• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int primary_domain_index;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 
57 #define FORM0_AFFINITY 0
58 #define FORM1_AFFINITY 1
59 #define FORM2_AFFINITY 2
60 static int affinity_form;
61 
62 #define MAX_DISTANCE_REF_POINTS 4
63 static int distance_ref_points_depth;
64 static const __be32 *distance_ref_points;
65 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
66 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
67 	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
68 };
69 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
70 
71 /*
72  * Allocate node_to_cpumask_map based on number of available nodes
73  * Requires node_possible_map to be valid.
74  *
75  * Note: cpumask_of_node() is not valid until after this is done.
76  */
setup_node_to_cpumask_map(void)77 static void __init setup_node_to_cpumask_map(void)
78 {
79 	unsigned int node;
80 
81 	/* setup nr_node_ids if not done yet */
82 	if (nr_node_ids == MAX_NUMNODES)
83 		setup_nr_node_ids();
84 
85 	/* allocate the map */
86 	for_each_node(node)
87 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
88 
89 	/* cpumask_of_node() will now work */
90 	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
91 }
92 
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)93 static int __init fake_numa_create_new_node(unsigned long end_pfn,
94 						unsigned int *nid)
95 {
96 	unsigned long long mem;
97 	char *p = cmdline;
98 	static unsigned int fake_nid;
99 	static unsigned long long curr_boundary;
100 
101 	/*
102 	 * Modify node id, iff we started creating NUMA nodes
103 	 * We want to continue from where we left of the last time
104 	 */
105 	if (fake_nid)
106 		*nid = fake_nid;
107 	/*
108 	 * In case there are no more arguments to parse, the
109 	 * node_id should be the same as the last fake node id
110 	 * (we've handled this above).
111 	 */
112 	if (!p)
113 		return 0;
114 
115 	mem = memparse(p, &p);
116 	if (!mem)
117 		return 0;
118 
119 	if (mem < curr_boundary)
120 		return 0;
121 
122 	curr_boundary = mem;
123 
124 	if ((end_pfn << PAGE_SHIFT) > mem) {
125 		/*
126 		 * Skip commas and spaces
127 		 */
128 		while (*p == ',' || *p == ' ' || *p == '\t')
129 			p++;
130 
131 		cmdline = p;
132 		fake_nid++;
133 		*nid = fake_nid;
134 		dbg("created new fake_node with id %d\n", fake_nid);
135 		return 1;
136 	}
137 	return 0;
138 }
139 
reset_numa_cpu_lookup_table(void)140 static void reset_numa_cpu_lookup_table(void)
141 {
142 	unsigned int cpu;
143 
144 	for_each_possible_cpu(cpu)
145 		numa_cpu_lookup_table[cpu] = -1;
146 }
147 
map_cpu_to_node(int cpu,int node)148 void map_cpu_to_node(int cpu, int node)
149 {
150 	update_numa_cpu_lookup_table(cpu, node);
151 
152 	dbg("adding cpu %d to node %d\n", cpu, node);
153 
154 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
155 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
156 }
157 
158 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)159 void unmap_cpu_from_node(unsigned long cpu)
160 {
161 	int node = numa_cpu_lookup_table[cpu];
162 
163 	dbg("removing cpu %lu from node %d\n", cpu, node);
164 
165 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
166 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
167 	} else {
168 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
169 		       cpu, node);
170 	}
171 }
172 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
173 
__associativity_to_nid(const __be32 * associativity,int max_array_sz)174 static int __associativity_to_nid(const __be32 *associativity,
175 				  int max_array_sz)
176 {
177 	int nid;
178 	/*
179 	 * primary_domain_index is 1 based array index.
180 	 */
181 	int index = primary_domain_index  - 1;
182 
183 	if (!numa_enabled || index >= max_array_sz)
184 		return NUMA_NO_NODE;
185 
186 	nid = of_read_number(&associativity[index], 1);
187 
188 	/* POWER4 LPAR uses 0xffff as invalid node */
189 	if (nid == 0xffff || nid >= nr_node_ids)
190 		nid = NUMA_NO_NODE;
191 	return nid;
192 }
193 /*
194  * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
195  * info is found.
196  */
associativity_to_nid(const __be32 * associativity)197 static int associativity_to_nid(const __be32 *associativity)
198 {
199 	int array_sz = of_read_number(associativity, 1);
200 
201 	/* Skip the first element in the associativity array */
202 	return __associativity_to_nid((associativity + 1), array_sz);
203 }
204 
__cpu_form2_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)205 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
206 {
207 	int dist;
208 	int node1, node2;
209 
210 	node1 = associativity_to_nid(cpu1_assoc);
211 	node2 = associativity_to_nid(cpu2_assoc);
212 
213 	dist = numa_distance_table[node1][node2];
214 	if (dist <= LOCAL_DISTANCE)
215 		return 0;
216 	else if (dist <= REMOTE_DISTANCE)
217 		return 1;
218 	else
219 		return 2;
220 }
221 
__cpu_form1_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)222 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
223 {
224 	int dist = 0;
225 
226 	int i, index;
227 
228 	for (i = 0; i < distance_ref_points_depth; i++) {
229 		index = be32_to_cpu(distance_ref_points[i]);
230 		if (cpu1_assoc[index] == cpu2_assoc[index])
231 			break;
232 		dist++;
233 	}
234 
235 	return dist;
236 }
237 
cpu_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)238 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
239 {
240 	/* We should not get called with FORM0 */
241 	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
242 	if (affinity_form == FORM1_AFFINITY)
243 		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
244 	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
245 }
246 
247 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)248 static const __be32 *of_get_associativity(struct device_node *dev)
249 {
250 	return of_get_property(dev, "ibm,associativity", NULL);
251 }
252 
__node_distance(int a,int b)253 int __node_distance(int a, int b)
254 {
255 	int i;
256 	int distance = LOCAL_DISTANCE;
257 
258 	if (affinity_form == FORM2_AFFINITY)
259 		return numa_distance_table[a][b];
260 	else if (affinity_form == FORM0_AFFINITY)
261 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
262 
263 	for (i = 0; i < distance_ref_points_depth; i++) {
264 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
265 			break;
266 
267 		/* Double the distance for each NUMA level */
268 		distance *= 2;
269 	}
270 
271 	return distance;
272 }
273 EXPORT_SYMBOL(__node_distance);
274 
275 /* Returns the nid associated with the given device tree node,
276  * or -1 if not found.
277  */
of_node_to_nid_single(struct device_node * device)278 static int of_node_to_nid_single(struct device_node *device)
279 {
280 	int nid = NUMA_NO_NODE;
281 	const __be32 *tmp;
282 
283 	tmp = of_get_associativity(device);
284 	if (tmp)
285 		nid = associativity_to_nid(tmp);
286 	return nid;
287 }
288 
289 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)290 int of_node_to_nid(struct device_node *device)
291 {
292 	int nid = NUMA_NO_NODE;
293 
294 	of_node_get(device);
295 	while (device) {
296 		nid = of_node_to_nid_single(device);
297 		if (nid != -1)
298 			break;
299 
300 		device = of_get_next_parent(device);
301 	}
302 	of_node_put(device);
303 
304 	return nid;
305 }
306 EXPORT_SYMBOL(of_node_to_nid);
307 
__initialize_form1_numa_distance(const __be32 * associativity,int max_array_sz)308 static void __initialize_form1_numa_distance(const __be32 *associativity,
309 					     int max_array_sz)
310 {
311 	int i, nid;
312 
313 	if (affinity_form != FORM1_AFFINITY)
314 		return;
315 
316 	nid = __associativity_to_nid(associativity, max_array_sz);
317 	if (nid != NUMA_NO_NODE) {
318 		for (i = 0; i < distance_ref_points_depth; i++) {
319 			const __be32 *entry;
320 			int index = be32_to_cpu(distance_ref_points[i]) - 1;
321 
322 			/*
323 			 * broken hierarchy, return with broken distance table
324 			 */
325 			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
326 				return;
327 
328 			entry = &associativity[index];
329 			distance_lookup_table[nid][i] = of_read_number(entry, 1);
330 		}
331 	}
332 }
333 
initialize_form1_numa_distance(const __be32 * associativity)334 static void initialize_form1_numa_distance(const __be32 *associativity)
335 {
336 	int array_sz;
337 
338 	array_sz = of_read_number(associativity, 1);
339 	/* Skip the first element in the associativity array */
340 	__initialize_form1_numa_distance(associativity + 1, array_sz);
341 }
342 
343 /*
344  * Used to update distance information w.r.t newly added node.
345  */
update_numa_distance(struct device_node * node)346 void update_numa_distance(struct device_node *node)
347 {
348 	int nid;
349 
350 	if (affinity_form == FORM0_AFFINITY)
351 		return;
352 	else if (affinity_form == FORM1_AFFINITY) {
353 		const __be32 *associativity;
354 
355 		associativity = of_get_associativity(node);
356 		if (!associativity)
357 			return;
358 
359 		initialize_form1_numa_distance(associativity);
360 		return;
361 	}
362 
363 	/* FORM2 affinity  */
364 	nid = of_node_to_nid_single(node);
365 	if (nid == NUMA_NO_NODE)
366 		return;
367 
368 	/*
369 	 * With FORM2 we expect NUMA distance of all possible NUMA
370 	 * nodes to be provided during boot.
371 	 */
372 	WARN(numa_distance_table[nid][nid] == -1,
373 	     "NUMA distance details for node %d not provided\n", nid);
374 }
375 EXPORT_SYMBOL_GPL(update_numa_distance);
376 
377 /*
378  * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
379  * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
380  */
initialize_form2_numa_distance_lookup_table(void)381 static void initialize_form2_numa_distance_lookup_table(void)
382 {
383 	int i, j;
384 	struct device_node *root;
385 	const __u8 *numa_dist_table;
386 	const __be32 *numa_lookup_index;
387 	int numa_dist_table_length;
388 	int max_numa_index, distance_index;
389 
390 	if (firmware_has_feature(FW_FEATURE_OPAL))
391 		root = of_find_node_by_path("/ibm,opal");
392 	else
393 		root = of_find_node_by_path("/rtas");
394 	if (!root)
395 		root = of_find_node_by_path("/");
396 
397 	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
398 	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
399 
400 	/* first element of the array is the size and is encode-int */
401 	numa_dist_table = of_get_property(root, "ibm,numa-distance-table", NULL);
402 	numa_dist_table_length = of_read_number((const __be32 *)&numa_dist_table[0], 1);
403 	/* Skip the size which is encoded int */
404 	numa_dist_table += sizeof(__be32);
405 
406 	pr_debug("numa_dist_table_len = %d, numa_dist_indexes_len = %d\n",
407 		 numa_dist_table_length, max_numa_index);
408 
409 	for (i = 0; i < max_numa_index; i++)
410 		/* +1 skip the max_numa_index in the property */
411 		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
412 
413 
414 	if (numa_dist_table_length != max_numa_index * max_numa_index) {
415 		WARN(1, "Wrong NUMA distance information\n");
416 		/* consider everybody else just remote. */
417 		for (i = 0;  i < max_numa_index; i++) {
418 			for (j = 0; j < max_numa_index; j++) {
419 				int nodeA = numa_id_index_table[i];
420 				int nodeB = numa_id_index_table[j];
421 
422 				if (nodeA == nodeB)
423 					numa_distance_table[nodeA][nodeB] = LOCAL_DISTANCE;
424 				else
425 					numa_distance_table[nodeA][nodeB] = REMOTE_DISTANCE;
426 			}
427 		}
428 	}
429 
430 	distance_index = 0;
431 	for (i = 0;  i < max_numa_index; i++) {
432 		for (j = 0; j < max_numa_index; j++) {
433 			int nodeA = numa_id_index_table[i];
434 			int nodeB = numa_id_index_table[j];
435 
436 			numa_distance_table[nodeA][nodeB] = numa_dist_table[distance_index++];
437 			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, numa_distance_table[nodeA][nodeB]);
438 		}
439 	}
440 	of_node_put(root);
441 }
442 
find_primary_domain_index(void)443 static int __init find_primary_domain_index(void)
444 {
445 	int index;
446 	struct device_node *root;
447 
448 	/*
449 	 * Check for which form of affinity.
450 	 */
451 	if (firmware_has_feature(FW_FEATURE_OPAL)) {
452 		affinity_form = FORM1_AFFINITY;
453 	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
454 		dbg("Using form 2 affinity\n");
455 		affinity_form = FORM2_AFFINITY;
456 	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
457 		dbg("Using form 1 affinity\n");
458 		affinity_form = FORM1_AFFINITY;
459 	} else
460 		affinity_form = FORM0_AFFINITY;
461 
462 	if (firmware_has_feature(FW_FEATURE_OPAL))
463 		root = of_find_node_by_path("/ibm,opal");
464 	else
465 		root = of_find_node_by_path("/rtas");
466 	if (!root)
467 		root = of_find_node_by_path("/");
468 
469 	/*
470 	 * This property is a set of 32-bit integers, each representing
471 	 * an index into the ibm,associativity nodes.
472 	 *
473 	 * With form 0 affinity the first integer is for an SMP configuration
474 	 * (should be all 0's) and the second is for a normal NUMA
475 	 * configuration. We have only one level of NUMA.
476 	 *
477 	 * With form 1 affinity the first integer is the most significant
478 	 * NUMA boundary and the following are progressively less significant
479 	 * boundaries. There can be more than one level of NUMA.
480 	 */
481 	distance_ref_points = of_get_property(root,
482 					"ibm,associativity-reference-points",
483 					&distance_ref_points_depth);
484 
485 	if (!distance_ref_points) {
486 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
487 		goto err;
488 	}
489 
490 	distance_ref_points_depth /= sizeof(int);
491 	if (affinity_form == FORM0_AFFINITY) {
492 		if (distance_ref_points_depth < 2) {
493 			printk(KERN_WARNING "NUMA: "
494 			       "short ibm,associativity-reference-points\n");
495 			goto err;
496 		}
497 
498 		index = of_read_number(&distance_ref_points[1], 1);
499 	} else {
500 		/*
501 		 * Both FORM1 and FORM2 affinity find the primary domain details
502 		 * at the same offset.
503 		 */
504 		index = of_read_number(distance_ref_points, 1);
505 	}
506 	/*
507 	 * Warn and cap if the hardware supports more than
508 	 * MAX_DISTANCE_REF_POINTS domains.
509 	 */
510 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
511 		printk(KERN_WARNING "NUMA: distance array capped at "
512 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
513 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
514 	}
515 
516 	of_node_put(root);
517 	return index;
518 
519 err:
520 	of_node_put(root);
521 	return -1;
522 }
523 
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)524 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
525 {
526 	struct device_node *memory = NULL;
527 
528 	memory = of_find_node_by_type(memory, "memory");
529 	if (!memory)
530 		panic("numa.c: No memory nodes found!");
531 
532 	*n_addr_cells = of_n_addr_cells(memory);
533 	*n_size_cells = of_n_size_cells(memory);
534 	of_node_put(memory);
535 }
536 
read_n_cells(int n,const __be32 ** buf)537 static unsigned long read_n_cells(int n, const __be32 **buf)
538 {
539 	unsigned long result = 0;
540 
541 	while (n--) {
542 		result = (result << 32) | of_read_number(*buf, 1);
543 		(*buf)++;
544 	}
545 	return result;
546 }
547 
548 struct assoc_arrays {
549 	u32	n_arrays;
550 	u32	array_sz;
551 	const __be32 *arrays;
552 };
553 
554 /*
555  * Retrieve and validate the list of associativity arrays for drconf
556  * memory from the ibm,associativity-lookup-arrays property of the
557  * device tree..
558  *
559  * The layout of the ibm,associativity-lookup-arrays property is a number N
560  * indicating the number of associativity arrays, followed by a number M
561  * indicating the size of each associativity array, followed by a list
562  * of N associativity arrays.
563  */
of_get_assoc_arrays(struct assoc_arrays * aa)564 static int of_get_assoc_arrays(struct assoc_arrays *aa)
565 {
566 	struct device_node *memory;
567 	const __be32 *prop;
568 	u32 len;
569 
570 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
571 	if (!memory)
572 		return -1;
573 
574 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
575 	if (!prop || len < 2 * sizeof(unsigned int)) {
576 		of_node_put(memory);
577 		return -1;
578 	}
579 
580 	aa->n_arrays = of_read_number(prop++, 1);
581 	aa->array_sz = of_read_number(prop++, 1);
582 
583 	of_node_put(memory);
584 
585 	/* Now that we know the number of arrays and size of each array,
586 	 * revalidate the size of the property read in.
587 	 */
588 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
589 		return -1;
590 
591 	aa->arrays = prop;
592 	return 0;
593 }
594 
get_nid_and_numa_distance(struct drmem_lmb * lmb)595 static int get_nid_and_numa_distance(struct drmem_lmb *lmb)
596 {
597 	struct assoc_arrays aa = { .arrays = NULL };
598 	int default_nid = NUMA_NO_NODE;
599 	int nid = default_nid;
600 	int rc, index;
601 
602 	if ((primary_domain_index < 0) || !numa_enabled)
603 		return default_nid;
604 
605 	rc = of_get_assoc_arrays(&aa);
606 	if (rc)
607 		return default_nid;
608 
609 	if (primary_domain_index <= aa.array_sz &&
610 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
611 		const __be32 *associativity;
612 
613 		index = lmb->aa_index * aa.array_sz;
614 		associativity = &aa.arrays[index];
615 		nid = __associativity_to_nid(associativity, aa.array_sz);
616 		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
617 			/*
618 			 * lookup array associativity entries have
619 			 * no length of the array as the first element.
620 			 */
621 			__initialize_form1_numa_distance(associativity, aa.array_sz);
622 		}
623 	}
624 	return nid;
625 }
626 
627 /*
628  * This is like of_node_to_nid_single() for memory represented in the
629  * ibm,dynamic-reconfiguration-memory node.
630  */
of_drconf_to_nid_single(struct drmem_lmb * lmb)631 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
632 {
633 	struct assoc_arrays aa = { .arrays = NULL };
634 	int default_nid = NUMA_NO_NODE;
635 	int nid = default_nid;
636 	int rc, index;
637 
638 	if ((primary_domain_index < 0) || !numa_enabled)
639 		return default_nid;
640 
641 	rc = of_get_assoc_arrays(&aa);
642 	if (rc)
643 		return default_nid;
644 
645 	if (primary_domain_index <= aa.array_sz &&
646 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
647 		const __be32 *associativity;
648 
649 		index = lmb->aa_index * aa.array_sz;
650 		associativity = &aa.arrays[index];
651 		nid = __associativity_to_nid(associativity, aa.array_sz);
652 	}
653 	return nid;
654 }
655 
656 #ifdef CONFIG_PPC_SPLPAR
657 
__vphn_get_associativity(long lcpu,__be32 * associativity)658 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
659 {
660 	long rc, hwid;
661 
662 	/*
663 	 * On a shared lpar, device tree will not have node associativity.
664 	 * At this time lppaca, or its __old_status field may not be
665 	 * updated. Hence kernel cannot detect if its on a shared lpar. So
666 	 * request an explicit associativity irrespective of whether the
667 	 * lpar is shared or dedicated. Use the device tree property as a
668 	 * fallback. cpu_to_phys_id is only valid between
669 	 * smp_setup_cpu_maps() and smp_setup_pacas().
670 	 */
671 	if (firmware_has_feature(FW_FEATURE_VPHN)) {
672 		if (cpu_to_phys_id)
673 			hwid = cpu_to_phys_id[lcpu];
674 		else
675 			hwid = get_hard_smp_processor_id(lcpu);
676 
677 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
678 		if (rc == H_SUCCESS)
679 			return 0;
680 	}
681 
682 	return -1;
683 }
684 
vphn_get_nid(long lcpu)685 static int vphn_get_nid(long lcpu)
686 {
687 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
688 
689 
690 	if (!__vphn_get_associativity(lcpu, associativity))
691 		return associativity_to_nid(associativity);
692 
693 	return NUMA_NO_NODE;
694 
695 }
696 #else
697 
__vphn_get_associativity(long lcpu,__be32 * associativity)698 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
699 {
700 	return -1;
701 }
702 
vphn_get_nid(long unused)703 static int vphn_get_nid(long unused)
704 {
705 	return NUMA_NO_NODE;
706 }
707 #endif  /* CONFIG_PPC_SPLPAR */
708 
709 /*
710  * Figure out to which domain a cpu belongs and stick it there.
711  * Return the id of the domain used.
712  */
numa_setup_cpu(unsigned long lcpu)713 static int numa_setup_cpu(unsigned long lcpu)
714 {
715 	struct device_node *cpu;
716 	int fcpu = cpu_first_thread_sibling(lcpu);
717 	int nid = NUMA_NO_NODE;
718 
719 	if (!cpu_present(lcpu)) {
720 		set_cpu_numa_node(lcpu, first_online_node);
721 		return first_online_node;
722 	}
723 
724 	/*
725 	 * If a valid cpu-to-node mapping is already available, use it
726 	 * directly instead of querying the firmware, since it represents
727 	 * the most recent mapping notified to us by the platform (eg: VPHN).
728 	 * Since cpu_to_node binding remains the same for all threads in the
729 	 * core. If a valid cpu-to-node mapping is already available, for
730 	 * the first thread in the core, use it.
731 	 */
732 	nid = numa_cpu_lookup_table[fcpu];
733 	if (nid >= 0) {
734 		map_cpu_to_node(lcpu, nid);
735 		return nid;
736 	}
737 
738 	nid = vphn_get_nid(lcpu);
739 	if (nid != NUMA_NO_NODE)
740 		goto out_present;
741 
742 	cpu = of_get_cpu_node(lcpu, NULL);
743 
744 	if (!cpu) {
745 		WARN_ON(1);
746 		if (cpu_present(lcpu))
747 			goto out_present;
748 		else
749 			goto out;
750 	}
751 
752 	nid = of_node_to_nid_single(cpu);
753 	of_node_put(cpu);
754 
755 out_present:
756 	if (nid < 0 || !node_possible(nid))
757 		nid = first_online_node;
758 
759 	/*
760 	 * Update for the first thread of the core. All threads of a core
761 	 * have to be part of the same node. This not only avoids querying
762 	 * for every other thread in the core, but always avoids a case
763 	 * where virtual node associativity change causes subsequent threads
764 	 * of a core to be associated with different nid. However if first
765 	 * thread is already online, expect it to have a valid mapping.
766 	 */
767 	if (fcpu != lcpu) {
768 		WARN_ON(cpu_online(fcpu));
769 		map_cpu_to_node(fcpu, nid);
770 	}
771 
772 	map_cpu_to_node(lcpu, nid);
773 out:
774 	return nid;
775 }
776 
verify_cpu_node_mapping(int cpu,int node)777 static void verify_cpu_node_mapping(int cpu, int node)
778 {
779 	int base, sibling, i;
780 
781 	/* Verify that all the threads in the core belong to the same node */
782 	base = cpu_first_thread_sibling(cpu);
783 
784 	for (i = 0; i < threads_per_core; i++) {
785 		sibling = base + i;
786 
787 		if (sibling == cpu || cpu_is_offline(sibling))
788 			continue;
789 
790 		if (cpu_to_node(sibling) != node) {
791 			WARN(1, "CPU thread siblings %d and %d don't belong"
792 				" to the same node!\n", cpu, sibling);
793 			break;
794 		}
795 	}
796 }
797 
798 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)799 static int ppc_numa_cpu_prepare(unsigned int cpu)
800 {
801 	int nid;
802 
803 	nid = numa_setup_cpu(cpu);
804 	verify_cpu_node_mapping(cpu, nid);
805 	return 0;
806 }
807 
ppc_numa_cpu_dead(unsigned int cpu)808 static int ppc_numa_cpu_dead(unsigned int cpu)
809 {
810 	return 0;
811 }
812 
813 /*
814  * Check and possibly modify a memory region to enforce the memory limit.
815  *
816  * Returns the size the region should have to enforce the memory limit.
817  * This will either be the original value of size, a truncated value,
818  * or zero. If the returned value of size is 0 the region should be
819  * discarded as it lies wholly above the memory limit.
820  */
numa_enforce_memory_limit(unsigned long start,unsigned long size)821 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
822 						      unsigned long size)
823 {
824 	/*
825 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
826 	 * we've already adjusted it for the limit and it takes care of
827 	 * having memory holes below the limit.  Also, in the case of
828 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
829 	 */
830 
831 	if (start + size <= memblock_end_of_DRAM())
832 		return size;
833 
834 	if (start >= memblock_end_of_DRAM())
835 		return 0;
836 
837 	return memblock_end_of_DRAM() - start;
838 }
839 
840 /*
841  * Reads the counter for a given entry in
842  * linux,drconf-usable-memory property
843  */
read_usm_ranges(const __be32 ** usm)844 static inline int __init read_usm_ranges(const __be32 **usm)
845 {
846 	/*
847 	 * For each lmb in ibm,dynamic-memory a corresponding
848 	 * entry in linux,drconf-usable-memory property contains
849 	 * a counter followed by that many (base, size) duple.
850 	 * read the counter from linux,drconf-usable-memory
851 	 */
852 	return read_n_cells(n_mem_size_cells, usm);
853 }
854 
855 /*
856  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
857  * node.  This assumes n_mem_{addr,size}_cells have been set.
858  */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)859 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
860 					const __be32 **usm,
861 					void *data)
862 {
863 	unsigned int ranges, is_kexec_kdump = 0;
864 	unsigned long base, size, sz;
865 	int nid;
866 
867 	/*
868 	 * Skip this block if the reserved bit is set in flags (0x80)
869 	 * or if the block is not assigned to this partition (0x8)
870 	 */
871 	if ((lmb->flags & DRCONF_MEM_RESERVED)
872 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
873 		return 0;
874 
875 	if (*usm)
876 		is_kexec_kdump = 1;
877 
878 	base = lmb->base_addr;
879 	size = drmem_lmb_size();
880 	ranges = 1;
881 
882 	if (is_kexec_kdump) {
883 		ranges = read_usm_ranges(usm);
884 		if (!ranges) /* there are no (base, size) duple */
885 			return 0;
886 	}
887 
888 	do {
889 		if (is_kexec_kdump) {
890 			base = read_n_cells(n_mem_addr_cells, usm);
891 			size = read_n_cells(n_mem_size_cells, usm);
892 		}
893 
894 		nid = get_nid_and_numa_distance(lmb);
895 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
896 					  &nid);
897 		node_set_online(nid);
898 		sz = numa_enforce_memory_limit(base, size);
899 		if (sz)
900 			memblock_set_node(base, sz, &memblock.memory, nid);
901 	} while (--ranges);
902 
903 	return 0;
904 }
905 
parse_numa_properties(void)906 static int __init parse_numa_properties(void)
907 {
908 	struct device_node *memory;
909 	int default_nid = 0;
910 	unsigned long i;
911 	const __be32 *associativity;
912 
913 	if (numa_enabled == 0) {
914 		printk(KERN_WARNING "NUMA disabled by user\n");
915 		return -1;
916 	}
917 
918 	primary_domain_index = find_primary_domain_index();
919 
920 	if (primary_domain_index < 0) {
921 		/*
922 		 * if we fail to parse primary_domain_index from device tree
923 		 * mark the numa disabled, boot with numa disabled.
924 		 */
925 		numa_enabled = false;
926 		return primary_domain_index;
927 	}
928 
929 	dbg("NUMA associativity depth for CPU/Memory: %d\n", primary_domain_index);
930 
931 	/*
932 	 * If it is FORM2 initialize the distance table here.
933 	 */
934 	if (affinity_form == FORM2_AFFINITY)
935 		initialize_form2_numa_distance_lookup_table();
936 
937 	/*
938 	 * Even though we connect cpus to numa domains later in SMP
939 	 * init, we need to know the node ids now. This is because
940 	 * each node to be onlined must have NODE_DATA etc backing it.
941 	 */
942 	for_each_present_cpu(i) {
943 		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
944 		struct device_node *cpu;
945 		int nid = NUMA_NO_NODE;
946 
947 		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
948 
949 		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
950 			nid = associativity_to_nid(vphn_assoc);
951 			initialize_form1_numa_distance(vphn_assoc);
952 		} else {
953 
954 			/*
955 			 * Don't fall back to default_nid yet -- we will plug
956 			 * cpus into nodes once the memory scan has discovered
957 			 * the topology.
958 			 */
959 			cpu = of_get_cpu_node(i, NULL);
960 			BUG_ON(!cpu);
961 
962 			associativity = of_get_associativity(cpu);
963 			if (associativity) {
964 				nid = associativity_to_nid(associativity);
965 				initialize_form1_numa_distance(associativity);
966 			}
967 			of_node_put(cpu);
968 		}
969 
970 		/* node_set_online() is an UB if 'nid' is negative */
971 		if (likely(nid >= 0))
972 			node_set_online(nid);
973 	}
974 
975 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
976 
977 	for_each_node_by_type(memory, "memory") {
978 		unsigned long start;
979 		unsigned long size;
980 		int nid;
981 		int ranges;
982 		const __be32 *memcell_buf;
983 		unsigned int len;
984 
985 		memcell_buf = of_get_property(memory,
986 			"linux,usable-memory", &len);
987 		if (!memcell_buf || len <= 0)
988 			memcell_buf = of_get_property(memory, "reg", &len);
989 		if (!memcell_buf || len <= 0)
990 			continue;
991 
992 		/* ranges in cell */
993 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
994 new_range:
995 		/* these are order-sensitive, and modify the buffer pointer */
996 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
997 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
998 
999 		/*
1000 		 * Assumption: either all memory nodes or none will
1001 		 * have associativity properties.  If none, then
1002 		 * everything goes to default_nid.
1003 		 */
1004 		associativity = of_get_associativity(memory);
1005 		if (associativity) {
1006 			nid = associativity_to_nid(associativity);
1007 			initialize_form1_numa_distance(associativity);
1008 		} else
1009 			nid = default_nid;
1010 
1011 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1012 		node_set_online(nid);
1013 
1014 		size = numa_enforce_memory_limit(start, size);
1015 		if (size)
1016 			memblock_set_node(start, size, &memblock.memory, nid);
1017 
1018 		if (--ranges)
1019 			goto new_range;
1020 	}
1021 
1022 	/*
1023 	 * Now do the same thing for each MEMBLOCK listed in the
1024 	 * ibm,dynamic-memory property in the
1025 	 * ibm,dynamic-reconfiguration-memory node.
1026 	 */
1027 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1028 	if (memory) {
1029 		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1030 		of_node_put(memory);
1031 	}
1032 
1033 	return 0;
1034 }
1035 
setup_nonnuma(void)1036 static void __init setup_nonnuma(void)
1037 {
1038 	unsigned long top_of_ram = memblock_end_of_DRAM();
1039 	unsigned long total_ram = memblock_phys_mem_size();
1040 	unsigned long start_pfn, end_pfn;
1041 	unsigned int nid = 0;
1042 	int i;
1043 
1044 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1045 	       top_of_ram, total_ram);
1046 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1047 	       (top_of_ram - total_ram) >> 20);
1048 
1049 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1050 		fake_numa_create_new_node(end_pfn, &nid);
1051 		memblock_set_node(PFN_PHYS(start_pfn),
1052 				  PFN_PHYS(end_pfn - start_pfn),
1053 				  &memblock.memory, nid);
1054 		node_set_online(nid);
1055 	}
1056 }
1057 
dump_numa_cpu_topology(void)1058 void __init dump_numa_cpu_topology(void)
1059 {
1060 	unsigned int node;
1061 	unsigned int cpu, count;
1062 
1063 	if (!numa_enabled)
1064 		return;
1065 
1066 	for_each_online_node(node) {
1067 		pr_info("Node %d CPUs:", node);
1068 
1069 		count = 0;
1070 		/*
1071 		 * If we used a CPU iterator here we would miss printing
1072 		 * the holes in the cpumap.
1073 		 */
1074 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1075 			if (cpumask_test_cpu(cpu,
1076 					node_to_cpumask_map[node])) {
1077 				if (count == 0)
1078 					pr_cont(" %u", cpu);
1079 				++count;
1080 			} else {
1081 				if (count > 1)
1082 					pr_cont("-%u", cpu - 1);
1083 				count = 0;
1084 			}
1085 		}
1086 
1087 		if (count > 1)
1088 			pr_cont("-%u", nr_cpu_ids - 1);
1089 		pr_cont("\n");
1090 	}
1091 }
1092 
1093 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)1094 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1095 {
1096 	u64 spanned_pages = end_pfn - start_pfn;
1097 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1098 	u64 nd_pa;
1099 	void *nd;
1100 	int tnid;
1101 
1102 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1103 	if (!nd_pa)
1104 		panic("Cannot allocate %zu bytes for node %d data\n",
1105 		      nd_size, nid);
1106 
1107 	nd = __va(nd_pa);
1108 
1109 	/* report and initialize */
1110 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1111 		nd_pa, nd_pa + nd_size - 1);
1112 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1113 	if (tnid != nid)
1114 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1115 
1116 	node_data[nid] = nd;
1117 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1118 	NODE_DATA(nid)->node_id = nid;
1119 	NODE_DATA(nid)->node_start_pfn = start_pfn;
1120 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1121 }
1122 
find_possible_nodes(void)1123 static void __init find_possible_nodes(void)
1124 {
1125 	struct device_node *rtas;
1126 	const __be32 *domains = NULL;
1127 	int prop_length, max_nodes;
1128 	u32 i;
1129 
1130 	if (!numa_enabled)
1131 		return;
1132 
1133 	rtas = of_find_node_by_path("/rtas");
1134 	if (!rtas)
1135 		return;
1136 
1137 	/*
1138 	 * ibm,current-associativity-domains is a fairly recent property. If
1139 	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1140 	 * Current denotes what the platform can support compared to max
1141 	 * which denotes what the Hypervisor can support.
1142 	 *
1143 	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1144 	 * so we should consider the max number in that case.
1145 	 */
1146 	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1147 		domains = of_get_property(rtas,
1148 					  "ibm,current-associativity-domains",
1149 					  &prop_length);
1150 	if (!domains) {
1151 		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1152 					&prop_length);
1153 		if (!domains)
1154 			goto out;
1155 	}
1156 
1157 	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1158 	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1159 
1160 	for (i = 0; i < max_nodes; i++) {
1161 		if (!node_possible(i))
1162 			node_set(i, node_possible_map);
1163 	}
1164 
1165 	prop_length /= sizeof(int);
1166 	if (prop_length > primary_domain_index + 2)
1167 		coregroup_enabled = 1;
1168 
1169 out:
1170 	of_node_put(rtas);
1171 }
1172 
mem_topology_setup(void)1173 void __init mem_topology_setup(void)
1174 {
1175 	int cpu;
1176 
1177 	/*
1178 	 * Linux/mm assumes node 0 to be online at boot. However this is not
1179 	 * true on PowerPC, where node 0 is similar to any other node, it
1180 	 * could be cpuless, memoryless node. So force node 0 to be offline
1181 	 * for now. This will prevent cpuless, memoryless node 0 showing up
1182 	 * unnecessarily as online. If a node has cpus or memory that need
1183 	 * to be online, then node will anyway be marked online.
1184 	 */
1185 	node_set_offline(0);
1186 
1187 	if (parse_numa_properties())
1188 		setup_nonnuma();
1189 
1190 	/*
1191 	 * Modify the set of possible NUMA nodes to reflect information
1192 	 * available about the set of online nodes, and the set of nodes
1193 	 * that we expect to make use of for this platform's affinity
1194 	 * calculations.
1195 	 */
1196 	nodes_and(node_possible_map, node_possible_map, node_online_map);
1197 
1198 	find_possible_nodes();
1199 
1200 	setup_node_to_cpumask_map();
1201 
1202 	reset_numa_cpu_lookup_table();
1203 
1204 	for_each_possible_cpu(cpu) {
1205 		/*
1206 		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1207 		 * even if it was memoryless or cpuless. For all cpus that
1208 		 * are possible but not present, cpu_to_node() would point
1209 		 * to node 0. To remove a cpuless, memoryless dummy node,
1210 		 * powerpc need to make sure all possible but not present
1211 		 * cpu_to_node are set to a proper node.
1212 		 */
1213 		numa_setup_cpu(cpu);
1214 	}
1215 }
1216 
initmem_init(void)1217 void __init initmem_init(void)
1218 {
1219 	int nid;
1220 
1221 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1222 	max_pfn = max_low_pfn;
1223 
1224 	memblock_dump_all();
1225 
1226 	for_each_online_node(nid) {
1227 		unsigned long start_pfn, end_pfn;
1228 
1229 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1230 		setup_node_data(nid, start_pfn, end_pfn);
1231 	}
1232 
1233 	sparse_init();
1234 
1235 	/*
1236 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1237 	 * even before we online them, so that we can use cpu_to_{node,mem}
1238 	 * early in boot, cf. smp_prepare_cpus().
1239 	 * _nocalls() + manual invocation is used because cpuhp is not yet
1240 	 * initialized for the boot CPU.
1241 	 */
1242 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1243 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1244 }
1245 
early_numa(char * p)1246 static int __init early_numa(char *p)
1247 {
1248 	if (!p)
1249 		return 0;
1250 
1251 	if (strstr(p, "off"))
1252 		numa_enabled = 0;
1253 
1254 	if (strstr(p, "debug"))
1255 		numa_debug = 1;
1256 
1257 	p = strstr(p, "fake=");
1258 	if (p)
1259 		cmdline = p + strlen("fake=");
1260 
1261 	return 0;
1262 }
1263 early_param("numa", early_numa);
1264 
1265 #ifdef CONFIG_MEMORY_HOTPLUG
1266 /*
1267  * Find the node associated with a hot added memory section for
1268  * memory represented in the device tree by the property
1269  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1270  */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1271 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1272 {
1273 	struct drmem_lmb *lmb;
1274 	unsigned long lmb_size;
1275 	int nid = NUMA_NO_NODE;
1276 
1277 	lmb_size = drmem_lmb_size();
1278 
1279 	for_each_drmem_lmb(lmb) {
1280 		/* skip this block if it is reserved or not assigned to
1281 		 * this partition */
1282 		if ((lmb->flags & DRCONF_MEM_RESERVED)
1283 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1284 			continue;
1285 
1286 		if ((scn_addr < lmb->base_addr)
1287 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1288 			continue;
1289 
1290 		nid = of_drconf_to_nid_single(lmb);
1291 		break;
1292 	}
1293 
1294 	return nid;
1295 }
1296 
1297 /*
1298  * Find the node associated with a hot added memory section for memory
1299  * represented in the device tree as a node (i.e. memory@XXXX) for
1300  * each memblock.
1301  */
hot_add_node_scn_to_nid(unsigned long scn_addr)1302 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1303 {
1304 	struct device_node *memory;
1305 	int nid = NUMA_NO_NODE;
1306 
1307 	for_each_node_by_type(memory, "memory") {
1308 		unsigned long start, size;
1309 		int ranges;
1310 		const __be32 *memcell_buf;
1311 		unsigned int len;
1312 
1313 		memcell_buf = of_get_property(memory, "reg", &len);
1314 		if (!memcell_buf || len <= 0)
1315 			continue;
1316 
1317 		/* ranges in cell */
1318 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1319 
1320 		while (ranges--) {
1321 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1322 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1323 
1324 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1325 				continue;
1326 
1327 			nid = of_node_to_nid_single(memory);
1328 			break;
1329 		}
1330 
1331 		if (nid >= 0)
1332 			break;
1333 	}
1334 
1335 	of_node_put(memory);
1336 
1337 	return nid;
1338 }
1339 
1340 /*
1341  * Find the node associated with a hot added memory section.  Section
1342  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1343  * sections are fully contained within a single MEMBLOCK.
1344  */
hot_add_scn_to_nid(unsigned long scn_addr)1345 int hot_add_scn_to_nid(unsigned long scn_addr)
1346 {
1347 	struct device_node *memory = NULL;
1348 	int nid;
1349 
1350 	if (!numa_enabled)
1351 		return first_online_node;
1352 
1353 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1354 	if (memory) {
1355 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1356 		of_node_put(memory);
1357 	} else {
1358 		nid = hot_add_node_scn_to_nid(scn_addr);
1359 	}
1360 
1361 	if (nid < 0 || !node_possible(nid))
1362 		nid = first_online_node;
1363 
1364 	return nid;
1365 }
1366 
hot_add_drconf_memory_max(void)1367 static u64 hot_add_drconf_memory_max(void)
1368 {
1369 	struct device_node *memory = NULL;
1370 	struct device_node *dn = NULL;
1371 	const __be64 *lrdr = NULL;
1372 
1373 	dn = of_find_node_by_path("/rtas");
1374 	if (dn) {
1375 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1376 		of_node_put(dn);
1377 		if (lrdr)
1378 			return be64_to_cpup(lrdr);
1379 	}
1380 
1381 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1382 	if (memory) {
1383 		of_node_put(memory);
1384 		return drmem_lmb_memory_max();
1385 	}
1386 	return 0;
1387 }
1388 
1389 /*
1390  * memory_hotplug_max - return max address of memory that may be added
1391  *
1392  * This is currently only used on systems that support drconfig memory
1393  * hotplug.
1394  */
memory_hotplug_max(void)1395 u64 memory_hotplug_max(void)
1396 {
1397         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1398 }
1399 #endif /* CONFIG_MEMORY_HOTPLUG */
1400 
1401 /* Virtual Processor Home Node (VPHN) support */
1402 #ifdef CONFIG_PPC_SPLPAR
1403 static int topology_inited;
1404 
1405 /*
1406  * Retrieve the new associativity information for a virtual processor's
1407  * home node.
1408  */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1409 static long vphn_get_associativity(unsigned long cpu,
1410 					__be32 *associativity)
1411 {
1412 	long rc;
1413 
1414 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1415 				VPHN_FLAG_VCPU, associativity);
1416 
1417 	switch (rc) {
1418 	case H_SUCCESS:
1419 		dbg("VPHN hcall succeeded. Reset polling...\n");
1420 		goto out;
1421 
1422 	case H_FUNCTION:
1423 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1424 		break;
1425 	case H_HARDWARE:
1426 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1427 			"preventing VPHN. Disabling polling...\n");
1428 		break;
1429 	case H_PARAMETER:
1430 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1431 			"Disabling polling...\n");
1432 		break;
1433 	default:
1434 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1435 			, rc);
1436 		break;
1437 	}
1438 out:
1439 	return rc;
1440 }
1441 
find_and_online_cpu_nid(int cpu)1442 int find_and_online_cpu_nid(int cpu)
1443 {
1444 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1445 	int new_nid;
1446 
1447 	/* Use associativity from first thread for all siblings */
1448 	if (vphn_get_associativity(cpu, associativity))
1449 		return cpu_to_node(cpu);
1450 
1451 	new_nid = associativity_to_nid(associativity);
1452 	if (new_nid < 0 || !node_possible(new_nid))
1453 		new_nid = first_online_node;
1454 
1455 	if (NODE_DATA(new_nid) == NULL) {
1456 #ifdef CONFIG_MEMORY_HOTPLUG
1457 		/*
1458 		 * Need to ensure that NODE_DATA is initialized for a node from
1459 		 * available memory (see memblock_alloc_try_nid). If unable to
1460 		 * init the node, then default to nearest node that has memory
1461 		 * installed. Skip onlining a node if the subsystems are not
1462 		 * yet initialized.
1463 		 */
1464 		if (!topology_inited || try_online_node(new_nid))
1465 			new_nid = first_online_node;
1466 #else
1467 		/*
1468 		 * Default to using the nearest node that has memory installed.
1469 		 * Otherwise, it would be necessary to patch the kernel MM code
1470 		 * to deal with more memoryless-node error conditions.
1471 		 */
1472 		new_nid = first_online_node;
1473 #endif
1474 	}
1475 
1476 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1477 		cpu, new_nid);
1478 	return new_nid;
1479 }
1480 
cpu_to_coregroup_id(int cpu)1481 int cpu_to_coregroup_id(int cpu)
1482 {
1483 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1484 	int index;
1485 
1486 	if (cpu < 0 || cpu > nr_cpu_ids)
1487 		return -1;
1488 
1489 	if (!coregroup_enabled)
1490 		goto out;
1491 
1492 	if (!firmware_has_feature(FW_FEATURE_VPHN))
1493 		goto out;
1494 
1495 	if (vphn_get_associativity(cpu, associativity))
1496 		goto out;
1497 
1498 	index = of_read_number(associativity, 1);
1499 	if (index > primary_domain_index + 1)
1500 		return of_read_number(&associativity[index - 1], 1);
1501 
1502 out:
1503 	return cpu_to_core_id(cpu);
1504 }
1505 
topology_update_init(void)1506 static int topology_update_init(void)
1507 {
1508 	topology_inited = 1;
1509 	return 0;
1510 }
1511 device_initcall(topology_update_init);
1512 #endif /* CONFIG_PPC_SPLPAR */
1513