1 /**
2 * Copyright (c) 2021-2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "bytecode_emitter.h"
17 #include <bytecode_instruction-inl.h>
18 #include <macros.h>
19 #include <utils/bit_utils.h>
20 #include <utils/span.h>
21
22 namespace panda {
23
24 using Opcode = BytecodeInstruction::Opcode;
25 using Format = BytecodeInstruction::Format;
26 using BitImmSize = BytecodeEmitter::BitImmSize;
27
GetBitLengthUnsigned(uint32_t val)28 static inline constexpr BitImmSize GetBitLengthUnsigned(uint32_t val)
29 {
30 constexpr size_t BIT_4 = 4;
31 constexpr size_t BIT_8 = 8;
32
33 auto bitlen = MinimumBitsToStore(val);
34 if (bitlen <= BIT_4) {
35 return BitImmSize::BITSIZE_4;
36 }
37 if (bitlen <= BIT_8) {
38 return BitImmSize::BITSIZE_8;
39 }
40 return BitImmSize::BITSIZE_16;
41 }
42
GetBitLengthSigned(int32_t val)43 static inline constexpr BitImmSize GetBitLengthSigned(int32_t val)
44 {
45 constexpr int32_t INT4T_MIN = -8;
46 constexpr int32_t INT4T_MAX = 7;
47 constexpr int32_t INT8T_MIN = std::numeric_limits<int8_t>::min();
48 constexpr int32_t INT8T_MAX = std::numeric_limits<int8_t>::max();
49 constexpr int32_t INT16T_MIN = std::numeric_limits<int16_t>::min();
50 constexpr int32_t INT16T_MAX = std::numeric_limits<int16_t>::max();
51 if (INT4T_MIN <= val && val <= INT4T_MAX) {
52 return BitImmSize::BITSIZE_4;
53 }
54 if (INT8T_MIN <= val && val <= INT8T_MAX) {
55 return BitImmSize::BITSIZE_8;
56 }
57 if (INT16T_MIN <= val && val <= INT16T_MAX) {
58 return BitImmSize::BITSIZE_16;
59 }
60 return BitImmSize::BITSIZE_32;
61 }
62
EmitImpl(Span<uint8_t> buf,Span<const uint8_t> offsets)63 static inline void EmitImpl([[maybe_unused]] Span<uint8_t> buf, [[maybe_unused]] Span<const uint8_t> offsets) {}
64
65 template <typename Type, typename... Types>
EmitImpl(Span<uint8_t> buf,Span<const uint8_t> offsets,Type arg,Types...args)66 static void EmitImpl(Span<uint8_t> buf, Span<const uint8_t> offsets, Type arg, Types... args)
67 {
68 static constexpr uint8_t BYTEMASK = 0xFF;
69 static constexpr uint8_t BITMASK_4 = 0xF;
70 static constexpr size_t BIT_4 = 4;
71 static constexpr size_t BIT_8 = 8;
72 static constexpr size_t BIT_16 = 16;
73 static constexpr size_t BIT_32 = 32;
74 static constexpr size_t BIT_64 = 64;
75
76 uint8_t offset = offsets[0];
77 size_t bitlen = offsets[1] - offsets[0];
78 size_t byteOffset = offset / BIT_8;
79 size_t bitOffset = offset % BIT_8;
80 switch (bitlen) {
81 case BIT_4: {
82 auto val = static_cast<uint8_t>(arg);
83 buf[byteOffset] |= static_cast<uint8_t>(static_cast<uint8_t>(val & BITMASK_4) << bitOffset);
84 break;
85 }
86 case BIT_8: {
87 auto val = static_cast<uint8_t>(arg);
88 buf[byteOffset] = val;
89 break;
90 }
91 case BIT_16: {
92 auto val = static_cast<uint16_t>(arg);
93 buf[byteOffset] = val & BYTEMASK;
94 buf[byteOffset + 1] = val >> BIT_8;
95 break;
96 }
97 case BIT_32: {
98 auto val = static_cast<uint32_t>(arg);
99 for (size_t i = 0; i < sizeof(uint32_t); i++) {
100 buf[byteOffset + i] = (val >> (i * BIT_8)) & BYTEMASK;
101 }
102 break;
103 }
104 case BIT_64: {
105 auto val = static_cast<uint64_t>(arg);
106 for (size_t i = 0; i < sizeof(uint64_t); i++) {
107 buf[byteOffset + i] = (val >> (i * BIT_8)) & BYTEMASK;
108 }
109 break;
110 }
111 default: {
112 UNREACHABLE();
113 break;
114 }
115 }
116 EmitImpl(buf, offsets.SubSpan(1), args...);
117 }
118
119 template <Format FORMAT, typename It, typename... Types>
120 static size_t Emit(It out, Types... args);
121
Bind(const Label & label)122 void BytecodeEmitter::Bind(const Label &label)
123 {
124 *label.pc_ = pc_;
125 targets_.insert(label);
126 }
127
Build(std::vector<uint8_t> * output)128 BytecodeEmitter::ErrorCode BytecodeEmitter::Build(std::vector<uint8_t> *output)
129 {
130 ErrorCode res = CheckLabels();
131 if (res != ErrorCode::SUCCESS) {
132 return res;
133 }
134 res = ReserveSpaceForOffsets();
135 if (res != ErrorCode::SUCCESS) {
136 return res;
137 }
138 res = UpdateBranches();
139 if (res != ErrorCode::SUCCESS) {
140 return res;
141 }
142 *output = bytecode_;
143 return ErrorCode::SUCCESS;
144 }
145
146 /*
147 * NB! All conditional jumps with displacements not fitting into imm16
148 * are transformed into two instructions:
149 * jcc far # cc is any condiitonal code
150 * =>
151 * jCC next # CC is inverted cc
152 * jmp far
153 * next: # This label is inserted just after previous instruction.
154 */
ReserveSpaceForOffsets()155 BytecodeEmitter::ErrorCode BytecodeEmitter::ReserveSpaceForOffsets()
156 {
157 uint32_t bias = 0;
158 std::map<uint32_t, Label> newBranches;
159 auto it = branches_.begin();
160 while (it != branches_.end()) {
161 uint32_t insnPc = it->first + bias;
162 auto label = it->second;
163
164 BytecodeInstruction insn(&bytecode_[insnPc]);
165 auto opcode = insn.GetOpcode();
166 const auto encodedImmSize = GetBitImmSizeByOpcode(opcode);
167 const auto realImmSize = GetBitLengthSigned(EstimateMaxDistance(insnPc, label.GetPc(), bias));
168
169 auto newTarget = insnPc;
170 size_t extraBytes = 0;
171
172 if (realImmSize > encodedImmSize) {
173 auto res = DoReserveSpaceForOffset(insn, insnPc, realImmSize, &extraBytes, &newTarget);
174 if (res != ErrorCode::SUCCESS) {
175 return res;
176 }
177 }
178
179 newBranches.insert(std::make_pair(newTarget, label));
180 if (extraBytes > 0) {
181 bias += extraBytes;
182 UpdateLabelTargets(insnPc, extraBytes);
183 }
184 it = branches_.erase(it);
185 }
186 branches_ = std::move(newBranches);
187 return ErrorCode::SUCCESS;
188 }
189
DoReserveSpaceForOffset(const BytecodeInstruction & insn,uint32_t insnPc,BitImmSize expectedImmSize,size_t * extraBytesPtr,uint32_t * targetPtr)190 BytecodeEmitter::ErrorCode BytecodeEmitter::DoReserveSpaceForOffset(const BytecodeInstruction &insn, uint32_t insnPc,
191 BitImmSize expectedImmSize, size_t *extraBytesPtr,
192 uint32_t *targetPtr)
193 {
194 auto opcode = insn.GetOpcode();
195 const auto insnSize = GetSizeByOpcode(opcode);
196
197 auto updOp = GetSuitableJump(opcode, expectedImmSize);
198 using DifferenceTypeT = decltype(bytecode_)::iterator::difference_type;
199 if (updOp != Opcode::LAST) {
200 *extraBytesPtr = GetSizeByOpcode(updOp) - insnSize;
201 bytecode_.insert(bytecode_.begin() + static_cast<DifferenceTypeT>(insnPc + insnSize), *extraBytesPtr, 0);
202 } else {
203 *extraBytesPtr = GetSizeByOpcode(Opcode::JMP_IMM32);
204 bytecode_.insert(bytecode_.begin() + static_cast<DifferenceTypeT>(insnPc + insnSize), *extraBytesPtr, 0);
205
206 updOp = RevertConditionCode(opcode);
207 if (updOp == Opcode::LAST) {
208 UNREACHABLE(); // no revcc and no far opcode
209 return ErrorCode::INTERNAL_ERROR;
210 }
211 UpdateBranchOffs(&bytecode_[insnPc], static_cast<int32_t>(insnSize + GetSizeByOpcode(Opcode::JMP_IMM32)));
212 *targetPtr = insnPc + insnSize;
213 Emit<Format::IMM32>(bytecode_.begin() + *targetPtr, Opcode::JMP_IMM32, 0);
214 }
215 if (BytecodeInstruction(reinterpret_cast<uint8_t *>(&updOp)).IsPrefixed()) {
216 Emit<BytecodeInstruction::Format::PREF_NONE>(bytecode_.begin() + insnPc, updOp);
217 } else {
218 Emit<BytecodeInstruction::Format::NONE>(bytecode_.begin() + insnPc, updOp);
219 }
220 return ErrorCode::SUCCESS;
221 }
222
UpdateBranches()223 BytecodeEmitter::ErrorCode BytecodeEmitter::UpdateBranches()
224 {
225 for (std::pair<const uint32_t, Label> &branch : branches_) {
226 uint32_t insnPc = branch.first;
227 Label label = branch.second;
228 auto offset = static_cast<int32_t>(label.GetPc()) - static_cast<int32_t>(insnPc);
229 UpdateBranchOffs(&bytecode_[insnPc], offset);
230 }
231 return ErrorCode::SUCCESS;
232 }
233
UpdateLabelTargets(uint32_t pc,size_t bias)234 void BytecodeEmitter::UpdateLabelTargets(uint32_t pc, size_t bias)
235 {
236 pcList_.push_front(pc);
237 Label fake(pcList_.begin());
238 std::list<Label> updatedLabels;
239 auto it = targets_.upper_bound(fake);
240 while (it != targets_.end()) {
241 Label label = *it;
242 it = targets_.erase(it);
243 *label.pc_ += bias;
244 updatedLabels.push_back(label);
245 }
246 targets_.insert(updatedLabels.begin(), updatedLabels.end());
247 pcList_.pop_front();
248 }
249
EstimateMaxDistance(uint32_t insnPc,uint32_t targetPc,uint32_t bias) const250 int32_t BytecodeEmitter::EstimateMaxDistance(uint32_t insnPc, uint32_t targetPc, uint32_t bias) const
251 {
252 int32_t distance = 0;
253 uint32_t endPc = 0;
254 std::map<uint32_t, Label>::const_iterator it;
255 if (targetPc > insnPc) {
256 it = branches_.lower_bound(insnPc - bias);
257 distance = static_cast<int32_t>(targetPc - insnPc);
258 endPc = targetPc - bias;
259 } else if (targetPc < insnPc) {
260 it = branches_.lower_bound(targetPc - bias);
261 distance = static_cast<int32_t>(targetPc - insnPc);
262 endPc = insnPc - bias;
263 } else {
264 // Do we support branch to itself?
265 return 0;
266 }
267
268 while (it != branches_.end() && it->first < endPc) {
269 auto insn = BytecodeInstruction(&bytecode_[it->first + bias]);
270 auto longest = GetSizeByOpcode(GetLongestJump(insn.GetOpcode()));
271 distance += static_cast<int32_t>(longest - insn.GetSize());
272 ++it;
273 }
274 return distance;
275 }
276
CheckLabels()277 BytecodeEmitter::ErrorCode BytecodeEmitter::CheckLabels()
278 {
279 for (const std::pair<const uint32_t, Label> &branch : branches_) {
280 const Label &label = branch.second;
281 if (targets_.find(label) == targets_.end()) {
282 return ErrorCode::UNBOUND_LABELS;
283 }
284 }
285 return ErrorCode::SUCCESS;
286 }
287
288 #include <bytecode_emitter_gen.h>
289
290 } // namespace panda
291