uint32_t id, const std::string& name_str) {
104 std::string prefixed_name;
105 switch (validation_id_) {
106 case kInstValidationIdBindless:
107 prefixed_name = "inst_bindless_";
108 break;
109 case kInstValidationIdBuffAddr:
110 prefixed_name = "inst_buff_addr_";
111 break;
112 case kInstValidationIdDebugPrintf:
113 prefixed_name = "inst_printf_";
114 break;
115 default:
116 assert(false); // add new instrumentation pass here
117 prefixed_name = "inst_pass_";
118 break;
119 }
120 prefixed_name += name_str;
121 return NewName(id, prefixed_name);
122 }
123
NewMemberName(uint32_t id,uint32_t member_index,const std::string & name_str)124 std::unique_ptr<Instruction> InstrumentPass::NewMemberName(
125 uint32_t id, uint32_t member_index, const std::string& name_str) {
126 std::unique_ptr<Instruction> new_name(new Instruction(
127 context(), SpvOpMemberName, 0, 0,
128 std::initializer_list<Operand>{
129 {SPV_OPERAND_TYPE_ID, {id}},
130 {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index}},
131 {SPV_OPERAND_TYPE_LITERAL_STRING, utils::MakeVector(name_str)}}));
132
133 return new_name;
134 }
135
Gen32BitCvtCode(uint32_t val_id,InstructionBuilder * builder)136 uint32_t InstrumentPass::Gen32BitCvtCode(uint32_t val_id,
137 InstructionBuilder* builder) {
138 // Convert integer value to 32-bit if necessary
139 analysis::TypeManager* type_mgr = context()->get_type_mgr();
140 uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_id)->type_id();
141 analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger();
142 if (val_ty->width() == 32) return val_id;
143 bool is_signed = val_ty->IsSigned();
144 analysis::Integer val_32b_ty(32, is_signed);
145 analysis::Type* val_32b_reg_ty = type_mgr->GetRegisteredType(&val_32b_ty);
146 uint32_t val_32b_reg_ty_id = type_mgr->GetId(val_32b_reg_ty);
147 if (is_signed)
148 return builder->AddUnaryOp(val_32b_reg_ty_id, SpvOpSConvert, val_id)
149 ->result_id();
150 else
151 return builder->AddUnaryOp(val_32b_reg_ty_id, SpvOpUConvert, val_id)
152 ->result_id();
153 }
154
GenUintCastCode(uint32_t val_id,InstructionBuilder * builder)155 uint32_t InstrumentPass::GenUintCastCode(uint32_t val_id,
156 InstructionBuilder* builder) {
157 // Convert value to 32-bit if necessary
158 uint32_t val_32b_id = Gen32BitCvtCode(val_id, builder);
159 // Cast value to unsigned if necessary
160 analysis::TypeManager* type_mgr = context()->get_type_mgr();
161 uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_32b_id)->type_id();
162 analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger();
163 if (!val_ty->IsSigned()) return val_32b_id;
164 return builder->AddUnaryOp(GetUintId(), SpvOpBitcast, val_32b_id)
165 ->result_id();
166 }
167
GenDebugOutputFieldCode(uint32_t base_offset_id,uint32_t field_offset,uint32_t field_value_id,InstructionBuilder * builder)168 void InstrumentPass::GenDebugOutputFieldCode(uint32_t base_offset_id,
169 uint32_t field_offset,
170 uint32_t field_value_id,
171 InstructionBuilder* builder) {
172 // Cast value to 32-bit unsigned if necessary
173 uint32_t val_id = GenUintCastCode(field_value_id, builder);
174 // Store value
175 Instruction* data_idx_inst =
176 builder->AddBinaryOp(GetUintId(), SpvOpIAdd, base_offset_id,
177 builder->GetUintConstantId(field_offset));
178 uint32_t buf_id = GetOutputBufferId();
179 uint32_t buf_uint_ptr_id = GetOutputBufferPtrId();
180 Instruction* achain_inst =
181 builder->AddTernaryOp(buf_uint_ptr_id, SpvOpAccessChain, buf_id,
182 builder->GetUintConstantId(kDebugOutputDataOffset),
183 data_idx_inst->result_id());
184 (void)builder->AddBinaryOp(0, SpvOpStore, achain_inst->result_id(), val_id);
185 }
186
GenCommonStreamWriteCode(uint32_t record_sz,uint32_t inst_id,uint32_t stage_idx,uint32_t base_offset_id,InstructionBuilder * builder)187 void InstrumentPass::GenCommonStreamWriteCode(uint32_t record_sz,
188 uint32_t inst_id,
189 uint32_t stage_idx,
190 uint32_t base_offset_id,
191 InstructionBuilder* builder) {
192 // Store record size
193 GenDebugOutputFieldCode(base_offset_id, kInstCommonOutSize,
194 builder->GetUintConstantId(record_sz), builder);
195 // Store Shader Id
196 GenDebugOutputFieldCode(base_offset_id, kInstCommonOutShaderId,
197 builder->GetUintConstantId(shader_id_), builder);
198 // Store Instruction Idx
199 GenDebugOutputFieldCode(base_offset_id, kInstCommonOutInstructionIdx, inst_id,
200 builder);
201 // Store Stage Idx
202 GenDebugOutputFieldCode(base_offset_id, kInstCommonOutStageIdx,
203 builder->GetUintConstantId(stage_idx), builder);
204 }
205
GenFragCoordEltDebugOutputCode(uint32_t base_offset_id,uint32_t uint_frag_coord_id,uint32_t element,InstructionBuilder * builder)206 void InstrumentPass::GenFragCoordEltDebugOutputCode(
207 uint32_t base_offset_id, uint32_t uint_frag_coord_id, uint32_t element,
208 InstructionBuilder* builder) {
209 Instruction* element_val_inst = builder->AddIdLiteralOp(
210 GetUintId(), SpvOpCompositeExtract, uint_frag_coord_id, element);
211 GenDebugOutputFieldCode(base_offset_id, kInstFragOutFragCoordX + element,
212 element_val_inst->result_id(), builder);
213 }
214
GenVarLoad(uint32_t var_id,InstructionBuilder * builder)215 uint32_t InstrumentPass::GenVarLoad(uint32_t var_id,
216 InstructionBuilder* builder) {
217 Instruction* var_inst = get_def_use_mgr()->GetDef(var_id);
218 uint32_t type_id = GetPointeeTypeId(var_inst);
219 Instruction* load_inst = builder->AddUnaryOp(type_id, SpvOpLoad, var_id);
220 return load_inst->result_id();
221 }
222
GenBuiltinOutputCode(uint32_t builtin_id,uint32_t builtin_off,uint32_t base_offset_id,InstructionBuilder * builder)223 void InstrumentPass::GenBuiltinOutputCode(uint32_t builtin_id,
224 uint32_t builtin_off,
225 uint32_t base_offset_id,
226 InstructionBuilder* builder) {
227 // Load and store builtin
228 uint32_t load_id = GenVarLoad(builtin_id, builder);
229 GenDebugOutputFieldCode(base_offset_id, builtin_off, load_id, builder);
230 }
231
GenStageStreamWriteCode(uint32_t stage_idx,uint32_t base_offset_id,InstructionBuilder * builder)232 void InstrumentPass::GenStageStreamWriteCode(uint32_t stage_idx,
233 uint32_t base_offset_id,
234 InstructionBuilder* builder) {
235 // TODO(greg-lunarg): Add support for all stages
236 switch (stage_idx) {
237 case SpvExecutionModelVertex: {
238 // Load and store VertexId and InstanceId
239 GenBuiltinOutputCode(
240 context()->GetBuiltinInputVarId(SpvBuiltInVertexIndex),
241 kInstVertOutVertexIndex, base_offset_id, builder);
242 GenBuiltinOutputCode(
243 context()->GetBuiltinInputVarId(SpvBuiltInInstanceIndex),
244 kInstVertOutInstanceIndex, base_offset_id, builder);
245 } break;
246 case SpvExecutionModelGLCompute:
247 case SpvExecutionModelTaskNV:
248 case SpvExecutionModelMeshNV:
249 case SpvExecutionModelTaskEXT:
250 case SpvExecutionModelMeshEXT: {
251 // Load and store GlobalInvocationId.
252 uint32_t load_id = GenVarLoad(
253 context()->GetBuiltinInputVarId(SpvBuiltInGlobalInvocationId),
254 builder);
255 Instruction* x_inst = builder->AddIdLiteralOp(
256 GetUintId(), SpvOpCompositeExtract, load_id, 0);
257 Instruction* y_inst = builder->AddIdLiteralOp(
258 GetUintId(), SpvOpCompositeExtract, load_id, 1);
259 Instruction* z_inst = builder->AddIdLiteralOp(
260 GetUintId(), SpvOpCompositeExtract, load_id, 2);
261 GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdX,
262 x_inst->result_id(), builder);
263 GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdY,
264 y_inst->result_id(), builder);
265 GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdZ,
266 z_inst->result_id(), builder);
267 } break;
268 case SpvExecutionModelGeometry: {
269 // Load and store PrimitiveId and InvocationId.
270 GenBuiltinOutputCode(
271 context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId),
272 kInstGeomOutPrimitiveId, base_offset_id, builder);
273 GenBuiltinOutputCode(
274 context()->GetBuiltinInputVarId(SpvBuiltInInvocationId),
275 kInstGeomOutInvocationId, base_offset_id, builder);
276 } break;
277 case SpvExecutionModelTessellationControl: {
278 // Load and store InvocationId and PrimitiveId
279 GenBuiltinOutputCode(
280 context()->GetBuiltinInputVarId(SpvBuiltInInvocationId),
281 kInstTessCtlOutInvocationId, base_offset_id, builder);
282 GenBuiltinOutputCode(
283 context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId),
284 kInstTessCtlOutPrimitiveId, base_offset_id, builder);
285 } break;
286 case SpvExecutionModelTessellationEvaluation: {
287 // Load and store PrimitiveId and TessCoord.uv
288 GenBuiltinOutputCode(
289 context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId),
290 kInstTessEvalOutPrimitiveId, base_offset_id, builder);
291 uint32_t load_id = GenVarLoad(
292 context()->GetBuiltinInputVarId(SpvBuiltInTessCoord), builder);
293 Instruction* uvec3_cast_inst =
294 builder->AddUnaryOp(GetVec3UintId(), SpvOpBitcast, load_id);
295 uint32_t uvec3_cast_id = uvec3_cast_inst->result_id();
296 Instruction* u_inst = builder->AddIdLiteralOp(
297 GetUintId(), SpvOpCompositeExtract, uvec3_cast_id, 0);
298 Instruction* v_inst = builder->AddIdLiteralOp(
299 GetUintId(), SpvOpCompositeExtract, uvec3_cast_id, 1);
300 GenDebugOutputFieldCode(base_offset_id, kInstTessEvalOutTessCoordU,
301 u_inst->result_id(), builder);
302 GenDebugOutputFieldCode(base_offset_id, kInstTessEvalOutTessCoordV,
303 v_inst->result_id(), builder);
304 } break;
305 case SpvExecutionModelFragment: {
306 // Load FragCoord and convert to Uint
307 Instruction* frag_coord_inst = builder->AddUnaryOp(
308 GetVec4FloatId(), SpvOpLoad,
309 context()->GetBuiltinInputVarId(SpvBuiltInFragCoord));
310 Instruction* uint_frag_coord_inst = builder->AddUnaryOp(
311 GetVec4UintId(), SpvOpBitcast, frag_coord_inst->result_id());
312 for (uint32_t u = 0; u < 2u; ++u)
313 GenFragCoordEltDebugOutputCode(
314 base_offset_id, uint_frag_coord_inst->result_id(), u, builder);
315 } break;
316 case SpvExecutionModelRayGenerationNV:
317 case SpvExecutionModelIntersectionNV:
318 case SpvExecutionModelAnyHitNV:
319 case SpvExecutionModelClosestHitNV:
320 case SpvExecutionModelMissNV:
321 case SpvExecutionModelCallableNV: {
322 // Load and store LaunchIdNV.
323 uint32_t launch_id = GenVarLoad(
324 context()->GetBuiltinInputVarId(SpvBuiltInLaunchIdNV), builder);
325 Instruction* x_launch_inst = builder->AddIdLiteralOp(
326 GetUintId(), SpvOpCompositeExtract, launch_id, 0);
327 Instruction* y_launch_inst = builder->AddIdLiteralOp(
328 GetUintId(), SpvOpCompositeExtract, launch_id, 1);
329 Instruction* z_launch_inst = builder->AddIdLiteralOp(
330 GetUintId(), SpvOpCompositeExtract, launch_id, 2);
331 GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdX,
332 x_launch_inst->result_id(), builder);
333 GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdY,
334 y_launch_inst->result_id(), builder);
335 GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdZ,
336 z_launch_inst->result_id(), builder);
337 } break;
338 default: { assert(false && "unsupported stage"); } break;
339 }
340 }
341
GenDebugStreamWrite(uint32_t instruction_idx,uint32_t stage_idx,const std::vector<uint32_t> & validation_ids,InstructionBuilder * builder)342 void InstrumentPass::GenDebugStreamWrite(
343 uint32_t instruction_idx, uint32_t stage_idx,
344 const std::vector<uint32_t>& validation_ids, InstructionBuilder* builder) {
345 // Call debug output function. Pass func_idx, instruction_idx and
346 // validation ids as args.
347 uint32_t val_id_cnt = static_cast<uint32_t>(validation_ids.size());
348 uint32_t output_func_id = GetStreamWriteFunctionId(stage_idx, val_id_cnt);
349 std::vector<uint32_t> args = {output_func_id,
350 builder->GetUintConstantId(instruction_idx)};
351 (void)args.insert(args.end(), validation_ids.begin(), validation_ids.end());
352 (void)builder->AddNaryOp(GetVoidId(), SpvOpFunctionCall, args);
353 }
354
AllConstant(const std::vector<uint32_t> & ids)355 bool InstrumentPass::AllConstant(const std::vector<uint32_t>& ids) {
356 for (auto& id : ids) {
357 Instruction* id_inst = context()->get_def_use_mgr()->GetDef(id);
358 if (!spvOpcodeIsConstant(id_inst->opcode())) return false;
359 }
360 return true;
361 }
362
GenDebugDirectRead(const std::vector<uint32_t> & offset_ids,InstructionBuilder * ref_builder)363 uint32_t InstrumentPass::GenDebugDirectRead(
364 const std::vector<uint32_t>& offset_ids, InstructionBuilder* ref_builder) {
365 // Call debug input function. Pass func_idx and offset ids as args.
366 uint32_t off_id_cnt = static_cast<uint32_t>(offset_ids.size());
367 uint32_t input_func_id = GetDirectReadFunctionId(off_id_cnt);
368 std::vector<uint32_t> args = {input_func_id};
369 (void)args.insert(args.end(), offset_ids.begin(), offset_ids.end());
370 // If optimizing direct reads and the call has already been generated,
371 // use its result
372 if (opt_direct_reads_) {
373 uint32_t res_id = call2id_[args];
374 if (res_id != 0) return res_id;
375 }
376 // If the offsets are all constants, the call can be moved to the first block
377 // of the function where its result can be reused. One example where this is
378 // profitable is for uniform buffer references, of which there are often many.
379 InstructionBuilder builder(ref_builder->GetContext(),
380 &*ref_builder->GetInsertPoint(),
381 ref_builder->GetPreservedAnalysis());
382 bool insert_in_first_block = opt_direct_reads_ && AllConstant(offset_ids);
383 if (insert_in_first_block) {
384 Instruction* insert_before = &*curr_func_->begin()->tail();
385 builder.SetInsertPoint(insert_before);
386 }
387 uint32_t res_id =
388 builder.AddNaryOp(GetUintId(), SpvOpFunctionCall, args)->result_id();
389 if (insert_in_first_block) call2id_[args] = res_id;
390 return res_id;
391 }
392
IsSameBlockOp(const Instruction * inst) const393 bool InstrumentPass::IsSameBlockOp(const Instruction* inst) const {
394 return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage;
395 }
396
CloneSameBlockOps(std::unique_ptr<Instruction> * inst,std::unordered_map<uint32_t,uint32_t> * same_blk_post,std::unordered_map<uint32_t,Instruction * > * same_blk_pre,BasicBlock * block_ptr)397 void InstrumentPass::CloneSameBlockOps(
398 std::unique_ptr<Instruction>* inst,
399 std::unordered_map<uint32_t, uint32_t>* same_blk_post,
400 std::unordered_map<uint32_t, Instruction*>* same_blk_pre,
401 BasicBlock* block_ptr) {
402 bool changed = false;
403 (*inst)->ForEachInId([&same_blk_post, &same_blk_pre, &block_ptr, &changed,
404 this](uint32_t* iid) {
405 const auto map_itr = (*same_blk_post).find(*iid);
406 if (map_itr == (*same_blk_post).end()) {
407 const auto map_itr2 = (*same_blk_pre).find(*iid);
408 if (map_itr2 != (*same_blk_pre).end()) {
409 // Clone pre-call same-block ops, map result id.
410 const Instruction* in_inst = map_itr2->second;
411 std::unique_ptr<Instruction> sb_inst(in_inst->Clone(context()));
412 const uint32_t rid = sb_inst->result_id();
413 const uint32_t nid = this->TakeNextId();
414 get_decoration_mgr()->CloneDecorations(rid, nid);
415 sb_inst->SetResultId(nid);
416 get_def_use_mgr()->AnalyzeInstDefUse(&*sb_inst);
417 (*same_blk_post)[rid] = nid;
418 *iid = nid;
419 changed = true;
420 CloneSameBlockOps(&sb_inst, same_blk_post, same_blk_pre, block_ptr);
421 block_ptr->AddInstruction(std::move(sb_inst));
422 }
423 } else {
424 // Reset same-block op operand if necessary
425 if (*iid != map_itr->second) {
426 *iid = map_itr->second;
427 changed = true;
428 }
429 }
430 });
431 if (changed) get_def_use_mgr()->AnalyzeInstUse(&**inst);
432 }
433
UpdateSucceedingPhis(std::vector<std::unique_ptr<BasicBlock>> & new_blocks)434 void InstrumentPass::UpdateSucceedingPhis(
435 std::vector<std::unique_ptr<BasicBlock>>& new_blocks) {
436 const auto first_blk = new_blocks.begin();
437 const auto last_blk = new_blocks.end() - 1;
438 const uint32_t first_id = (*first_blk)->id();
439 const uint32_t last_id = (*last_blk)->id();
440 const BasicBlock& const_last_block = *last_blk->get();
441 const_last_block.ForEachSuccessorLabel(
442 [&first_id, &last_id, this](const uint32_t succ) {
443 BasicBlock* sbp = this->id2block_[succ];
444 sbp->ForEachPhiInst([&first_id, &last_id, this](Instruction* phi) {
445 bool changed = false;
446 phi->ForEachInId([&first_id, &last_id, &changed](uint32_t* id) {
447 if (*id == first_id) {
448 *id = last_id;
449 changed = true;
450 }
451 });
452 if (changed) get_def_use_mgr()->AnalyzeInstUse(phi);
453 });
454 });
455 }
456
GetOutputBufferPtrId()457 uint32_t InstrumentPass::GetOutputBufferPtrId() {
458 if (output_buffer_ptr_id_ == 0) {
459 output_buffer_ptr_id_ = context()->get_type_mgr()->FindPointerToType(
460 GetUintId(), SpvStorageClassStorageBuffer);
461 }
462 return output_buffer_ptr_id_;
463 }
464
GetInputBufferTypeId()465 uint32_t InstrumentPass::GetInputBufferTypeId() {
466 return (validation_id_ == kInstValidationIdBuffAddr) ? GetUint64Id()
467 : GetUintId();
468 }
469
GetInputBufferPtrId()470 uint32_t InstrumentPass::GetInputBufferPtrId() {
471 if (input_buffer_ptr_id_ == 0) {
472 input_buffer_ptr_id_ = context()->get_type_mgr()->FindPointerToType(
473 GetInputBufferTypeId(), SpvStorageClassStorageBuffer);
474 }
475 return input_buffer_ptr_id_;
476 }
477
GetOutputBufferBinding()478 uint32_t InstrumentPass::GetOutputBufferBinding() {
479 switch (validation_id_) {
480 case kInstValidationIdBindless:
481 return kDebugOutputBindingStream;
482 case kInstValidationIdBuffAddr:
483 return kDebugOutputBindingStream;
484 case kInstValidationIdDebugPrintf:
485 return kDebugOutputPrintfStream;
486 default:
487 assert(false && "unexpected validation id");
488 }
489 return 0;
490 }
491
GetInputBufferBinding()492 uint32_t InstrumentPass::GetInputBufferBinding() {
493 switch (validation_id_) {
494 case kInstValidationIdBindless:
495 return kDebugInputBindingBindless;
496 case kInstValidationIdBuffAddr:
497 return kDebugInputBindingBuffAddr;
498 default:
499 assert(false && "unexpected validation id");
500 }
501 return 0;
502 }
503
GetUintXRuntimeArrayType(uint32_t width,analysis::Type ** rarr_ty)504 analysis::Type* InstrumentPass::GetUintXRuntimeArrayType(
505 uint32_t width, analysis::Type** rarr_ty) {
506 if (*rarr_ty == nullptr) {
507 analysis::DecorationManager* deco_mgr = get_decoration_mgr();
508 analysis::TypeManager* type_mgr = context()->get_type_mgr();
509 analysis::Integer uint_ty(width, false);
510 analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
511 analysis::RuntimeArray uint_rarr_ty_tmp(reg_uint_ty);
512 *rarr_ty = type_mgr->GetRegisteredType(&uint_rarr_ty_tmp);
513 uint32_t uint_arr_ty_id = type_mgr->GetTypeInstruction(*rarr_ty);
514 // By the Vulkan spec, a pre-existing RuntimeArray of uint must be part of
515 // a block, and will therefore be decorated with an ArrayStride. Therefore
516 // the undecorated type returned here will not be pre-existing and can
517 // safely be decorated. Since this type is now decorated, it is out of
518 // sync with the TypeManager and therefore the TypeManager must be
519 // invalidated after this pass.
520 assert(context()->get_def_use_mgr()->NumUses(uint_arr_ty_id) == 0 &&
521 "used RuntimeArray type returned");
522 deco_mgr->AddDecorationVal(uint_arr_ty_id, SpvDecorationArrayStride,
523 width / 8u);
524 }
525 return *rarr_ty;
526 }
527
GetUintRuntimeArrayType(uint32_t width)528 analysis::Type* InstrumentPass::GetUintRuntimeArrayType(uint32_t width) {
529 analysis::Type** rarr_ty =
530 (width == 64) ? &uint64_rarr_ty_ : &uint32_rarr_ty_;
531 return GetUintXRuntimeArrayType(width, rarr_ty);
532 }
533
AddStorageBufferExt()534 void InstrumentPass::AddStorageBufferExt() {
535 if (storage_buffer_ext_defined_) return;
536 if (!get_feature_mgr()->HasExtension(kSPV_KHR_storage_buffer_storage_class)) {
537 context()->AddExtension("SPV_KHR_storage_buffer_storage_class");
538 }
539 storage_buffer_ext_defined_ = true;
540 }
541
542 // Return id for output buffer
GetOutputBufferId()543 uint32_t InstrumentPass::GetOutputBufferId() {
544 if (output_buffer_id_ == 0) {
545 // If not created yet, create one
546 analysis::DecorationManager* deco_mgr = get_decoration_mgr();
547 analysis::TypeManager* type_mgr = context()->get_type_mgr();
548 analysis::Type* reg_uint_rarr_ty = GetUintRuntimeArrayType(32);
549 analysis::Integer uint_ty(32, false);
550 analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
551 analysis::Struct buf_ty({reg_uint_ty, reg_uint_rarr_ty});
552 analysis::Type* reg_buf_ty = type_mgr->GetRegisteredType(&buf_ty);
553 uint32_t obufTyId = type_mgr->GetTypeInstruction(reg_buf_ty);
554 // By the Vulkan spec, a pre-existing struct containing a RuntimeArray
555 // must be a block, and will therefore be decorated with Block. Therefore
556 // the undecorated type returned here will not be pre-existing and can
557 // safely be decorated. Since this type is now decorated, it is out of
558 // sync with the TypeManager and therefore the TypeManager must be
559 // invalidated after this pass.
560 assert(context()->get_def_use_mgr()->NumUses(obufTyId) == 0 &&
561 "used struct type returned");
562 deco_mgr->AddDecoration(obufTyId, SpvDecorationBlock);
563 deco_mgr->AddMemberDecoration(obufTyId, kDebugOutputSizeOffset,
564 SpvDecorationOffset, 0);
565 deco_mgr->AddMemberDecoration(obufTyId, kDebugOutputDataOffset,
566 SpvDecorationOffset, 4);
567 uint32_t obufTyPtrId_ =
568 type_mgr->FindPointerToType(obufTyId, SpvStorageClassStorageBuffer);
569 output_buffer_id_ = TakeNextId();
570 std::unique_ptr<Instruction> newVarOp(new Instruction(
571 context(), SpvOpVariable, obufTyPtrId_, output_buffer_id_,
572 {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
573 {SpvStorageClassStorageBuffer}}}));
574 context()->AddGlobalValue(std::move(newVarOp));
575 context()->AddDebug2Inst(NewGlobalName(obufTyId, "OutputBuffer"));
576 context()->AddDebug2Inst(NewMemberName(obufTyId, 0, "written_count"));
577 context()->AddDebug2Inst(NewMemberName(obufTyId, 1, "data"));
578 context()->AddDebug2Inst(NewGlobalName(output_buffer_id_, "output_buffer"));
579 deco_mgr->AddDecorationVal(output_buffer_id_, SpvDecorationDescriptorSet,
580 desc_set_);
581 deco_mgr->AddDecorationVal(output_buffer_id_, SpvDecorationBinding,
582 GetOutputBufferBinding());
583 AddStorageBufferExt();
584 if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) {
585 // Add the new buffer to all entry points.
586 for (auto& entry : get_module()->entry_points()) {
587 entry.AddOperand({SPV_OPERAND_TYPE_ID, {output_buffer_id_}});
588 context()->AnalyzeUses(&entry);
589 }
590 }
591 }
592 return output_buffer_id_;
593 }
594
GetInputBufferId()595 uint32_t InstrumentPass::GetInputBufferId() {
596 if (input_buffer_id_ == 0) {
597 // If not created yet, create one
598 analysis::DecorationManager* deco_mgr = get_decoration_mgr();
599 analysis::TypeManager* type_mgr = context()->get_type_mgr();
600 uint32_t width = (validation_id_ == kInstValidationIdBuffAddr) ? 64u : 32u;
601 analysis::Type* reg_uint_rarr_ty = GetUintRuntimeArrayType(width);
602 analysis::Struct buf_ty({reg_uint_rarr_ty});
603 analysis::Type* reg_buf_ty = type_mgr->GetRegisteredType(&buf_ty);
604 uint32_t ibufTyId = type_mgr->GetTypeInstruction(reg_buf_ty);
605 // By the Vulkan spec, a pre-existing struct containing a RuntimeArray
606 // must be a block, and will therefore be decorated with Block. Therefore
607 // the undecorated type returned here will not be pre-existing and can
608 // safely be decorated. Since this type is now decorated, it is out of
609 // sync with the TypeManager and therefore the TypeManager must be
610 // invalidated after this pass.
611 assert(context()->get_def_use_mgr()->NumUses(ibufTyId) == 0 &&
612 "used struct type returned");
613 deco_mgr->AddDecoration(ibufTyId, SpvDecorationBlock);
614 deco_mgr->AddMemberDecoration(ibufTyId, 0, SpvDecorationOffset, 0);
615 uint32_t ibufTyPtrId_ =
616 type_mgr->FindPointerToType(ibufTyId, SpvStorageClassStorageBuffer);
617 input_buffer_id_ = TakeNextId();
618 std::unique_ptr<Instruction> newVarOp(new Instruction(
619 context(), SpvOpVariable, ibufTyPtrId_, input_buffer_id_,
620 {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
621 {SpvStorageClassStorageBuffer}}}));
622 context()->AddGlobalValue(std::move(newVarOp));
623 context()->AddDebug2Inst(NewGlobalName(ibufTyId, "InputBuffer"));
624 context()->AddDebug2Inst(NewMemberName(ibufTyId, 0, "data"));
625 context()->AddDebug2Inst(NewGlobalName(input_buffer_id_, "input_buffer"));
626 deco_mgr->AddDecorationVal(input_buffer_id_, SpvDecorationDescriptorSet,
627 desc_set_);
628 deco_mgr->AddDecorationVal(input_buffer_id_, SpvDecorationBinding,
629 GetInputBufferBinding());
630 AddStorageBufferExt();
631 if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) {
632 // Add the new buffer to all entry points.
633 for (auto& entry : get_module()->entry_points()) {
634 entry.AddOperand({SPV_OPERAND_TYPE_ID, {input_buffer_id_}});
635 context()->AnalyzeUses(&entry);
636 }
637 }
638 }
639 return input_buffer_id_;
640 }
641
GetFloatId()642 uint32_t InstrumentPass::GetFloatId() {
643 if (float_id_ == 0) {
644 analysis::TypeManager* type_mgr = context()->get_type_mgr();
645 analysis::Float float_ty(32);
646 analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
647 float_id_ = type_mgr->GetTypeInstruction(reg_float_ty);
648 }
649 return float_id_;
650 }
651
GetVec4FloatId()652 uint32_t InstrumentPass::GetVec4FloatId() {
653 if (v4float_id_ == 0) {
654 analysis::TypeManager* type_mgr = context()->get_type_mgr();
655 analysis::Float float_ty(32);
656 analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
657 analysis::Vector v4float_ty(reg_float_ty, 4);
658 analysis::Type* reg_v4float_ty = type_mgr->GetRegisteredType(&v4float_ty);
659 v4float_id_ = type_mgr->GetTypeInstruction(reg_v4float_ty);
660 }
661 return v4float_id_;
662 }
663
GetUintId()664 uint32_t InstrumentPass::GetUintId() {
665 if (uint_id_ == 0) {
666 analysis::TypeManager* type_mgr = context()->get_type_mgr();
667 analysis::Integer uint_ty(32, false);
668 analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
669 uint_id_ = type_mgr->GetTypeInstruction(reg_uint_ty);
670 }
671 return uint_id_;
672 }
673
GetUint64Id()674 uint32_t InstrumentPass::GetUint64Id() {
675 if (uint64_id_ == 0) {
676 analysis::TypeManager* type_mgr = context()->get_type_mgr();
677 analysis::Integer uint64_ty(64, false);
678 analysis::Type* reg_uint64_ty = type_mgr->GetRegisteredType(&uint64_ty);
679 uint64_id_ = type_mgr->GetTypeInstruction(reg_uint64_ty);
680 }
681 return uint64_id_;
682 }
683
GetUint8Id()684 uint32_t InstrumentPass::GetUint8Id() {
685 if (uint8_id_ == 0) {
686 analysis::TypeManager* type_mgr = context()->get_type_mgr();
687 analysis::Integer uint8_ty(8, false);
688 analysis::Type* reg_uint8_ty = type_mgr->GetRegisteredType(&uint8_ty);
689 uint8_id_ = type_mgr->GetTypeInstruction(reg_uint8_ty);
690 }
691 return uint8_id_;
692 }
693
GetVecUintId(uint32_t len)694 uint32_t InstrumentPass::GetVecUintId(uint32_t len) {
695 analysis::TypeManager* type_mgr = context()->get_type_mgr();
696 analysis::Integer uint_ty(32, false);
697 analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
698 analysis::Vector v_uint_ty(reg_uint_ty, len);
699 analysis::Type* reg_v_uint_ty = type_mgr->GetRegisteredType(&v_uint_ty);
700 uint32_t v_uint_id = type_mgr->GetTypeInstruction(reg_v_uint_ty);
701 return v_uint_id;
702 }
703
GetVec4UintId()704 uint32_t InstrumentPass::GetVec4UintId() {
705 if (v4uint_id_ == 0) v4uint_id_ = GetVecUintId(4u);
706 return v4uint_id_;
707 }
708
GetVec3UintId()709 uint32_t InstrumentPass::GetVec3UintId() {
710 if (v3uint_id_ == 0) v3uint_id_ = GetVecUintId(3u);
711 return v3uint_id_;
712 }
713
GetBoolId()714 uint32_t InstrumentPass::GetBoolId() {
715 if (bool_id_ == 0) {
716 analysis::TypeManager* type_mgr = context()->get_type_mgr();
717 analysis::Bool bool_ty;
718 analysis::Type* reg_bool_ty = type_mgr->GetRegisteredType(&bool_ty);
719 bool_id_ = type_mgr->GetTypeInstruction(reg_bool_ty);
720 }
721 return bool_id_;
722 }
723
GetVoidId()724 uint32_t InstrumentPass::GetVoidId() {
725 if (void_id_ == 0) {
726 analysis::TypeManager* type_mgr = context()->get_type_mgr();
727 analysis::Void void_ty;
728 analysis::Type* reg_void_ty = type_mgr->GetRegisteredType(&void_ty);
729 void_id_ = type_mgr->GetTypeInstruction(reg_void_ty);
730 }
731 return void_id_;
732 }
733
GetStreamWriteFunctionId(uint32_t stage_idx,uint32_t val_spec_param_cnt)734 uint32_t InstrumentPass::GetStreamWriteFunctionId(uint32_t stage_idx,
735 uint32_t val_spec_param_cnt) {
736 // Total param count is common params plus validation-specific
737 // params
738 uint32_t param_cnt = kInstCommonParamCnt + val_spec_param_cnt;
739 if (param2output_func_id_[param_cnt] == 0) {
740 // Create function
741 param2output_func_id_[param_cnt] = TakeNextId();
742 analysis::TypeManager* type_mgr = context()->get_type_mgr();
743 std::vector<const analysis::Type*> param_types;
744 for (uint32_t c = 0; c < param_cnt; ++c)
745 param_types.push_back(type_mgr->GetType(GetUintId()));
746 analysis::Function func_ty(type_mgr->GetType(GetVoidId()), param_types);
747 analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty);
748 std::unique_ptr<Instruction> func_inst(
749 new Instruction(get_module()->context(), SpvOpFunction, GetVoidId(),
750 param2output_func_id_[param_cnt],
751 {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
752 {SpvFunctionControlMaskNone}},
753 {spv_operand_type_t::SPV_OPERAND_TYPE_ID,
754 {type_mgr->GetTypeInstruction(reg_func_ty)}}}));
755 get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst);
756 std::unique_ptr<Function> output_func =
757 MakeUnique<Function>(std::move(func_inst));
758 // Add parameters
759 std::vector<uint32_t> param_vec;
760 for (uint32_t c = 0; c < param_cnt; ++c) {
761 uint32_t pid = TakeNextId();
762 param_vec.push_back(pid);
763 std::unique_ptr<Instruction> param_inst(
764 new Instruction(get_module()->context(), SpvOpFunctionParameter,
765 GetUintId(), pid, {}));
766 get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst);
767 output_func->AddParameter(std::move(param_inst));
768 }
769 // Create first block
770 uint32_t test_blk_id = TakeNextId();
771 std::unique_ptr<Instruction> test_label(NewLabel(test_blk_id));
772 std::unique_ptr<BasicBlock> new_blk_ptr =
773 MakeUnique<BasicBlock>(std::move(test_label));
774 InstructionBuilder builder(
775 context(), &*new_blk_ptr,
776 IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
777 // Gen test if debug output buffer size will not be exceeded.
778 uint32_t val_spec_offset = kInstStageOutCnt;
779 uint32_t obuf_record_sz = val_spec_offset + val_spec_param_cnt;
780 uint32_t buf_id = GetOutputBufferId();
781 uint32_t buf_uint_ptr_id = GetOutputBufferPtrId();
782 Instruction* obuf_curr_sz_ac_inst =
783 builder.AddBinaryOp(buf_uint_ptr_id, SpvOpAccessChain, buf_id,
784 builder.GetUintConstantId(kDebugOutputSizeOffset));
785 // Fetch the current debug buffer written size atomically, adding the
786 // size of the record to be written.
787 uint32_t obuf_record_sz_id = builder.GetUintConstantId(obuf_record_sz);
788 uint32_t mask_none_id = builder.GetUintConstantId(SpvMemoryAccessMaskNone);
789 uint32_t scope_invok_id = builder.GetUintConstantId(SpvScopeInvocation);
790 Instruction* obuf_curr_sz_inst = builder.AddQuadOp(
791 GetUintId(), SpvOpAtomicIAdd, obuf_curr_sz_ac_inst->result_id(),
792 scope_invok_id, mask_none_id, obuf_record_sz_id);
793 uint32_t obuf_curr_sz_id = obuf_curr_sz_inst->result_id();
794 // Compute new written size
795 Instruction* obuf_new_sz_inst =
796 builder.AddBinaryOp(GetUintId(), SpvOpIAdd, obuf_curr_sz_id,
797 builder.GetUintConstantId(obuf_record_sz));
798 // Fetch the data bound
799 Instruction* obuf_bnd_inst =
800 builder.AddIdLiteralOp(GetUintId(), SpvOpArrayLength,
801 GetOutputBufferId(), kDebugOutputDataOffset);
802 // Test that new written size is less than or equal to debug output
803 // data bound
804 Instruction* obuf_safe_inst = builder.AddBinaryOp(
805 GetBoolId(), SpvOpULessThanEqual, obuf_new_sz_inst->result_id(),
806 obuf_bnd_inst->result_id());
807 uint32_t merge_blk_id = TakeNextId();
808 uint32_t write_blk_id = TakeNextId();
809 std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
810 std::unique_ptr<Instruction> write_label(NewLabel(write_blk_id));
811 (void)builder.AddConditionalBranch(obuf_safe_inst->result_id(),
812 write_blk_id, merge_blk_id, merge_blk_id,
813 SpvSelectionControlMaskNone);
814 // Close safety test block and gen write block
815 output_func->AddBasicBlock(std::move(new_blk_ptr));
816 new_blk_ptr = MakeUnique<BasicBlock>(std::move(write_label));
817 builder.SetInsertPoint(&*new_blk_ptr);
818 // Generate common and stage-specific debug record members
819 GenCommonStreamWriteCode(obuf_record_sz, param_vec[kInstCommonParamInstIdx],
820 stage_idx, obuf_curr_sz_id, &builder);
821 GenStageStreamWriteCode(stage_idx, obuf_curr_sz_id, &builder);
822 // Gen writes of validation specific data
823 for (uint32_t i = 0; i < val_spec_param_cnt; ++i) {
824 GenDebugOutputFieldCode(obuf_curr_sz_id, val_spec_offset + i,
825 param_vec[kInstCommonParamCnt + i], &builder);
826 }
827 // Close write block and gen merge block
828 (void)builder.AddBranch(merge_blk_id);
829 output_func->AddBasicBlock(std::move(new_blk_ptr));
830 new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
831 builder.SetInsertPoint(&*new_blk_ptr);
832 // Close merge block and function and add function to module
833 (void)builder.AddNullaryOp(0, SpvOpReturn);
834 output_func->AddBasicBlock(std::move(new_blk_ptr));
835 std::unique_ptr<Instruction> func_end_inst(
836 new Instruction(get_module()->context(), SpvOpFunctionEnd, 0, 0, {}));
837 get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst);
838 output_func->SetFunctionEnd(std::move(func_end_inst));
839 context()->AddFunction(std::move(output_func));
840
841 std::string name("stream_write_");
842 name += std::to_string(param_cnt);
843
844 context()->AddDebug2Inst(
845 NewGlobalName(param2output_func_id_[param_cnt], name));
846 }
847 return param2output_func_id_[param_cnt];
848 }
849
GetDirectReadFunctionId(uint32_t param_cnt)850 uint32_t InstrumentPass::GetDirectReadFunctionId(uint32_t param_cnt) {
851 uint32_t func_id = param2input_func_id_[param_cnt];
852 if (func_id != 0) return func_id;
853 // Create input function for param_cnt.
854 func_id = TakeNextId();
855 analysis::TypeManager* type_mgr = context()->get_type_mgr();
856 std::vector<const analysis::Type*> param_types;
857 for (uint32_t c = 0; c < param_cnt; ++c)
858 param_types.push_back(type_mgr->GetType(GetUintId()));
859 uint32_t ibuf_type_id = GetInputBufferTypeId();
860 analysis::Function func_ty(type_mgr->GetType(ibuf_type_id), param_types);
861 analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty);
862 std::unique_ptr<Instruction> func_inst(new Instruction(
863 get_module()->context(), SpvOpFunction, ibuf_type_id, func_id,
864 {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
865 {SpvFunctionControlMaskNone}},
866 {spv_operand_type_t::SPV_OPERAND_TYPE_ID,
867 {type_mgr->GetTypeInstruction(reg_func_ty)}}}));
868 get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst);
869 std::unique_ptr<Function> input_func =
870 MakeUnique<Function>(std::move(func_inst));
871 // Add parameters
872 std::vector<uint32_t> param_vec;
873 for (uint32_t c = 0; c < param_cnt; ++c) {
874 uint32_t pid = TakeNextId();
875 param_vec.push_back(pid);
876 std::unique_ptr<Instruction> param_inst(new Instruction(
877 get_module()->context(), SpvOpFunctionParameter, GetUintId(), pid, {}));
878 get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst);
879 input_func->AddParameter(std::move(param_inst));
880 }
881 // Create block
882 uint32_t blk_id = TakeNextId();
883 std::unique_ptr<Instruction> blk_label(NewLabel(blk_id));
884 std::unique_ptr<BasicBlock> new_blk_ptr =
885 MakeUnique<BasicBlock>(std::move(blk_label));
886 InstructionBuilder builder(
887 context(), &*new_blk_ptr,
888 IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
889 // For each offset parameter, generate new offset with parameter, adding last
890 // loaded value if it exists, and load value from input buffer at new offset.
891 // Return last loaded value.
892 uint32_t buf_id = GetInputBufferId();
893 uint32_t buf_ptr_id = GetInputBufferPtrId();
894 uint32_t last_value_id = 0;
895 for (uint32_t p = 0; p < param_cnt; ++p) {
896 uint32_t offset_id;
897 if (p == 0) {
898 offset_id = param_vec[0];
899 } else {
900 if (ibuf_type_id != GetUintId()) {
901 Instruction* ucvt_inst =
902 builder.AddUnaryOp(GetUintId(), SpvOpUConvert, last_value_id);
903 last_value_id = ucvt_inst->result_id();
904 }
905 Instruction* offset_inst = builder.AddBinaryOp(
906 GetUintId(), SpvOpIAdd, last_value_id, param_vec[p]);
907 offset_id = offset_inst->result_id();
908 }
909 Instruction* ac_inst = builder.AddTernaryOp(
910 buf_ptr_id, SpvOpAccessChain, buf_id,
911 builder.GetUintConstantId(kDebugInputDataOffset), offset_id);
912 Instruction* load_inst =
913 builder.AddUnaryOp(ibuf_type_id, SpvOpLoad, ac_inst->result_id());
914 last_value_id = load_inst->result_id();
915 }
916 (void)builder.AddInstruction(MakeUnique<Instruction>(
917 context(), SpvOpReturnValue, 0, 0,
918 std::initializer_list<Operand>{{SPV_OPERAND_TYPE_ID, {last_value_id}}}));
919 // Close block and function and add function to module
920 input_func->AddBasicBlock(std::move(new_blk_ptr));
921 std::unique_ptr<Instruction> func_end_inst(
922 new Instruction(get_module()->context(), SpvOpFunctionEnd, 0, 0, {}));
923 get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst);
924 input_func->SetFunctionEnd(std::move(func_end_inst));
925 context()->AddFunction(std::move(input_func));
926
927 std::string name("direct_read_");
928 name += std::to_string(param_cnt);
929 context()->AddDebug2Inst(NewGlobalName(func_id, name));
930
931 param2input_func_id_[param_cnt] = func_id;
932 return func_id;
933 }
934
SplitBlock(BasicBlock::iterator inst_itr,UptrVectorIterator<BasicBlock> block_itr,std::vector<std::unique_ptr<BasicBlock>> * new_blocks)935 void InstrumentPass::SplitBlock(
936 BasicBlock::iterator inst_itr, UptrVectorIterator<BasicBlock> block_itr,
937 std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
938 // Make sure def/use analysis is done before we start moving instructions
939 // out of function
940 (void)get_def_use_mgr();
941 // Move original block's preceding instructions into first new block
942 std::unique_ptr<BasicBlock> first_blk_ptr;
943 MovePreludeCode(inst_itr, block_itr, &first_blk_ptr);
944 InstructionBuilder builder(
945 context(), &*first_blk_ptr,
946 IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
947 uint32_t split_blk_id = TakeNextId();
948 std::unique_ptr<Instruction> split_label(NewLabel(split_blk_id));
949 (void)builder.AddBranch(split_blk_id);
950 new_blocks->push_back(std::move(first_blk_ptr));
951 // Move remaining instructions into split block and add to new blocks
952 std::unique_ptr<BasicBlock> split_blk_ptr(
953 new BasicBlock(std::move(split_label)));
954 MovePostludeCode(block_itr, &*split_blk_ptr);
955 new_blocks->push_back(std::move(split_blk_ptr));
956 }
957
InstrumentFunction(Function * func,uint32_t stage_idx,InstProcessFunction & pfn)958 bool InstrumentPass::InstrumentFunction(Function* func, uint32_t stage_idx,
959 InstProcessFunction& pfn) {
960 curr_func_ = func;
961 call2id_.clear();
962 bool first_block_split = false;
963 bool modified = false;
964 // Apply instrumentation function to each instruction.
965 // Using block iterators here because of block erasures and insertions.
966 std::vector<std::unique_ptr<BasicBlock>> new_blks;
967 for (auto bi = func->begin(); bi != func->end(); ++bi) {
968 for (auto ii = bi->begin(); ii != bi->end();) {
969 // Split all executable instructions out of first block into a following
970 // block. This will allow function calls to be inserted into the first
971 // block without interfering with the instrumentation algorithm.
972 if (opt_direct_reads_ && !first_block_split) {
973 if (ii->opcode() != SpvOpVariable) {
974 SplitBlock(ii, bi, &new_blks);
975 first_block_split = true;
976 }
977 } else {
978 pfn(ii, bi, stage_idx, &new_blks);
979 }
980 // If no new code, continue
981 if (new_blks.size() == 0) {
982 ++ii;
983 continue;
984 }
985 // Add new blocks to label id map
986 for (auto& blk : new_blks) id2block_[blk->id()] = &*blk;
987 // If there are new blocks we know there will always be two or
988 // more, so update succeeding phis with label of new last block.
989 size_t newBlocksSize = new_blks.size();
990 assert(newBlocksSize > 1);
991 UpdateSucceedingPhis(new_blks);
992 // Replace original block with new block(s)
993 bi = bi.Erase();
994 for (auto& bb : new_blks) {
995 bb->SetParent(func);
996 }
997 bi = bi.InsertBefore(&new_blks);
998 // Reset block iterator to last new block
999 for (size_t i = 0; i < newBlocksSize - 1; i++) ++bi;
1000 modified = true;
1001 // Restart instrumenting at beginning of last new block,
1002 // but skip over any new phi or copy instruction.
1003 ii = bi->begin();
1004 if (ii->opcode() == SpvOpPhi || ii->opcode() == SpvOpCopyObject) ++ii;
1005 new_blks.clear();
1006 }
1007 }
1008 return modified;
1009 }
1010
InstProcessCallTreeFromRoots(InstProcessFunction & pfn,std::queue<uint32_t> * roots,uint32_t stage_idx)1011 bool InstrumentPass::InstProcessCallTreeFromRoots(InstProcessFunction& pfn,
1012 std::queue<uint32_t>* roots,
1013 uint32_t stage_idx) {
1014 bool modified = false;
1015 std::unordered_set<uint32_t> done;
1016 // Don't process input and output functions
1017 for (auto& ifn : param2input_func_id_) done.insert(ifn.second);
1018 for (auto& ofn : param2output_func_id_) done.insert(ofn.second);
1019 // Process all functions from roots
1020 while (!roots->empty()) {
1021 const uint32_t fi = roots->front();
1022 roots->pop();
1023 if (done.insert(fi).second) {
1024 Function* fn = id2function_.at(fi);
1025 // Add calls first so we don't add new output function
1026 context()->AddCalls(fn, roots);
1027 modified = InstrumentFunction(fn, stage_idx, pfn) || modified;
1028 }
1029 }
1030 return modified;
1031 }
1032
InstProcessEntryPointCallTree(InstProcessFunction & pfn)1033 bool InstrumentPass::InstProcessEntryPointCallTree(InstProcessFunction& pfn) {
1034 // Make sure all entry points have the same execution model. Do not
1035 // instrument if they do not.
1036 // TODO(greg-lunarg): Handle mixed stages. Technically, a shader module
1037 // can contain entry points with different execution models, although
1038 // such modules will likely be rare as GLSL and HLSL are geared toward
1039 // one model per module. In such cases we will need
1040 // to clone any functions which are in the call trees of entrypoints
1041 // with differing execution models.
1042 uint32_t ecnt = 0;
1043 uint32_t stage = SpvExecutionModelMax;
1044 for (auto& e : get_module()->entry_points()) {
1045 if (ecnt == 0)
1046 stage = e.GetSingleWordInOperand(kEntryPointExecutionModelInIdx);
1047 else if (e.GetSingleWordInOperand(kEntryPointExecutionModelInIdx) !=
1048 stage) {
1049 if (consumer()) {
1050 std::string message = "Mixed stage shader module not supported";
1051 consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str());
1052 }
1053 return false;
1054 }
1055 ++ecnt;
1056 }
1057 // Check for supported stages
1058 if (stage != SpvExecutionModelVertex && stage != SpvExecutionModelFragment &&
1059 stage != SpvExecutionModelGeometry &&
1060 stage != SpvExecutionModelGLCompute &&
1061 stage != SpvExecutionModelTessellationControl &&
1062 stage != SpvExecutionModelTessellationEvaluation &&
1063 stage != SpvExecutionModelTaskNV && stage != SpvExecutionModelMeshNV &&
1064 stage != SpvExecutionModelRayGenerationNV &&
1065 stage != SpvExecutionModelIntersectionNV &&
1066 stage != SpvExecutionModelAnyHitNV &&
1067 stage != SpvExecutionModelClosestHitNV &&
1068 stage != SpvExecutionModelMissNV &&
1069 stage != SpvExecutionModelCallableNV &&
1070 stage != SpvExecutionModelTaskEXT && stage != SpvExecutionModelMeshEXT) {
1071 if (consumer()) {
1072 std::string message = "Stage not supported by instrumentation";
1073 consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str());
1074 }
1075 return false;
1076 }
1077 // Add together the roots of all entry points
1078 std::queue<uint32_t> roots;
1079 for (auto& e : get_module()->entry_points()) {
1080 roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx));
1081 }
1082 bool modified = InstProcessCallTreeFromRoots(pfn, &roots, stage);
1083 return modified;
1084 }
1085
InitializeInstrument()1086 void InstrumentPass::InitializeInstrument() {
1087 output_buffer_id_ = 0;
1088 output_buffer_ptr_id_ = 0;
1089 input_buffer_ptr_id_ = 0;
1090 input_buffer_id_ = 0;
1091 float_id_ = 0;
1092 v4float_id_ = 0;
1093 uint_id_ = 0;
1094 uint64_id_ = 0;
1095 uint8_id_ = 0;
1096 v4uint_id_ = 0;
1097 v3uint_id_ = 0;
1098 bool_id_ = 0;
1099 void_id_ = 0;
1100 storage_buffer_ext_defined_ = false;
1101 uint32_rarr_ty_ = nullptr;
1102 uint64_rarr_ty_ = nullptr;
1103
1104 // clear collections
1105 id2function_.clear();
1106 id2block_.clear();
1107
1108 // clear maps
1109 param2input_func_id_.clear();
1110 param2output_func_id_.clear();
1111
1112 // Initialize function and block maps.
1113 for (auto& fn : *get_module()) {
1114 id2function_[fn.result_id()] = &fn;
1115 for (auto& blk : fn) {
1116 id2block_[blk.id()] = &blk;
1117 }
1118 }
1119
1120 // Remember original instruction offsets
1121 uint32_t module_offset = 0;
1122 Module* module = get_module();
1123 for (auto& i : context()->capabilities()) {
1124 (void)i;
1125 ++module_offset;
1126 }
1127 for (auto& i : module->extensions()) {
1128 (void)i;
1129 ++module_offset;
1130 }
1131 for (auto& i : module->ext_inst_imports()) {
1132 (void)i;
1133 ++module_offset;
1134 }
1135 ++module_offset; // memory_model
1136 for (auto& i : module->entry_points()) {
1137 (void)i;
1138 ++module_offset;
1139 }
1140 for (auto& i : module->execution_modes()) {
1141 (void)i;
1142 ++module_offset;
1143 }
1144 for (auto& i : module->debugs1()) {
1145 (void)i;
1146 ++module_offset;
1147 }
1148 for (auto& i : module->debugs2()) {
1149 (void)i;
1150 ++module_offset;
1151 }
1152 for (auto& i : module->debugs3()) {
1153 (void)i;
1154 ++module_offset;
1155 }
1156 for (auto& i : module->ext_inst_debuginfo()) {
1157 (void)i;
1158 ++module_offset;
1159 }
1160 for (auto& i : module->annotations()) {
1161 (void)i;
1162 ++module_offset;
1163 }
1164 for (auto& i : module->types_values()) {
1165 module_offset += 1;
1166 module_offset += static_cast<uint32_t>(i.dbg_line_insts().size());
1167 }
1168
1169 auto curr_fn = get_module()->begin();
1170 for (; curr_fn != get_module()->end(); ++curr_fn) {
1171 // Count function instruction
1172 module_offset += 1;
1173 curr_fn->ForEachParam(
1174 [&module_offset](const Instruction*) { module_offset += 1; }, true);
1175 for (auto& blk : *curr_fn) {
1176 // Count label
1177 module_offset += 1;
1178 for (auto& inst : blk) {
1179 module_offset += static_cast<uint32_t>(inst.dbg_line_insts().size());
1180 uid2offset_[inst.unique_id()] = module_offset;
1181 module_offset += 1;
1182 }
1183 }
1184 // Count function end instruction
1185 module_offset += 1;
1186 }
1187 }
1188
1189 } // namespace opt
1190 } // namespace spvtools
1191