1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bit sliced AES using NEON instructions
4 *
5 * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 int rounds, int blocks);
32
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 int rounds, int blocks, u8 iv[]);
35
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 int rounds, int blocks, u8 iv[], u8 final[]);
38
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 int rounds, int blocks, u8 iv[]);
43
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 int rounds, int blocks, u8 iv[]);
49 asmlinkage void neon_aes_xts_encrypt(u8 out[], u8 const in[],
50 u32 const rk1[], int rounds, int bytes,
51 u32 const rk2[], u8 iv[], int first);
52 asmlinkage void neon_aes_xts_decrypt(u8 out[], u8 const in[],
53 u32 const rk1[], int rounds, int bytes,
54 u32 const rk2[], u8 iv[], int first);
55
56 struct aesbs_ctx {
57 u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32];
58 int rounds;
59 } __aligned(AES_BLOCK_SIZE);
60
61 struct aesbs_cbc_ctx {
62 struct aesbs_ctx key;
63 u32 enc[AES_MAX_KEYLENGTH_U32];
64 };
65
66 struct aesbs_ctr_ctx {
67 struct aesbs_ctx key; /* must be first member */
68 struct crypto_aes_ctx fallback;
69 };
70
71 struct aesbs_xts_ctx {
72 struct aesbs_ctx key;
73 u32 twkey[AES_MAX_KEYLENGTH_U32];
74 struct crypto_aes_ctx cts;
75 };
76
aesbs_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)77 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
78 unsigned int key_len)
79 {
80 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
81 struct crypto_aes_ctx rk;
82 int err;
83
84 err = aes_expandkey(&rk, in_key, key_len);
85 if (err)
86 return err;
87
88 ctx->rounds = 6 + key_len / 4;
89
90 kernel_neon_begin();
91 aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
92 kernel_neon_end();
93
94 return 0;
95 }
96
__ecb_crypt(struct skcipher_request * req,void (* fn)(u8 out[],u8 const in[],u8 const rk[],int rounds,int blocks))97 static int __ecb_crypt(struct skcipher_request *req,
98 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
99 int rounds, int blocks))
100 {
101 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
102 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
103 struct skcipher_walk walk;
104 int err;
105
106 err = skcipher_walk_virt(&walk, req, false);
107
108 while (walk.nbytes >= AES_BLOCK_SIZE) {
109 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
110
111 if (walk.nbytes < walk.total)
112 blocks = round_down(blocks,
113 walk.stride / AES_BLOCK_SIZE);
114
115 kernel_neon_begin();
116 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
117 ctx->rounds, blocks);
118 kernel_neon_end();
119 err = skcipher_walk_done(&walk,
120 walk.nbytes - blocks * AES_BLOCK_SIZE);
121 }
122
123 return err;
124 }
125
ecb_encrypt(struct skcipher_request * req)126 static int ecb_encrypt(struct skcipher_request *req)
127 {
128 return __ecb_crypt(req, aesbs_ecb_encrypt);
129 }
130
ecb_decrypt(struct skcipher_request * req)131 static int ecb_decrypt(struct skcipher_request *req)
132 {
133 return __ecb_crypt(req, aesbs_ecb_decrypt);
134 }
135
aesbs_cbc_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)136 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
137 unsigned int key_len)
138 {
139 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
140 struct crypto_aes_ctx rk;
141 int err;
142
143 err = aes_expandkey(&rk, in_key, key_len);
144 if (err)
145 return err;
146
147 ctx->key.rounds = 6 + key_len / 4;
148
149 memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
150
151 kernel_neon_begin();
152 aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
153 kernel_neon_end();
154 memzero_explicit(&rk, sizeof(rk));
155
156 return 0;
157 }
158
cbc_encrypt(struct skcipher_request * req)159 static int cbc_encrypt(struct skcipher_request *req)
160 {
161 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
162 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
163 struct skcipher_walk walk;
164 int err;
165
166 err = skcipher_walk_virt(&walk, req, false);
167
168 while (walk.nbytes >= AES_BLOCK_SIZE) {
169 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
170
171 /* fall back to the non-bitsliced NEON implementation */
172 kernel_neon_begin();
173 neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
174 ctx->enc, ctx->key.rounds, blocks,
175 walk.iv);
176 kernel_neon_end();
177 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
178 }
179 return err;
180 }
181
cbc_decrypt(struct skcipher_request * req)182 static int cbc_decrypt(struct skcipher_request *req)
183 {
184 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
185 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
186 struct skcipher_walk walk;
187 int err;
188
189 err = skcipher_walk_virt(&walk, req, false);
190
191 while (walk.nbytes >= AES_BLOCK_SIZE) {
192 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
193
194 if (walk.nbytes < walk.total)
195 blocks = round_down(blocks,
196 walk.stride / AES_BLOCK_SIZE);
197
198 kernel_neon_begin();
199 aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
200 ctx->key.rk, ctx->key.rounds, blocks,
201 walk.iv);
202 kernel_neon_end();
203 err = skcipher_walk_done(&walk,
204 walk.nbytes - blocks * AES_BLOCK_SIZE);
205 }
206
207 return err;
208 }
209
aesbs_ctr_setkey_sync(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)210 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
211 unsigned int key_len)
212 {
213 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
214 int err;
215
216 err = aes_expandkey(&ctx->fallback, in_key, key_len);
217 if (err)
218 return err;
219
220 ctx->key.rounds = 6 + key_len / 4;
221
222 kernel_neon_begin();
223 aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
224 kernel_neon_end();
225
226 return 0;
227 }
228
ctr_encrypt(struct skcipher_request * req)229 static int ctr_encrypt(struct skcipher_request *req)
230 {
231 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
232 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
233 struct skcipher_walk walk;
234 u8 buf[AES_BLOCK_SIZE];
235 int err;
236
237 err = skcipher_walk_virt(&walk, req, false);
238
239 while (walk.nbytes > 0) {
240 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
241 u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
242
243 if (walk.nbytes < walk.total) {
244 blocks = round_down(blocks,
245 walk.stride / AES_BLOCK_SIZE);
246 final = NULL;
247 }
248
249 kernel_neon_begin();
250 aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
251 ctx->rk, ctx->rounds, blocks, walk.iv, final);
252 kernel_neon_end();
253
254 if (final) {
255 u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
256 u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
257
258 crypto_xor_cpy(dst, src, final,
259 walk.total % AES_BLOCK_SIZE);
260
261 err = skcipher_walk_done(&walk, 0);
262 break;
263 }
264 err = skcipher_walk_done(&walk,
265 walk.nbytes - blocks * AES_BLOCK_SIZE);
266 }
267 return err;
268 }
269
aesbs_xts_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)270 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
271 unsigned int key_len)
272 {
273 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
274 struct crypto_aes_ctx rk;
275 int err;
276
277 err = xts_verify_key(tfm, in_key, key_len);
278 if (err)
279 return err;
280
281 key_len /= 2;
282 err = aes_expandkey(&ctx->cts, in_key, key_len);
283 if (err)
284 return err;
285
286 err = aes_expandkey(&rk, in_key + key_len, key_len);
287 if (err)
288 return err;
289
290 memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
291
292 return aesbs_setkey(tfm, in_key, key_len);
293 }
294
ctr_encrypt_one(struct crypto_skcipher * tfm,const u8 * src,u8 * dst)295 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
296 {
297 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
298 unsigned long flags;
299
300 /*
301 * Temporarily disable interrupts to avoid races where
302 * cachelines are evicted when the CPU is interrupted
303 * to do something else.
304 */
305 local_irq_save(flags);
306 aes_encrypt(&ctx->fallback, dst, src);
307 local_irq_restore(flags);
308 }
309
ctr_encrypt_sync(struct skcipher_request * req)310 static int ctr_encrypt_sync(struct skcipher_request *req)
311 {
312 if (!crypto_simd_usable())
313 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
314
315 return ctr_encrypt(req);
316 }
317
__xts_crypt(struct skcipher_request * req,bool encrypt,void (* fn)(u8 out[],u8 const in[],u8 const rk[],int rounds,int blocks,u8 iv[]))318 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
319 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
320 int rounds, int blocks, u8 iv[]))
321 {
322 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
323 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
324 int tail = req->cryptlen % (8 * AES_BLOCK_SIZE);
325 struct scatterlist sg_src[2], sg_dst[2];
326 struct skcipher_request subreq;
327 struct scatterlist *src, *dst;
328 struct skcipher_walk walk;
329 int nbytes, err;
330 int first = 1;
331 u8 *out, *in;
332
333 if (req->cryptlen < AES_BLOCK_SIZE)
334 return -EINVAL;
335
336 /* ensure that the cts tail is covered by a single step */
337 if (unlikely(tail > 0 && tail < AES_BLOCK_SIZE)) {
338 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
339 AES_BLOCK_SIZE) - 2;
340
341 skcipher_request_set_tfm(&subreq, tfm);
342 skcipher_request_set_callback(&subreq,
343 skcipher_request_flags(req),
344 NULL, NULL);
345 skcipher_request_set_crypt(&subreq, req->src, req->dst,
346 xts_blocks * AES_BLOCK_SIZE,
347 req->iv);
348 req = &subreq;
349 } else {
350 tail = 0;
351 }
352
353 err = skcipher_walk_virt(&walk, req, false);
354 if (err)
355 return err;
356
357 while (walk.nbytes >= AES_BLOCK_SIZE) {
358 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
359
360 if (walk.nbytes < walk.total || walk.nbytes % AES_BLOCK_SIZE)
361 blocks = round_down(blocks,
362 walk.stride / AES_BLOCK_SIZE);
363
364 out = walk.dst.virt.addr;
365 in = walk.src.virt.addr;
366 nbytes = walk.nbytes;
367
368 kernel_neon_begin();
369 if (likely(blocks > 6)) { /* plain NEON is faster otherwise */
370 if (first)
371 neon_aes_ecb_encrypt(walk.iv, walk.iv,
372 ctx->twkey,
373 ctx->key.rounds, 1);
374 first = 0;
375
376 fn(out, in, ctx->key.rk, ctx->key.rounds, blocks,
377 walk.iv);
378
379 out += blocks * AES_BLOCK_SIZE;
380 in += blocks * AES_BLOCK_SIZE;
381 nbytes -= blocks * AES_BLOCK_SIZE;
382 }
383
384 if (walk.nbytes == walk.total && nbytes > 0)
385 goto xts_tail;
386
387 kernel_neon_end();
388 err = skcipher_walk_done(&walk, nbytes);
389 }
390
391 if (err || likely(!tail))
392 return err;
393
394 /* handle ciphertext stealing */
395 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
396 if (req->dst != req->src)
397 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
398
399 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
400 req->iv);
401
402 err = skcipher_walk_virt(&walk, req, false);
403 if (err)
404 return err;
405
406 out = walk.dst.virt.addr;
407 in = walk.src.virt.addr;
408 nbytes = walk.nbytes;
409
410 kernel_neon_begin();
411 xts_tail:
412 if (encrypt)
413 neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds,
414 nbytes, ctx->twkey, walk.iv, first ?: 2);
415 else
416 neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds,
417 nbytes, ctx->twkey, walk.iv, first ?: 2);
418 kernel_neon_end();
419
420 return skcipher_walk_done(&walk, 0);
421 }
422
xts_encrypt(struct skcipher_request * req)423 static int xts_encrypt(struct skcipher_request *req)
424 {
425 return __xts_crypt(req, true, aesbs_xts_encrypt);
426 }
427
xts_decrypt(struct skcipher_request * req)428 static int xts_decrypt(struct skcipher_request *req)
429 {
430 return __xts_crypt(req, false, aesbs_xts_decrypt);
431 }
432
433 static struct skcipher_alg aes_algs[] = { {
434 .base.cra_name = "__ecb(aes)",
435 .base.cra_driver_name = "__ecb-aes-neonbs",
436 .base.cra_priority = 250,
437 .base.cra_blocksize = AES_BLOCK_SIZE,
438 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
439 .base.cra_module = THIS_MODULE,
440 .base.cra_flags = CRYPTO_ALG_INTERNAL,
441
442 .min_keysize = AES_MIN_KEY_SIZE,
443 .max_keysize = AES_MAX_KEY_SIZE,
444 .walksize = 8 * AES_BLOCK_SIZE,
445 .setkey = aesbs_setkey,
446 .encrypt = ecb_encrypt,
447 .decrypt = ecb_decrypt,
448 }, {
449 .base.cra_name = "__cbc(aes)",
450 .base.cra_driver_name = "__cbc-aes-neonbs",
451 .base.cra_priority = 250,
452 .base.cra_blocksize = AES_BLOCK_SIZE,
453 .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx),
454 .base.cra_module = THIS_MODULE,
455 .base.cra_flags = CRYPTO_ALG_INTERNAL,
456
457 .min_keysize = AES_MIN_KEY_SIZE,
458 .max_keysize = AES_MAX_KEY_SIZE,
459 .walksize = 8 * AES_BLOCK_SIZE,
460 .ivsize = AES_BLOCK_SIZE,
461 .setkey = aesbs_cbc_setkey,
462 .encrypt = cbc_encrypt,
463 .decrypt = cbc_decrypt,
464 }, {
465 .base.cra_name = "__ctr(aes)",
466 .base.cra_driver_name = "__ctr-aes-neonbs",
467 .base.cra_priority = 250,
468 .base.cra_blocksize = 1,
469 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
470 .base.cra_module = THIS_MODULE,
471 .base.cra_flags = CRYPTO_ALG_INTERNAL,
472
473 .min_keysize = AES_MIN_KEY_SIZE,
474 .max_keysize = AES_MAX_KEY_SIZE,
475 .chunksize = AES_BLOCK_SIZE,
476 .walksize = 8 * AES_BLOCK_SIZE,
477 .ivsize = AES_BLOCK_SIZE,
478 .setkey = aesbs_setkey,
479 .encrypt = ctr_encrypt,
480 .decrypt = ctr_encrypt,
481 }, {
482 .base.cra_name = "ctr(aes)",
483 .base.cra_driver_name = "ctr-aes-neonbs",
484 .base.cra_priority = 250 - 1,
485 .base.cra_blocksize = 1,
486 .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
487 .base.cra_module = THIS_MODULE,
488
489 .min_keysize = AES_MIN_KEY_SIZE,
490 .max_keysize = AES_MAX_KEY_SIZE,
491 .chunksize = AES_BLOCK_SIZE,
492 .walksize = 8 * AES_BLOCK_SIZE,
493 .ivsize = AES_BLOCK_SIZE,
494 .setkey = aesbs_ctr_setkey_sync,
495 .encrypt = ctr_encrypt_sync,
496 .decrypt = ctr_encrypt_sync,
497 }, {
498 .base.cra_name = "__xts(aes)",
499 .base.cra_driver_name = "__xts-aes-neonbs",
500 .base.cra_priority = 250,
501 .base.cra_blocksize = AES_BLOCK_SIZE,
502 .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx),
503 .base.cra_module = THIS_MODULE,
504 .base.cra_flags = CRYPTO_ALG_INTERNAL,
505
506 .min_keysize = 2 * AES_MIN_KEY_SIZE,
507 .max_keysize = 2 * AES_MAX_KEY_SIZE,
508 .walksize = 8 * AES_BLOCK_SIZE,
509 .ivsize = AES_BLOCK_SIZE,
510 .setkey = aesbs_xts_setkey,
511 .encrypt = xts_encrypt,
512 .decrypt = xts_decrypt,
513 } };
514
515 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
516
aes_exit(void)517 static void aes_exit(void)
518 {
519 int i;
520
521 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
522 if (aes_simd_algs[i])
523 simd_skcipher_free(aes_simd_algs[i]);
524
525 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
526 }
527
aes_init(void)528 static int __init aes_init(void)
529 {
530 struct simd_skcipher_alg *simd;
531 const char *basename;
532 const char *algname;
533 const char *drvname;
534 int err;
535 int i;
536
537 if (!cpu_have_named_feature(ASIMD))
538 return -ENODEV;
539
540 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
541 if (err)
542 return err;
543
544 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
545 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
546 continue;
547
548 algname = aes_algs[i].base.cra_name + 2;
549 drvname = aes_algs[i].base.cra_driver_name + 2;
550 basename = aes_algs[i].base.cra_driver_name;
551 simd = simd_skcipher_create_compat(algname, drvname, basename);
552 err = PTR_ERR(simd);
553 if (IS_ERR(simd))
554 goto unregister_simds;
555
556 aes_simd_algs[i] = simd;
557 }
558 return 0;
559
560 unregister_simds:
561 aes_exit();
562 return err;
563 }
564
565 module_init(aes_init);
566 module_exit(aes_exit);
567