• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* enough.c -- determine the maximum size of inflate's Huffman code tables over
2  * all possible valid and complete prefix codes, subject to a length limit.
3  * Copyright (C) 2007, 2008, 2012, 2018 Mark Adler
4  * Version 1.5  5 August 2018  Mark Adler
5  */
6 
7 /* Version history:
8    1.0   3 Jan 2007  First version (derived from codecount.c version 1.4)
9    1.1   4 Jan 2007  Use faster incremental table usage computation
10                      Prune examine() search on previously visited states
11    1.2   5 Jan 2007  Comments clean up
12                      As inflate does, decrease root for short codes
13                      Refuse cases where inflate would increase root
14    1.3  17 Feb 2008  Add argument for initial root table size
15                      Fix bug for initial root table size == max - 1
16                      Use a macro to compute the history index
17    1.4  18 Aug 2012  Avoid shifts more than bits in type (caused endless loop!)
18                      Clean up comparisons of different types
19                      Clean up code indentation
20    1.5   5 Aug 2018  Clean up code style, formatting, and comments
21                      Show all the codes for the maximum, and only the maximum
22  */
23 
24 /*
25    Examine all possible prefix codes for a given number of symbols and a
26    maximum code length in bits to determine the maximum table size for zlib's
27    inflate. Only complete prefix codes are counted.
28 
29    Two codes are considered distinct if the vectors of the number of codes per
30    length are not identical. So permutations of the symbol assignments result
31    in the same code for the counting, as do permutations of the assignments of
32    the bit values to the codes (i.e. only canonical codes are counted).
33 
34    We build a code from shorter to longer lengths, determining how many symbols
35    are coded at each length. At each step, we have how many symbols remain to
36    be coded, what the last code length used was, and how many bit patterns of
37    that length remain unused. Then we add one to the code length and double the
38    number of unused patterns to graduate to the next code length. We then
39    assign all portions of the remaining symbols to that code length that
40    preserve the properties of a correct and eventually complete code. Those
41    properties are: we cannot use more bit patterns than are available; and when
42    all the symbols are used, there are exactly zero possible bit patterns left
43    unused.
44 
45    The inflate Huffman decoding algorithm uses two-level lookup tables for
46    speed. There is a single first-level table to decode codes up to root bits
47    in length (root == 9 for literal/length codes and root == 6 for distance
48    codes, in the current inflate implementation). The base table has 1 << root
49    entries and is indexed by the next root bits of input. Codes shorter than
50    root bits have replicated table entries, so that the correct entry is
51    pointed to regardless of the bits that follow the short code. If the code is
52    longer than root bits, then the table entry points to a second-level table.
53    The size of that table is determined by the longest code with that root-bit
54    prefix. If that longest code has length len, then the table has size 1 <<
55    (len - root), to index the remaining bits in that set of codes. Each
56    subsequent root-bit prefix then has its own sub-table. The total number of
57    table entries required by the code is calculated incrementally as the number
58    of codes at each bit length is populated. When all of the codes are shorter
59    than root bits, then root is reduced to the longest code length, resulting
60    in a single, smaller, one-level table.
61 
62    The inflate algorithm also provides for small values of root (relative to
63    the log2 of the number of symbols), where the shortest code has more bits
64    than root. In that case, root is increased to the length of the shortest
65    code. This program, by design, does not handle that case, so it is verified
66    that the number of symbols is less than 1 << (root + 1).
67 
68    In order to speed up the examination (by about ten orders of magnitude for
69    the default arguments), the intermediate states in the build-up of a code
70    are remembered and previously visited branches are pruned. The memory
71    required for this will increase rapidly with the total number of symbols and
72    the maximum code length in bits. However this is a very small price to pay
73    for the vast speedup.
74 
75    First, all of the possible prefix codes are counted, and reachable
76    intermediate states are noted by a non-zero count in a saved-results array.
77    Second, the intermediate states that lead to (root + 1) bit or longer codes
78    are used to look at all sub-codes from those junctures for their inflate
79    memory usage. (The amount of memory used is not affected by the number of
80    codes of root bits or less in length.)  Third, the visited states in the
81    construction of those sub-codes and the associated calculation of the table
82    size is recalled in order to avoid recalculating from the same juncture.
83    Beginning the code examination at (root + 1) bit codes, which is enabled by
84    identifying the reachable nodes, accounts for about six of the orders of
85    magnitude of improvement for the default arguments. About another four
86    orders of magnitude come from not revisiting previous states. Out of
87    approximately 2x10^16 possible prefix codes, only about 2x10^6 sub-codes
88    need to be examined to cover all of the possible table memory usage cases
89    for the default arguments of 286 symbols limited to 15-bit codes.
90 
91    Note that the uintmax_t type is used for counting. It is quite easy to
92    exceed the capacity of an eight-byte integer with a large number of symbols
93    and a large maximum code length, so multiple-precision arithmetic would need
94    to replace the integer arithmetic in that case. This program will abort if
95    an overflow occurs. The big_t type identifies where the counting takes
96    place.
97 
98    The uintmax_t type is also used for calculating the number of possible codes
99    remaining at the maximum length. This limits the maximum code length to the
100    number of bits in a long long minus the number of bits needed to represent
101    the symbols in a flat code. The code_t type identifies where the bit-pattern
102    counting takes place.
103  */
104 
105 #include <stdio.h>
106 #include <stdlib.h>
107 #include <string.h>
108 #include <stdarg.h>
109 #include <stdint.h>
110 #include <assert.h>
111 
112 #define local static
113 
114 // Special data types.
115 typedef uintmax_t big_t;    // type for code counting
116 #define PRIbig "ju"         // printf format for big_t
117 typedef uintmax_t code_t;   // type for bit pattern counting
118 struct tab {                // type for been-here check
119     size_t len;             // allocated length of bit vector in octets
120     char *vec;              // allocated bit vector
121 };
122 
123 /* The array for saving results, num[], is indexed with this triplet:
124 
125       syms: number of symbols remaining to code
126       left: number of available bit patterns at length len
127       len: number of bits in the codes currently being assigned
128 
129    Those indices are constrained thusly when saving results:
130 
131       syms: 3..totsym (totsym == total symbols to code)
132       left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
133       len: 1..max - 1 (max == maximum code length in bits)
134 
135    syms == 2 is not saved since that immediately leads to a single code. left
136    must be even, since it represents the number of available bit patterns at
137    the current length, which is double the number at the previous length. left
138    ends at syms-1 since left == syms immediately results in a single code.
139    (left > sym is not allowed since that would result in an incomplete code.)
140    len is less than max, since the code completes immediately when len == max.
141 
142    The offset into the array is calculated for the three indices with the first
143    one (syms) being outermost, and the last one (len) being innermost. We build
144    the array with length max-1 lists for the len index, with syms-3 of those
145    for each symbol. There are totsym-2 of those, with each one varying in
146    length as a function of sym. See the calculation of index in map() for the
147    index, and the calculation of size in main() for the size of the array.
148 
149    For the deflate example of 286 symbols limited to 15-bit codes, the array
150    has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than half
151    of the space allocated for saved results is actually used -- not all
152    possible triplets are reached in the generation of valid prefix codes.
153  */
154 
155 /* The array for tracking visited states, done[], is itself indexed identically
156    to the num[] array as described above for the (syms, left, len) triplet.
157    Each element in the array is further indexed by the (mem, rem) doublet,
158    where mem is the amount of inflate table space used so far, and rem is the
159    remaining unused entries in the current inflate sub-table. Each indexed
160    element is simply one bit indicating whether the state has been visited or
161    not. Since the ranges for mem and rem are not known a priori, each bit
162    vector is of a variable size, and grows as needed to accommodate the visited
163    states. mem and rem are used to calculate a single index in a triangular
164    array. Since the range of mem is expected in the default case to be about
165    ten times larger than the range of rem, the array is skewed to reduce the
166    memory usage, with eight times the range for mem than for rem. See the
167    calculations for offset and bit in been_here() for the details.
168 
169    For the deflate example of 286 symbols limited to 15-bit codes, the bit
170    vectors grow to total 5.5 MB, in addition to the 4.3 MB done array itself.
171  */
172 
173 // Type for a variable-length, allocated string.
174 typedef struct {
175     char *str;          // pointer to allocated string
176     size_t size;        // size of allocation
177     size_t len;         // length of string, not including terminating zero
178 } string_t;
179 
180 // Clear a string_t.
string_clear(string_t * s)181 local void string_clear(string_t *s) {
182     s->str[0] = 0;
183     s->len = 0;
184 }
185 
186 // Initialize a string_t.
string_init(string_t * s)187 local void string_init(string_t *s) {
188     s->size = 16;
189     s->str = malloc(s->size);
190     assert(s->str != NULL && "out of memory");
191     string_clear(s);
192 }
193 
194 // Release the allocation of a string_t.
string_free(string_t * s)195 local void string_free(string_t *s) {
196     free(s->str);
197     s->str = NULL;
198     s->size = 0;
199     s->len = 0;
200 }
201 
202 // Save the results of printf with fmt and the subsequent argument list to s.
203 // Each call appends to s. The allocated space for s is increased as needed.
string_printf(string_t * s,char * fmt,...)204 local void string_printf(string_t *s, char *fmt, ...) {
205     va_list ap;
206     va_start(ap, fmt);
207     size_t len = s->len;
208     int ret = vsnprintf(s->str + len, s->size - len, fmt, ap);
209     assert(ret >= 0 && "out of memory");
210     s->len += ret;
211     if (s->size < s->len + 1) {
212         do {
213             s->size <<= 1;
214             assert(s->size != 0 && "overflow");
215         } while (s->size < s->len + 1);
216         s->str = realloc(s->str, s->size);
217         assert(s->str != NULL && "out of memory");
218         vsnprintf(s->str + len, s->size - len, fmt, ap);
219     }
220     va_end(ap);
221 }
222 
223 // Globals to avoid propagating constants or constant pointers recursively.
224 struct {
225     int max;            // maximum allowed bit length for the codes
226     int root;           // size of base code table in bits
227     int large;          // largest code table so far
228     size_t size;        // number of elements in num and done
229     big_t tot;          // total number of codes with maximum tables size
230     string_t out;       // display of subcodes for maximum tables size
231     int *code;          // number of symbols assigned to each bit length
232     big_t *num;         // saved results array for code counting
233     struct tab *done;   // states already evaluated array
234 } g;
235 
236 // Index function for num[] and done[].
map(int syms,int left,int len)237 local inline size_t map(int syms, int left, int len) {
238     return ((size_t)((syms - 1) >> 1) * ((syms - 2) >> 1) +
239             (left >> 1) - 1) * (g.max - 1) +
240            len - 1;
241 }
242 
243 // Free allocated space in globals.
cleanup(void)244 local void cleanup(void) {
245     if (g.done != NULL) {
246         for (size_t n = 0; n < g.size; n++)
247             if (g.done[n].len)
248                 free(g.done[n].vec);
249         g.size = 0;
250         free(g.done);   g.done = NULL;
251     }
252     free(g.num);    g.num = NULL;
253     free(g.code);   g.code = NULL;
254     string_free(&g.out);
255 }
256 
257 // Return the number of possible prefix codes using bit patterns of lengths len
258 // through max inclusive, coding syms symbols, with left bit patterns of length
259 // len unused -- return -1 if there is an overflow in the counting. Keep a
260 // record of previous results in num to prevent repeating the same calculation.
count(int syms,int left,int len)261 local big_t count(int syms, int left, int len) {
262     // see if only one possible code
263     if (syms == left)
264         return 1;
265 
266     // note and verify the expected state
267     assert(syms > left && left > 0 && len < g.max);
268 
269     // see if we've done this one already
270     size_t index = map(syms, left, len);
271     big_t got = g.num[index];
272     if (got)
273         return got;         // we have -- return the saved result
274 
275     // we need to use at least this many bit patterns so that the code won't be
276     // incomplete at the next length (more bit patterns than symbols)
277     int least = (left << 1) - syms;
278     if (least < 0)
279         least = 0;
280 
281     // we can use at most this many bit patterns, lest there not be enough
282     // available for the remaining symbols at the maximum length (if there were
283     // no limit to the code length, this would become: most = left - 1)
284     int most = (((code_t)left << (g.max - len)) - syms) /
285                (((code_t)1 << (g.max - len)) - 1);
286 
287     // count all possible codes from this juncture and add them up
288     big_t sum = 0;
289     for (int use = least; use <= most; use++) {
290         got = count(syms - use, (left - use) << 1, len + 1);
291         sum += got;
292         if (got == (big_t)-1 || sum < got)      // overflow
293             return (big_t)-1;
294     }
295 
296     // verify that all recursive calls are productive
297     assert(sum != 0);
298 
299     // save the result and return it
300     g.num[index] = sum;
301     return sum;
302 }
303 
304 // Return true if we've been here before, set to true if not. Set a bit in a
305 // bit vector to indicate visiting this state. Each (syms,len,left) state has a
306 // variable size bit vector indexed by (mem,rem). The bit vector is lengthened
307 // as needed to allow setting the (mem,rem) bit.
been_here(int syms,int left,int len,int mem,int rem)308 local int been_here(int syms, int left, int len, int mem, int rem) {
309     // point to vector for (syms,left,len), bit in vector for (mem,rem)
310     size_t index = map(syms, left, len);
311     mem -= 1 << g.root;             // mem always includes the root table
312     mem >>= 1;                      // mem and rem are always even
313     rem >>= 1;
314     size_t offset = (mem >> 3) + rem;
315     offset = ((offset * (offset + 1)) >> 1) + rem;
316     int bit = 1 << (mem & 7);
317 
318     // see if we've been here
319     size_t length = g.done[index].len;
320     if (offset < length && (g.done[index].vec[offset] & bit) != 0)
321         return 1;       // done this!
322 
323     // we haven't been here before -- set the bit to show we have now
324 
325     // see if we need to lengthen the vector in order to set the bit
326     if (length <= offset) {
327         // if we have one already, enlarge it, zero out the appended space
328         char *vector;
329         if (length) {
330             do {
331                 length <<= 1;
332             } while (length <= offset);
333             vector = realloc(g.done[index].vec, length);
334             assert(vector != NULL && "out of memory");
335             memset(vector + g.done[index].len, 0, length - g.done[index].len);
336         }
337 
338         // otherwise we need to make a new vector and zero it out
339         else {
340             length = 16;
341             while (length <= offset)
342                 length <<= 1;
343             vector = calloc(length, 1);
344             assert(vector != NULL && "out of memory");
345         }
346 
347         // install the new vector
348         g.done[index].len = length;
349         g.done[index].vec = vector;
350     }
351 
352     // set the bit
353     g.done[index].vec[offset] |= bit;
354     return 0;
355 }
356 
357 // Examine all possible codes from the given node (syms, len, left). Compute
358 // the amount of memory required to build inflate's decoding tables, where the
359 // number of code structures used so far is mem, and the number remaining in
360 // the current sub-table is rem.
examine(int syms,int left,int len,int mem,int rem)361 local void examine(int syms, int left, int len, int mem, int rem) {
362     // see if we have a complete code
363     if (syms == left) {
364         // set the last code entry
365         g.code[len] = left;
366 
367         // complete computation of memory used by this code
368         while (rem < left) {
369             left -= rem;
370             rem = 1 << (len - g.root);
371             mem += rem;
372         }
373         assert(rem == left);
374 
375         // if this is at the maximum, show the sub-code
376         if (mem >= g.large) {
377             // if this is a new maximum, update the maximum and clear out the
378             // printed sub-codes from the previous maximum
379             if (mem > g.large) {
380                 g.large = mem;
381                 string_clear(&g.out);
382             }
383 
384             // compute the starting state for this sub-code
385             syms = 0;
386             left = 1 << g.max;
387             for (int bits = g.max; bits > g.root; bits--) {
388                 syms += g.code[bits];
389                 left -= g.code[bits];
390                 assert((left & 1) == 0);
391                 left >>= 1;
392             }
393 
394             // print the starting state and the resulting sub-code to g.out
395             string_printf(&g.out, "<%u, %u, %u>:",
396                           syms, g.root + 1, ((1 << g.root) - left) << 1);
397             for (int bits = g.root + 1; bits <= g.max; bits++)
398                 if (g.code[bits])
399                     string_printf(&g.out, " %d[%d]", g.code[bits], bits);
400             string_printf(&g.out, "\n");
401         }
402 
403         // remove entries as we drop back down in the recursion
404         g.code[len] = 0;
405         return;
406     }
407 
408     // prune the tree if we can
409     if (been_here(syms, left, len, mem, rem))
410         return;
411 
412     // we need to use at least this many bit patterns so that the code won't be
413     // incomplete at the next length (more bit patterns than symbols)
414     int least = (left << 1) - syms;
415     if (least < 0)
416         least = 0;
417 
418     // we can use at most this many bit patterns, lest there not be enough
419     // available for the remaining symbols at the maximum length (if there were
420     // no limit to the code length, this would become: most = left - 1)
421     int most = (((code_t)left << (g.max - len)) - syms) /
422                (((code_t)1 << (g.max - len)) - 1);
423 
424     // occupy least table spaces, creating new sub-tables as needed
425     int use = least;
426     while (rem < use) {
427         use -= rem;
428         rem = 1 << (len - g.root);
429         mem += rem;
430     }
431     rem -= use;
432 
433     // examine codes from here, updating table space as we go
434     for (use = least; use <= most; use++) {
435         g.code[len] = use;
436         examine(syms - use, (left - use) << 1, len + 1,
437                 mem + (rem ? 1 << (len - g.root) : 0), rem << 1);
438         if (rem == 0) {
439             rem = 1 << (len - g.root);
440             mem += rem;
441         }
442         rem--;
443     }
444 
445     // remove entries as we drop back down in the recursion
446     g.code[len] = 0;
447 }
448 
449 // Look at all sub-codes starting with root + 1 bits. Look at only the valid
450 // intermediate code states (syms, left, len). For each completed code,
451 // calculate the amount of memory required by inflate to build the decoding
452 // tables. Find the maximum amount of memory required and show the codes that
453 // require that maximum.
enough(int syms)454 local void enough(int syms) {
455     // clear code
456     for (int n = 0; n <= g.max; n++)
457         g.code[n] = 0;
458 
459     // look at all (root + 1) bit and longer codes
460     string_clear(&g.out);           // empty saved results
461     g.large = 1 << g.root;          // base table
462     if (g.root < g.max)             // otherwise, there's only a base table
463         for (int n = 3; n <= syms; n++)
464             for (int left = 2; left < n; left += 2) {
465                 // look at all reachable (root + 1) bit nodes, and the
466                 // resulting codes (complete at root + 2 or more)
467                 size_t index = map(n, left, g.root + 1);
468                 if (g.root + 1 < g.max && g.num[index]) // reachable node
469                     examine(n, left, g.root + 1, 1 << g.root, 0);
470 
471                 // also look at root bit codes with completions at root + 1
472                 // bits (not saved in num, since complete), just in case
473                 if (g.num[index - 1] && n <= left << 1)
474                     examine((n - left) << 1, (n - left) << 1, g.root + 1,
475                             1 << g.root, 0);
476             }
477 
478     // done
479     printf("maximum of %d table entries for root = %d\n", g.large, g.root);
480     fputs(g.out.str, stdout);
481 }
482 
483 // Examine and show the total number of possible prefix codes for a given
484 // maximum number of symbols, initial root table size, and maximum code length
485 // in bits -- those are the command arguments in that order. The default values
486 // are 286, 9, and 15 respectively, for the deflate literal/length code. The
487 // possible codes are counted for each number of coded symbols from two to the
488 // maximum. The counts for each of those and the total number of codes are
489 // shown. The maximum number of inflate table entires is then calculated across
490 // all possible codes. Each new maximum number of table entries and the
491 // associated sub-code (starting at root + 1 == 10 bits) is shown.
492 //
493 // To count and examine prefix codes that are not length-limited, provide a
494 // maximum length equal to the number of symbols minus one.
495 //
496 // For the deflate literal/length code, use "enough". For the deflate distance
497 // code, use "enough 30 6".
main(int argc,char ** argv)498 int main(int argc, char **argv) {
499     // set up globals for cleanup()
500     g.code = NULL;
501     g.num = NULL;
502     g.done = NULL;
503     string_init(&g.out);
504 
505     // get arguments -- default to the deflate literal/length code
506     int syms = 286;
507     g.root = 9;
508     g.max = 15;
509     if (argc > 1) {
510         syms = atoi(argv[1]);
511         if (argc > 2) {
512             g.root = atoi(argv[2]);
513             if (argc > 3)
514                 g.max = atoi(argv[3]);
515         }
516     }
517     if (argc > 4 || syms < 2 || g.root < 1 || g.max < 1) {
518         fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
519               stderr);
520         return 1;
521     }
522 
523     // if not restricting the code length, the longest is syms - 1
524     if (g.max > syms - 1)
525         g.max = syms - 1;
526 
527     // determine the number of bits in a code_t
528     int bits = 0;
529     for (code_t word = 1; word; word <<= 1)
530         bits++;
531 
532     // make sure that the calculation of most will not overflow
533     if (g.max > bits || (code_t)(syms - 2) >= ((code_t)-1 >> (g.max - 1))) {
534         fputs("abort: code length too long for internal types\n", stderr);
535         return 1;
536     }
537 
538     // reject impossible code requests
539     if ((code_t)(syms - 1) > ((code_t)1 << g.max) - 1) {
540         fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
541                 syms, g.max);
542         return 1;
543     }
544 
545     // allocate code vector
546     g.code = calloc(g.max + 1, sizeof(int));
547     assert(g.code != NULL && "out of memory");
548 
549     // determine size of saved results array, checking for overflows,
550     // allocate and clear the array (set all to zero with calloc())
551     if (syms == 2)              // iff max == 1
552         g.num = NULL;           // won't be saving any results
553     else {
554         g.size = syms >> 1;
555         int n = (syms - 1) >> 1;
556         assert(g.size <= (size_t)-1 / n && "overflow");
557         g.size *= n;
558         n = g.max - 1;
559         assert(g.size <= (size_t)-1 / n && "overflow");
560         g.size *= n;
561         g.num = calloc(g.size, sizeof(big_t));
562         assert(g.num != NULL && "out of memory");
563     }
564 
565     // count possible codes for all numbers of symbols, add up counts
566     big_t sum = 0;
567     for (int n = 2; n <= syms; n++) {
568         big_t got = count(n, 2, 1);
569         sum += got;
570         assert(got != (big_t)-1 && sum >= got && "overflow");
571     }
572     printf("%"PRIbig" total codes for 2 to %d symbols", sum, syms);
573     if (g.max < syms - 1)
574         printf(" (%d-bit length limit)\n", g.max);
575     else
576         puts(" (no length limit)");
577 
578     // allocate and clear done array for been_here()
579     if (syms == 2)
580         g.done = NULL;
581     else {
582         g.done = calloc(g.size, sizeof(struct tab));
583         assert(g.done != NULL && "out of memory");
584     }
585 
586     // find and show maximum inflate table usage
587     if (g.root > g.max)             // reduce root to max length
588         g.root = g.max;
589     if ((code_t)syms < ((code_t)1 << (g.root + 1)))
590         enough(syms);
591     else
592         fputs("cannot handle minimum code lengths > root", stderr);
593 
594     // done
595     cleanup();
596     return 0;
597 }
598