• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2022 The Khronos Group Inc.
6  * Copyright (c) 2022 NVIDIA Corporation.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief Ray Query Opacity Micromap Tests
23  *//*--------------------------------------------------------------------*/
24 
25 #include "vktRayQueryOpacityMicromapTests.hpp"
26 #include "vktTestCase.hpp"
27 
28 #include "vkRayTracingUtil.hpp"
29 #include "vkObjUtil.hpp"
30 #include "vkCmdUtil.hpp"
31 #include "vkBufferWithMemory.hpp"
32 #include "vkBuilderUtil.hpp"
33 #include "vkTypeUtil.hpp"
34 #include "vkBarrierUtil.hpp"
35 #include "vktTestGroupUtil.hpp"
36 
37 #include "deUniquePtr.hpp"
38 #include "deRandom.hpp"
39 
40 #include <sstream>
41 #include <vector>
42 #include <iostream>
43 
44 namespace vkt
45 {
46 namespace RayQuery
47 {
48 
49 namespace
50 {
51 
52 using namespace vk;
53 
54 enum ShaderSourcePipeline
55 {
56 	SSP_GRAPHICS_PIPELINE,
57 	SSP_COMPUTE_PIPELINE,
58 	SSP_RAY_TRACING_PIPELINE
59 };
60 
61 enum ShaderSourceType
62 {
63 	SST_VERTEX_SHADER,
64 	SST_COMPUTE_SHADER,
65 	SST_RAY_GENERATION_SHADER,
66 };
67 
68 enum TestFlagBits
69 {
70 	TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE				= 1U << 0,
71 	TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG				= 1U << 1,
72 	TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE	= 1U << 2,
73 	TEST_FLAG_BIT_FORCE_2_STATE_INSTANCE			= 1U << 3,
74 	TEST_FLAG_BIT_FORCE_2_STATE_RAY_FLAG			= 1U << 4,
75 	TEST_FLAG_BIT_LAST								= 1U << 5,
76 };
77 
78 std::vector<std::string> testFlagBitNames =
79 {
80 	"force_opaque_instance",
81 	"force_opaque_ray_flag",
82 	"disable_opacity_micromap_instance",
83 	"force_2_state_instance",
84 	"force_2_state_ray_flag",
85 };
86 
87 enum CopyType {
88 	CT_NONE,
89 	CT_FIRST_ACTIVE,
90 	CT_CLONE = CT_FIRST_ACTIVE,
91 	CT_COMPACT,
92 	CT_NUM_COPY_TYPES,
93 };
94 
95 std::vector<std::string> copyTypeNames
96 {
97 	"None",
98 	"Clone",
99 	"Compact",
100 };
101 
102 struct TestParams
103 {
104 	ShaderSourceType		shaderSourceType;
105 	ShaderSourcePipeline	shaderSourcePipeline;
106 	bool					useSpecialIndex;
107 	deUint32				testFlagMask;
108 	deUint32				subdivisionLevel; // Must be 0 for useSpecialIndex
109 	deUint32				mode; // Special index value if useSpecialIndex, 2 or 4 for number of states otherwise
110 	deUint32				seed;
111 	CopyType				copyType;
112 };
113 
114 static constexpr deUint32 kNumThreadsAtOnce = 1024;
115 
116 
117 class OpacityMicromapCase : public TestCase
118 {
119 public:
120 							OpacityMicromapCase		(tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TestParams& params);
~OpacityMicromapCase(void)121 	virtual					~OpacityMicromapCase	(void) {}
122 
123 	virtual void			checkSupport				(Context& context) const;
124 	virtual void			initPrograms				(vk::SourceCollections& programCollection) const;
125 	virtual TestInstance*	createInstance				(Context& context) const;
126 
127 protected:
128 	TestParams				m_params;
129 };
130 
131 class OpacityMicromapInstance : public TestInstance
132 {
133 public:
134 								OpacityMicromapInstance		(Context& context, const TestParams& params);
~OpacityMicromapInstance(void)135 	virtual						~OpacityMicromapInstance	(void) {}
136 
137 	virtual tcu::TestStatus		iterate							(void);
138 
139 protected:
140 	TestParams					m_params;
141 };
142 
OpacityMicromapCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const TestParams & params)143 OpacityMicromapCase::OpacityMicromapCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TestParams& params)
144 	: TestCase	(testCtx, name, description)
145 	, m_params	(params)
146 {}
147 
checkSupport(Context & context) const148 void OpacityMicromapCase::checkSupport (Context& context) const
149 {
150 	context.requireDeviceFunctionality("VK_KHR_ray_query");
151 	context.requireDeviceFunctionality("VK_KHR_acceleration_structure");
152 	context.requireDeviceFunctionality("VK_EXT_opacity_micromap");
153 
154 	const VkPhysicalDeviceRayQueryFeaturesKHR& rayQueryFeaturesKHR = context.getRayQueryFeatures();
155 	if (rayQueryFeaturesKHR.rayQuery == DE_FALSE)
156 		TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayQueryFeaturesKHR.rayQuery");
157 
158 	const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures();
159 	if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE)
160 		TCU_THROW(TestError, "VK_KHR_ray_query requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure");
161 
162 	const VkPhysicalDeviceOpacityMicromapFeaturesEXT& opacityMicromapFeaturesEXT = context.getOpacityMicromapFeaturesEXT();
163 	if (opacityMicromapFeaturesEXT.micromap == DE_FALSE)
164 		TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceOpacityMicromapFeaturesEXT.micromap");
165 
166 	if (m_params.shaderSourceType == SST_RAY_GENERATION_SHADER)
167 	{
168 		context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline");
169 
170 		const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures();
171 
172 		if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE)
173 			TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline");
174 	}
175 
176 	switch (m_params.shaderSourceType)
177 	{
178 	case SST_VERTEX_SHADER:
179 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_VERTEX_PIPELINE_STORES_AND_ATOMICS);
180 		break;
181 	default:
182 		break;
183 	}
184 
185 	const VkPhysicalDeviceOpacityMicromapPropertiesEXT& opacityMicromapPropertiesEXT = context.getOpacityMicromapPropertiesEXT();
186 
187 	if (!m_params.useSpecialIndex)
188 	{
189 		switch (m_params.mode)
190 		{
191 		case 2:
192 			if (m_params.subdivisionLevel > opacityMicromapPropertiesEXT.maxOpacity2StateSubdivisionLevel)
193 				TCU_THROW(NotSupportedError, "Requires a higher supported 2 state subdivision level");
194 			break;
195 		case 4:
196 			if (m_params.subdivisionLevel > opacityMicromapPropertiesEXT.maxOpacity4StateSubdivisionLevel)
197 				TCU_THROW(NotSupportedError, "Requires a higher supported 4 state subdivision level");
198 			break;
199 		default:
200 			DE_ASSERT(false);
201 			break;
202 		}
203 	}
204 }
205 
levelToSubtriangles(deUint32 level)206 static deUint32 levelToSubtriangles(deUint32 level)
207 {
208 	return 1 << (2 * level);
209 }
210 
initPrograms(vk::SourceCollections & programCollection) const211 void OpacityMicromapCase::initPrograms (vk::SourceCollections& programCollection) const
212 {
213 	const vk::ShaderBuildOptions buildOptions (programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true);
214 
215 	deUint32 numRays = levelToSubtriangles(m_params.subdivisionLevel);
216 
217 	std::string flagsString = (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG) ? "gl_RayFlagsOpaqueEXT" : "gl_RayFlagsNoneEXT";
218 
219 	if (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_2_STATE_RAY_FLAG)
220 		flagsString += " | gl_RayFlagsForceOpacityMicromap2StateEXT";
221 
222 	std::ostringstream sharedHeader;
223 	sharedHeader
224 		<< "#version 460 core\n"
225 		<< "#extension GL_EXT_ray_query : require\n"
226 		<< "#extension GL_EXT_opacity_micromap : require\n"
227 		<< "\n"
228 		<< "layout(set=0, binding=0) uniform accelerationStructureEXT topLevelAS;\n"
229 		<< "layout(set=0, binding=1, std430) buffer RayOrigins {\n"
230 		<< "  vec4 values[" << numRays << "];\n"
231 		<< "} origins;\n"
232 		<< "layout(set=0, binding=2, std430) buffer OutputModes {\n"
233 		<< "  uint values[" << numRays << "];\n"
234 		<< "} modes;\n";
235 
236 	std::ostringstream mainLoop;
237 	mainLoop
238 		<< "  while (index < " << numRays << ") {\n"
239 		<< "    const uint  cullMask  = 0xFF;\n"
240 		<< "    const vec3  origin    = origins.values[index].xyz;\n"
241 		<< "    const vec3  direction = vec3(0.0, 0.0, -1.0);\n"
242 		<< "    const float tMin      = 0.0f;\n"
243 		<< "    const float tMax      = 2.0f;\n"
244 		<< "    uint        outputVal = 0;\n" // 0 for miss, 1 for non-opaque, 2 for opaque
245 		<< "    rayQueryEXT rq;\n"
246 		<< "    rayQueryInitializeEXT(rq, topLevelAS, " << flagsString << ", cullMask, origin, tMin, direction, tMax);\n"
247 		<< "    while (rayQueryProceedEXT(rq)) {\n"
248 		<< "      if (rayQueryGetIntersectionTypeEXT(rq, false) == gl_RayQueryCandidateIntersectionTriangleEXT) {\n"
249 		<< "        outputVal = 1;\n"
250 		<< "      }\n"
251 		<< "    }\n"
252 		<< "    if (rayQueryGetIntersectionTypeEXT(rq, true) == gl_RayQueryCommittedIntersectionTriangleEXT) {\n"
253 		<< "      outputVal = 2;\n"
254 		<< "    }\n"
255 		<< "    modes.values[index] = outputVal;\n"
256 		<< "    index += " << kNumThreadsAtOnce << ";\n"
257 		<< "  }\n";
258 
259 	if (m_params.shaderSourceType == SST_VERTEX_SHADER) {
260 		std::ostringstream vert;
261 		vert
262 			<< sharedHeader.str()
263 			<< "void main()\n"
264 			<< "{\n"
265 			<< "  uint index             = gl_VertexIndex.x;\n"
266 			<< mainLoop.str()
267 			<< "}\n"
268 			;
269 
270 		programCollection.glslSources.add("vert") << glu::VertexSource(vert.str()) << buildOptions;
271 	}
272 	else if (m_params.shaderSourceType == SST_RAY_GENERATION_SHADER)
273 	{
274 		std::ostringstream rgen;
275 		rgen
276 			<< sharedHeader.str()
277 			<< "#extension GL_EXT_ray_tracing : require\n"
278 			<< "void main()\n"
279 			<< "{\n"
280 			<< "  uint index             = gl_LaunchIDEXT.x;\n"
281 			<< mainLoop.str()
282 			<< "}\n"
283 			;
284 
285 		programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(rgen.str())) << buildOptions;
286 	}
287 	else
288 	{
289 		DE_ASSERT(m_params.shaderSourceType == SST_COMPUTE_SHADER);
290 		std::ostringstream comp;
291 		comp
292 			<< sharedHeader.str()
293 			<< "layout(local_size_x=1024, local_size_y=1, local_size_z=1) in;\n"
294 			<< "\n"
295 			<< "void main()\n"
296 			<< "{\n"
297 			<< "  uint index             = gl_LocalInvocationID.x;\n"
298 			<< mainLoop.str()
299 			<< "}\n"
300 			;
301 
302 		programCollection.glslSources.add("comp") << glu::ComputeSource(updateRayTracingGLSL(comp.str())) << buildOptions;
303 	}
304 }
305 
createInstance(Context & context) const306 TestInstance* OpacityMicromapCase::createInstance (Context& context) const
307 {
308 	return new OpacityMicromapInstance(context, m_params);
309 }
310 
OpacityMicromapInstance(Context & context,const TestParams & params)311 OpacityMicromapInstance::OpacityMicromapInstance (Context& context, const TestParams& params)
312 	: TestInstance	(context)
313 	, m_params		(params)
314 {}
315 
calcSubtriangleCentroid(const deUint32 index,const deUint32 subdivisionLevel)316 tcu::Vec2 calcSubtriangleCentroid(const deUint32 index, const deUint32 subdivisionLevel)
317 {
318 	if (subdivisionLevel == 0) {
319 		return tcu::Vec2(1.0f/3.0f, 1.0f/3.0f);
320 	}
321 
322 	deUint32 d = index;
323 
324 	d = ((d >> 1) & 0x22222222u) | ((d << 1) & 0x44444444u) | (d & 0x99999999u);
325 	d = ((d >> 2) & 0x0c0c0c0cu) | ((d << 2) & 0x30303030u) | (d & 0xc3c3c3c3u);
326 	d = ((d >> 4) & 0x00f000f0u) | ((d << 4) & 0x0f000f00u) | (d & 0xf00ff00fu);
327 	d = ((d >> 8) & 0x0000ff00u) | ((d << 8) & 0x00ff0000u) | (d & 0xff0000ffu);
328 
329 	deUint32 f = (d & 0xffffu) | ((d << 16) & ~d);
330 
331 	f ^= (f >> 1) & 0x7fff7fffu;
332 	f ^= (f >> 2) & 0x3fff3fffu;
333 	f ^= (f >> 4) & 0x0fff0fffu;
334 	f ^= (f >> 8) & 0x00ff00ffu;
335 
336 	deUint32 t = (f ^ d) >> 16;
337 
338 	deUint32 iu = ((f & ~t) | (d & ~t) | (~d & ~f & t)) & 0xffffu;
339 	deUint32 iv = ((f >> 16) ^ d) & 0xffffu;
340 	deUint32 iw = ((~f & ~t) | (d & ~t) | (~d & f & t)) & ((1 << subdivisionLevel) - 1);
341 
342 	const float scale = 1.0f / float(1 << subdivisionLevel);
343 
344 	float u = (1.0f / 3.0f) * scale;
345 	float v = (1.0f / 3.0f) * scale;
346 
347 	// we need to only look at "subdivisionLevel" bits
348 	iu = iu & ((1 << subdivisionLevel) - 1);
349 	iv = iv & ((1 << subdivisionLevel) - 1);
350 	iw = iw & ((1 << subdivisionLevel) - 1);
351 
352 	bool upright = (iu & 1) ^ (iv & 1) ^ (iw & 1);
353 	if (!upright)
354 	{
355 		iu = iu + 1;
356 		iv = iv + 1;
357 	}
358 
359 	if (upright)
360 	{
361 		return tcu::Vec2(
362 			u + (float)iu * scale,
363 			v + (float)iv * scale
364 		);
365 	} else
366 	{
367 		return tcu::Vec2(
368 			(float)iu * scale - u,
369 			(float)iv * scale - v
370 		);
371 	}
372 }
373 
makeEmptyRenderPass(const DeviceInterface & vk,const VkDevice device)374 static Move<VkRenderPass> makeEmptyRenderPass(const DeviceInterface& vk,
375 	const VkDevice				device)
376 {
377 	std::vector<VkSubpassDescription>	subpassDescriptions;
378 	std::vector<VkSubpassDependency>	subpassDependencies;
379 
380 	const VkSubpassDescription	description =
381 	{
382 		(VkSubpassDescriptionFlags)0,		//  VkSubpassDescriptionFlags		flags;
383 		VK_PIPELINE_BIND_POINT_GRAPHICS,	//  VkPipelineBindPoint				pipelineBindPoint;
384 		0u,									//  deUint32						inputAttachmentCount;
385 		DE_NULL,							//  const VkAttachmentReference*	pInputAttachments;
386 		0u,									//  deUint32						colorAttachmentCount;
387 		DE_NULL,							//  const VkAttachmentReference*	pColorAttachments;
388 		DE_NULL,							//  const VkAttachmentReference*	pResolveAttachments;
389 		DE_NULL,							//  const VkAttachmentReference*	pDepthStencilAttachment;
390 		0,									//  deUint32						preserveAttachmentCount;
391 		DE_NULL								//  const deUint32*					pPreserveAttachments;
392 	};
393 	subpassDescriptions.push_back(description);
394 
395 	const VkSubpassDependency	dependency =
396 	{
397 		0u,													//  deUint32				srcSubpass;
398 		0u,													//  deUint32				dstSubpass;
399 		VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,				//  VkPipelineStageFlags	srcStageMask;
400 		VK_PIPELINE_STAGE_HOST_BIT,							//  VkPipelineStageFlags	dstStageMask;
401 		VK_ACCESS_SHADER_WRITE_BIT,							//  VkAccessFlags			srcAccessMask;
402 		VK_ACCESS_HOST_READ_BIT,							//  VkAccessFlags			dstAccessMask;
403 		0u													//  VkDependencyFlags		dependencyFlags;
404 	};
405 	subpassDependencies.push_back(dependency);
406 
407 	const VkRenderPassCreateInfo renderPassInfo =
408 	{
409 		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,							//  VkStructureType					sType;
410 		DE_NULL,															//  const void*						pNext;
411 		static_cast<VkRenderPassCreateFlags>(0u),							//  VkRenderPassCreateFlags			flags;
412 		0u,																	//  deUint32						attachmentCount;
413 		DE_NULL,															//  const VkAttachmentDescription*	pAttachments;
414 		static_cast<deUint32>(subpassDescriptions.size()),					//  deUint32						subpassCount;
415 		&subpassDescriptions[0],											//  const VkSubpassDescription*		pSubpasses;
416 		static_cast<deUint32>(subpassDependencies.size()),					//  deUint32						dependencyCount;
417 		subpassDependencies.size() > 0 ? &subpassDependencies[0] : DE_NULL	//  const VkSubpassDependency*		pDependencies;
418 	};
419 
420 	return createRenderPass(vk, device, &renderPassInfo);
421 }
422 
makeGraphicsPipeline(const DeviceInterface & vk,const VkDevice device,const VkPipelineLayout pipelineLayout,const VkRenderPass renderPass,const VkShaderModule vertexModule,const deUint32 subpass)423 Move<VkPipeline> makeGraphicsPipeline(const DeviceInterface& vk,
424 	const VkDevice				device,
425 	const VkPipelineLayout		pipelineLayout,
426 	const VkRenderPass			renderPass,
427 	const VkShaderModule		vertexModule,
428 	const deUint32				subpass)
429 {
430 	VkExtent2D												renderSize { 256, 256 };
431 	VkViewport												viewport = makeViewport(renderSize);
432 	VkRect2D												scissor = makeRect2D(renderSize);
433 
434 	const VkPipelineViewportStateCreateInfo					viewportStateCreateInfo =
435 	{
436 		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,		// VkStructureType                             sType
437 		DE_NULL,													// const void*                                 pNext
438 		(VkPipelineViewportStateCreateFlags)0,						// VkPipelineViewportStateCreateFlags          flags
439 		1u,															// deUint32                                    viewportCount
440 		&viewport,													// const VkViewport*                           pViewports
441 		1u,															// deUint32                                    scissorCount
442 		&scissor													// const VkRect2D*                             pScissors
443 	};
444 
445 	const VkPipelineInputAssemblyStateCreateInfo			inputAssemblyStateCreateInfo =
446 	{
447 		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	// VkStructureType                            sType
448 		DE_NULL,														// const void*                                pNext
449 		0u,																// VkPipelineInputAssemblyStateCreateFlags    flags
450 		VK_PRIMITIVE_TOPOLOGY_POINT_LIST,								// VkPrimitiveTopology                        topology
451 		VK_FALSE														// VkBool32                                   primitiveRestartEnable
452 	};
453 
454 	const VkPipelineVertexInputStateCreateInfo				vertexInputStateCreateInfo =
455 	{
456 		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,									//  VkStructureType									sType
457 		DE_NULL,																					//  const void*										pNext
458 		(VkPipelineVertexInputStateCreateFlags)0,													//  VkPipelineVertexInputStateCreateFlags			flags
459 		0u,																							//  deUint32										vertexBindingDescriptionCount
460 		DE_NULL,																					//  const VkVertexInputBindingDescription*			pVertexBindingDescriptions
461 		0u,																							//  deUint32										vertexAttributeDescriptionCount
462 		DE_NULL,																					//  const VkVertexInputAttributeDescription*		pVertexAttributeDescriptions
463 	};
464 
465 	const VkPipelineRasterizationStateCreateInfo			rasterizationStateCreateInfo =
466 	{
467 		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//  VkStructureType							sType
468 		DE_NULL,													//  const void*								pNext
469 		0u,															//  VkPipelineRasterizationStateCreateFlags	flags
470 		VK_FALSE,													//  VkBool32								depthClampEnable
471 		VK_TRUE,													//  VkBool32								rasterizerDiscardEnable
472 		VK_POLYGON_MODE_FILL,										//  VkPolygonMode							polygonMode
473 		VK_CULL_MODE_NONE,											//  VkCullModeFlags							cullMode
474 		VK_FRONT_FACE_COUNTER_CLOCKWISE,							//  VkFrontFace								frontFace
475 		VK_FALSE,													//  VkBool32								depthBiasEnable
476 		0.0f,														//  float									depthBiasConstantFactor
477 		0.0f,														//  float									depthBiasClamp
478 		0.0f,														//  float									depthBiasSlopeFactor
479 		1.0f														//  float									lineWidth
480 	};
481 
482 	return makeGraphicsPipeline(vk,									// const DeviceInterface&							vk
483 		device,								// const VkDevice									device
484 		pipelineLayout,						// const VkPipelineLayout							pipelineLayout
485 		vertexModule,						// const VkShaderModule								vertexShaderModule
486 		DE_NULL,							// const VkShaderModule								tessellationControlModule
487 		DE_NULL,							// const VkShaderModule								tessellationEvalModule
488 		DE_NULL,							// const VkShaderModule								geometryShaderModule
489 		DE_NULL,							// const VkShaderModule								fragmentShaderModule
490 		renderPass,							// const VkRenderPass								renderPass
491 		subpass,							// const deUint32									subpass
492 		&vertexInputStateCreateInfo,		// const VkPipelineVertexInputStateCreateInfo*		vertexInputStateCreateInfo
493 		&inputAssemblyStateCreateInfo,		// const VkPipelineInputAssemblyStateCreateInfo*	inputAssemblyStateCreateInfo
494 		DE_NULL,							// const VkPipelineTessellationStateCreateInfo*		tessStateCreateInfo
495 		&viewportStateCreateInfo,			// const VkPipelineViewportStateCreateInfo*			viewportStateCreateInfo
496 		&rasterizationStateCreateInfo);	// const VkPipelineRasterizationStateCreateInfo*	rasterizationStateCreateInfo
497 }
498 
iterate(void)499 tcu::TestStatus OpacityMicromapInstance::iterate (void)
500 {
501 	const auto&	vkd		= m_context.getDeviceInterface();
502 	const auto	device	= m_context.getDevice();
503 	auto&		alloc	= m_context.getDefaultAllocator();
504 	const auto	qIndex	= m_context.getUniversalQueueFamilyIndex();
505 	const auto	queue	= m_context.getUniversalQueue();
506 
507 	// Command pool and buffer.
508 	const auto cmdPool		= makeCommandPool(vkd, device, qIndex);
509 	const auto cmdBufferPtr	= allocateCommandBuffer(vkd, device, cmdPool.get(), VK_COMMAND_BUFFER_LEVEL_PRIMARY);
510 	const auto cmdBuffer	= cmdBufferPtr.get();
511 
512 	beginCommandBuffer(vkd, cmdBuffer);
513 
514 	// Build acceleration structures.
515 	auto topLevelAS		= makeTopLevelAccelerationStructure();
516 	auto bottomLevelAS	= makeBottomLevelAccelerationStructure();
517 
518 	deUint32 numSubtriangles = levelToSubtriangles(m_params.subdivisionLevel);
519 	deUint32 opacityMicromapBytes = (m_params.mode == 2) ? (numSubtriangles + 3) / 4 : (numSubtriangles + 1) / 2;
520 
521 	// Generate random micromap data
522 	std::vector<deUint8> opacityMicromapData;
523 
524 	de::Random rnd(m_params.seed);
525 
526 	while (opacityMicromapData.size() < opacityMicromapBytes) {
527 		opacityMicromapData.push_back(rnd.getUint8());
528 	}
529 
530 	// Build a micromap (ignore infrastructure for now)
531 	// Create the buffer with the mask and index data
532 	// Allocate a fairly conservative bound for now
533 	const auto micromapDataBufferSize = static_cast<VkDeviceSize>(1024 + opacityMicromapBytes);
534 	const auto micromapDataBufferCreateInfo = makeBufferCreateInfo(micromapDataBufferSize,
535 		VK_BUFFER_USAGE_MICROMAP_BUILD_INPUT_READ_ONLY_BIT_EXT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
536 	BufferWithMemory micromapDataBuffer(vkd, device, alloc, micromapDataBufferCreateInfo, MemoryRequirement::HostVisible | MemoryRequirement::DeviceAddress);
537 	auto& micromapDataBufferAlloc = micromapDataBuffer.getAllocation();
538 	void* micromapDataBufferData = micromapDataBufferAlloc.getHostPtr();
539 
540 	const int TriangleOffset = 0;
541 	const int IndexOffset = 256;
542 	const int DataOffset = 512;
543 
544 	// Fill out VkMicromapUsageEXT with size information
545 	VkMicromapUsageEXT mmUsage = { };
546 	mmUsage.count = 1;
547 	mmUsage.subdivisionLevel = m_params.subdivisionLevel;
548 	mmUsage.format = m_params.mode == 2 ? VK_OPACITY_MICROMAP_FORMAT_2_STATE_EXT : VK_OPACITY_MICROMAP_FORMAT_4_STATE_EXT;
549 
550 	{
551 		deUint8 *data = static_cast<deUint8*>(micromapDataBufferData);
552 
553 		deMemset(data, 0, size_t(micromapDataBufferCreateInfo.size));
554 
555 		DE_STATIC_ASSERT(sizeof(VkMicromapTriangleEXT) == 8);
556 
557 		// Triangle information
558 		VkMicromapTriangleEXT* tri = (VkMicromapTriangleEXT*)(&data[TriangleOffset]);
559 		tri->dataOffset = 0;
560 		tri->subdivisionLevel = uint16_t(mmUsage.subdivisionLevel);
561 		tri->format = uint16_t(mmUsage.format);
562 
563 		// Micromap data
564 		{
565 			for (size_t i = 0; i < opacityMicromapData.size(); i++) {
566 				data[DataOffset + i] = opacityMicromapData[i];
567 			}
568 		}
569 
570 		// Index information
571 		*((deUint32*)&data[IndexOffset]) = m_params.useSpecialIndex ? m_params.mode : 0;
572 	}
573 
574 	// Query the size from the build info
575 	VkMicromapBuildInfoEXT mmBuildInfo = {
576 		VK_STRUCTURE_TYPE_MICROMAP_BUILD_INFO_EXT,	// VkStructureType						sType;
577 		DE_NULL,									// const void*							pNext;
578 		VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT,		// VkMicromapTypeEXT					type;
579 		0,											// VkBuildMicromapFlagsEXT				flags;
580 		VK_BUILD_MICROMAP_MODE_BUILD_EXT,			// VkBuildMicromapModeEXT				mode;
581 		DE_NULL,									// VkMicromapEXT						dstMicromap;
582 		1,											// uint32_t							usageCountsCount;
583 		&mmUsage,									// const VkMicromapUsageEXT*			pUsageCounts;
584 		DE_NULL,									// const VkMicromapUsageEXT* const*	ppUsageCounts;
585 		makeDeviceOrHostAddressConstKHR(DE_NULL),	// VkDeviceOrHostAddressConstKHR		data;
586 		makeDeviceOrHostAddressKHR(DE_NULL),		// VkDeviceOrHostAddressKHR			scratchData;
587 		makeDeviceOrHostAddressConstKHR(DE_NULL),	// VkDeviceOrHostAddressConstKHR		triangleArray;
588 		0,											// VkDeviceSize						triangleArrayStride;
589 	};
590 
591 	VkMicromapBuildSizesInfoEXT sizeInfo = {
592 		VK_STRUCTURE_TYPE_MICROMAP_BUILD_SIZES_INFO_EXT,	// VkStructureType	sType;
593 		DE_NULL,											// const void* pNext;
594 		0,													// VkDeviceSize	micromapSize;
595 		0,													// VkDeviceSize	buildScratchSize;
596 		DE_FALSE,											// VkBool32		discardable;
597 	};
598 
599 	vkd.getMicromapBuildSizesEXT(device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &mmBuildInfo, &sizeInfo);
600 
601 	// Create the backing and scratch storage
602 	const auto micromapBackingBufferCreateInfo = makeBufferCreateInfo(sizeInfo.micromapSize,
603 		VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
604 	BufferWithMemory micromapBackingBuffer(vkd, device, alloc, micromapBackingBufferCreateInfo, MemoryRequirement::Local | MemoryRequirement::DeviceAddress);
605 
606 	const auto micromapScratchBufferCreateInfo = makeBufferCreateInfo(sizeInfo.buildScratchSize,
607 		VK_BUFFER_USAGE_MICROMAP_STORAGE_BIT_EXT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
608 	BufferWithMemory micromapScratchBuffer(vkd, device, alloc, micromapScratchBufferCreateInfo, MemoryRequirement::Local | MemoryRequirement::DeviceAddress);
609 
610 	de::MovePtr<BufferWithMemory> copyMicromapBackingBuffer;
611 
612 	// Create the micromap itself
613 	VkMicromapCreateInfoEXT maCreateInfo = {
614 		VK_STRUCTURE_TYPE_MICROMAP_CREATE_INFO_EXT,	  // VkStructureType				sType;
615 		DE_NULL,									  // const void* pNext;
616 		0,											  // VkMicromapCreateFlagsEXT	createFlags;
617 		micromapBackingBuffer.get(),				  // VkBuffer					buffer;
618 		0,											  // VkDeviceSize				offset;
619 		sizeInfo.micromapSize,						  // VkDeviceSize				size;
620 		VK_MICROMAP_TYPE_OPACITY_MICROMAP_EXT,		  // VkMicromapTypeEXT			type;
621 		0ull										  // VkDeviceAddress				deviceAddress;
622 	};
623 
624 	VkMicromapEXT micromap, origMicromap;
625 
626 	VK_CHECK(vkd.createMicromapEXT(device, &maCreateInfo, nullptr, &micromap));
627 
628 	// Do the build
629 	mmBuildInfo.dstMicromap = micromap;
630 	mmBuildInfo.data = makeDeviceOrHostAddressConstKHR(vkd, device, micromapDataBuffer.get(), DataOffset);
631 	mmBuildInfo.triangleArray = makeDeviceOrHostAddressConstKHR(vkd, device, micromapDataBuffer.get(), TriangleOffset);
632 	mmBuildInfo.scratchData = makeDeviceOrHostAddressKHR(vkd, device, micromapScratchBuffer.get(), 0);
633 
634 	vkd.cmdBuildMicromapsEXT(cmdBuffer, 1, &mmBuildInfo);
635 
636 	{
637 		VkMemoryBarrier2 memoryBarrier = { VK_STRUCTURE_TYPE_MEMORY_BARRIER_2, NULL,
638 			VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT,
639 			VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_ACCESS_2_MICROMAP_READ_BIT_EXT };
640 		VkDependencyInfoKHR dependencyInfo = {
641 			VK_STRUCTURE_TYPE_DEPENDENCY_INFO_KHR,		// VkStructureType						sType;
642 			DE_NULL,									// const void*							pNext;
643 			0u,											// VkDependencyFlags					dependencyFlags;
644 			1u,											// uint32_t							memoryBarrierCount;
645 			&memoryBarrier,								// const VkMemoryBarrier2KHR*			pMemoryBarriers;
646 			0u,											// uint32_t							bufferMemoryBarrierCount;
647 			DE_NULL,									// const VkBufferMemoryBarrier2KHR*	pBufferMemoryBarriers;
648 			0u,											// uint32_t							imageMemoryBarrierCount;
649 			DE_NULL,									// const VkImageMemoryBarrier2KHR*		pImageMemoryBarriers;
650 		};
651 
652 		vkd.cmdPipelineBarrier2(cmdBuffer, &dependencyInfo);
653 	}
654 
655 	if (m_params.copyType != CT_NONE) {
656 		copyMicromapBackingBuffer = de::MovePtr<BufferWithMemory>(new BufferWithMemory(
657 			vkd, device, alloc, micromapBackingBufferCreateInfo, MemoryRequirement::Local));
658 
659 		origMicromap = micromap;
660 
661 		maCreateInfo.buffer = copyMicromapBackingBuffer->get();
662 
663 		VK_CHECK(vkd.createMicromapEXT(device, &maCreateInfo, nullptr, &micromap));
664 
665 		VkCopyMicromapInfoEXT copyMicromapInfo = {
666 			VK_STRUCTURE_TYPE_COPY_MICROMAP_INFO_EXT,		 // VkStructureType			sType;
667 			DE_NULL,										 // const void*				pNext;
668 			origMicromap,									 // VkMicromapEXT			src;
669 			micromap,										 // VkMicromapEXT			dst;
670 			VK_COPY_MICROMAP_MODE_CLONE_EXT					 // VkCopyMicromapModeEXT	mode;
671 		};
672 
673 		vkd.cmdCopyMicromapEXT(cmdBuffer, &copyMicromapInfo);
674 
675 		{
676 			VkMemoryBarrier2 memoryBarrier = { VK_STRUCTURE_TYPE_MEMORY_BARRIER_2, NULL,
677 				VK_PIPELINE_STAGE_2_MICROMAP_BUILD_BIT_EXT, VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT,
678 				VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_ACCESS_2_MICROMAP_READ_BIT_EXT };
679 			VkDependencyInfoKHR dependencyInfo = {
680 				VK_STRUCTURE_TYPE_DEPENDENCY_INFO_KHR,		// VkStructureType						sType;
681 				DE_NULL,									// const void*							pNext;
682 				0u,											// VkDependencyFlags					dependencyFlags;
683 				1u,											// uint32_t							memoryBarrierCount;
684 				&memoryBarrier,								// const VkMemoryBarrier2KHR*			pMemoryBarriers;
685 				0u,											// uint32_t							bufferMemoryBarrierCount;
686 				DE_NULL,									// const VkBufferMemoryBarrier2KHR*	pBufferMemoryBarriers;
687 				0u,											// uint32_t							imageMemoryBarrierCount;
688 				DE_NULL,									// const VkImageMemoryBarrier2KHR*		pImageMemoryBarriers;
689 			};
690 
691 			dependencyInfo.memoryBarrierCount = 1;
692 			dependencyInfo.pMemoryBarriers = &memoryBarrier;
693 
694 			vkd.cmdPipelineBarrier2(cmdBuffer, &dependencyInfo);
695 		}
696 	}
697 
698 	// Attach the micromap to the geometry
699 	VkAccelerationStructureTrianglesOpacityMicromapEXT opacityGeometryMicromap = {
700 		VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_TRIANGLES_OPACITY_MICROMAP_EXT,				//VkStructureType						sType;
701 		DE_NULL,																				//void*								pNext;
702 		VK_INDEX_TYPE_UINT32,																	//VkIndexType							indexType;
703 		makeDeviceOrHostAddressConstKHR(vkd, device, micromapDataBuffer.get(), IndexOffset),	//VkDeviceOrHostAddressConstKHR		indexBuffer;
704 		0u,																						//VkDeviceSize						indexStride;
705 		0u,																						//uint32_t							baseTriangle;
706 		1u,																						//uint32_t							usageCountsCount;
707 		& mmUsage,																				//const VkMicromapUsageEXT*			pUsageCounts;
708 		DE_NULL,																				//const VkMicromapUsageEXT* const*	ppUsageCounts;
709 		micromap																				//VkMicromapEXT						micromap;
710 	};
711 
712 	const std::vector<tcu::Vec3> triangle =
713 	{
714 		tcu::Vec3(0.0f, 0.0f, 0.0f),
715 		tcu::Vec3(1.0f, 0.0f, 0.0f),
716 		tcu::Vec3(0.0f, 1.0f, 0.0f),
717 	};
718 
719 	bottomLevelAS->addGeometry(triangle, true/*is triangles*/, 0, &opacityGeometryMicromap);
720 	if (m_params.testFlagMask & TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE)
721 		bottomLevelAS->setBuildFlags(VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_DISABLE_OPACITY_MICROMAPS_EXT);
722 	bottomLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc);
723 	de::SharedPtr<BottomLevelAccelerationStructure> blasSharedPtr (bottomLevelAS.release());
724 
725 	VkGeometryInstanceFlagsKHR instanceFlags = 0;
726 
727 	if (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_2_STATE_INSTANCE)
728 		instanceFlags |= VK_GEOMETRY_INSTANCE_FORCE_OPACITY_MICROMAP_2_STATE_EXT;
729 	if (m_params.testFlagMask & TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE)
730 		instanceFlags |= VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR;
731 	if (m_params.testFlagMask & TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE)
732 		instanceFlags |= VK_GEOMETRY_INSTANCE_DISABLE_OPACITY_MICROMAPS_EXT;
733 
734 	topLevelAS->setInstanceCount(1);
735 	topLevelAS->addInstance(blasSharedPtr, identityMatrix3x4, 0, 0xFFu, 0u, instanceFlags);
736 	topLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc);
737 
738 	// One ray per subtriangle for this test
739 	deUint32 numRays = numSubtriangles;
740 
741 	// SSBO buffer for origins.
742 	const auto originsBufferSize		= static_cast<VkDeviceSize>(sizeof(tcu::Vec4) * numRays);
743 	const auto originsBufferInfo		= makeBufferCreateInfo(originsBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
744 	BufferWithMemory originsBuffer	(vkd, device, alloc, originsBufferInfo, MemoryRequirement::HostVisible);
745 	auto& originsBufferAlloc			= originsBuffer.getAllocation();
746 	void* originsBufferData				= originsBufferAlloc.getHostPtr();
747 
748 	std::vector<tcu::Vec4> origins;
749 	std::vector<deUint32> expectedOutputModes;
750 	origins.reserve(numRays);
751 	expectedOutputModes.reserve(numRays);
752 
753 	// Fill in vector of expected outputs
754 	for (deUint32 index = 0; index < numRays; index++) {
755 		deUint32 state = m_params.testFlagMask & (TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE | TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG) ?
756 			VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT : VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT;
757 
758 		if (!(m_params.testFlagMask & TEST_FLAG_BIT_DISABLE_OPACITY_MICROMAP_INSTANCE))
759 		{
760 			if (m_params.useSpecialIndex)
761 			{
762 				state = m_params.mode;
763 			}
764 			else
765 			{
766 				if (m_params.mode == 2) {
767 					deUint8 byte = opacityMicromapData[index / 8];
768 					state = (byte >> (index % 8)) & 0x1;
769 				} else {
770 					DE_ASSERT(m_params.mode == 4);
771 					deUint8 byte = opacityMicromapData[index / 4];
772 					state = (byte >> 2*(index % 4)) & 0x3;
773 				}
774 				// Process in SPECIAL_INDEX number space
775 				state = ~state;
776 			}
777 
778 			if (m_params.testFlagMask & (TEST_FLAG_BIT_FORCE_2_STATE_INSTANCE | TEST_FLAG_BIT_FORCE_2_STATE_RAY_FLAG))
779 			{
780 				if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_TRANSPARENT_EXT))
781 					state =  deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT);
782 				if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT))
783 					state =  deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT);
784 			}
785 		}
786 
787 		if (state != deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT))
788 		{
789 			if (m_params.testFlagMask & (TEST_FLAG_BIT_FORCE_OPAQUE_INSTANCE | TEST_FLAG_BIT_FORCE_OPAQUE_RAY_FLAG))
790 			{
791 				state = deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT);
792 			} else if (state != deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT)) {
793 				state = deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT);
794 			}
795 		}
796 
797 		if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT))
798 		{
799 			expectedOutputModes.push_back(0);
800 		}
801 		else if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT))
802 		{
803 			expectedOutputModes.push_back(1);
804 		}
805 		else if (state == deUint32(VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT))
806 		{
807 			expectedOutputModes.push_back(2);
808 		}
809 		else
810 		{
811 			DE_ASSERT(false);
812 		}
813 	}
814 
815 	for(deUint32 index = 0; index < numRays; index++) {
816 		tcu::Vec2 centroid = calcSubtriangleCentroid(index, m_params.subdivisionLevel);
817 		origins.push_back(tcu::Vec4(centroid.x(), centroid.y(), 1.0, 0.0));
818 	}
819 
820 	const auto				originsBufferSizeSz = static_cast<size_t>(originsBufferSize);
821 	deMemcpy(originsBufferData, origins.data(), originsBufferSizeSz);
822 	flushAlloc(vkd, device, originsBufferAlloc);
823 
824 	// Storage buffer for output modes
825 	const auto outputModesBufferSize		= static_cast<VkDeviceSize>(sizeof(deUint32) * numRays);
826 	const auto outputModesBufferInfo		= makeBufferCreateInfo(outputModesBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
827 	BufferWithMemory outputModesBuffer	(vkd, device, alloc, outputModesBufferInfo, MemoryRequirement::HostVisible);
828 	auto& outputModesBufferAlloc			= outputModesBuffer.getAllocation();
829 	void* outputModesBufferData			= outputModesBufferAlloc.getHostPtr();
830 	deMemset(outputModesBufferData, 0xFF, static_cast<size_t>(outputModesBufferSize));
831 	flushAlloc(vkd, device, outputModesBufferAlloc);
832 
833 	// Descriptor set layout.
834 	DescriptorSetLayoutBuilder dsLayoutBuilder;
835 	dsLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_ALL);
836 	dsLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_ALL);
837 	dsLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_ALL);
838 	const auto setLayout = dsLayoutBuilder.build(vkd, device);
839 
840 	// Pipeline layout.
841 	const auto pipelineLayout = makePipelineLayout(vkd, device, setLayout.get());
842 
843 	// Descriptor pool and set.
844 	DescriptorPoolBuilder poolBuilder;
845 	poolBuilder.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR);
846 	poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
847 	poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
848 	const auto descriptorPool	= poolBuilder.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
849 	const auto descriptorSet	= makeDescriptorSet(vkd, device, descriptorPool.get(), setLayout.get());
850 
851 	// Update descriptor set.
852 	{
853 		const VkWriteDescriptorSetAccelerationStructureKHR accelDescInfo =
854 		{
855 			VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR,
856 			nullptr,
857 			1u,
858 			topLevelAS.get()->getPtr(),
859 		};
860 		const auto inStorageBufferInfo = makeDescriptorBufferInfo(originsBuffer.get(), 0ull, VK_WHOLE_SIZE);
861 		const auto storageBufferInfo = makeDescriptorBufferInfo(outputModesBuffer.get(), 0ull, VK_WHOLE_SIZE);
862 
863 		DescriptorSetUpdateBuilder updateBuilder;
864 		updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelDescInfo);
865 		updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &inStorageBufferInfo);
866 		updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(2u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &storageBufferInfo);
867 		updateBuilder.update(vkd, device);
868 	}
869 
870 	Move<VkPipeline>				pipeline;
871 	de::MovePtr<BufferWithMemory>	raygenSBT;
872 	Move<VkRenderPass>				renderPass;
873 
874 	if (m_params.shaderSourceType == SST_VERTEX_SHADER)
875 	{
876 		auto vertexModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("vert"), 0);
877 
878 		renderPass = makeEmptyRenderPass(vkd, device);
879 		pipeline = makeGraphicsPipeline(vkd, device, *pipelineLayout, *renderPass, *vertexModule, 0);
880 
881 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline.get());
882 		vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
883 		vkd.cmdDraw(cmdBuffer, kNumThreadsAtOnce, 1, 0, 0);
884 	} else if (m_params.shaderSourceType == SST_RAY_GENERATION_SHADER)
885 	{
886 		const auto& vki = m_context.getInstanceInterface();
887 		const auto	physDev = m_context.getPhysicalDevice();
888 
889 		// Shader module.
890 		auto rgenModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("rgen"), 0);
891 
892 		// Get some ray tracing properties.
893 		deUint32 shaderGroupHandleSize = 0u;
894 		deUint32 shaderGroupBaseAlignment = 1u;
895 		{
896 			const auto rayTracingPropertiesKHR = makeRayTracingProperties(vki, physDev);
897 			shaderGroupHandleSize = rayTracingPropertiesKHR->getShaderGroupHandleSize();
898 			shaderGroupBaseAlignment = rayTracingPropertiesKHR->getShaderGroupBaseAlignment();
899 		}
900 
901 		auto raygenSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
902 		auto unusedSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0);
903 
904 		{
905 			const auto rayTracingPipeline = de::newMovePtr<RayTracingPipeline>();
906 			rayTracingPipeline->setCreateFlags(VK_PIPELINE_CREATE_RAY_TRACING_OPACITY_MICROMAP_BIT_EXT);
907 			rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, rgenModule, 0);
908 
909 			pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout.get());
910 
911 			raygenSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1);
912 			raygenSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenSBT->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize);
913 		}
914 
915 		// Trace rays.
916 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline.get());
917 		vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
918 		vkd.cmdTraceRaysKHR(cmdBuffer, &raygenSBTRegion, &unusedSBTRegion, &unusedSBTRegion, &unusedSBTRegion, kNumThreadsAtOnce, 1u, 1u);
919 	}
920 	else
921 	{
922 		DE_ASSERT(m_params.shaderSourceType == SST_COMPUTE_SHADER);
923 		// Shader module.
924 		const auto compModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("comp"), 0);
925 
926 		// Pipeline.
927 		const VkPipelineShaderStageCreateInfo shaderInfo =
928 		{
929 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,	//	VkStructureType						sType;
930 			nullptr,												//	const void*							pNext;
931 			0u,														//	VkPipelineShaderStageCreateFlags	flags;
932 			VK_SHADER_STAGE_COMPUTE_BIT,							//	VkShaderStageFlagBits				stage;
933 			compModule.get(),										//	VkShaderModule						module;
934 			"main",													//	const char*							pName;
935 			nullptr,												//	const VkSpecializationInfo*			pSpecializationInfo;
936 		};
937 		const VkComputePipelineCreateInfo pipelineInfo =
938 		{
939 			VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,	//	VkStructureType					sType;
940 			nullptr,										//	const void*						pNext;
941 			0u,												//	VkPipelineCreateFlags			flags;
942 			shaderInfo,										//	VkPipelineShaderStageCreateInfo	stage;
943 			pipelineLayout.get(),							//	VkPipelineLayout				layout;
944 			DE_NULL,										//	VkPipeline						basePipelineHandle;
945 			0,												//	deInt32							basePipelineIndex;
946 		};
947 		pipeline = createComputePipeline(vkd, device, DE_NULL, &pipelineInfo);
948 
949 		// Dispatch work with ray queries.
950 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline.get());
951 		vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr);
952 		vkd.cmdDispatch(cmdBuffer, 1u, 1u, 1u);
953 	}
954 
955 	// Barrier for the output buffer.
956 	const auto bufferBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
957 	vkd.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 1u, &bufferBarrier, 0u, nullptr, 0u, nullptr);
958 
959 	endCommandBuffer(vkd, cmdBuffer);
960 	submitCommandsAndWait(vkd, device, queue, cmdBuffer);
961 
962 	// Verify results.
963 	std::vector<deUint32>	outputData				(expectedOutputModes.size());
964 	const auto				outputModesBufferSizeSz	= static_cast<size_t>(outputModesBufferSize);
965 
966 	invalidateAlloc(vkd, device, outputModesBufferAlloc);
967 	DE_ASSERT(de::dataSize(outputData) == outputModesBufferSizeSz);
968 	deMemcpy(outputData.data(), outputModesBufferData, outputModesBufferSizeSz);
969 
970 	for (size_t i = 0; i < outputData.size(); ++i)
971 	{
972 		const auto& outVal		= outputData[i];
973 		const auto& expectedVal	= expectedOutputModes[i];
974 
975 		if (outVal != expectedVal)
976 		{
977 			std::ostringstream msg;
978 			msg << "Unexpected value found for ray " << i << ": expected " << expectedVal << " and found " << outVal << ";";
979 			TCU_FAIL(msg.str());
980 		}
981 #if 0
982 		else
983 		{
984 			std::ostringstream msg;
985 			msg << "Expected value found for ray " << i << ": expected " << expectedVal << " and found " << outVal << ";\n"; // XXX Debug remove
986 			std::cout << msg.str();
987 		}
988 #endif
989 	}
990 
991 	return tcu::TestStatus::pass("Pass");
992 }
993 
994 } // anonymous
995 
996 constexpr deUint32 kMaxSubdivisionLevel = 15;
997 
addBasicTests(tcu::TestCaseGroup * group)998 void addBasicTests(tcu::TestCaseGroup* group)
999 {
1000 	deUint32 seed = 1614674687u;
1001 
1002 	const struct
1003 	{
1004 		ShaderSourceType						shaderSourceType;
1005 		ShaderSourcePipeline					shaderSourcePipeline;
1006 		std::string								name;
1007 	} shaderSourceTypes[] =
1008 	{
1009 		{ SST_VERTEX_SHADER,					SSP_GRAPHICS_PIPELINE,		"vertex_shader"				},
1010 		{ SST_COMPUTE_SHADER,					SSP_COMPUTE_PIPELINE,		"compute_shader",			},
1011 		{ SST_RAY_GENERATION_SHADER,			SSP_RAY_TRACING_PIPELINE,	"rgen_shader",				},
1012 	};
1013 
1014 	const struct
1015 	{
1016 		bool									useSpecialIndex;
1017 		std::string								name;
1018 	} specialIndexUse[] =
1019 	{
1020 		{ false,								"map_value"},
1021 		{ true,									"special_index"},
1022 	};
1023 
1024 	auto& testCtx = group->getTestContext();
1025 
1026 	for (size_t shaderSourceNdx = 0; shaderSourceNdx < DE_LENGTH_OF_ARRAY(shaderSourceTypes); ++shaderSourceNdx)
1027 	{
1028 		de::MovePtr<tcu::TestCaseGroup> sourceTypeGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderSourceTypes[shaderSourceNdx].name.c_str(), ""));
1029 
1030 		for (deUint32 testFlagMask = 0; testFlagMask < TEST_FLAG_BIT_LAST; testFlagMask++)
1031 		{
1032 			std::string maskName = "";
1033 
1034 			for (deUint32 bit = 0; bit < testFlagBitNames.size(); bit++)
1035 			{
1036 				if (testFlagMask & (1 << bit))
1037 				{
1038 					if (maskName != "")
1039 						maskName += "_";
1040 					maskName += testFlagBitNames[bit];
1041 				}
1042 			}
1043 			if (maskName == "")
1044 				maskName = "NoFlags";
1045 
1046 			de::MovePtr<tcu::TestCaseGroup> testFlagGroup(new tcu::TestCaseGroup(sourceTypeGroup->getTestContext(), maskName.c_str(), ""));
1047 
1048 			for (size_t specialIndexNdx = 0; specialIndexNdx < DE_LENGTH_OF_ARRAY(specialIndexUse); ++specialIndexNdx)
1049 			{
1050 				de::MovePtr<tcu::TestCaseGroup> specialGroup(new tcu::TestCaseGroup(testFlagGroup->getTestContext(), specialIndexUse[specialIndexNdx].name.c_str(), ""));
1051 
1052 				if (specialIndexUse[specialIndexNdx].useSpecialIndex)
1053 				{
1054 					for (deUint32 specialIndex = 0; specialIndex < 4; specialIndex++) {
1055 						TestParams testParams
1056 						{
1057 							shaderSourceTypes[shaderSourceNdx].shaderSourceType,
1058 							shaderSourceTypes[shaderSourceNdx].shaderSourcePipeline,
1059 							specialIndexUse[specialIndexNdx].useSpecialIndex,
1060 							testFlagMask,
1061 							0,
1062 							~specialIndex,
1063 							seed++,
1064 							CT_NONE,
1065 						};
1066 
1067 						std::stringstream css;
1068 						css << specialIndex;
1069 
1070 						specialGroup->addChild(new OpacityMicromapCase(testCtx, css.str().c_str(), "", testParams));
1071 					}
1072 					testFlagGroup->addChild(specialGroup.release());
1073 				}				else
1074 				{
1075 					struct {
1076 						deUint32 mode;
1077 						std::string name;
1078 					} modes[] =
1079 					{
1080 						{ 2, "2"},
1081 						{ 4, "4" }
1082 					};
1083 					for (deUint32 modeNdx = 0; modeNdx < DE_LENGTH_OF_ARRAY(modes); ++modeNdx)
1084 					{
1085 						de::MovePtr<tcu::TestCaseGroup> modeGroup(new tcu::TestCaseGroup(testFlagGroup->getTestContext(), modes[modeNdx].name.c_str(), ""));
1086 
1087 						for (deUint32 level = 0; level <= kMaxSubdivisionLevel; level++)
1088 						{
1089 							TestParams testParams
1090 							{
1091 								shaderSourceTypes[shaderSourceNdx].shaderSourceType,
1092 								shaderSourceTypes[shaderSourceNdx].shaderSourcePipeline,
1093 								specialIndexUse[specialIndexNdx].useSpecialIndex,
1094 								testFlagMask,
1095 								level,
1096 								modes[modeNdx].mode,
1097 								seed++,
1098 								CT_NONE,
1099 							};
1100 
1101 							std::stringstream css;
1102 							css << "level_" << level;
1103 
1104 							modeGroup->addChild(new OpacityMicromapCase(testCtx, css.str().c_str(), "", testParams));
1105 						}
1106 						specialGroup->addChild(modeGroup.release());
1107 					}
1108 					testFlagGroup->addChild(specialGroup.release());
1109 				}
1110 			}
1111 
1112 			sourceTypeGroup->addChild(testFlagGroup.release());
1113 		}
1114 
1115 		group->addChild(sourceTypeGroup.release());
1116 	}
1117 }
1118 
addCopyTests(tcu::TestCaseGroup * group)1119 void addCopyTests(tcu::TestCaseGroup* group)
1120 {
1121 	deUint32 seed = 1614674688u;
1122 
1123 	auto& testCtx = group->getTestContext();
1124 
1125 	for (size_t copyTypeNdx = CT_FIRST_ACTIVE; copyTypeNdx < CT_NUM_COPY_TYPES; ++copyTypeNdx)
1126 	{
1127 		de::MovePtr<tcu::TestCaseGroup> copyTypeGroup(new tcu::TestCaseGroup(group->getTestContext(), copyTypeNames[copyTypeNdx].c_str(), ""));
1128 
1129 		struct {
1130 			deUint32 mode;
1131 			std::string name;
1132 		} modes[] =
1133 		{
1134 			{ 2, "2"},
1135 			{ 4, "4" }
1136 		};
1137 		for (deUint32 modeNdx = 0; modeNdx < DE_LENGTH_OF_ARRAY(modes); ++modeNdx)
1138 		{
1139 			de::MovePtr<tcu::TestCaseGroup> modeGroup(new tcu::TestCaseGroup(copyTypeGroup->getTestContext(), modes[modeNdx].name.c_str(), ""));
1140 
1141 			for (deUint32 level = 0; level <= kMaxSubdivisionLevel; level++)
1142 			{
1143 				TestParams testParams
1144 				{
1145 					SST_COMPUTE_SHADER,
1146 					SSP_COMPUTE_PIPELINE,
1147 					false,
1148 					0,
1149 					level,
1150 					modes[modeNdx].mode,
1151 					seed++,
1152 					(CopyType)copyTypeNdx,
1153 				};
1154 
1155 				std::stringstream css;
1156 				css << "level_" << level;
1157 
1158 				modeGroup->addChild(new OpacityMicromapCase(testCtx, css.str().c_str(), "", testParams));
1159 			}
1160 			copyTypeGroup->addChild(modeGroup.release());
1161 		}
1162 		group->addChild(copyTypeGroup.release());
1163 	}
1164 }
1165 
createOpacityMicromapTests(tcu::TestContext & testCtx)1166 tcu::TestCaseGroup* createOpacityMicromapTests(tcu::TestContext& testCtx)
1167 {
1168 	de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "opacity_micromap", "Test acceleration structures using opacity micromap with ray query"));
1169 
1170 	addTestGroup(group.get(), "render", "Test accessing all formats of opacity micromaps", addBasicTests);
1171 	addTestGroup(group.get(), "copy", "Test copying opacity micromaps", addCopyTests);
1172 
1173 	return group.release();
1174 }
1175 
1176 } // RayQuery
1177 } // vkt
1178 
1179