• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_UTIL_PARSE_NUMBER_H_
16 #define SOURCE_UTIL_PARSE_NUMBER_H_
17 
18 #include <functional>
19 #include <string>
20 #include <tuple>
21 
22 #include "source/util/hex_float.h"
23 #include "spirv-tools/libspirv.h"
24 
25 namespace spvtools {
26 namespace utils {
27 
28 // A struct to hold the expected type information for the number in text to be
29 // parsed.
30 struct NumberType {
31   uint32_t bitwidth;
32   // SPV_NUMBER_NONE means the type is unknown and is invalid to be used with
33   // ParseAndEncode{|Integer|Floating}Number().
34   spv_number_kind_t kind;
35 };
36 
37 // Returns true if the type is a scalar integer type.
IsIntegral(const NumberType & type)38 inline bool IsIntegral(const NumberType& type) {
39   return type.kind == SPV_NUMBER_UNSIGNED_INT ||
40          type.kind == SPV_NUMBER_SIGNED_INT;
41 }
42 
43 // Returns true if the type is a scalar floating point type.
IsFloating(const NumberType & type)44 inline bool IsFloating(const NumberType& type) {
45   return type.kind == SPV_NUMBER_FLOATING;
46 }
47 
48 // Returns true if the type is a signed value.
IsSigned(const NumberType & type)49 inline bool IsSigned(const NumberType& type) {
50   return type.kind == SPV_NUMBER_FLOATING || type.kind == SPV_NUMBER_SIGNED_INT;
51 }
52 
53 // Returns true if the type is unknown.
IsUnknown(const NumberType & type)54 inline bool IsUnknown(const NumberType& type) {
55   return type.kind == SPV_NUMBER_NONE;
56 }
57 
58 // Returns the number of bits in the type. This is only valid for integer and
59 // floating types.
AssumedBitWidth(const NumberType & type)60 inline int AssumedBitWidth(const NumberType& type) {
61   switch (type.kind) {
62     case SPV_NUMBER_SIGNED_INT:
63     case SPV_NUMBER_UNSIGNED_INT:
64     case SPV_NUMBER_FLOATING:
65       return type.bitwidth;
66     default:
67       break;
68   }
69   // We don't care about this case.
70   return 0;
71 }
72 
73 // A templated class with a static member function Clamp, where Clamp sets a
74 // referenced value of type T to 0 if T is an unsigned integer type, and
75 // returns true if it modified the referenced value.
76 template <typename T, typename = void>
77 class ClampToZeroIfUnsignedType {
78  public:
79   // The default specialization does not clamp the value.
Clamp(T *)80   static bool Clamp(T*) { return false; }
81 };
82 
83 // The specialization of ClampToZeroIfUnsignedType for unsigned integer types.
84 template <typename T>
85 class ClampToZeroIfUnsignedType<
86     T, typename std::enable_if<std::is_unsigned<T>::value>::type> {
87  public:
Clamp(T * value_pointer)88   static bool Clamp(T* value_pointer) {
89     if (*value_pointer) {
90       *value_pointer = 0;
91       return true;
92     }
93     return false;
94   }
95 };
96 
97 // Returns true if the given value fits within the target scalar integral type.
98 // The target type may have an unusual bit width. If the value was originally
99 // specified as a hexadecimal number, then the overflow bits should be zero.
100 // If it was hex and the target type is signed, then return the sign-extended
101 // value through the updated_value_for_hex pointer argument. On failure,
102 // returns false.
103 template <typename T>
CheckRangeAndIfHexThenSignExtend(T value,const NumberType & type,bool is_hex,T * updated_value_for_hex)104 bool CheckRangeAndIfHexThenSignExtend(T value, const NumberType& type,
105                                       bool is_hex, T* updated_value_for_hex) {
106   // The encoded result has three regions of bits that are of interest, from
107   // least to most significant:
108   //   - magnitude bits, where the magnitude of the number would be stored if
109   //     we were using a signed-magnitude representation.
110   //   - an optional sign bit
111   //   - overflow bits, up to bit 63 of a 64-bit number
112   // For example:
113   //   Type                Overflow      Sign       Magnitude
114   //   ---------------     --------      ----       ---------
115   //   unsigned 8 bit      8-63          n/a        0-7
116   //   signed 8 bit        8-63          7          0-6
117   //   unsigned 16 bit     16-63         n/a        0-15
118   //   signed 16 bit       16-63         15         0-14
119 
120   // We'll use masks to define the three regions.
121   // At first we'll assume the number is unsigned.
122   const uint32_t bit_width = AssumedBitWidth(type);
123   uint64_t magnitude_mask =
124       (bit_width == 64) ? -1 : ((uint64_t(1) << bit_width) - 1);
125   uint64_t sign_mask = 0;
126   uint64_t overflow_mask = ~magnitude_mask;
127 
128   if (value < 0 || IsSigned(type)) {
129     // Accommodate the sign bit.
130     magnitude_mask >>= 1;
131     sign_mask = magnitude_mask + 1;
132   }
133 
134   bool failed = false;
135   if (value < 0) {
136     // The top bits must all be 1 for a negative signed value.
137     failed = ((value & overflow_mask) != overflow_mask) ||
138              ((value & sign_mask) != sign_mask);
139   } else {
140     if (is_hex) {
141       // Hex values are a bit special. They decode as unsigned values, but may
142       // represent a negative number. In this case, the overflow bits should
143       // be zero.
144       failed = (value & overflow_mask) != 0;
145     } else {
146       const uint64_t value_as_u64 = static_cast<uint64_t>(value);
147       // Check overflow in the ordinary case.
148       failed = (value_as_u64 & magnitude_mask) != value_as_u64;
149     }
150   }
151 
152   if (failed) {
153     return false;
154   }
155 
156   // Sign extend hex the number.
157   if (is_hex && (value & sign_mask))
158     *updated_value_for_hex = (value | overflow_mask);
159 
160   return true;
161 }
162 
163 // Parses a numeric value of a given type from the given text.  The number
164 // should take up the entire string, and should be within bounds for the target
165 // type. On success, returns true and populates the object referenced by
166 // value_pointer. On failure, returns false.
167 template <typename T>
ParseNumber(const char * text,T * value_pointer)168 bool ParseNumber(const char* text, T* value_pointer) {
169   // C++11 doesn't define std::istringstream(int8_t&), so calling this method
170   // with a single-byte type leads to implementation-defined behaviour.
171   // Similarly for uint8_t.
172   static_assert(sizeof(T) > 1,
173                 "Single-byte types are not supported in this parse method");
174 
175   if (!text) return false;
176   std::istringstream text_stream(text);
177   // Allow both decimal and hex input for integers.
178   // It also allows octal input, but we don't care about that case.
179   text_stream >> std::setbase(0);
180   text_stream >> *value_pointer;
181 
182   // We should have read something.
183   bool ok = (text[0] != 0) && !text_stream.bad();
184   // It should have been all the text.
185   ok = ok && text_stream.eof();
186   // It should have been in range.
187   ok = ok && !text_stream.fail();
188 
189   // Work around a bug in the GNU C++11 library. It will happily parse
190   // "-1" for uint16_t as 65535.
191   if (ok && text[0] == '-')
192     ok = !ClampToZeroIfUnsignedType<T>::Clamp(value_pointer);
193 
194   return ok;
195 }
196 
197 // Enum to indicate the parsing and encoding status.
198 enum class EncodeNumberStatus {
199   kSuccess = 0,
200   // Unsupported bit width etc.
201   kUnsupported,
202   // Expected type (NumberType) is not a scalar int or float, or putting a
203   // negative number in an unsigned literal.
204   kInvalidUsage,
205   // Number value does not fit the bit width of the expected type etc.
206   kInvalidText,
207 };
208 
209 // Parses an integer value of a given |type| from the given |text| and encodes
210 // the number by the given |emit| function. On success, returns
211 // EncodeNumberStatus::kSuccess and the parsed number will be consumed by the
212 // given |emit| function word by word (least significant word first). On
213 // failure, this function returns the error code of the encoding status and
214 // |emit| function will not be called. If the string pointer |error_msg| is not
215 // a nullptr, it will be overwritten with error messages in case of failure. In
216 // case of success, |error_msg| will not be touched. Integers up to 64 bits are
217 // supported.
218 EncodeNumberStatus ParseAndEncodeIntegerNumber(
219     const char* text, const NumberType& type,
220     std::function<void(uint32_t)> emit, std::string* error_msg);
221 
222 // Parses a floating point value of a given |type| from the given |text| and
223 // encodes the number by the given |emit| function. On success, returns
224 // EncodeNumberStatus::kSuccess and the parsed number will be consumed by the
225 // given |emit| function word by word (least significant word first). On
226 // failure, this function returns the error code of the encoding status and
227 // |emit| function will not be called. If the string pointer |error_msg| is not
228 // a nullptr, it will be overwritten with error messages in case of failure. In
229 // case of success, |error_msg| will not be touched. Only 16, 32 and 64 bit
230 // floating point numbers are supported.
231 EncodeNumberStatus ParseAndEncodeFloatingPointNumber(
232     const char* text, const NumberType& type,
233     std::function<void(uint32_t)> emit, std::string* error_msg);
234 
235 // Parses an integer or floating point number of a given |type| from the given
236 // |text| and encodes the number by the given |emit| function. On success,
237 // returns EncodeNumberStatus::kSuccess and the parsed number will be consumed
238 // by the given |emit| function word by word (least significant word first). On
239 // failure, this function returns the error code of the encoding status and
240 // |emit| function will not be called. If the string pointer |error_msg| is not
241 // a nullptr, it will be overwritten with error messages in case of failure. In
242 // case of success, |error_msg| will not be touched. Integers up to 64 bits
243 // and 16/32/64 bit floating point values are supported.
244 EncodeNumberStatus ParseAndEncodeNumber(const char* text,
245                                         const NumberType& type,
246                                         std::function<void(uint32_t)> emit,
247                                         std::string* error_msg);
248 
249 }  // namespace utils
250 }  // namespace spvtools
251 
252 #endif  // SOURCE_UTIL_PARSE_NUMBER_H_
253