1 /* enough.c -- determine the maximum size of inflate's Huffman code tables over
2 * all possible valid and complete prefix codes, subject to a length limit.
3 * Copyright (C) 2007, 2008, 2012, 2018 Mark Adler
4 * Version 1.5 5 August 2018 Mark Adler
5 */
6
7 /* Version history:
8 1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
9 1.1 4 Jan 2007 Use faster incremental table usage computation
10 Prune examine() search on previously visited states
11 1.2 5 Jan 2007 Comments clean up
12 As inflate does, decrease root for short codes
13 Refuse cases where inflate would increase root
14 1.3 17 Feb 2008 Add argument for initial root table size
15 Fix bug for initial root table size == max - 1
16 Use a macro to compute the history index
17 1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
18 Clean up comparisons of different types
19 Clean up code indentation
20 1.5 5 Aug 2018 Clean up code style, formatting, and comments
21 Show all the codes for the maximum, and only the maximum
22 */
23
24 /*
25 Examine all possible prefix codes for a given number of symbols and a
26 maximum code length in bits to determine the maximum table size for zlib's
27 inflate. Only complete prefix codes are counted.
28
29 Two codes are considered distinct if the vectors of the number of codes per
30 length are not identical. So permutations of the symbol assignments result
31 in the same code for the counting, as do permutations of the assignments of
32 the bit values to the codes (i.e. only canonical codes are counted).
33
34 We build a code from shorter to longer lengths, determining how many symbols
35 are coded at each length. At each step, we have how many symbols remain to
36 be coded, what the last code length used was, and how many bit patterns of
37 that length remain unused. Then we add one to the code length and double the
38 number of unused patterns to graduate to the next code length. We then
39 assign all portions of the remaining symbols to that code length that
40 preserve the properties of a correct and eventually complete code. Those
41 properties are: we cannot use more bit patterns than are available; and when
42 all the symbols are used, there are exactly zero possible bit patterns left
43 unused.
44
45 The inflate Huffman decoding algorithm uses two-level lookup tables for
46 speed. There is a single first-level table to decode codes up to root bits
47 in length (root == 9 for literal/length codes and root == 6 for distance
48 codes, in the current inflate implementation). The base table has 1 << root
49 entries and is indexed by the next root bits of input. Codes shorter than
50 root bits have replicated table entries, so that the correct entry is
51 pointed to regardless of the bits that follow the short code. If the code is
52 longer than root bits, then the table entry points to a second-level table.
53 The size of that table is determined by the longest code with that root-bit
54 prefix. If that longest code has length len, then the table has size 1 <<
55 (len - root), to index the remaining bits in that set of codes. Each
56 subsequent root-bit prefix then has its own sub-table. The total number of
57 table entries required by the code is calculated incrementally as the number
58 of codes at each bit length is populated. When all of the codes are shorter
59 than root bits, then root is reduced to the longest code length, resulting
60 in a single, smaller, one-level table.
61
62 The inflate algorithm also provides for small values of root (relative to
63 the log2 of the number of symbols), where the shortest code has more bits
64 than root. In that case, root is increased to the length of the shortest
65 code. This program, by design, does not handle that case, so it is verified
66 that the number of symbols is less than 1 << (root + 1).
67
68 In order to speed up the examination (by about ten orders of magnitude for
69 the default arguments), the intermediate states in the build-up of a code
70 are remembered and previously visited branches are pruned. The memory
71 required for this will increase rapidly with the total number of symbols and
72 the maximum code length in bits. However this is a very small price to pay
73 for the vast speedup.
74
75 First, all of the possible prefix codes are counted, and reachable
76 intermediate states are noted by a non-zero count in a saved-results array.
77 Second, the intermediate states that lead to (root + 1) bit or longer codes
78 are used to look at all sub-codes from those junctures for their inflate
79 memory usage. (The amount of memory used is not affected by the number of
80 codes of root bits or less in length.) Third, the visited states in the
81 construction of those sub-codes and the associated calculation of the table
82 size is recalled in order to avoid recalculating from the same juncture.
83 Beginning the code examination at (root + 1) bit codes, which is enabled by
84 identifying the reachable nodes, accounts for about six of the orders of
85 magnitude of improvement for the default arguments. About another four
86 orders of magnitude come from not revisiting previous states. Out of
87 approximately 2x10^16 possible prefix codes, only about 2x10^6 sub-codes
88 need to be examined to cover all of the possible table memory usage cases
89 for the default arguments of 286 symbols limited to 15-bit codes.
90
91 Note that the uintmax_t type is used for counting. It is quite easy to
92 exceed the capacity of an eight-byte integer with a large number of symbols
93 and a large maximum code length, so multiple-precision arithmetic would need
94 to replace the integer arithmetic in that case. This program will abort if
95 an overflow occurs. The big_t type identifies where the counting takes
96 place.
97
98 The uintmax_t type is also used for calculating the number of possible codes
99 remaining at the maximum length. This limits the maximum code length to the
100 number of bits in a long long minus the number of bits needed to represent
101 the symbols in a flat code. The code_t type identifies where the bit-pattern
102 counting takes place.
103 */
104
105 #include <stdio.h>
106 #include <stdlib.h>
107 #include <string.h>
108 #include <stdarg.h>
109 #include <stdint.h>
110 #include <assert.h>
111
112 #define local static
113
114 // Special data types.
115 typedef uintmax_t big_t; // type for code counting
116 #define PRIbig "ju" // printf format for big_t
117 typedef uintmax_t code_t; // type for bit pattern counting
118 struct tab { // type for been-here check
119 size_t len; // allocated length of bit vector in octets
120 char *vec; // allocated bit vector
121 };
122
123 /* The array for saving results, num[], is indexed with this triplet:
124
125 syms: number of symbols remaining to code
126 left: number of available bit patterns at length len
127 len: number of bits in the codes currently being assigned
128
129 Those indices are constrained thusly when saving results:
130
131 syms: 3..totsym (totsym == total symbols to code)
132 left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
133 len: 1..max - 1 (max == maximum code length in bits)
134
135 syms == 2 is not saved since that immediately leads to a single code. left
136 must be even, since it represents the number of available bit patterns at
137 the current length, which is double the number at the previous length. left
138 ends at syms-1 since left == syms immediately results in a single code.
139 (left > sym is not allowed since that would result in an incomplete code.)
140 len is less than max, since the code completes immediately when len == max.
141
142 The offset into the array is calculated for the three indices with the first
143 one (syms) being outermost, and the last one (len) being innermost. We build
144 the array with length max-1 lists for the len index, with syms-3 of those
145 for each symbol. There are totsym-2 of those, with each one varying in
146 length as a function of sym. See the calculation of index in map() for the
147 index, and the calculation of size in main() for the size of the array.
148
149 For the deflate example of 286 symbols limited to 15-bit codes, the array
150 has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than half
151 of the space allocated for saved results is actually used -- not all
152 possible triplets are reached in the generation of valid prefix codes.
153 */
154
155 /* The array for tracking visited states, done[], is itself indexed identically
156 to the num[] array as described above for the (syms, left, len) triplet.
157 Each element in the array is further indexed by the (mem, rem) doublet,
158 where mem is the amount of inflate table space used so far, and rem is the
159 remaining unused entries in the current inflate sub-table. Each indexed
160 element is simply one bit indicating whether the state has been visited or
161 not. Since the ranges for mem and rem are not known a priori, each bit
162 vector is of a variable size, and grows as needed to accommodate the visited
163 states. mem and rem are used to calculate a single index in a triangular
164 array. Since the range of mem is expected in the default case to be about
165 ten times larger than the range of rem, the array is skewed to reduce the
166 memory usage, with eight times the range for mem than for rem. See the
167 calculations for offset and bit in been_here() for the details.
168
169 For the deflate example of 286 symbols limited to 15-bit codes, the bit
170 vectors grow to total 5.5 MB, in addition to the 4.3 MB done array itself.
171 */
172
173 // Type for a variable-length, allocated string.
174 typedef struct {
175 char *str; // pointer to allocated string
176 size_t size; // size of allocation
177 size_t len; // length of string, not including terminating zero
178 } string_t;
179
180 // Clear a string_t.
string_clear(string_t * s)181 local void string_clear(string_t *s) {
182 s->str[0] = 0;
183 s->len = 0;
184 }
185
186 // Initialize a string_t.
string_init(string_t * s)187 local void string_init(string_t *s) {
188 s->size = 16;
189 s->str = malloc(s->size);
190 assert(s->str != NULL && "out of memory");
191 string_clear(s);
192 }
193
194 // Release the allocation of a string_t.
string_free(string_t * s)195 local void string_free(string_t *s) {
196 free(s->str);
197 s->str = NULL;
198 s->size = 0;
199 s->len = 0;
200 }
201
202 // Save the results of printf with fmt and the subsequent argument list to s.
203 // Each call appends to s. The allocated space for s is increased as needed.
string_printf(string_t * s,char * fmt,...)204 local void string_printf(string_t *s, char *fmt, ...) {
205 va_list ap;
206 va_start(ap, fmt);
207 size_t len = s->len;
208 int ret = vsnprintf(s->str + len, s->size - len, fmt, ap);
209 assert(ret >= 0 && "out of memory");
210 s->len += ret;
211 if (s->size < s->len + 1) {
212 do {
213 s->size <<= 1;
214 assert(s->size != 0 && "overflow");
215 } while (s->size < s->len + 1);
216 s->str = realloc(s->str, s->size);
217 assert(s->str != NULL && "out of memory");
218 vsnprintf(s->str + len, s->size - len, fmt, ap);
219 }
220 va_end(ap);
221 }
222
223 // Globals to avoid propagating constants or constant pointers recursively.
224 struct {
225 int max; // maximum allowed bit length for the codes
226 int root; // size of base code table in bits
227 int large; // largest code table so far
228 size_t size; // number of elements in num and done
229 big_t tot; // total number of codes with maximum tables size
230 string_t out; // display of subcodes for maximum tables size
231 int *code; // number of symbols assigned to each bit length
232 big_t *num; // saved results array for code counting
233 struct tab *done; // states already evaluated array
234 } g;
235
236 // Index function for num[] and done[].
map(int syms,int left,int len)237 local inline size_t map(int syms, int left, int len) {
238 return ((size_t)((syms - 1) >> 1) * ((syms - 2) >> 1) +
239 (left >> 1) - 1) * (g.max - 1) +
240 len - 1;
241 }
242
243 // Free allocated space in globals.
cleanup(void)244 local void cleanup(void) {
245 if (g.done != NULL) {
246 for (size_t n = 0; n < g.size; n++)
247 if (g.done[n].len)
248 free(g.done[n].vec);
249 g.size = 0;
250 free(g.done); g.done = NULL;
251 }
252 free(g.num); g.num = NULL;
253 free(g.code); g.code = NULL;
254 string_free(&g.out);
255 }
256
257 // Return the number of possible prefix codes using bit patterns of lengths len
258 // through max inclusive, coding syms symbols, with left bit patterns of length
259 // len unused -- return -1 if there is an overflow in the counting. Keep a
260 // record of previous results in num to prevent repeating the same calculation.
count(int syms,int left,int len)261 local big_t count(int syms, int left, int len) {
262 // see if only one possible code
263 if (syms == left)
264 return 1;
265
266 // note and verify the expected state
267 assert(syms > left && left > 0 && len < g.max);
268
269 // see if we've done this one already
270 size_t index = map(syms, left, len);
271 big_t got = g.num[index];
272 if (got)
273 return got; // we have -- return the saved result
274
275 // we need to use at least this many bit patterns so that the code won't be
276 // incomplete at the next length (more bit patterns than symbols)
277 int least = (left << 1) - syms;
278 if (least < 0)
279 least = 0;
280
281 // we can use at most this many bit patterns, lest there not be enough
282 // available for the remaining symbols at the maximum length (if there were
283 // no limit to the code length, this would become: most = left - 1)
284 int most = (((code_t)left << (g.max - len)) - syms) /
285 (((code_t)1 << (g.max - len)) - 1);
286
287 // count all possible codes from this juncture and add them up
288 big_t sum = 0;
289 for (int use = least; use <= most; use++) {
290 got = count(syms - use, (left - use) << 1, len + 1);
291 sum += got;
292 if (got == (big_t)-1 || sum < got) // overflow
293 return (big_t)-1;
294 }
295
296 // verify that all recursive calls are productive
297 assert(sum != 0);
298
299 // save the result and return it
300 g.num[index] = sum;
301 return sum;
302 }
303
304 // Return true if we've been here before, set to true if not. Set a bit in a
305 // bit vector to indicate visiting this state. Each (syms,len,left) state has a
306 // variable size bit vector indexed by (mem,rem). The bit vector is lengthened
307 // as needed to allow setting the (mem,rem) bit.
been_here(int syms,int left,int len,int mem,int rem)308 local int been_here(int syms, int left, int len, int mem, int rem) {
309 // point to vector for (syms,left,len), bit in vector for (mem,rem)
310 size_t index = map(syms, left, len);
311 mem -= 1 << g.root; // mem always includes the root table
312 mem >>= 1; // mem and rem are always even
313 rem >>= 1;
314 size_t offset = (mem >> 3) + rem;
315 offset = ((offset * (offset + 1)) >> 1) + rem;
316 int bit = 1 << (mem & 7);
317
318 // see if we've been here
319 size_t length = g.done[index].len;
320 if (offset < length && (g.done[index].vec[offset] & bit) != 0)
321 return 1; // done this!
322
323 // we haven't been here before -- set the bit to show we have now
324
325 // see if we need to lengthen the vector in order to set the bit
326 if (length <= offset) {
327 // if we have one already, enlarge it, zero out the appended space
328 char *vector;
329 if (length) {
330 do {
331 length <<= 1;
332 } while (length <= offset);
333 vector = realloc(g.done[index].vec, length);
334 assert(vector != NULL && "out of memory");
335 memset(vector + g.done[index].len, 0, length - g.done[index].len);
336 }
337
338 // otherwise we need to make a new vector and zero it out
339 else {
340 length = 16;
341 while (length <= offset)
342 length <<= 1;
343 vector = calloc(length, 1);
344 assert(vector != NULL && "out of memory");
345 }
346
347 // install the new vector
348 g.done[index].len = length;
349 g.done[index].vec = vector;
350 }
351
352 // set the bit
353 g.done[index].vec[offset] |= bit;
354 return 0;
355 }
356
357 // Examine all possible codes from the given node (syms, len, left). Compute
358 // the amount of memory required to build inflate's decoding tables, where the
359 // number of code structures used so far is mem, and the number remaining in
360 // the current sub-table is rem.
examine(int syms,int left,int len,int mem,int rem)361 local void examine(int syms, int left, int len, int mem, int rem) {
362 // see if we have a complete code
363 if (syms == left) {
364 // set the last code entry
365 g.code[len] = left;
366
367 // complete computation of memory used by this code
368 while (rem < left) {
369 left -= rem;
370 rem = 1 << (len - g.root);
371 mem += rem;
372 }
373 assert(rem == left);
374
375 // if this is at the maximum, show the sub-code
376 if (mem >= g.large) {
377 // if this is a new maximum, update the maximum and clear out the
378 // printed sub-codes from the previous maximum
379 if (mem > g.large) {
380 g.large = mem;
381 string_clear(&g.out);
382 }
383
384 // compute the starting state for this sub-code
385 syms = 0;
386 left = 1 << g.max;
387 for (int bits = g.max; bits > g.root; bits--) {
388 syms += g.code[bits];
389 left -= g.code[bits];
390 assert((left & 1) == 0);
391 left >>= 1;
392 }
393
394 // print the starting state and the resulting sub-code to g.out
395 string_printf(&g.out, "<%u, %u, %u>:",
396 syms, g.root + 1, ((1 << g.root) - left) << 1);
397 for (int bits = g.root + 1; bits <= g.max; bits++)
398 if (g.code[bits])
399 string_printf(&g.out, " %d[%d]", g.code[bits], bits);
400 string_printf(&g.out, "\n");
401 }
402
403 // remove entries as we drop back down in the recursion
404 g.code[len] = 0;
405 return;
406 }
407
408 // prune the tree if we can
409 if (been_here(syms, left, len, mem, rem))
410 return;
411
412 // we need to use at least this many bit patterns so that the code won't be
413 // incomplete at the next length (more bit patterns than symbols)
414 int least = (left << 1) - syms;
415 if (least < 0)
416 least = 0;
417
418 // we can use at most this many bit patterns, lest there not be enough
419 // available for the remaining symbols at the maximum length (if there were
420 // no limit to the code length, this would become: most = left - 1)
421 int most = (((code_t)left << (g.max - len)) - syms) /
422 (((code_t)1 << (g.max - len)) - 1);
423
424 // occupy least table spaces, creating new sub-tables as needed
425 int use = least;
426 while (rem < use) {
427 use -= rem;
428 rem = 1 << (len - g.root);
429 mem += rem;
430 }
431 rem -= use;
432
433 // examine codes from here, updating table space as we go
434 for (use = least; use <= most; use++) {
435 g.code[len] = use;
436 examine(syms - use, (left - use) << 1, len + 1,
437 mem + (rem ? 1 << (len - g.root) : 0), rem << 1);
438 if (rem == 0) {
439 rem = 1 << (len - g.root);
440 mem += rem;
441 }
442 rem--;
443 }
444
445 // remove entries as we drop back down in the recursion
446 g.code[len] = 0;
447 }
448
449 // Look at all sub-codes starting with root + 1 bits. Look at only the valid
450 // intermediate code states (syms, left, len). For each completed code,
451 // calculate the amount of memory required by inflate to build the decoding
452 // tables. Find the maximum amount of memory required and show the codes that
453 // require that maximum.
enough(int syms)454 local void enough(int syms) {
455 // clear code
456 for (int n = 0; n <= g.max; n++)
457 g.code[n] = 0;
458
459 // look at all (root + 1) bit and longer codes
460 string_clear(&g.out); // empty saved results
461 g.large = 1 << g.root; // base table
462 if (g.root < g.max) // otherwise, there's only a base table
463 for (int n = 3; n <= syms; n++)
464 for (int left = 2; left < n; left += 2) {
465 // look at all reachable (root + 1) bit nodes, and the
466 // resulting codes (complete at root + 2 or more)
467 size_t index = map(n, left, g.root + 1);
468 if (g.root + 1 < g.max && g.num[index]) // reachable node
469 examine(n, left, g.root + 1, 1 << g.root, 0);
470
471 // also look at root bit codes with completions at root + 1
472 // bits (not saved in num, since complete), just in case
473 if (g.num[index - 1] && n <= left << 1)
474 examine((n - left) << 1, (n - left) << 1, g.root + 1,
475 1 << g.root, 0);
476 }
477
478 // done
479 printf("maximum of %d table entries for root = %d\n", g.large, g.root);
480 fputs(g.out.str, stdout);
481 }
482
483 // Examine and show the total number of possible prefix codes for a given
484 // maximum number of symbols, initial root table size, and maximum code length
485 // in bits -- those are the command arguments in that order. The default values
486 // are 286, 9, and 15 respectively, for the deflate literal/length code. The
487 // possible codes are counted for each number of coded symbols from two to the
488 // maximum. The counts for each of those and the total number of codes are
489 // shown. The maximum number of inflate table entires is then calculated across
490 // all possible codes. Each new maximum number of table entries and the
491 // associated sub-code (starting at root + 1 == 10 bits) is shown.
492 //
493 // To count and examine prefix codes that are not length-limited, provide a
494 // maximum length equal to the number of symbols minus one.
495 //
496 // For the deflate literal/length code, use "enough". For the deflate distance
497 // code, use "enough 30 6".
main(int argc,char ** argv)498 int main(int argc, char **argv) {
499 // set up globals for cleanup()
500 g.code = NULL;
501 g.num = NULL;
502 g.done = NULL;
503 string_init(&g.out);
504
505 // get arguments -- default to the deflate literal/length code
506 int syms = 286;
507 g.root = 9;
508 g.max = 15;
509 if (argc > 1) {
510 syms = atoi(argv[1]);
511 if (argc > 2) {
512 g.root = atoi(argv[2]);
513 if (argc > 3)
514 g.max = atoi(argv[3]);
515 }
516 }
517 if (argc > 4 || syms < 2 || g.root < 1 || g.max < 1) {
518 fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
519 stderr);
520 return 1;
521 }
522
523 // if not restricting the code length, the longest is syms - 1
524 if (g.max > syms - 1)
525 g.max = syms - 1;
526
527 // determine the number of bits in a code_t
528 int bits = 0;
529 for (code_t word = 1; word; word <<= 1)
530 bits++;
531
532 // make sure that the calculation of most will not overflow
533 if (g.max > bits || (code_t)(syms - 2) >= ((code_t)-1 >> (g.max - 1))) {
534 fputs("abort: code length too long for internal types\n", stderr);
535 return 1;
536 }
537
538 // reject impossible code requests
539 if ((code_t)(syms - 1) > ((code_t)1 << g.max) - 1) {
540 fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
541 syms, g.max);
542 return 1;
543 }
544
545 // allocate code vector
546 g.code = calloc(g.max + 1, sizeof(int));
547 assert(g.code != NULL && "out of memory");
548
549 // determine size of saved results array, checking for overflows,
550 // allocate and clear the array (set all to zero with calloc())
551 if (syms == 2) // iff max == 1
552 g.num = NULL; // won't be saving any results
553 else {
554 g.size = syms >> 1;
555 int n = (syms - 1) >> 1;
556 assert(g.size <= (size_t)-1 / n && "overflow");
557 g.size *= n;
558 n = g.max - 1;
559 assert(g.size <= (size_t)-1 / n && "overflow");
560 g.size *= n;
561 g.num = calloc(g.size, sizeof(big_t));
562 assert(g.num != NULL && "out of memory");
563 }
564
565 // count possible codes for all numbers of symbols, add up counts
566 big_t sum = 0;
567 for (int n = 2; n <= syms; n++) {
568 big_t got = count(n, 2, 1);
569 sum += got;
570 assert(got != (big_t)-1 && sum >= got && "overflow");
571 }
572 printf("%"PRIbig" total codes for 2 to %d symbols", sum, syms);
573 if (g.max < syms - 1)
574 printf(" (%d-bit length limit)\n", g.max);
575 else
576 puts(" (no length limit)");
577
578 // allocate and clear done array for been_here()
579 if (syms == 2)
580 g.done = NULL;
581 else {
582 g.done = calloc(g.size, sizeof(struct tab));
583 assert(g.done != NULL && "out of memory");
584 }
585
586 // find and show maximum inflate table usage
587 if (g.root > g.max) // reduce root to max length
588 g.root = g.max;
589 if ((code_t)syms < ((code_t)1 << (g.root + 1)))
590 enough(syms);
591 else
592 fputs("cannot handle minimum code lengths > root", stderr);
593
594 // done
595 cleanup();
596 return 0;
597 }
598