1 /*
2 * Copyright (C) 2023 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "image/loaders/image_loader_ktx.h"
17
18 #include <algorithm>
19 #include <cstring>
20
21 #include <base/containers/string_view.h>
22 #include <base/containers/unique_ptr.h>
23 #include <core/io/intf_file_manager.h>
24 #include <core/log.h>
25 #include <core/namespace.h>
26
27 #include "image/image_loader_manager.h"
28 #include "image/loaders/gl_util.h"
29
30 CORE_BEGIN_NAMESPACE()
31 namespace {
32 using BASE_NS::array_view;
33 using BASE_NS::CloneData;
34 using BASE_NS::Format;
35 using BASE_NS::make_unique;
36 using BASE_NS::move;
37 using BASE_NS::string_view;
38 using BASE_NS::unique_ptr;
39 using BASE_NS::vector;
40
ReadU32(const uint8_t ** data)41 uint32_t ReadU32(const uint8_t** data)
42 {
43 CORE_ASSERT(data);
44 CORE_ASSERT(*data);
45
46 uint32_t value;
47 value = *(*data)++;
48 value |= *(*data)++ << 8;
49 value |= *(*data)++ << 16;
50 value |= *(*data)++ << 24;
51 return value;
52 }
53
ReadU32FlipEndian(const uint8_t ** data)54 uint32_t ReadU32FlipEndian(const uint8_t** data)
55 {
56 CORE_ASSERT(data);
57 CORE_ASSERT(*data);
58
59 uint32_t value;
60 value = static_cast<uint32_t>(*(*data)++ << 24);
61 value |= static_cast<uint32_t>(*(*data)++ << 16);
62 value |= static_cast<uint32_t>(*(*data)++ << 8);
63 value |= static_cast<uint32_t>(*(*data)++);
64 return value;
65 }
66
67 #ifdef CORE_READ_KTX_HEADER_STRING
68 // NOTE: Returns null if the value is not a valid null terminated string.
69 // (i.e. maxBytes was reached before a null was found)
ReadStringZ(const uint8_t ** data,size_t maxBytes,size_t * bytesReadOut)70 string_view ReadStringZ(const uint8_t** data, size_t maxBytes, size_t* bytesReadOut)
71 {
72 CORE_ASSERT(data);
73 CORE_ASSERT(*data);
74 CORE_ASSERT(bytesReadOut);
75
76 *bytesReadOut = 0;
77
78 if (maxBytes == 0) {
79 return {};
80 }
81
82 const auto start = *data;
83 const auto end = start + maxBytes;
84
85 if (auto const pos = std::find(start, end, 0); pos != end) {
86 *data = pos + 1;
87 *bytesReadOut = static_cast<size_t>(std::distance(start, pos + 1));
88 return { reinterpret_cast<const char*>(start), *bytesReadOut };
89 }
90
91 return {};
92 }
93 #endif
94
95 // 12 byte ktx identifier.
96 constexpr const size_t KTX_IDENTIFIER_LENGTH = 12;
97 constexpr const char KTX_IDENTIFIER_REFERENCE[KTX_IDENTIFIER_LENGTH] = { '\xAB', 'K', 'T', 'X', ' ', '1', '1', '\xBB',
98 '\r', '\n', '\x1A', '\n' };
99 constexpr const uint32_t KTX_FILE_ENDIANNESS = 0x04030201;
100 constexpr const uint32_t KTX_FILE_ENDIANNESS_FLIPPED = 0x01020304;
101
102 struct KtxHeader {
103 int8_t identifier[KTX_IDENTIFIER_LENGTH];
104 uint32_t endianness;
105 uint32_t glType;
106 uint32_t glTypeSize;
107 uint32_t glFormat;
108 uint32_t glInternalFormat;
109 uint32_t glBaseInternalFormat;
110 uint32_t pixelWidth;
111 uint32_t pixelHeight;
112 uint32_t pixelDepth;
113 uint32_t numberOfArrayElements;
114 uint32_t numberOfFaces;
115 uint32_t numberOfMipmapLevels;
116 uint32_t bytesOfKeyValueData;
117 };
118
119 constexpr const size_t KTX_HEADER_LENGTH = sizeof(KtxHeader);
120
GetImageType(const KtxHeader & header)121 IImageContainer::ImageType GetImageType(const KtxHeader& header)
122 {
123 if (header.pixelHeight == 0 && header.pixelDepth == 0) {
124 return IImageContainer::ImageType::TYPE_1D;
125 } else if (header.pixelDepth == 0) {
126 return IImageContainer::ImageType::TYPE_2D;
127 } else {
128 return IImageContainer::ImageType::TYPE_3D;
129 }
130 }
131
GetImageViewType(const KtxHeader & header,IImageContainer::ImageType imageType)132 IImageContainer::ImageViewType GetImageViewType(const KtxHeader& header, IImageContainer::ImageType imageType)
133 {
134 const bool isArray = (header.numberOfArrayElements != 0);
135 const bool isCubeMap = (header.numberOfFaces == 6);
136
137 if (isCubeMap) {
138 if (imageType == IImageContainer::ImageType::TYPE_3D || imageType == IImageContainer::ImageType::TYPE_1D) {
139 // Cubemaps must be 2d textures.
140 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
141 }
142 return (isArray ? IImageContainer::ImageViewType::VIEW_TYPE_CUBE_ARRAY
143 : IImageContainer::ImageViewType::VIEW_TYPE_CUBE);
144 } else if (isArray) {
145 switch (imageType) {
146 case IImageContainer::ImageType::TYPE_1D:
147 return IImageContainer::ImageViewType::VIEW_TYPE_1D_ARRAY;
148 case IImageContainer::ImageType::TYPE_2D:
149 return IImageContainer::ImageViewType::VIEW_TYPE_2D_ARRAY;
150 case IImageContainer::ImageType::TYPE_3D:
151 // 3d arrays are not supported.
152 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
153 case IImageContainer::ImageType::TYPE_MAX_ENUM:
154 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
155 }
156 } else {
157 switch (imageType) {
158 case IImageContainer::ImageType::TYPE_1D:
159 return IImageContainer::ImageViewType::VIEW_TYPE_1D;
160 case IImageContainer::ImageType::TYPE_2D:
161 return IImageContainer::ImageViewType::VIEW_TYPE_2D;
162 case IImageContainer::ImageType::TYPE_3D:
163 return IImageContainer::ImageViewType::VIEW_TYPE_3D;
164 case IImageContainer::ImageType::TYPE_MAX_ENUM:
165 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
166 }
167 }
168
169 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
170 }
171
172 class KtxImage final : public IImageContainer {
173 public:
174 KtxImage() = default;
175
KtxImage(unique_ptr<uint8_t[]> && fileBytes,size_t fileBytesLength)176 KtxImage(unique_ptr<uint8_t[]>&& fileBytes, size_t fileBytesLength)
177 : fileBytes_(CORE_NS::move(fileBytes)), fileBytesLength_(fileBytesLength)
178 {}
179
180 ~KtxImage() noexcept override = default;
181
182 using Ptr = BASE_NS::unique_ptr<KtxImage, Deleter>;
183
GetImageDesc() const184 const ImageDesc& GetImageDesc() const override
185 {
186 return imageDesc_;
187 }
188
GetData() const189 array_view<const uint8_t> GetData() const override
190 {
191 return array_view<const uint8_t>(imageBytes_, imageBytesLength_);
192 }
193
GetBufferImageCopies() const194 array_view<const SubImageDesc> GetBufferImageCopies() const override
195 {
196 return imageBuffers_;
197 }
198
ProcessMipmapLevel(KtxImage::Ptr & image,const size_t imageBufferIndex,const uint32_t currentImageElementOffset,const GlImageFormatInfo & formatInfo,const uint32_t elementWidth,const uint32_t elementHeight,const uint32_t mipmapLevel,const uint32_t faceCount,const uint32_t arrayElementCount,const uint32_t elementDepth,const size_t subelementLength)199 static void ProcessMipmapLevel(KtxImage::Ptr& image, const size_t imageBufferIndex,
200 const uint32_t currentImageElementOffset, const GlImageFormatInfo& formatInfo, const uint32_t elementWidth,
201 const uint32_t elementHeight, const uint32_t mipmapLevel, const uint32_t faceCount,
202 const uint32_t arrayElementCount, const uint32_t elementDepth, const size_t subelementLength)
203 {
204 image->imageBuffers_[imageBufferIndex].bufferOffset = currentImageElementOffset;
205
206 // Vulkan requires the bufferRowLength and bufferImageHeight to be multiple of block width / height.
207 const auto blockWidth = formatInfo.blockWidth;
208 const auto blockHeight = formatInfo.blockHeight;
209 const auto widthBlockCount = (elementWidth + (blockWidth - 1)) / blockWidth;
210 const auto heightBlockCount = (elementHeight + (blockHeight - 1)) / blockHeight;
211 image->imageBuffers_[imageBufferIndex].bufferRowLength = widthBlockCount * blockWidth;
212 image->imageBuffers_[imageBufferIndex].bufferImageHeight = heightBlockCount * blockHeight;
213
214 image->imageBuffers_[imageBufferIndex].mipLevel = mipmapLevel;
215
216 image->imageBuffers_[imageBufferIndex].layerCount = faceCount * arrayElementCount;
217
218 image->imageBuffers_[imageBufferIndex].width = elementWidth;
219 image->imageBuffers_[imageBufferIndex].height = elementHeight;
220 image->imageBuffers_[imageBufferIndex].depth = elementDepth;
221
222 //
223 // Vulkan requires that: "If the calling command's VkImage parameter's
224 // format is not a depth/stencil format or a multi-planar format, then
225 // bufferOffset must be a multiple of the format's texel block size."
226 //
227 // This is a bit problematic as the ktx format requires padding only to
228 // 4 bytes and contains a 4 byte "lodsize" value between each data section.
229 // this causes all formats with bytesPerBlock > 4 to be misaligned.
230 //
231 // NOTE: try to figure out if there is a better way.
232 //
233 const uint32_t bytesPerBlock = formatInfo.bitsPerBlock / 8u;
234 if (mipmapLevel > 0 && bytesPerBlock > 4u) {
235 // We can assume that moving the data to the previous valid position
236 // is ok as it will only overwrite the now unnecessary "lodsize" value.
237 const uint32_t validOffset =
238 static_cast<uint32_t>(currentImageElementOffset / bytesPerBlock * bytesPerBlock);
239 uint8_t* imageBytes = const_cast<uint8_t*>(image->imageBytes_);
240 if (imageBytes && (image->imageBytesLength_ - validOffset >= subelementLength)) {
241 int ret = memmove_s(imageBytes + validOffset, subelementLength,
242 imageBytes + currentImageElementOffset, subelementLength);
243 if (ret != 0) {
244 CORE_LOG_E("memmove failed.");
245 }
246 } else {
247 CORE_LOG_E("memmove failed.");
248 }
249 image->imageBuffers_[imageBufferIndex].bufferOffset = validOffset;
250 }
251 }
252
ResolveGpuImageDesc(ImageDesc & desc,const KtxHeader & ktx,const CORE_NS::GlImageFormatInfo & formatInfo,const uint32_t loadFlags,const uint32_t inputMipCount,const uint32_t arrayElementCount,const uint32_t faceCount)253 static bool ResolveGpuImageDesc(ImageDesc& desc, const KtxHeader& ktx, const CORE_NS::GlImageFormatInfo& formatInfo,
254 const uint32_t loadFlags, const uint32_t inputMipCount, const uint32_t arrayElementCount,
255 const uint32_t faceCount)
256 {
257 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_FORCE_SRGB_BIT) != 0) {
258 desc.format = formatInfo.coreFormatForceSrgb;
259 } else if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_FORCE_LINEAR_RGB_BIT) != 0) {
260 desc.format = formatInfo.coreFormatForceLinear;
261 } else {
262 desc.format = formatInfo.coreFormat;
263 }
264
265 if ((desc.imageFlags & ImageFlags::FLAGS_CUBEMAP_BIT) != 0) {
266 }
267
268 desc.imageType = GetImageType(ktx);
269 desc.imageViewType = GetImageViewType(ktx, desc.imageType);
270 if (desc.format == Format::BASE_FORMAT_UNDEFINED || desc.imageType == ImageType::TYPE_MAX_ENUM ||
271 desc.imageViewType == ImageViewType::VIEW_TYPE_MAX_ENUM) {
272 CORE_LOG_D(
273 "glFormat=%u imageType=%u imageViewType=%u", ktx.glInternalFormat, desc.imageType, desc.imageViewType);
274 return false;
275 }
276
277 desc.mipCount = inputMipCount;
278
279 // NOTE: depth here means 3D textures, not color channels.
280 // In 1D and 2D textures the height and depth might be 0.
281 desc.width = ktx.pixelWidth;
282 desc.height = ((ktx.pixelHeight == 0) ? 1 : ktx.pixelHeight);
283 desc.depth = ((ktx.pixelDepth == 0) ? 1 : ktx.pixelDepth);
284 desc.layerCount = arrayElementCount * faceCount;
285
286 const bool compressed = (desc.imageFlags & ImageFlags::FLAGS_COMPRESSED_BIT) != 0;
287 const bool imageRequestingMips = (desc.imageFlags & ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT) != 0;
288 const bool loaderRequestingMips = (loadFlags & IImageLoaderManager::IMAGE_LOADER_GENERATE_MIPS) != 0;
289 if (!compressed && (imageRequestingMips || loaderRequestingMips)) {
290 desc.imageFlags |= ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
291 uint32_t mipsize = (desc.width > desc.height) ? desc.width : desc.height;
292 desc.mipCount = 0;
293 while (mipsize > 0) {
294 desc.mipCount++;
295 mipsize >>= 1;
296 }
297 } else {
298 desc.imageFlags &= ~ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
299 }
300
301 return true;
302 }
303
ResolveImageDesc(const KtxHeader & ktx,const GlImageFormatInfo & formatInfo,uint32_t loadFlags,uint32_t inputMipCount,const uint32_t arrayElementCount,uint32_t faceCount,ImageDesc & outImageDesc)304 static bool ResolveImageDesc(const KtxHeader& ktx, const GlImageFormatInfo& formatInfo, uint32_t loadFlags,
305 uint32_t inputMipCount, const uint32_t arrayElementCount, uint32_t faceCount, ImageDesc& outImageDesc)
306 {
307 ImageDesc desc;
308
309 desc.blockPixelWidth = formatInfo.blockWidth;
310 desc.blockPixelHeight = formatInfo.blockHeight;
311 desc.blockPixelDepth = formatInfo.blockDepth;
312 desc.bitsPerBlock = formatInfo.bitsPerBlock;
313
314 // If there are six faces this is a cube.
315 if (faceCount == 6u) {
316 desc.imageFlags |= ImageFlags::FLAGS_CUBEMAP_BIT;
317 }
318
319 // Is compressed?
320 if ((ktx.glType == 0) && (ktx.glFormat == 0)) {
321 desc.imageFlags |= ImageFlags::FLAGS_COMPRESSED_BIT;
322 } else {
323 // Mipmap generation works only if image is not using a compressed format.
324 // In ktx mip count of 0 (instead of 1) means requesting generating full chain of mipmaps.
325 if ((ktx.numberOfMipmapLevels == 0)) {
326 desc.imageFlags |= ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
327 }
328 }
329
330 if (!ResolveGpuImageDesc(desc, ktx, formatInfo, loadFlags, inputMipCount, arrayElementCount, faceCount)) {
331 return false;
332 }
333
334 outImageDesc = desc;
335 return true;
336 }
337
VerifyKtxInfo(const KtxHeader & ktx,const GlImageFormatInfo & formatInfo)338 static bool VerifyKtxInfo(const KtxHeader& ktx, const GlImageFormatInfo& formatInfo)
339 {
340 if (formatInfo.compressed) {
341 if (ktx.glTypeSize != 1) {
342 CORE_LOG_D("Invalid typesize for a compressed image.");
343 return false;
344 }
345 if (ktx.glFormat != 0) {
346 CORE_LOG_D("Invalid glFormat for a compressed image.");
347 return false;
348 }
349 if (ktx.glType != 0) {
350 CORE_LOG_D("Invalid glType for a compressed image.");
351 return false;
352 }
353 }
354
355 if (ktx.pixelDepth != 0 && ktx.pixelHeight == 0) {
356 CORE_LOG_D("No pixelHeight defined for a 3d texture.");
357 return false;
358 }
359
360 return true;
361 }
362
CreateImage(KtxImage::Ptr image,const KtxHeader & ktx,uint32_t loadFlags,const uint8_t * data,bool isEndianFlipped)363 static ImageLoaderManager::LoadResult CreateImage(
364 KtxImage::Ptr image, const KtxHeader& ktx, uint32_t loadFlags, const uint8_t* data, bool isEndianFlipped)
365 {
366 // Mark this as the image data starting position.
367 const uint8_t* ktxDataSection = data;
368
369 const uint32_t inputMipCount = ktx.numberOfMipmapLevels == 0 ? 1 : ktx.numberOfMipmapLevels;
370 const uint32_t arrayElementCount = ktx.numberOfArrayElements == 0 ? 1 : ktx.numberOfArrayElements;
371
372 //
373 // Populate the image descriptor.
374 //
375 const GlImageFormatInfo formatInfo = GetFormatInfo(ktx.glInternalFormat);
376 if (!ResolveImageDesc(
377 ktx, formatInfo, loadFlags, inputMipCount, arrayElementCount, ktx.numberOfFaces, image->imageDesc_)) {
378 return ImageLoaderManager::ResultFailure("Image not supported.");
379 }
380
381 if (!VerifyKtxInfo(ktx, formatInfo)) {
382 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
383 }
384
385 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) == 0) {
386 uint32_t elementWidth = image->imageDesc_.width;
387 uint32_t elementHeight = image->imageDesc_.height;
388 uint32_t elementDepth = image->imageDesc_.depth;
389
390 // Create buffer info for each mipmap level.
391 // NOTE: One BufferImageCopy can copy all the layers and faces in one step.
392 image->imageBuffers_.resize(static_cast<size_t>(inputMipCount));
393
394 const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
395
396 // for non-array cubemaps imageSize is the size of one face, but for other types the total size.
397 const auto iterations = (ktx.numberOfArrayElements == 0 && ktx.numberOfFaces == 6u) ? 6u : 1u;
398
399 // Fill the image subelement buffer info.
400 size_t imageBufferIndex = 0;
401 for (uint32_t mipmapLevel = 0; mipmapLevel < inputMipCount; ++mipmapLevel) {
402 if (data < ktxDataSection) {
403 CORE_LOG_D("Trying to jump out of the parsed data.");
404 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
405 }
406 if (sizeof(uint32_t) >=
407 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get())) {
408 CORE_LOG_D("Not enough data in the bytearray.");
409 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
410 }
411
412 const size_t lodSize = myReadU32(&data);
413 // Pad to to a multiple of 4.
414 const size_t lodSizePadded = lodSize + ((~lodSize + 1) & (4u - 1u));
415
416 const uint64_t totalSizePadded = static_cast<uint64_t>(lodSizePadded) * iterations;
417 if (totalSizePadded >= UINT32_MAX) {
418 CORE_LOG_D("imageSize too big");
419 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
420 }
421
422 const auto fileBytesLeft =
423 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get());
424 if (totalSizePadded > fileBytesLeft) {
425 CORE_LOG_D("Not enough data for the element");
426 CORE_LOG_V(
427 " mips=%u faces=%u arrayElements=%u", inputMipCount, ktx.numberOfFaces, arrayElementCount);
428 CORE_LOG_V(" mipmapLevel=%u lodsize=%zu end=%zu filesize=%zu.", mipmapLevel, lodSize,
429 data - image->fileBytes_.get() + lodSize, image->fileBytesLength_);
430 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
431 }
432
433 const uint32_t currentImageElementOffset = static_cast<uint32_t>(data - image->imageBytes_);
434 CORE_ASSERT_MSG(currentImageElementOffset % 4u == 0, "Offset must be aligned to 4 bytes");
435 ProcessMipmapLevel(image, imageBufferIndex, currentImageElementOffset, formatInfo, elementWidth,
436 elementHeight, mipmapLevel, ktx.numberOfFaces, arrayElementCount, elementDepth,
437 static_cast<uint32_t>(totalSizePadded));
438
439 // Move to the next buffer if any.
440 imageBufferIndex++;
441
442 // Figure out the next mipmap level sizes. The dimentions of each level are half of the previous.
443 elementWidth /= 2u;
444 elementWidth = (elementWidth <= 1) ? 1 : elementWidth;
445
446 elementHeight /= 2u;
447 elementHeight = (elementHeight <= 1) ? 1 : elementHeight;
448
449 elementDepth /= 2u;
450 elementDepth = (elementDepth <= 1) ? 1 : elementDepth;
451
452 // Skip to the next lod level.
453 // NOTE: in theory there could be packing here for each face. in that case we would need to
454 // make a separate subelement of each face.
455 data += totalSizePadded;
456 }
457
458 if (data != (image->fileBytes_.get() + image->fileBytesLength_)) {
459 CORE_LOG_D("File data left over.");
460 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
461 }
462 }
463 return ImageLoaderManager::ResultSuccess(CORE_NS::move(image));
464 }
465
466 // Actual ktx loading implementation.
Load(unique_ptr<uint8_t[]> fileBytes,uint64_t fileBytesLength,uint32_t loadFlags)467 static ImageLoaderManager::LoadResult Load(
468 unique_ptr<uint8_t[]> fileBytes, uint64_t fileBytesLength, uint32_t loadFlags)
469 {
470 if (!fileBytes) {
471 return ImageLoaderManager::ResultFailure("Input data must not be null.");
472 } else if (fileBytesLength < KTX_HEADER_LENGTH) {
473 return ImageLoaderManager::ResultFailure("Not enough data for parsing ktx.");
474 }
475
476 // Populate the image object.
477 auto image = KtxImage::Ptr(new KtxImage(move(fileBytes), static_cast<size_t>(fileBytesLength)));
478 if (!image) {
479 return ImageLoaderManager::ResultFailure("Loading image failed.");
480 }
481
482 const uint8_t* data = image->fileBytes_.get();
483 const auto ktxHeader = ReadHeader(&data);
484 // Check that the header values make sense.
485 if (memcmp(ktxHeader.identifier, KTX_IDENTIFIER_REFERENCE, KTX_IDENTIFIER_LENGTH) != 0) {
486 CORE_LOG_D("Ktx invalid file identifier.");
487 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
488 } else if (ktxHeader.endianness != KTX_FILE_ENDIANNESS && ktxHeader.endianness != KTX_FILE_ENDIANNESS_FLIPPED) {
489 CORE_LOG_D("Ktx invalid endian marker.");
490 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
491 } else if (ktxHeader.numberOfFaces != 1 && ktxHeader.numberOfFaces != 6u) { // 1 for regular, 6 for cubemaps
492 CORE_LOG_D("Ktx invalid numberOfFaces.");
493 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
494 } else if (ktxHeader.pixelWidth == 0) {
495 CORE_LOG_D("Ktx pixelWidth can't be 0.");
496 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
497 }
498
499 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) == 0) {
500 if (ktxHeader.bytesOfKeyValueData >
501 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get())) {
502 CORE_LOG_D("Ktx bytesOfKeyValueData too large.");
503 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
504 }
505
506 ReadKeyValueData(ktxHeader, &data);
507 // NOTE: Point to the start of the actual data of the first texture
508 // (Jump over the first lod offset uint32_t (4 bytes)
509 const size_t headerLength = static_cast<size_t>(data - image->fileBytes_.get()) + sizeof(uint32_t);
510 image->imageBytes_ = data + sizeof(uint32_t);
511 image->imageBytesLength_ = image->fileBytesLength_ - headerLength;
512 }
513 const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
514 if (isEndianFlipped && ktxHeader.glTypeSize > 1) {
515 CORE_ASSERT_MSG(true, "NOTE: must convert all data to correct endianness");
516 return ImageLoaderManager::ResultFailure("Image not supported.");
517 }
518
519 return CreateImage(move(image), ktxHeader, loadFlags, data, isEndianFlipped);
520 }
521
522 protected:
Destroy()523 void Destroy() override
524 {
525 delete this;
526 }
527
528 private:
ReadHeader(const uint8_t ** data)529 static KtxHeader ReadHeader(const uint8_t** data)
530 {
531 // Read the identifier.
532 KtxHeader ktxHeader = {};
533
534 CloneData(ktxHeader.identifier, sizeof(ktxHeader.identifier), *data, KTX_IDENTIFIER_LENGTH);
535 *data += KTX_IDENTIFIER_LENGTH;
536
537 // Check file endianness.
538 ktxHeader.endianness = ReadU32(data);
539
540 const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
541
542 const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
543
544 ktxHeader.glType = myReadU32(data);
545 ktxHeader.glTypeSize = myReadU32(data);
546 ktxHeader.glFormat = myReadU32(data);
547 ktxHeader.glInternalFormat = myReadU32(data);
548 ktxHeader.glBaseInternalFormat = myReadU32(data);
549 ktxHeader.pixelWidth = myReadU32(data);
550 ktxHeader.pixelHeight = myReadU32(data);
551 ktxHeader.pixelDepth = myReadU32(data);
552 ktxHeader.numberOfArrayElements = myReadU32(data);
553 ktxHeader.numberOfFaces = myReadU32(data);
554 ktxHeader.numberOfMipmapLevels = myReadU32(data);
555 ktxHeader.bytesOfKeyValueData = myReadU32(data);
556
557 return ktxHeader;
558 }
559
ReadKeyValueData(const KtxHeader & ktxHeader,const uint8_t ** data)560 static void ReadKeyValueData(const KtxHeader& ktxHeader, const uint8_t** data)
561 {
562 #ifndef CORE_READ_KTX_HEADER_STRING
563 // Skip reading the key-value data for now.
564 *data += ktxHeader.bytesOfKeyValueData;
565 #else
566 const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
567 const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
568
569 // Read KTX key-value data.
570 size_t keyValueDataRead = 0;
571 while (keyValueDataRead < ktxHeader.bytesOfKeyValueData) {
572 uint32_t keyAndValueByteSize = myReadU32(data);
573 keyValueDataRead += sizeof(uint32_t);
574
575 size_t keyBytesRead;
576 const auto key = ReadStringZ(data, keyAndValueByteSize, &keyBytesRead);
577 keyValueDataRead += keyBytesRead;
578
579 size_t valueBytesRead;
580 const auto value = ReadStringZ(data, keyAndValueByteSize - keyBytesRead, &valueBytesRead);
581 keyValueDataRead += valueBytesRead;
582
583 if (!key.empty() && !value.empty()) {
584 // NOTE: The key-value data is not used for anything. Just printing to log.
585 CORE_LOG_V("KTX metadata: '%s' : '%s'", key.data(), value.data());
586 }
587
588 // Pad to a multiple of 4 bytes.
589 const size_t padding = (~keyAndValueByteSize + 1) & (4u - 1u);
590 keyValueDataRead += padding;
591 *data += padding;
592 }
593 #endif
594 }
595
596 // Saving the whole image file data in one big chunk. This way we don't
597 // need to copy the data to a separate buffer after reading the file. We
598 // will be pointing to the file data anyway. Only downside is the wasted
599 // memory for the file header.
600 unique_ptr<uint8_t[]> fileBytes_;
601 size_t fileBytesLength_ { 0 };
602
603 // The actual image data part of the file;
604 const uint8_t* imageBytes_ { nullptr };
605 size_t imageBytesLength_ { 0 };
606
607 ImageDesc imageDesc_;
608 vector<SubImageDesc> imageBuffers_;
609 };
610
611 class ImageLoaderKtx final : public IImageLoaderManager::IImageLoader {
612 public:
613 // Inherited via ImageManager::IImageLoader
Load(IFile & file,uint32_t loadFlags) const614 ImageLoaderManager::LoadResult Load(IFile& file, uint32_t loadFlags) const override
615 {
616 size_t byteLength = static_cast<size_t>(file.GetLength());
617
618 if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) != 0) {
619 // Only load header
620 byteLength = KTX_HEADER_LENGTH;
621 }
622
623 // Read the file to a buffer.
624 unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(byteLength);
625 const uint64_t read = file.Read(buffer.get(), byteLength);
626 if (read != byteLength) {
627 CORE_LOG_D("Error loading image");
628 return ImageLoaderManager::ResultFailure("Reading file failed.");
629 }
630
631 return KtxImage::Load(move(buffer), byteLength, loadFlags);
632 }
633
Load(array_view<const uint8_t> imageFileBytes,uint32_t loadFlags) const634 ImageLoaderManager::LoadResult Load(array_view<const uint8_t> imageFileBytes, uint32_t loadFlags) const override
635 {
636 // NOTE: could reuse this and remove the extra copy here if the data would be given as a unique_ptr.
637 unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(static_cast<size_t>(imageFileBytes.size()));
638 if (buffer) {
639 std::copy(imageFileBytes.begin().ptr(), imageFileBytes.end().ptr(), buffer.get());
640 }
641
642 return KtxImage::Load(move(buffer), imageFileBytes.size(), loadFlags);
643 }
644
CanLoad(array_view<const uint8_t> imageFileBytes) const645 bool CanLoad(array_view<const uint8_t> imageFileBytes) const override
646 {
647 // Check for KTX
648 return (memcmp(imageFileBytes.data(), KTX_IDENTIFIER_REFERENCE, KTX_IDENTIFIER_LENGTH) == 0);
649 }
650
651 // No animated KTX
LoadAnimatedImage(IFile & file,uint32_t loadFlags)652 ImageLoaderManager::LoadAnimatedResult LoadAnimatedImage(IFile& file, uint32_t loadFlags) override
653 {
654 return ImageLoaderManager::ResultFailureAnimated("Animated KTX not supported.");
655 }
656
LoadAnimatedImage(array_view<const uint8_t> imageFileBytes,uint32_t loadFlags)657 ImageLoaderManager::LoadAnimatedResult LoadAnimatedImage(
658 array_view<const uint8_t> imageFileBytes, uint32_t loadFlags) override
659 {
660 return ImageLoaderManager::ResultFailureAnimated("Animated KTX not supported.");
661 }
662
663 protected:
664 ~ImageLoaderKtx() = default;
Destroy()665 void Destroy() override
666 {
667 delete this;
668 }
669 };
670 } // namespace
671
CreateImageLoaderKtx()672 IImageLoaderManager::IImageLoader::Ptr CreateImageLoaderKtx()
673 {
674 return ImageLoaderManager::IImageLoader::Ptr { new ImageLoaderKtx() };
675 }
676 CORE_END_NAMESPACE()
677