• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# UART
2
3## 概述
4
5### 功能简介
6
7UART指异步收发传输器(Universal Asynchronous Receiver/Transmitter),是通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输。
8
9两个UART设备的连接示意图如下,UART与其他模块一般用2线(图1)或4线(图2)相连,它们分别是:
10
11- TX:发送数据端,和对端的RX相连。
12
13- RX:接收数据端,和对端的TX相连。
14
15- RTS:发送请求信号,用于指示本设备是否准备好,可接受数据,和对端CTS相连。
16
17- CTS:允许发送信号,用于判断是否可以向对端发送数据,和对端RTS相连。
18
19**图 1** 2线UART设备连接示意图
20
21![2线UART设备连接示意图](figures/2线UART设备连接示意图.png)
22
23**图 2** 4线UART设备连接示意图
24
25![4线UART设备连接示意图](figures/4线UART设备连接示意图.png)
26
27UART通信之前,收发双方需要约定好一些参数:波特率、数据格式(起始位、数据位、校验位、停止位)等。通信过程中,UART通过TX发送给对端数据,通过RX接收对端发送的数据。当UART接收缓存达到预定的门限值时,RTS变为不可发送数据,对端的CTS检测到不可发送数据,则停止发送数据。
28
29### 基本概念
30
31- 异步通信
32
33    异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然而在同一个字符中的两个相邻位代码间的时间间隔是固定的。
34
35- 全双工传输(Full Duplex)
36
37    此通信模式允许数据在两个方向上同时传输,它在能力上相当于两个单工通信方式的结合。全双工可以同时进行信号的双向传输。
38
39### 运作机制
40
41在HDF框架中,UART接口适配模式采用独立服务模式(如图3所示)。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDF设备管理器的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。
42
43独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:
44
45- 驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。
46
47- device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。
48
49UART模块各分层作用:
50
51- 接口层提供打开UART设备、UART设备读取指定长度数据、UART设备写入指定长度数据、设置UART设备波特率、获取设UART设备波特率、设置UART设备属性、获取UART设备波特率、设置UART设备传输模式、关闭UART设备的接口。
52
53- 核心层主要提供UART控制器的创建、移除以及管理的能力,通过钩子函数与适配层交互。
54
55- 适配层主要是将钩子函数的功能实例化,实现具体的功能。
56
57**图 3** UART独立服务模式结构图
58
59![UART独立服务模式结构图](figures/独立服务模式结构图.png)
60
61## 开发指导
62
63### 场景介绍
64
65UART模块应用比较广泛,主要用于实现设备之间的低速串行通信,例如输出打印信息,当然也可以外接各种模块,如GPS、蓝牙等。当驱动开发者需要将UART设备适配到OpenHarmony时,需要进行UART驱动适配。下文将介绍如何进行UART驱动适配。
66
67### 接口说明
68
69为了保证上层在调用UART接口时能够正确的操作UART控制器,核心层在//drivers/hdf_core/framework/support/platform/include/uart/uart_core.h中定义了以下钩子函数,驱动适配者需要在适配层实现这些函数的具体功能,并与钩子函数挂接,从而完成适配层与核心层的交互。
70
71UartHostMethod定义:
72
73```c
74struct UartHostMethod {
75    int32_t (*Init)(struct UartHost *host);
76    int32_t (*Deinit)(struct UartHost *host);
77    int32_t (*Read)(struct UartHost *host, uint8_t *data, uint32_t size);
78    int32_t (*Write)(struct UartHost *host, uint8_t *data, uint32_t size);
79    int32_t (*GetBaud)(struct UartHost *host, uint32_t *baudRate);
80    int32_t (*SetBaud)(struct UartHost *host, uint32_t baudRate);
81    int32_t (*GetAttribute)(struct UartHost *host, struct UartAttribute *attribute);
82    int32_t (*SetAttribute)(struct UartHost *host, struct UartAttribute *attribute);
83    int32_t (*SetTransMode)(struct UartHost *host, enum UartTransMode mode);
84    int32_t (*pollEvent)(struct UartHost *host, void *filep, void *table);
85};
86```
87
88**表 1** UartHostMethod结构体成员的回调函数功能说明
89
90| 函数 | 入参 | 出参 | 返回值 | 功能 |
91| -------- | -------- | -------- | -------- | -------- |
92| Init | host:结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 初始化Uart设备 |
93| Deinit | host:结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 去初始化Uart设备 |
94| Read | host:结构体指针,核心层UART控制器<br>size:uint32_t类型,接收数据大小 | data:uint8_t类型指针,接收的数据 | HDF_STATUS相关状态 | 接收数据RX |
95| Write | host:结构体指针,核心层UART控制器<br>data:uint8_t类型指针,传入数据<br>size:uint32_t类型,发送数据大小 | 无 | HDF_STATUS相关状态 | 发送数据TX |
96| SetBaud | host:结构体指针,核心层UART控制器<br>baudRate:uint32_t类型,波特率传入值 | 无 | HDF_STATUS相关状态 | 设置波特率 |
97| GetBaud | host:结构体指针,核心层UART控制器 | baudRate:uint32_t类型指针,传出的波特率 | HDF_STATUS相关状态 | 获取当前设置的波特率 |
98| GetAttribute | host:结构体指针,核心层UART控制器 | attribute:结构体指针,传出的属性值(见uart_if.h中UartAttribute定义) | HDF_STATUS相关状态 | 获取设备uart相关属性 |
99| SetAttribute | host:结构体指针,核心层UART控制器<br>attribute:结构体指针,属性传入值 | 无 | HDF_STATUS相关状态 | 设置设备UART相关属性 |
100| SetTransMode | host:结构体指针,核心层UART控制器<br>mode:枚举值(见uart_if.h中UartTransMode定义),传输模式 | 无 | HDF_STATUS相关状态 | 设置传输模式 |
101| PollEvent | host:结构体指针,核心层UART控制器<br>filep:void类型指针filep<br>table:void类型指针table | 无 | HDF_STATUS相关状态 | poll轮询机制 |
102
103### 开发步骤
104
105UART模块适配HDF框架包含以下四个步骤:
106
107- 实例化驱动入口
108
109- 配置属性文件
110
111- 实例化UART控制器对象
112
113- 驱动调试
114
115### 开发实例
116
117下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/uart/uart_hi35xx.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。
118
1191. 实例化驱动入口
120
121    驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。
122
123    一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
124
125    UART驱动入口开发参考:
126
127    ```c
128    struct HdfDriverEntry g_hdfUartDevice = {
129        .moduleVersion = 1,
130        .moduleName = "HDF_PLATFORM_UART",    // 【必要且与HCS文件中里面的moduleName匹配】
131        .Bind = HdfUartDeviceBind,            // 挂接UART模块Bind实例化
132        .Init = HdfUartDeviceInit,            // 挂接UART模块Init实例化
133        .Release = HdfUartDeviceRelease,      // 挂接UART模块Release实例化
134    };
135    HDF_INIT(g_hdfUartDevice);                // 调用HDF_INIT将驱动入口注册到HDF框架中
136    ```
137
1382. 配置属性文件
139
140    完成驱动入口注册之后,需要在device_info.hcs文件中添加deviceNode信息,deviceNode信息与驱动入口注册相关。本例以两个UART控制器为例,如有多个器件信息,则需要在device_info.hcs文件增加对应的deviceNode信息,以及在uart_config.hcs文件中增加对应的器件属性。器件属性值与核心层UartHost成员的默认值或限制范围有密切关系,比如UART设备端口号,需要在uart_config.hcs文件中增加对应的器件属性。
141
142    独立服务模式的特点是device_info.hcs文件中设备节点代表着一个设备对象,如果存在多个设备对象,则按需添加,注意服务名与驱动私有数据匹配的关键字名称必须唯一。其中各项参数如表2所示:
143
144    **表 2** device_info.hcs节点参数说明
145
146    | 成员名 | 值 |
147    | -------- | -------- |
148    | policy | 驱动服务发布的策略,UART控制器具体配置为2,表示驱动对内核态和用户态都发布服务 |
149    | priority | 驱动启动优先级(0-200),值越大优先级越低。UART控制器具体配置为40 |
150    | permission | 驱动创建设备节点权限,UART控制器具体配置为0664 |
151    | moduleName | 驱动名称,UART控制器固定为HDF_PLATFORM_UART |
152    | serviceName | 驱动对外发布服务的名称,UART控制器服务名设置为HDF_PLATFORM_UART_X,X代表UART控制器编号 |
153    | deviceMatchAttr | 驱动私有数据匹配的关键字,UART控制器设置为hisilicon_hi35xx_uart_X ,X代表UART控制器编号 |
154
155    - device_info.hcs 配置参考:
156
157        在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。
158
159        ```c
160        root {
161            device_info {
162                match_attr = "hdf_manager";
163                platform :: host {
164                    hostName = "platform_host";
165                    priority = 50;
166                    device_uart :: device {
167                        device0 :: deviceNode {
168                            policy = 1;                                   // 驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1)。
169                            priority = 40;                                // 驱动启动优先级
170                            permission = 0644;                            // 驱动创建设备节点权限
171                            moduleName = "HDF_PLATFORM_UART";             // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致。
172                            serviceName = "HDF_PLATFORM_UART_0";          // 驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号。
173                            deviceMatchAttr = "hisilicon_hi35xx_uart_0";  // 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致。
174                        }
175                        device1 :: deviceNode {
176                          policy = 2;
177                          permission = 0644;
178                          priority = 40;
179                          moduleName = "HDF_PLATFORM_UART";
180                          serviceName = "HDF_PLATFORM_UART_1";
181                          deviceMatchAttr = "hisilicon_hi35xx_uart_1";
182                        }
183                        ......                                            // 如果存在多个UART设备时【必须】添加节点,否则不用
184                    }
185                }
186            }
187        }
188        ```
189
190    - uart_config.hcs 配置参考:
191
192        在//device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs文件配置器件属性,其中配置参数如下:
193
194        ```c
195        root {
196            platform {
197                template uart_controller {                   // 配置模板,如果下面节点使用时继承该模板,则节点中未声明的字段会使用该模板中的默认值
198                    match_attr = "";
199                    num = 0;                                 // 【必要】端口号
200                    baudrate = 115200;                       // 【必要】波特率,数值可按需填写
201                    fifoRxEn = 1;                            // 【必要】使能接收FIFO
202                    fifoTxEn = 1;                            // 【必要】使能发送FIFO
203                    flags = 4;                               // 【必要】标志信号
204                    regPbase = 0x120a0000;                   // 【必要】地址映射需要
205                    interrupt = 38;                          // 【必要】中断号
206                    iomemCount = 0x48;                       // 【必要】地址映射需要
207                }
208                controller_0x120a0000 :: uart_controller {
209                    match_attr = "hisilicon_hi35xx_uart_0";  // 【必要】必须和device_info.hcs中对应的设备的deviceMatchAttr值一致
210                }
211                controller_0x120a1000 :: uart_controller {
212                    num = 1;
213                    baudrate = 9600;
214                    regPbase = 0x120a1000;
215                    interrupt = 39;
216                    match_attr = "hisilicon_hi35xx_uart_1";
217                }
218                ......                                       // 如果存在多个UART设备时【必须】添加节点,否则不用
219            }
220        }
221        ```
222
223        需要注意的是,新增uart_config.hcs配置文件后,必须在产品对应的hdf.hcs文件中将其包含如下语句所示,否则配置文件无法生效。
224
225        例如:本例中uart_config.hcs所在路径为device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs,则必须在产品对应的hdf.hcs中添加如下语句:
226
227        ```c
228        #include "../../../../device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs" // 配置文件相对路径
229        ```
230
2313. 实例化UART控制器对象
232
233    完成属性文件配置之后,下一步就是以核心层UartHost对象的初始化为核心,包括驱动适配者自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。
234
235    - 驱动适配者自定义结构体参考
236
237        从驱动的角度看,驱动适配者自定义结构体是参数和数据的载体,而且uart_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如端口号。
238
239        ```c
240        struct UartPl011Port {                       // 驱动适配者自定义管脚描述结构体
241            int32_t enable;
242            unsigned long physBase;                  // 物理地址
243            uint32_t irqNum;                         // 中断号
244            uint32_t defaultBaudrate;                // 默认波特率
245            uint32_t flags;                          // 标志信号,下面三个宏与之相关
246        #define PL011_FLG_IRQ_REQUESTED    (1 << 0)
247        #define PL011_FLG_DMA_RX_REQUESTED (1 << 1)
248        #define PL011_FLG_DMA_TX_REQUESTED (1 << 2)
249            struct UartDmaTransfer *rxUdt;           // DMA传输相关
250            struct UartDriverData *udd;
251        };
252        struct UartDriverData {                      // 数据传输相关的结构体
253            uint32_t num;                            // 端口号
254            uint32_t baudrate;                       // 波特率(可设置)
255            struct UartAttribute attr;               // 数据位、停止位等传输属性相关
256            struct UartTransfer *rxTransfer;         // 缓冲区相关,可理解为FIFO结构
257            wait_queue_head_t wait;                  // 条件变量相关的排队等待信号
258            int32_t count;                           // 数据数量
259            int32_t state;                           // UART控制器状态
260        #define UART_STATE_NOT_OPENED 0
261        #define UART_STATE_OPENING    1
262        #define UART_STATE_USEABLE    2
263        #define UART_STATE_SUSPENDED  3
264            uint32_t flags;                          // 状态标志
265        #define UART_FLG_DMA_RX       (1 << 0)
266        #define UART_FLG_DMA_TX       (1 << 1)
267        #define UART_FLG_RD_BLOCK     (1 << 2)
268            RecvNotify recv;                         // 函数指针类型,指向串口数据接收函数
269            struct UartOps *ops;                     // 自定义函数指针结构体
270            void *private;                           // 私有数据
271        };
272
273        // UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值。
274        struct UartHost {
275            struct IDeviceIoService service;         // 驱动服务
276            struct HdfDeviceObject *device;          // 驱动设备对象
277            uint32_t num;                            // 端口号
278            OsalAtomic atom;                         // 原子量
279            void *priv;                              // 私有数据
280            struct UartHostMethod *method;           // 回调函数
281        };
282        ```
283
284    - UartHost成员回调函数结构体UartHostMethod的实例化。
285
286        ```c
287        // uart_hi35xx.c 中的示例:钩子函数的实例化
288        struct UartHostMethod g_uartHostMethod = {
289            .Init = Hi35xxInit,                     // 初始化
290            .Deinit = Hi35xxDeinit,                 // 去初始化
291            .Read = Hi35xxRead,                     // 接收数据
292            .Write = Hi35xxWrite,                   // 发送数据
293            .SetBaud = Hi35xxSetBaud,               // 设置波特率
294            .GetBaud = Hi35xxGetBaud,               // 获取波特率
295            .SetAttribute = Hi35xxSetAttribute,     // 设置设备属性
296            .GetAttribute = Hi35xxGetAttribute,     // 获取设备属性
297            .SetTransMode = Hi35xxSetTransMode,     // 设置传输模式
298            .pollEvent = Hi35xxPollEvent,           // 轮询
299        };
300        ```
301
302    - Bind函数开发参考
303
304        入参:
305
306        HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
307
308        返回值:
309
310        HDF_STATUS相关状态(表3为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS中HDF_STATUS定义)。
311
312        **表 3** HDF_STATUS相关状态说明
313
314        | 状态(值) | 问题描述 |
315        | -------- | -------- |
316        | HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
317        | HDF_ERR_MALLOC_FAIL | 内存分配失败 |
318        | HDF_ERR_INVALID_PARAM | 参数非法 |
319        | HDF_ERR_IO | I/O&nbsp;错误 |
320        | HDF_SUCCESS | 初始化成功 |
321        | HDF_FAILURE | 初始化失败 |
322
323        函数说明:
324
325        初始化自定义结构体对象,初始化UartHost成员。
326
327        ```c
328        //uart_hi35xx.c
329        static int32_t HdfUartDeviceBind(struct HdfDeviceObject *device)
330        {
331            ......
332            return (UartHostCreate(device) == NULL) ? HDF_FAILURE : HDF_SUCCESS; // 【必须】调用核心层函数UartHostCreate
333        }
334
335        // uart_core.c核心层UartHostCreate函数说明
336        struct UartHost *UartHostCreate(struct HdfDeviceObject *device)
337        {
338            struct UartHost *host = NULL;                                        // 新建UartHost
339            ......
340            host = (struct UartHost *)OsalMemCalloc(sizeof(*host));              // 分配内存
341            ......
342            host->device = device;                                               // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提
343            device->service = &(host->service);                                  // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提
344            host->device->service->Dispatch = UartIoDispatch;                    // 为service成员的Dispatch方法赋值
345            OsalAtomicSet(&host->atom, 0);                                       // 原子量初始化或者原子量设置
346            host->priv = NULL;
347            host->method = NULL;
348            return host;
349        }
350        ```
351
352    - Init函数开发参考
353
354        入参:
355
356        HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
357
358        返回值:
359
360        HDF_STATUS相关状态。
361
362        函数说明:
363
364        初始化自定义结构体对象,初始化UartHost成员,调用核心层UartAddDev函数,完成UART控制器的添加,接入VFS。
365
366        ```c
367        int32_t HdfUartDeviceInit(struct HdfDeviceObject *device)
368        {
369            int32_t ret;
370            struct UartHost *host = NULL;
371            HDF_LOGI("%s: entry", __func__);
372            ......
373            host = UartHostFromDevice(device);                                           // 通过service成员后强制转为UartHost,赋值是在Bind函数中
374            ......
375            ret = Hi35xxAttach(host, device);                                            // 完成UartHost对象的初始化,见下
376            ......
377            host->method = &g_uartHostMethod;                                            // UartHostMethod的实例化对象的挂载
378            return ret;
379        }
380        // 完成UartHost对象的初始化。
381        static int32_t Hi35xxAttach(struct UartHost *host, struct HdfDeviceObject *device)
382        {
383            int32_t ret;
384            struct UartDriverData *udd = NULL;                                           // udd和port对象是驱动适配者自定义的结构体对象,可根据需要实现相关功能
385            struct UartPl011Port *port = NULL;
386            ......
387            // 【必要】步骤【1】~【7】主要实现对udd对象的实例化赋值,然后赋值给核心层UartHost对象。
388            udd = (struct UartDriverData *)OsalMemCalloc(sizeof(*udd));                  // 【1】
389            ......
390            port = (struct UartPl011Port *)OsalMemCalloc(sizeof(struct UartPl011Port));  // 【2】
391            ......
392            udd->ops = Pl011GetOps();                                                    // 【3】设备开启、关闭、属性设置、发送操作等函数挂载。
393            udd->recv = PL011UartRecvNotify;                                             // 【4】数据接收通知函数(条件锁机制)挂载
394            udd->count = 0;                                                              // 【5】
395            port->udd = udd;                                                             // 【6】使UartPl011Port与UartDriverData可以相互转化的前提
396            ret = UartGetConfigFromHcs(port, device->property);                          // 将HdfDeviceObject的属性传递给驱动适配者自定义结构体,用于相关操作,示例代码见下
397            ......
398            udd->private = port;                                                         // 【7】
399            host->priv = udd;                                                            // 【必要】使UartHost与UartDriverData可以相互转化的前提
400            host->num = udd->num;                                                        // 【必要】UART设备号
401            UartAddDev(host);                                                            // 【必要】核心层uart_dev.c中的函数,作用:注册一个字符设备节点到vfs,这样从用户态可以通过这个虚拟文件节点访问UART
402            return HDF_SUCCESS;
403        }
404
405        static int32_t UartGetConfigFromHcs(struct UartPl011Port *port, const struct DeviceResourceNode *node)
406        {
407            uint32_t tmp, regPbase, iomemCount;
408            struct UartDriverData *udd = port->udd;
409            struct DeviceResourceIface *iface = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
410            ......
411            // 通过请求参数提取相应的值,并赋值给驱动适配者自定义的结构体。
412            if (iface->GetUint32(node, "num", &udd->num, 0) != HDF_SUCCESS) {
413                HDF_LOGE("%s: read busNum fail", __func__);
414                return HDF_FAILURE;
415            }
416            ......
417            return 0;
418        }
419        ```
420
421    - Release函数开发参考
422
423        入参:
424
425        HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
426
427        返回值:
428
429        无。
430
431        函数说明:
432
433        该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。
434
435        > ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**<br>
436        > 所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。
437
438        ```c
439        void HdfUartDeviceRelease(struct HdfDeviceObject *device)
440        {
441            struct UartHost *host = NULL;
442            ...
443            host = UartHostFromDevice(device);           // 这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数。
444            ...
445            if (host->priv != NULL) {
446                Hi35xxDetach(host);                      // 驱动适配自定义的内存释放函数,见下。
447            }
448            UartHostDestroy(host);                       // 调用核心层函数释放host
449        }
450
451        static void Hi35xxDetach(struct UartHost *host)
452        {
453            struct UartDriverData *udd = NULL;
454            struct UartPl011Port *port = NULL;
455            ...
456            udd = host->priv;                            // 这里有UartHost到UartDriverData的转化
457            ...
458            UartRemoveDev(host);                         // VFS注销
459            port = udd->private;                         // 这里有UartDriverData到UartPl011Port的转化
460            if (port != NULL) {
461                if (port->physBase != 0) {
462                    OsalIoUnmap((void *)port->physBase); // 地址反映射
463                }
464                OsalMemFree(port);
465                udd->private = NULL;
466            }
467            OsalMemFree(udd);                            // 释放UartDriverData
468            host->priv = NULL;
469        }
470        ```
471
4724. 驱动调试
473
474   【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。
475