1 /*
2 * Wrapper functions for libwolfssl
3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "crypto.h"
13
14 /* wolfSSL headers */
15 #include <wolfssl/options.h>
16 #include <wolfssl/wolfcrypt/md4.h>
17 #include <wolfssl/wolfcrypt/md5.h>
18 #include <wolfssl/wolfcrypt/sha.h>
19 #include <wolfssl/wolfcrypt/sha256.h>
20 #include <wolfssl/wolfcrypt/sha512.h>
21 #include <wolfssl/wolfcrypt/hmac.h>
22 #include <wolfssl/wolfcrypt/pwdbased.h>
23 #include <wolfssl/wolfcrypt/arc4.h>
24 #include <wolfssl/wolfcrypt/des3.h>
25 #include <wolfssl/wolfcrypt/aes.h>
26 #include <wolfssl/wolfcrypt/dh.h>
27 #include <wolfssl/wolfcrypt/cmac.h>
28 #include <wolfssl/wolfcrypt/ecc.h>
29 #include <wolfssl/openssl/bn.h>
30
31
32 #ifndef CONFIG_FIPS
33
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)34 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
35 {
36 Md4 md4;
37 size_t i;
38
39 if (TEST_FAIL())
40 return -1;
41
42 wc_InitMd4(&md4);
43
44 for (i = 0; i < num_elem; i++)
45 wc_Md4Update(&md4, addr[i], len[i]);
46
47 wc_Md4Final(&md4, mac);
48
49 return 0;
50 }
51
52
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)53 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
54 {
55 wc_Md5 md5;
56 size_t i;
57
58 if (TEST_FAIL())
59 return -1;
60
61 wc_InitMd5(&md5);
62
63 for (i = 0; i < num_elem; i++)
64 wc_Md5Update(&md5, addr[i], len[i]);
65
66 wc_Md5Final(&md5, mac);
67
68 return 0;
69 }
70
71 #endif /* CONFIG_FIPS */
72
73
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)74 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
75 {
76 wc_Sha sha;
77 size_t i;
78
79 if (TEST_FAIL())
80 return -1;
81
82 wc_InitSha(&sha);
83
84 for (i = 0; i < num_elem; i++)
85 wc_ShaUpdate(&sha, addr[i], len[i]);
86
87 wc_ShaFinal(&sha, mac);
88
89 return 0;
90 }
91
92
93 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)94 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
95 u8 *mac)
96 {
97 wc_Sha256 sha256;
98 size_t i;
99
100 if (TEST_FAIL())
101 return -1;
102
103 wc_InitSha256(&sha256);
104
105 for (i = 0; i < num_elem; i++)
106 wc_Sha256Update(&sha256, addr[i], len[i]);
107
108 wc_Sha256Final(&sha256, mac);
109
110 return 0;
111 }
112 #endif /* NO_SHA256_WRAPPER */
113
114
115 #ifdef CONFIG_SHA384
sha384_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)116 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
117 u8 *mac)
118 {
119 wc_Sha384 sha384;
120 size_t i;
121
122 if (TEST_FAIL())
123 return -1;
124
125 wc_InitSha384(&sha384);
126
127 for (i = 0; i < num_elem; i++)
128 wc_Sha384Update(&sha384, addr[i], len[i]);
129
130 wc_Sha384Final(&sha384, mac);
131
132 return 0;
133 }
134 #endif /* CONFIG_SHA384 */
135
136
137 #ifdef CONFIG_SHA512
sha512_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)138 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
139 u8 *mac)
140 {
141 wc_Sha512 sha512;
142 size_t i;
143
144 if (TEST_FAIL())
145 return -1;
146
147 wc_InitSha512(&sha512);
148
149 for (i = 0; i < num_elem; i++)
150 wc_Sha512Update(&sha512, addr[i], len[i]);
151
152 wc_Sha512Final(&sha512, mac);
153
154 return 0;
155 }
156 #endif /* CONFIG_SHA512 */
157
158
wolfssl_hmac_vector(int type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)159 static int wolfssl_hmac_vector(int type, const u8 *key,
160 size_t key_len, size_t num_elem,
161 const u8 *addr[], const size_t *len, u8 *mac,
162 unsigned int mdlen)
163 {
164 Hmac hmac;
165 size_t i;
166
167 (void) mdlen;
168
169 if (TEST_FAIL())
170 return -1;
171
172 if (wc_HmacSetKey(&hmac, type, key, (word32) key_len) != 0)
173 return -1;
174 for (i = 0; i < num_elem; i++)
175 if (wc_HmacUpdate(&hmac, addr[i], len[i]) != 0)
176 return -1;
177 if (wc_HmacFinal(&hmac, mac) != 0)
178 return -1;
179 return 0;
180 }
181
182
183 #ifndef CONFIG_FIPS
184
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)185 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
186 const u8 *addr[], const size_t *len, u8 *mac)
187 {
188 return wolfssl_hmac_vector(WC_MD5, key, key_len, num_elem, addr, len,
189 mac, 16);
190 }
191
192
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)193 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
194 u8 *mac)
195 {
196 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
197 }
198
199 #endif /* CONFIG_FIPS */
200
201
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)202 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
203 const u8 *addr[], const size_t *len, u8 *mac)
204 {
205 return wolfssl_hmac_vector(WC_SHA, key, key_len, num_elem, addr, len,
206 mac, 20);
207 }
208
209
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)210 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
211 u8 *mac)
212 {
213 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
214 }
215
216
217 #ifdef CONFIG_SHA256
218
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)219 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
220 const u8 *addr[], const size_t *len, u8 *mac)
221 {
222 return wolfssl_hmac_vector(WC_SHA256, key, key_len, num_elem, addr, len,
223 mac, 32);
224 }
225
226
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)227 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
228 size_t data_len, u8 *mac)
229 {
230 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
231 }
232
233 #endif /* CONFIG_SHA256 */
234
235
236 #ifdef CONFIG_SHA384
237
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)238 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
239 const u8 *addr[], const size_t *len, u8 *mac)
240 {
241 return wolfssl_hmac_vector(WC_SHA384, key, key_len, num_elem, addr, len,
242 mac, 48);
243 }
244
245
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)246 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
247 size_t data_len, u8 *mac)
248 {
249 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
250 }
251
252 #endif /* CONFIG_SHA384 */
253
254
255 #ifdef CONFIG_SHA512
256
hmac_sha512_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)257 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
258 const u8 *addr[], const size_t *len, u8 *mac)
259 {
260 return wolfssl_hmac_vector(WC_SHA512, key, key_len, num_elem, addr, len,
261 mac, 64);
262 }
263
264
hmac_sha512(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)265 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
266 size_t data_len, u8 *mac)
267 {
268 return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
269 }
270
271 #endif /* CONFIG_SHA512 */
272
273
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)274 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
275 int iterations, u8 *buf, size_t buflen)
276 {
277 if (wc_PBKDF2(buf, (const byte*)passphrase, os_strlen(passphrase), ssid,
278 ssid_len, iterations, buflen, WC_SHA) != 0)
279 return -1;
280 return 0;
281 }
282
283
284 #ifdef CONFIG_DES
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)285 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
286 {
287 Des des;
288 u8 pkey[8], next, tmp;
289 int i;
290
291 /* Add parity bits to the key */
292 next = 0;
293 for (i = 0; i < 7; i++) {
294 tmp = key[i];
295 pkey[i] = (tmp >> i) | next | 1;
296 next = tmp << (7 - i);
297 }
298 pkey[i] = next | 1;
299
300 wc_Des_SetKey(&des, pkey, NULL, DES_ENCRYPTION);
301 wc_Des_EcbEncrypt(&des, cypher, clear, DES_BLOCK_SIZE);
302
303 return 0;
304 }
305 #endif /* CONFIG_DES */
306
307
aes_encrypt_init(const u8 * key,size_t len)308 void * aes_encrypt_init(const u8 *key, size_t len)
309 {
310 Aes *aes;
311
312 if (TEST_FAIL())
313 return NULL;
314
315 aes = os_malloc(sizeof(Aes));
316 if (!aes)
317 return NULL;
318
319 if (wc_AesSetKey(aes, key, len, NULL, AES_ENCRYPTION) < 0) {
320 os_free(aes);
321 return NULL;
322 }
323
324 return aes;
325 }
326
327
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)328 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
329 {
330 wc_AesEncryptDirect(ctx, crypt, plain);
331 return 0;
332 }
333
334
aes_encrypt_deinit(void * ctx)335 void aes_encrypt_deinit(void *ctx)
336 {
337 os_free(ctx);
338 }
339
340
aes_decrypt_init(const u8 * key,size_t len)341 void * aes_decrypt_init(const u8 *key, size_t len)
342 {
343 Aes *aes;
344
345 if (TEST_FAIL())
346 return NULL;
347
348 aes = os_malloc(sizeof(Aes));
349 if (!aes)
350 return NULL;
351
352 if (wc_AesSetKey(aes, key, len, NULL, AES_DECRYPTION) < 0) {
353 os_free(aes);
354 return NULL;
355 }
356
357 return aes;
358 }
359
360
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)361 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
362 {
363 wc_AesDecryptDirect(ctx, plain, crypt);
364 return 0;
365 }
366
367
aes_decrypt_deinit(void * ctx)368 void aes_decrypt_deinit(void *ctx)
369 {
370 os_free(ctx);
371 }
372
373
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)374 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
375 {
376 Aes aes;
377 int ret;
378
379 if (TEST_FAIL())
380 return -1;
381
382 ret = wc_AesSetKey(&aes, key, 16, iv, AES_ENCRYPTION);
383 if (ret != 0)
384 return -1;
385
386 ret = wc_AesCbcEncrypt(&aes, data, data, data_len);
387 if (ret != 0)
388 return -1;
389 return 0;
390 }
391
392
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)393 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
394 {
395 Aes aes;
396 int ret;
397
398 if (TEST_FAIL())
399 return -1;
400
401 ret = wc_AesSetKey(&aes, key, 16, iv, AES_DECRYPTION);
402 if (ret != 0)
403 return -1;
404
405 ret = wc_AesCbcDecrypt(&aes, data, data, data_len);
406 if (ret != 0)
407 return -1;
408 return 0;
409 }
410
411
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)412 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
413 {
414 int ret;
415
416 if (TEST_FAIL())
417 return -1;
418
419 ret = wc_AesKeyWrap(kek, kek_len, plain, n * 8, cipher, (n + 1) * 8,
420 NULL);
421 return ret != (n + 1) * 8 ? -1 : 0;
422 }
423
424
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)425 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
426 u8 *plain)
427 {
428 int ret;
429
430 if (TEST_FAIL())
431 return -1;
432
433 ret = wc_AesKeyUnWrap(kek, kek_len, cipher, (n + 1) * 8, plain, n * 8,
434 NULL);
435 return ret != n * 8 ? -1 : 0;
436 }
437
438
439 #ifndef CONFIG_NO_RC4
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)440 int rc4_skip(const u8 *key, size_t keylen, size_t skip, u8 *data,
441 size_t data_len)
442 {
443 #ifndef NO_RC4
444 Arc4 arc4;
445 unsigned char skip_buf[16];
446
447 wc_Arc4SetKey(&arc4, key, keylen);
448
449 while (skip >= sizeof(skip_buf)) {
450 size_t len = skip;
451
452 if (len > sizeof(skip_buf))
453 len = sizeof(skip_buf);
454 wc_Arc4Process(&arc4, skip_buf, skip_buf, len);
455 skip -= len;
456 }
457
458 wc_Arc4Process(&arc4, data, data, data_len);
459
460 return 0;
461 #else /* NO_RC4 */
462 return -1;
463 #endif /* NO_RC4 */
464 }
465 #endif /* CONFIG_NO_RC4 */
466
467
468 #if defined(EAP_IKEV2) || defined(EAP_IKEV2_DYNAMIC) \
469 || defined(EAP_SERVER_IKEV2)
470 union wolfssl_cipher {
471 Aes aes;
472 Des3 des3;
473 Arc4 arc4;
474 };
475
476 struct crypto_cipher {
477 enum crypto_cipher_alg alg;
478 union wolfssl_cipher enc;
479 union wolfssl_cipher dec;
480 };
481
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)482 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
483 const u8 *iv, const u8 *key,
484 size_t key_len)
485 {
486 struct crypto_cipher *ctx;
487
488 ctx = os_zalloc(sizeof(*ctx));
489 if (!ctx)
490 return NULL;
491
492 switch (alg) {
493 #ifndef CONFIG_NO_RC4
494 #ifndef NO_RC4
495 case CRYPTO_CIPHER_ALG_RC4:
496 wc_Arc4SetKey(&ctx->enc.arc4, key, key_len);
497 wc_Arc4SetKey(&ctx->dec.arc4, key, key_len);
498 break;
499 #endif /* NO_RC4 */
500 #endif /* CONFIG_NO_RC4 */
501 #ifndef NO_AES
502 case CRYPTO_CIPHER_ALG_AES:
503 switch (key_len) {
504 case 16:
505 case 24:
506 case 32:
507 break;
508 default:
509 os_free(ctx);
510 return NULL;
511 }
512 if (wc_AesSetKey(&ctx->enc.aes, key, key_len, iv,
513 AES_ENCRYPTION) ||
514 wc_AesSetKey(&ctx->dec.aes, key, key_len, iv,
515 AES_DECRYPTION)) {
516 os_free(ctx);
517 return NULL;
518 }
519 break;
520 #endif /* NO_AES */
521 #ifndef NO_DES3
522 case CRYPTO_CIPHER_ALG_3DES:
523 if (key_len != DES3_KEYLEN ||
524 wc_Des3_SetKey(&ctx->enc.des3, key, iv, DES_ENCRYPTION) ||
525 wc_Des3_SetKey(&ctx->dec.des3, key, iv, DES_DECRYPTION)) {
526 os_free(ctx);
527 return NULL;
528 }
529 break;
530 #endif /* NO_DES3 */
531 case CRYPTO_CIPHER_ALG_RC2:
532 case CRYPTO_CIPHER_ALG_DES:
533 default:
534 os_free(ctx);
535 return NULL;
536 }
537
538 ctx->alg = alg;
539
540 return ctx;
541 }
542
543
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)544 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
545 u8 *crypt, size_t len)
546 {
547 switch (ctx->alg) {
548 #ifndef CONFIG_NO_RC4
549 #ifndef NO_RC4
550 case CRYPTO_CIPHER_ALG_RC4:
551 wc_Arc4Process(&ctx->enc.arc4, crypt, plain, len);
552 return 0;
553 #endif /* NO_RC4 */
554 #endif /* CONFIG_NO_RC4 */
555 #ifndef NO_AES
556 case CRYPTO_CIPHER_ALG_AES:
557 if (wc_AesCbcEncrypt(&ctx->enc.aes, crypt, plain, len) != 0)
558 return -1;
559 return 0;
560 #endif /* NO_AES */
561 #ifndef NO_DES3
562 case CRYPTO_CIPHER_ALG_3DES:
563 if (wc_Des3_CbcEncrypt(&ctx->enc.des3, crypt, plain, len) != 0)
564 return -1;
565 return 0;
566 #endif /* NO_DES3 */
567 default:
568 return -1;
569 }
570 return -1;
571 }
572
573
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)574 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
575 u8 *plain, size_t len)
576 {
577 switch (ctx->alg) {
578 #ifndef CONFIG_NO_RC4
579 #ifndef NO_RC4
580 case CRYPTO_CIPHER_ALG_RC4:
581 wc_Arc4Process(&ctx->dec.arc4, plain, crypt, len);
582 return 0;
583 #endif /* NO_RC4 */
584 #endif /* CONFIG_NO_RC4 */
585 #ifndef NO_AES
586 case CRYPTO_CIPHER_ALG_AES:
587 if (wc_AesCbcDecrypt(&ctx->dec.aes, plain, crypt, len) != 0)
588 return -1;
589 return 0;
590 #endif /* NO_AES */
591 #ifndef NO_DES3
592 case CRYPTO_CIPHER_ALG_3DES:
593 if (wc_Des3_CbcDecrypt(&ctx->dec.des3, plain, crypt, len) != 0)
594 return -1;
595 return 0;
596 #endif /* NO_DES3 */
597 default:
598 return -1;
599 }
600 return -1;
601 }
602
603
crypto_cipher_deinit(struct crypto_cipher * ctx)604 void crypto_cipher_deinit(struct crypto_cipher *ctx)
605 {
606 os_free(ctx);
607 }
608
609 #endif
610
611
612 #ifdef CONFIG_WPS_NFC
613
614 static const unsigned char RFC3526_PRIME_1536[] = {
615 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
616 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
617 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
618 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
619 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
620 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
621 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
622 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
623 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
624 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D,
625 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36,
626 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
627 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56,
628 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D,
629 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08,
630 0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
631 };
632
633 static const unsigned char RFC3526_GENERATOR_1536[] = {
634 0x02
635 };
636
637 #define RFC3526_LEN sizeof(RFC3526_PRIME_1536)
638
639
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)640 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
641 {
642 WC_RNG rng;
643 DhKey *ret = NULL;
644 DhKey *dh = NULL;
645 struct wpabuf *privkey = NULL;
646 struct wpabuf *pubkey = NULL;
647 word32 priv_sz, pub_sz;
648
649 *priv = NULL;
650 wpabuf_free(*publ);
651 *publ = NULL;
652
653 dh = XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_TMP_BUFFER);
654 if (!dh)
655 return NULL;
656 wc_InitDhKey(dh);
657
658 if (wc_InitRng(&rng) != 0) {
659 XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
660 return NULL;
661 }
662
663 privkey = wpabuf_alloc(RFC3526_LEN);
664 pubkey = wpabuf_alloc(RFC3526_LEN);
665 if (!privkey || !pubkey)
666 goto done;
667
668 if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536),
669 RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536))
670 != 0)
671 goto done;
672
673 if (wc_DhGenerateKeyPair(dh, &rng, wpabuf_mhead(privkey), &priv_sz,
674 wpabuf_mhead(pubkey), &pub_sz) != 0)
675 goto done;
676
677 wpabuf_put(privkey, priv_sz);
678 wpabuf_put(pubkey, pub_sz);
679
680 ret = dh;
681 *priv = privkey;
682 *publ = pubkey;
683 dh = NULL;
684 privkey = NULL;
685 pubkey = NULL;
686 done:
687 wpabuf_clear_free(pubkey);
688 wpabuf_clear_free(privkey);
689 if (dh) {
690 wc_FreeDhKey(dh);
691 XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
692 }
693 wc_FreeRng(&rng);
694 return ret;
695 }
696
697
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)698 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
699 {
700 DhKey *ret = NULL;
701 DhKey *dh;
702 byte *secret;
703 word32 secret_sz;
704
705 dh = XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_TMP_BUFFER);
706 if (!dh)
707 return NULL;
708 wc_InitDhKey(dh);
709
710 secret = XMALLOC(RFC3526_LEN, NULL, DYNAMIC_TYPE_TMP_BUFFER);
711 if (!secret)
712 goto done;
713
714 if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536),
715 RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536))
716 != 0)
717 goto done;
718
719 if (wc_DhAgree(dh, secret, &secret_sz, wpabuf_head(priv),
720 wpabuf_len(priv), RFC3526_GENERATOR_1536,
721 sizeof(RFC3526_GENERATOR_1536)) != 0)
722 goto done;
723
724 if (secret_sz != wpabuf_len(publ) ||
725 os_memcmp(secret, wpabuf_head(publ), secret_sz) != 0)
726 goto done;
727
728 ret = dh;
729 dh = NULL;
730 done:
731 if (dh) {
732 wc_FreeDhKey(dh);
733 XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
734 }
735 XFREE(secret, NULL, DYNAMIC_TYPE_TMP_BUFFER);
736 return ret;
737 }
738
739
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)740 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
741 const struct wpabuf *own_private)
742 {
743 struct wpabuf *ret = NULL;
744 struct wpabuf *secret;
745 word32 secret_sz;
746
747 secret = wpabuf_alloc(RFC3526_LEN);
748 if (!secret)
749 goto done;
750
751 if (wc_DhAgree(ctx, wpabuf_mhead(secret), &secret_sz,
752 wpabuf_head(own_private), wpabuf_len(own_private),
753 wpabuf_head(peer_public), wpabuf_len(peer_public)) != 0)
754 goto done;
755
756 wpabuf_put(secret, secret_sz);
757
758 ret = secret;
759 secret = NULL;
760 done:
761 wpabuf_clear_free(secret);
762 return ret;
763 }
764
765
dh5_free(void * ctx)766 void dh5_free(void *ctx)
767 {
768 if (!ctx)
769 return;
770
771 wc_FreeDhKey(ctx);
772 XFREE(ctx, NULL, DYNAMIC_TYPE_TMP_BUFFER);
773 }
774
775 #endif /* CONFIG_WPS_NFC */
776
777
crypto_dh_init(u8 generator,const u8 * prime,size_t prime_len,u8 * privkey,u8 * pubkey)778 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
779 u8 *pubkey)
780 {
781 int ret = -1;
782 WC_RNG rng;
783 DhKey *dh = NULL;
784 word32 priv_sz, pub_sz;
785
786 if (TEST_FAIL())
787 return -1;
788
789 dh = os_malloc(sizeof(DhKey));
790 if (!dh)
791 return -1;
792 wc_InitDhKey(dh);
793
794 if (wc_InitRng(&rng) != 0) {
795 os_free(dh);
796 return -1;
797 }
798
799 if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0)
800 goto done;
801
802 if (wc_DhGenerateKeyPair(dh, &rng, privkey, &priv_sz, pubkey, &pub_sz)
803 != 0)
804 goto done;
805
806 if (priv_sz < prime_len) {
807 size_t pad_sz = prime_len - priv_sz;
808
809 os_memmove(privkey + pad_sz, privkey, priv_sz);
810 os_memset(privkey, 0, pad_sz);
811 }
812
813 if (pub_sz < prime_len) {
814 size_t pad_sz = prime_len - pub_sz;
815
816 os_memmove(pubkey + pad_sz, pubkey, pub_sz);
817 os_memset(pubkey, 0, pad_sz);
818 }
819 ret = 0;
820 done:
821 wc_FreeDhKey(dh);
822 os_free(dh);
823 wc_FreeRng(&rng);
824 return ret;
825 }
826
827
crypto_dh_derive_secret(u8 generator,const u8 * prime,size_t prime_len,const u8 * order,size_t order_len,const u8 * privkey,size_t privkey_len,const u8 * pubkey,size_t pubkey_len,u8 * secret,size_t * len)828 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
829 const u8 *order, size_t order_len,
830 const u8 *privkey, size_t privkey_len,
831 const u8 *pubkey, size_t pubkey_len,
832 u8 *secret, size_t *len)
833 {
834 int ret = -1;
835 DhKey *dh;
836 word32 secret_sz;
837
838 dh = os_malloc(sizeof(DhKey));
839 if (!dh)
840 return -1;
841 wc_InitDhKey(dh);
842
843 if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0)
844 goto done;
845
846 if (wc_DhAgree(dh, secret, &secret_sz, privkey, privkey_len, pubkey,
847 pubkey_len) != 0)
848 goto done;
849
850 *len = secret_sz;
851 ret = 0;
852 done:
853 wc_FreeDhKey(dh);
854 os_free(dh);
855 return ret;
856 }
857
858
859 #ifdef CONFIG_FIPS
crypto_get_random(void * buf,size_t len)860 int crypto_get_random(void *buf, size_t len)
861 {
862 int ret = 0;
863 WC_RNG rng;
864
865 if (wc_InitRng(&rng) != 0)
866 return -1;
867 if (wc_RNG_GenerateBlock(&rng, buf, len) != 0)
868 ret = -1;
869 wc_FreeRng(&rng);
870 return ret;
871 }
872 #endif /* CONFIG_FIPS */
873
874
875 #if defined(EAP_PWD) || defined(EAP_SERVER_PWD)
876 struct crypto_hash {
877 Hmac hmac;
878 int size;
879 };
880
881
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)882 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
883 size_t key_len)
884 {
885 struct crypto_hash *ret = NULL;
886 struct crypto_hash *hash;
887 int type;
888
889 hash = os_zalloc(sizeof(*hash));
890 if (!hash)
891 goto done;
892
893 switch (alg) {
894 #ifndef NO_MD5
895 case CRYPTO_HASH_ALG_HMAC_MD5:
896 hash->size = 16;
897 type = WC_MD5;
898 break;
899 #endif /* NO_MD5 */
900 #ifndef NO_SHA
901 case CRYPTO_HASH_ALG_HMAC_SHA1:
902 type = WC_SHA;
903 hash->size = 20;
904 break;
905 #endif /* NO_SHA */
906 #ifdef CONFIG_SHA256
907 #ifndef NO_SHA256
908 case CRYPTO_HASH_ALG_HMAC_SHA256:
909 type = WC_SHA256;
910 hash->size = 32;
911 break;
912 #endif /* NO_SHA256 */
913 #endif /* CONFIG_SHA256 */
914 default:
915 goto done;
916 }
917
918 if (wc_HmacSetKey(&hash->hmac, type, key, key_len) != 0)
919 goto done;
920
921 ret = hash;
922 hash = NULL;
923 done:
924 os_free(hash);
925 return ret;
926 }
927
928
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)929 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
930 {
931 if (!ctx)
932 return;
933 wc_HmacUpdate(&ctx->hmac, data, len);
934 }
935
936
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)937 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
938 {
939 int ret = 0;
940
941 if (!ctx)
942 return -2;
943
944 if (!mac || !len)
945 goto done;
946
947 if (wc_HmacFinal(&ctx->hmac, mac) != 0) {
948 ret = -1;
949 goto done;
950 }
951
952 *len = ctx->size;
953 ret = 0;
954 done:
955 bin_clear_free(ctx, sizeof(*ctx));
956 if (TEST_FAIL())
957 return -1;
958 return ret;
959 }
960
961 #endif
962
963
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)964 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
965 const u8 *addr[], const size_t *len, u8 *mac)
966 {
967 Cmac cmac;
968 size_t i;
969 word32 sz;
970
971 if (TEST_FAIL())
972 return -1;
973
974 if (wc_InitCmac(&cmac, key, key_len, WC_CMAC_AES, NULL) != 0)
975 return -1;
976
977 for (i = 0; i < num_elem; i++)
978 if (wc_CmacUpdate(&cmac, addr[i], len[i]) != 0)
979 return -1;
980
981 sz = AES_BLOCK_SIZE;
982 if (wc_CmacFinal(&cmac, mac, &sz) != 0 || sz != AES_BLOCK_SIZE)
983 return -1;
984
985 return 0;
986 }
987
988
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)989 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
990 const u8 *addr[], const size_t *len, u8 *mac)
991 {
992 return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
993 }
994
995
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)996 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
997 {
998 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
999 }
1000
1001
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1002 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1003 {
1004 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
1005 }
1006
1007
crypto_bignum_init(void)1008 struct crypto_bignum * crypto_bignum_init(void)
1009 {
1010 mp_int *a;
1011
1012 if (TEST_FAIL())
1013 return NULL;
1014
1015 a = os_malloc(sizeof(*a));
1016 if (!a || mp_init(a) != MP_OKAY) {
1017 os_free(a);
1018 a = NULL;
1019 }
1020
1021 return (struct crypto_bignum *) a;
1022 }
1023
1024
crypto_bignum_init_set(const u8 * buf,size_t len)1025 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1026 {
1027 mp_int *a;
1028
1029 if (TEST_FAIL())
1030 return NULL;
1031
1032 a = (mp_int *) crypto_bignum_init();
1033 if (!a)
1034 return NULL;
1035
1036 if (mp_read_unsigned_bin(a, buf, len) != MP_OKAY) {
1037 os_free(a);
1038 a = NULL;
1039 }
1040
1041 return (struct crypto_bignum *) a;
1042 }
1043
1044
crypto_bignum_init_uint(unsigned int val)1045 struct crypto_bignum * crypto_bignum_init_uint(unsigned int val)
1046 {
1047 mp_int *a;
1048
1049 if (TEST_FAIL())
1050 return NULL;
1051
1052 a = (mp_int *) crypto_bignum_init();
1053 if (!a)
1054 return NULL;
1055
1056 if (mp_set_int(a, val) != MP_OKAY) {
1057 os_free(a);
1058 a = NULL;
1059 }
1060
1061 return (struct crypto_bignum *) a;
1062 }
1063
1064
crypto_bignum_deinit(struct crypto_bignum * n,int clear)1065 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1066 {
1067 if (!n)
1068 return;
1069
1070 if (clear)
1071 mp_forcezero((mp_int *) n);
1072 mp_clear((mp_int *) n);
1073 os_free((mp_int *) n);
1074 }
1075
1076
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)1077 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1078 u8 *buf, size_t buflen, size_t padlen)
1079 {
1080 int num_bytes, offset;
1081
1082 if (TEST_FAIL())
1083 return -1;
1084
1085 if (padlen > buflen)
1086 return -1;
1087
1088 num_bytes = (mp_count_bits((mp_int *) a) + 7) / 8;
1089 if ((size_t) num_bytes > buflen)
1090 return -1;
1091 if (padlen > (size_t) num_bytes)
1092 offset = padlen - num_bytes;
1093 else
1094 offset = 0;
1095
1096 os_memset(buf, 0, offset);
1097 mp_to_unsigned_bin((mp_int *) a, buf + offset);
1098
1099 return num_bytes + offset;
1100 }
1101
1102
crypto_bignum_rand(struct crypto_bignum * r,const struct crypto_bignum * m)1103 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m)
1104 {
1105 int ret = 0;
1106 WC_RNG rng;
1107
1108 if (TEST_FAIL())
1109 return -1;
1110 if (wc_InitRng(&rng) != 0)
1111 return -1;
1112 if (mp_rand_prime((mp_int *) r,
1113 (mp_count_bits((mp_int *) m) + 7) / 8 * 2,
1114 &rng, NULL) != 0)
1115 ret = -1;
1116 if (ret == 0 &&
1117 mp_mod((mp_int *) r, (mp_int *) m, (mp_int *) r) != 0)
1118 ret = -1;
1119 wc_FreeRng(&rng);
1120 return ret;
1121 }
1122
1123
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * r)1124 int crypto_bignum_add(const struct crypto_bignum *a,
1125 const struct crypto_bignum *b,
1126 struct crypto_bignum *r)
1127 {
1128 return mp_add((mp_int *) a, (mp_int *) b,
1129 (mp_int *) r) == MP_OKAY ? 0 : -1;
1130 }
1131
1132
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * m,struct crypto_bignum * r)1133 int crypto_bignum_mod(const struct crypto_bignum *a,
1134 const struct crypto_bignum *m,
1135 struct crypto_bignum *r)
1136 {
1137 return mp_mod((mp_int *) a, (mp_int *) m,
1138 (mp_int *) r) == MP_OKAY ? 0 : -1;
1139 }
1140
1141
crypto_bignum_exptmod(const struct crypto_bignum * b,const struct crypto_bignum * e,const struct crypto_bignum * m,struct crypto_bignum * r)1142 int crypto_bignum_exptmod(const struct crypto_bignum *b,
1143 const struct crypto_bignum *e,
1144 const struct crypto_bignum *m,
1145 struct crypto_bignum *r)
1146 {
1147 if (TEST_FAIL())
1148 return -1;
1149
1150 return mp_exptmod((mp_int *) b, (mp_int *) e, (mp_int *) m,
1151 (mp_int *) r) == MP_OKAY ? 0 : -1;
1152 }
1153
1154
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * m,struct crypto_bignum * r)1155 int crypto_bignum_inverse(const struct crypto_bignum *a,
1156 const struct crypto_bignum *m,
1157 struct crypto_bignum *r)
1158 {
1159 if (TEST_FAIL())
1160 return -1;
1161
1162 return mp_invmod((mp_int *) a, (mp_int *) m,
1163 (mp_int *) r) == MP_OKAY ? 0 : -1;
1164 }
1165
1166
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * r)1167 int crypto_bignum_sub(const struct crypto_bignum *a,
1168 const struct crypto_bignum *b,
1169 struct crypto_bignum *r)
1170 {
1171 if (TEST_FAIL())
1172 return -1;
1173
1174 return mp_add((mp_int *) a, (mp_int *) b,
1175 (mp_int *) r) == MP_OKAY ? 0 : -1;
1176 }
1177
1178
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * d)1179 int crypto_bignum_div(const struct crypto_bignum *a,
1180 const struct crypto_bignum *b,
1181 struct crypto_bignum *d)
1182 {
1183 if (TEST_FAIL())
1184 return -1;
1185
1186 return mp_div((mp_int *) a, (mp_int *) b, (mp_int *) d,
1187 NULL) == MP_OKAY ? 0 : -1;
1188 }
1189
1190
crypto_bignum_addmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1191 int crypto_bignum_addmod(const struct crypto_bignum *a,
1192 const struct crypto_bignum *b,
1193 const struct crypto_bignum *c,
1194 struct crypto_bignum *d)
1195 {
1196 if (TEST_FAIL())
1197 return -1;
1198
1199 return mp_addmod((mp_int *) a, (mp_int *) b, (mp_int *) c,
1200 (mp_int *) d) == MP_OKAY ? 0 : -1;
1201 }
1202
1203
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * m,struct crypto_bignum * d)1204 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1205 const struct crypto_bignum *b,
1206 const struct crypto_bignum *m,
1207 struct crypto_bignum *d)
1208 {
1209 if (TEST_FAIL())
1210 return -1;
1211
1212 return mp_mulmod((mp_int *) a, (mp_int *) b, (mp_int *) m,
1213 (mp_int *) d) == MP_OKAY ? 0 : -1;
1214 }
1215
1216
crypto_bignum_sqrmod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1217 int crypto_bignum_sqrmod(const struct crypto_bignum *a,
1218 const struct crypto_bignum *b,
1219 struct crypto_bignum *c)
1220 {
1221 if (TEST_FAIL())
1222 return -1;
1223
1224 return mp_sqrmod((mp_int *) a, (mp_int *) b,
1225 (mp_int *) c) == MP_OKAY ? 0 : -1;
1226 }
1227
1228
crypto_bignum_sqrtmod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1229 int crypto_bignum_sqrtmod(const struct crypto_bignum *a,
1230 const struct crypto_bignum *b,
1231 struct crypto_bignum *c)
1232 {
1233 /* TODO */
1234 return -1;
1235 }
1236
1237
crypto_bignum_rshift(const struct crypto_bignum * a,int n,struct crypto_bignum * r)1238 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
1239 struct crypto_bignum *r)
1240 {
1241 if (mp_copy((mp_int *) a, (mp_int *) r) != MP_OKAY)
1242 return -1;
1243 mp_rshb((mp_int *) r, n);
1244 return 0;
1245 }
1246
1247
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1248 int crypto_bignum_cmp(const struct crypto_bignum *a,
1249 const struct crypto_bignum *b)
1250 {
1251 return mp_cmp((mp_int *) a, (mp_int *) b);
1252 }
1253
1254
crypto_bignum_is_zero(const struct crypto_bignum * a)1255 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1256 {
1257 return mp_iszero((mp_int *) a);
1258 }
1259
1260
crypto_bignum_is_one(const struct crypto_bignum * a)1261 int crypto_bignum_is_one(const struct crypto_bignum *a)
1262 {
1263 return mp_isone((const mp_int *) a);
1264 }
1265
crypto_bignum_is_odd(const struct crypto_bignum * a)1266 int crypto_bignum_is_odd(const struct crypto_bignum *a)
1267 {
1268 return mp_isodd((mp_int *) a);
1269 }
1270
1271
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1272 int crypto_bignum_legendre(const struct crypto_bignum *a,
1273 const struct crypto_bignum *p)
1274 {
1275 mp_int t;
1276 int ret;
1277 int res = -2;
1278
1279 if (TEST_FAIL())
1280 return -2;
1281
1282 if (mp_init(&t) != MP_OKAY)
1283 return -2;
1284
1285 /* t = (p-1) / 2 */
1286 ret = mp_sub_d((mp_int *) p, 1, &t);
1287 if (ret == MP_OKAY)
1288 mp_rshb(&t, 1);
1289 if (ret == MP_OKAY)
1290 ret = mp_exptmod((mp_int *) a, &t, (mp_int *) p, &t);
1291 if (ret == MP_OKAY) {
1292 if (mp_isone(&t))
1293 res = 1;
1294 else if (mp_iszero(&t))
1295 res = 0;
1296 else
1297 res = -1;
1298 }
1299
1300 mp_clear(&t);
1301 return res;
1302 }
1303
1304
1305 #ifdef CONFIG_ECC
1306
1307 int ecc_map(ecc_point *, mp_int *, mp_digit);
1308 int ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R,
1309 mp_int *a, mp_int *modulus, mp_digit mp);
1310
1311 struct crypto_ec {
1312 ecc_key key;
1313 mp_int a;
1314 mp_int prime;
1315 mp_int order;
1316 mp_digit mont_b;
1317 mp_int b;
1318 };
1319
1320
crypto_ec_init(int group)1321 struct crypto_ec * crypto_ec_init(int group)
1322 {
1323 int built = 0;
1324 struct crypto_ec *e;
1325 int curve_id;
1326
1327 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1328 switch (group) {
1329 case 19:
1330 curve_id = ECC_SECP256R1;
1331 break;
1332 case 20:
1333 curve_id = ECC_SECP384R1;
1334 break;
1335 case 21:
1336 curve_id = ECC_SECP521R1;
1337 break;
1338 case 25:
1339 curve_id = ECC_SECP192R1;
1340 break;
1341 case 26:
1342 curve_id = ECC_SECP224R1;
1343 break;
1344 #ifdef HAVE_ECC_BRAINPOOL
1345 case 27:
1346 curve_id = ECC_BRAINPOOLP224R1;
1347 break;
1348 case 28:
1349 curve_id = ECC_BRAINPOOLP256R1;
1350 break;
1351 case 29:
1352 curve_id = ECC_BRAINPOOLP384R1;
1353 break;
1354 case 30:
1355 curve_id = ECC_BRAINPOOLP512R1;
1356 break;
1357 #endif /* HAVE_ECC_BRAINPOOL */
1358 default:
1359 return NULL;
1360 }
1361
1362 e = os_zalloc(sizeof(*e));
1363 if (!e)
1364 return NULL;
1365
1366 if (wc_ecc_init(&e->key) != 0 ||
1367 wc_ecc_set_curve(&e->key, 0, curve_id) != 0 ||
1368 mp_init(&e->a) != MP_OKAY ||
1369 mp_init(&e->prime) != MP_OKAY ||
1370 mp_init(&e->order) != MP_OKAY ||
1371 mp_init(&e->b) != MP_OKAY ||
1372 mp_read_radix(&e->a, e->key.dp->Af, 16) != MP_OKAY ||
1373 mp_read_radix(&e->b, e->key.dp->Bf, 16) != MP_OKAY ||
1374 mp_read_radix(&e->prime, e->key.dp->prime, 16) != MP_OKAY ||
1375 mp_read_radix(&e->order, e->key.dp->order, 16) != MP_OKAY ||
1376 mp_montgomery_setup(&e->prime, &e->mont_b) != MP_OKAY)
1377 goto done;
1378
1379 built = 1;
1380 done:
1381 if (!built) {
1382 crypto_ec_deinit(e);
1383 e = NULL;
1384 }
1385 return e;
1386 }
1387
1388
crypto_ec_deinit(struct crypto_ec * e)1389 void crypto_ec_deinit(struct crypto_ec* e)
1390 {
1391 if (!e)
1392 return;
1393
1394 mp_clear(&e->b);
1395 mp_clear(&e->order);
1396 mp_clear(&e->prime);
1397 mp_clear(&e->a);
1398 wc_ecc_free(&e->key);
1399 os_free(e);
1400 }
1401
1402
crypto_ec_point_init(struct crypto_ec * e)1403 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1404 {
1405 if (TEST_FAIL())
1406 return NULL;
1407 if (!e)
1408 return NULL;
1409 return (struct crypto_ec_point *) wc_ecc_new_point();
1410 }
1411
1412
crypto_ec_prime_len(struct crypto_ec * e)1413 size_t crypto_ec_prime_len(struct crypto_ec *e)
1414 {
1415 return (mp_count_bits(&e->prime) + 7) / 8;
1416 }
1417
1418
crypto_ec_prime_len_bits(struct crypto_ec * e)1419 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1420 {
1421 return mp_count_bits(&e->prime);
1422 }
1423
1424
crypto_ec_order_len(struct crypto_ec * e)1425 size_t crypto_ec_order_len(struct crypto_ec *e)
1426 {
1427 return (mp_count_bits(&e->order) + 7) / 8;
1428 }
1429
1430
crypto_ec_get_prime(struct crypto_ec * e)1431 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1432 {
1433 return (const struct crypto_bignum *) &e->prime;
1434 }
1435
1436
crypto_ec_get_order(struct crypto_ec * e)1437 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1438 {
1439 return (const struct crypto_bignum *) &e->order;
1440 }
1441
1442
crypto_ec_get_a(struct crypto_ec * e)1443 const struct crypto_bignum * crypto_ec_get_a(struct crypto_ec *e)
1444 {
1445 return (const struct crypto_bignum *) &e->a;
1446 }
1447
1448
crypto_ec_get_b(struct crypto_ec * e)1449 const struct crypto_bignum * crypto_ec_get_b(struct crypto_ec *e)
1450 {
1451 return (const struct crypto_bignum *) &e->b;
1452 }
1453
1454
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1455 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1456 {
1457 ecc_point *point = (ecc_point *) p;
1458
1459 if (!p)
1460 return;
1461
1462 if (clear) {
1463 mp_forcezero(point->x);
1464 mp_forcezero(point->y);
1465 mp_forcezero(point->z);
1466 }
1467 wc_ecc_del_point(point);
1468 }
1469
1470
crypto_ec_point_x(struct crypto_ec * e,const struct crypto_ec_point * p,struct crypto_bignum * x)1471 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
1472 struct crypto_bignum *x)
1473 {
1474 return mp_copy(((ecc_point *) p)->x, (mp_int *) x) == MP_OKAY ? 0 : -1;
1475 }
1476
1477
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1478 int crypto_ec_point_to_bin(struct crypto_ec *e,
1479 const struct crypto_ec_point *point, u8 *x, u8 *y)
1480 {
1481 ecc_point *p = (ecc_point *) point;
1482
1483 if (TEST_FAIL())
1484 return -1;
1485
1486 if (!mp_isone(p->z)) {
1487 if (ecc_map(p, &e->prime, e->mont_b) != MP_OKAY)
1488 return -1;
1489 }
1490
1491 if (x) {
1492 if (crypto_bignum_to_bin((struct crypto_bignum *)p->x, x,
1493 e->key.dp->size,
1494 e->key.dp->size) <= 0)
1495 return -1;
1496 }
1497
1498 if (y) {
1499 if (crypto_bignum_to_bin((struct crypto_bignum *) p->y, y,
1500 e->key.dp->size,
1501 e->key.dp->size) <= 0)
1502 return -1;
1503 }
1504
1505 return 0;
1506 }
1507
1508
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1509 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1510 const u8 *val)
1511 {
1512 ecc_point *point = NULL;
1513 int loaded = 0;
1514
1515 if (TEST_FAIL())
1516 return NULL;
1517
1518 point = wc_ecc_new_point();
1519 if (!point)
1520 goto done;
1521
1522 if (mp_read_unsigned_bin(point->x, val, e->key.dp->size) != MP_OKAY)
1523 goto done;
1524 val += e->key.dp->size;
1525 if (mp_read_unsigned_bin(point->y, val, e->key.dp->size) != MP_OKAY)
1526 goto done;
1527 mp_set(point->z, 1);
1528
1529 loaded = 1;
1530 done:
1531 if (!loaded) {
1532 wc_ecc_del_point(point);
1533 point = NULL;
1534 }
1535 return (struct crypto_ec_point *) point;
1536 }
1537
1538
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1539 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1540 const struct crypto_ec_point *b,
1541 struct crypto_ec_point *c)
1542 {
1543 mp_int mu;
1544 ecc_point *ta = NULL, *tb = NULL;
1545 ecc_point *pa = (ecc_point *) a, *pb = (ecc_point *) b;
1546 mp_int *modulus = &e->prime;
1547 int ret;
1548
1549 if (TEST_FAIL())
1550 return -1;
1551
1552 ret = mp_init(&mu);
1553 if (ret != MP_OKAY)
1554 return -1;
1555
1556 ret = mp_montgomery_calc_normalization(&mu, modulus);
1557 if (ret != MP_OKAY) {
1558 mp_clear(&mu);
1559 return -1;
1560 }
1561
1562 if (!mp_isone(&mu)) {
1563 ta = wc_ecc_new_point();
1564 if (!ta) {
1565 mp_clear(&mu);
1566 return -1;
1567 }
1568 tb = wc_ecc_new_point();
1569 if (!tb) {
1570 wc_ecc_del_point(ta);
1571 mp_clear(&mu);
1572 return -1;
1573 }
1574
1575 if (mp_mulmod(pa->x, &mu, modulus, ta->x) != MP_OKAY ||
1576 mp_mulmod(pa->y, &mu, modulus, ta->y) != MP_OKAY ||
1577 mp_mulmod(pa->z, &mu, modulus, ta->z) != MP_OKAY ||
1578 mp_mulmod(pb->x, &mu, modulus, tb->x) != MP_OKAY ||
1579 mp_mulmod(pb->y, &mu, modulus, tb->y) != MP_OKAY ||
1580 mp_mulmod(pb->z, &mu, modulus, tb->z) != MP_OKAY) {
1581 ret = -1;
1582 goto end;
1583 }
1584 pa = ta;
1585 pb = tb;
1586 }
1587
1588 ret = ecc_projective_add_point(pa, pb, (ecc_point *) c, &e->a,
1589 &e->prime, e->mont_b);
1590 if (ret != 0) {
1591 ret = -1;
1592 goto end;
1593 }
1594
1595 if (ecc_map((ecc_point *) c, &e->prime, e->mont_b) != MP_OKAY)
1596 ret = -1;
1597 else
1598 ret = 0;
1599 end:
1600 wc_ecc_del_point(tb);
1601 wc_ecc_del_point(ta);
1602 mp_clear(&mu);
1603 return ret;
1604 }
1605
1606
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1607 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1608 const struct crypto_bignum *b,
1609 struct crypto_ec_point *res)
1610 {
1611 int ret;
1612
1613 if (TEST_FAIL())
1614 return -1;
1615
1616 ret = wc_ecc_mulmod((mp_int *) b, (ecc_point *) p, (ecc_point *) res,
1617 &e->a, &e->prime, 1);
1618 return ret == 0 ? 0 : -1;
1619 }
1620
1621
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1622 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1623 {
1624 ecc_point *point = (ecc_point *) p;
1625
1626 if (TEST_FAIL())
1627 return -1;
1628
1629 if (mp_sub(&e->prime, point->y, point->y) != MP_OKAY)
1630 return -1;
1631
1632 return 0;
1633 }
1634
1635
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1636 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1637 struct crypto_ec_point *p,
1638 const struct crypto_bignum *x, int y_bit)
1639 {
1640 byte buf[1 + 2 * MAX_ECC_BYTES];
1641 int ret;
1642 int prime_len = crypto_ec_prime_len(e);
1643
1644 if (TEST_FAIL())
1645 return -1;
1646
1647 buf[0] = y_bit ? ECC_POINT_COMP_ODD : ECC_POINT_COMP_EVEN;
1648 ret = crypto_bignum_to_bin(x, buf + 1, prime_len, prime_len);
1649 if (ret <= 0)
1650 return -1;
1651 ret = wc_ecc_import_point_der(buf, 1 + 2 * ret, e->key.idx,
1652 (ecc_point *) p);
1653 if (ret != 0)
1654 return -1;
1655
1656 return 0;
1657 }
1658
1659
1660 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1661 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1662 const struct crypto_bignum *x)
1663 {
1664 mp_int *y2 = NULL;
1665 mp_int t;
1666 int calced = 0;
1667
1668 if (TEST_FAIL())
1669 return NULL;
1670
1671 if (mp_init(&t) != MP_OKAY)
1672 return NULL;
1673
1674 y2 = (mp_int *) crypto_bignum_init();
1675 if (!y2)
1676 goto done;
1677
1678 if (mp_sqrmod((mp_int *) x, &e->prime, y2) != 0 ||
1679 mp_mulmod((mp_int *) x, y2, &e->prime, y2) != 0 ||
1680 mp_mulmod((mp_int *) x, &e->a, &e->prime, &t) != 0 ||
1681 mp_addmod(y2, &t, &e->prime, y2) != 0 ||
1682 mp_addmod(y2, &e->b, &e->prime, y2) != 0)
1683 goto done;
1684
1685 calced = 1;
1686 done:
1687 if (!calced) {
1688 if (y2) {
1689 mp_clear(y2);
1690 os_free(y2);
1691 }
1692 mp_clear(&t);
1693 }
1694
1695 return (struct crypto_bignum *) y2;
1696 }
1697
1698
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1699 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1700 const struct crypto_ec_point *p)
1701 {
1702 return wc_ecc_point_is_at_infinity((ecc_point *) p);
1703 }
1704
1705
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1706 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1707 const struct crypto_ec_point *p)
1708 {
1709 return wc_ecc_is_point((ecc_point *) p, &e->a, &e->b, &e->prime) ==
1710 MP_OKAY;
1711 }
1712
1713
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1714 int crypto_ec_point_cmp(const struct crypto_ec *e,
1715 const struct crypto_ec_point *a,
1716 const struct crypto_ec_point *b)
1717 {
1718 return wc_ecc_cmp_point((ecc_point *) a, (ecc_point *) b);
1719 }
1720
1721
1722 struct crypto_ecdh {
1723 struct crypto_ec *ec;
1724 };
1725
crypto_ecdh_init(int group)1726 struct crypto_ecdh * crypto_ecdh_init(int group)
1727 {
1728 struct crypto_ecdh *ecdh = NULL;
1729 WC_RNG rng;
1730 int ret;
1731
1732 if (wc_InitRng(&rng) != 0)
1733 goto fail;
1734
1735 ecdh = os_zalloc(sizeof(*ecdh));
1736 if (!ecdh)
1737 goto fail;
1738
1739 ecdh->ec = crypto_ec_init(group);
1740 if (!ecdh->ec)
1741 goto fail;
1742
1743 ret = wc_ecc_make_key_ex(&rng, ecdh->ec->key.dp->size, &ecdh->ec->key,
1744 ecdh->ec->key.dp->id);
1745 if (ret < 0)
1746 goto fail;
1747
1748 done:
1749 wc_FreeRng(&rng);
1750
1751 return ecdh;
1752 fail:
1753 crypto_ecdh_deinit(ecdh);
1754 ecdh = NULL;
1755 goto done;
1756 }
1757
1758
crypto_ecdh_deinit(struct crypto_ecdh * ecdh)1759 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
1760 {
1761 if (ecdh) {
1762 crypto_ec_deinit(ecdh->ec);
1763 os_free(ecdh);
1764 }
1765 }
1766
1767
crypto_ecdh_get_pubkey(struct crypto_ecdh * ecdh,int inc_y)1768 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
1769 {
1770 struct wpabuf *buf = NULL;
1771 int ret;
1772 int len = ecdh->ec->key.dp->size;
1773
1774 buf = wpabuf_alloc(inc_y ? 2 * len : len);
1775 if (!buf)
1776 goto fail;
1777
1778 ret = crypto_bignum_to_bin((struct crypto_bignum *)
1779 ecdh->ec->key.pubkey.x, wpabuf_put(buf, len),
1780 len, len);
1781 if (ret < 0)
1782 goto fail;
1783 if (inc_y) {
1784 ret = crypto_bignum_to_bin((struct crypto_bignum *)
1785 ecdh->ec->key.pubkey.y,
1786 wpabuf_put(buf, len), len, len);
1787 if (ret < 0)
1788 goto fail;
1789 }
1790
1791 done:
1792 return buf;
1793 fail:
1794 wpabuf_free(buf);
1795 buf = NULL;
1796 goto done;
1797 }
1798
1799
crypto_ecdh_set_peerkey(struct crypto_ecdh * ecdh,int inc_y,const u8 * key,size_t len)1800 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
1801 const u8 *key, size_t len)
1802 {
1803 int ret;
1804 struct wpabuf *pubkey = NULL;
1805 struct wpabuf *secret = NULL;
1806 word32 key_len = ecdh->ec->key.dp->size;
1807 ecc_point *point = NULL;
1808 size_t need_key_len = inc_y ? 2 * key_len : key_len;
1809
1810 if (len < need_key_len)
1811 goto fail;
1812 pubkey = wpabuf_alloc(1 + 2 * key_len);
1813 if (!pubkey)
1814 goto fail;
1815 wpabuf_put_u8(pubkey, inc_y ? ECC_POINT_UNCOMP : ECC_POINT_COMP_EVEN);
1816 wpabuf_put_data(pubkey, key, need_key_len);
1817
1818 point = wc_ecc_new_point();
1819 if (!point)
1820 goto fail;
1821
1822 ret = wc_ecc_import_point_der(wpabuf_mhead(pubkey), 1 + 2 * key_len,
1823 ecdh->ec->key.idx, point);
1824 if (ret != MP_OKAY)
1825 goto fail;
1826
1827 secret = wpabuf_alloc(key_len);
1828 if (!secret)
1829 goto fail;
1830
1831 ret = wc_ecc_shared_secret_ex(&ecdh->ec->key, point,
1832 wpabuf_put(secret, key_len), &key_len);
1833 if (ret != MP_OKAY)
1834 goto fail;
1835
1836 done:
1837 wc_ecc_del_point(point);
1838 wpabuf_free(pubkey);
1839 return secret;
1840 fail:
1841 wpabuf_free(secret);
1842 secret = NULL;
1843 goto done;
1844 }
1845
1846 #endif /* CONFIG_ECC */
1847