1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7 #define pr_fmt(fmt) "numa: " fmt
8
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38
39 static int numa_enabled = 1;
40
41 static char *cmdline __initdata;
42
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53
54 static int primary_domain_index;
55 static int n_mem_addr_cells, n_mem_size_cells;
56
57 #define FORM0_AFFINITY 0
58 #define FORM1_AFFINITY 1
59 #define FORM2_AFFINITY 2
60 static int affinity_form;
61
62 #define MAX_DISTANCE_REF_POINTS 4
63 static int distance_ref_points_depth;
64 static const __be32 *distance_ref_points;
65 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
66 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
67 [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
68 };
69 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
70
71 /*
72 * Allocate node_to_cpumask_map based on number of available nodes
73 * Requires node_possible_map to be valid.
74 *
75 * Note: cpumask_of_node() is not valid until after this is done.
76 */
setup_node_to_cpumask_map(void)77 static void __init setup_node_to_cpumask_map(void)
78 {
79 unsigned int node;
80
81 /* setup nr_node_ids if not done yet */
82 if (nr_node_ids == MAX_NUMNODES)
83 setup_nr_node_ids();
84
85 /* allocate the map */
86 for_each_node(node)
87 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
88
89 /* cpumask_of_node() will now work */
90 dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
91 }
92
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)93 static int __init fake_numa_create_new_node(unsigned long end_pfn,
94 unsigned int *nid)
95 {
96 unsigned long long mem;
97 char *p = cmdline;
98 static unsigned int fake_nid;
99 static unsigned long long curr_boundary;
100
101 /*
102 * Modify node id, iff we started creating NUMA nodes
103 * We want to continue from where we left of the last time
104 */
105 if (fake_nid)
106 *nid = fake_nid;
107 /*
108 * In case there are no more arguments to parse, the
109 * node_id should be the same as the last fake node id
110 * (we've handled this above).
111 */
112 if (!p)
113 return 0;
114
115 mem = memparse(p, &p);
116 if (!mem)
117 return 0;
118
119 if (mem < curr_boundary)
120 return 0;
121
122 curr_boundary = mem;
123
124 if ((end_pfn << PAGE_SHIFT) > mem) {
125 /*
126 * Skip commas and spaces
127 */
128 while (*p == ',' || *p == ' ' || *p == '\t')
129 p++;
130
131 cmdline = p;
132 fake_nid++;
133 *nid = fake_nid;
134 dbg("created new fake_node with id %d\n", fake_nid);
135 return 1;
136 }
137 return 0;
138 }
139
reset_numa_cpu_lookup_table(void)140 static void reset_numa_cpu_lookup_table(void)
141 {
142 unsigned int cpu;
143
144 for_each_possible_cpu(cpu)
145 numa_cpu_lookup_table[cpu] = -1;
146 }
147
map_cpu_to_node(int cpu,int node)148 void map_cpu_to_node(int cpu, int node)
149 {
150 update_numa_cpu_lookup_table(cpu, node);
151
152 dbg("adding cpu %d to node %d\n", cpu, node);
153
154 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
155 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
156 }
157
158 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)159 void unmap_cpu_from_node(unsigned long cpu)
160 {
161 int node = numa_cpu_lookup_table[cpu];
162
163 dbg("removing cpu %lu from node %d\n", cpu, node);
164
165 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
166 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
167 } else {
168 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
169 cpu, node);
170 }
171 }
172 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
173
__associativity_to_nid(const __be32 * associativity,int max_array_sz)174 static int __associativity_to_nid(const __be32 *associativity,
175 int max_array_sz)
176 {
177 int nid;
178 /*
179 * primary_domain_index is 1 based array index.
180 */
181 int index = primary_domain_index - 1;
182
183 if (!numa_enabled || index >= max_array_sz)
184 return NUMA_NO_NODE;
185
186 nid = of_read_number(&associativity[index], 1);
187
188 /* POWER4 LPAR uses 0xffff as invalid node */
189 if (nid == 0xffff || nid >= nr_node_ids)
190 nid = NUMA_NO_NODE;
191 return nid;
192 }
193 /*
194 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
195 * info is found.
196 */
associativity_to_nid(const __be32 * associativity)197 static int associativity_to_nid(const __be32 *associativity)
198 {
199 int array_sz = of_read_number(associativity, 1);
200
201 /* Skip the first element in the associativity array */
202 return __associativity_to_nid((associativity + 1), array_sz);
203 }
204
__cpu_form2_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)205 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
206 {
207 int dist;
208 int node1, node2;
209
210 node1 = associativity_to_nid(cpu1_assoc);
211 node2 = associativity_to_nid(cpu2_assoc);
212
213 dist = numa_distance_table[node1][node2];
214 if (dist <= LOCAL_DISTANCE)
215 return 0;
216 else if (dist <= REMOTE_DISTANCE)
217 return 1;
218 else
219 return 2;
220 }
221
__cpu_form1_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)222 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
223 {
224 int dist = 0;
225
226 int i, index;
227
228 for (i = 0; i < distance_ref_points_depth; i++) {
229 index = be32_to_cpu(distance_ref_points[i]);
230 if (cpu1_assoc[index] == cpu2_assoc[index])
231 break;
232 dist++;
233 }
234
235 return dist;
236 }
237
cpu_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)238 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
239 {
240 /* We should not get called with FORM0 */
241 VM_WARN_ON(affinity_form == FORM0_AFFINITY);
242 if (affinity_form == FORM1_AFFINITY)
243 return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
244 return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
245 }
246
247 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)248 static const __be32 *of_get_associativity(struct device_node *dev)
249 {
250 return of_get_property(dev, "ibm,associativity", NULL);
251 }
252
__node_distance(int a,int b)253 int __node_distance(int a, int b)
254 {
255 int i;
256 int distance = LOCAL_DISTANCE;
257
258 if (affinity_form == FORM2_AFFINITY)
259 return numa_distance_table[a][b];
260 else if (affinity_form == FORM0_AFFINITY)
261 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
262
263 for (i = 0; i < distance_ref_points_depth; i++) {
264 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
265 break;
266
267 /* Double the distance for each NUMA level */
268 distance *= 2;
269 }
270
271 return distance;
272 }
273 EXPORT_SYMBOL(__node_distance);
274
275 /* Returns the nid associated with the given device tree node,
276 * or -1 if not found.
277 */
of_node_to_nid_single(struct device_node * device)278 static int of_node_to_nid_single(struct device_node *device)
279 {
280 int nid = NUMA_NO_NODE;
281 const __be32 *tmp;
282
283 tmp = of_get_associativity(device);
284 if (tmp)
285 nid = associativity_to_nid(tmp);
286 return nid;
287 }
288
289 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)290 int of_node_to_nid(struct device_node *device)
291 {
292 int nid = NUMA_NO_NODE;
293
294 of_node_get(device);
295 while (device) {
296 nid = of_node_to_nid_single(device);
297 if (nid != -1)
298 break;
299
300 device = of_get_next_parent(device);
301 }
302 of_node_put(device);
303
304 return nid;
305 }
306 EXPORT_SYMBOL(of_node_to_nid);
307
__initialize_form1_numa_distance(const __be32 * associativity,int max_array_sz)308 static void __initialize_form1_numa_distance(const __be32 *associativity,
309 int max_array_sz)
310 {
311 int i, nid;
312
313 if (affinity_form != FORM1_AFFINITY)
314 return;
315
316 nid = __associativity_to_nid(associativity, max_array_sz);
317 if (nid != NUMA_NO_NODE) {
318 for (i = 0; i < distance_ref_points_depth; i++) {
319 const __be32 *entry;
320 int index = be32_to_cpu(distance_ref_points[i]) - 1;
321
322 /*
323 * broken hierarchy, return with broken distance table
324 */
325 if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
326 return;
327
328 entry = &associativity[index];
329 distance_lookup_table[nid][i] = of_read_number(entry, 1);
330 }
331 }
332 }
333
initialize_form1_numa_distance(const __be32 * associativity)334 static void initialize_form1_numa_distance(const __be32 *associativity)
335 {
336 int array_sz;
337
338 array_sz = of_read_number(associativity, 1);
339 /* Skip the first element in the associativity array */
340 __initialize_form1_numa_distance(associativity + 1, array_sz);
341 }
342
343 /*
344 * Used to update distance information w.r.t newly added node.
345 */
update_numa_distance(struct device_node * node)346 void update_numa_distance(struct device_node *node)
347 {
348 int nid;
349
350 if (affinity_form == FORM0_AFFINITY)
351 return;
352 else if (affinity_form == FORM1_AFFINITY) {
353 const __be32 *associativity;
354
355 associativity = of_get_associativity(node);
356 if (!associativity)
357 return;
358
359 initialize_form1_numa_distance(associativity);
360 return;
361 }
362
363 /* FORM2 affinity */
364 nid = of_node_to_nid_single(node);
365 if (nid == NUMA_NO_NODE)
366 return;
367
368 /*
369 * With FORM2 we expect NUMA distance of all possible NUMA
370 * nodes to be provided during boot.
371 */
372 WARN(numa_distance_table[nid][nid] == -1,
373 "NUMA distance details for node %d not provided\n", nid);
374 }
375 EXPORT_SYMBOL_GPL(update_numa_distance);
376
377 /*
378 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
379 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
380 */
initialize_form2_numa_distance_lookup_table(void)381 static void initialize_form2_numa_distance_lookup_table(void)
382 {
383 int i, j;
384 struct device_node *root;
385 const __u8 *numa_dist_table;
386 const __be32 *numa_lookup_index;
387 int numa_dist_table_length;
388 int max_numa_index, distance_index;
389
390 if (firmware_has_feature(FW_FEATURE_OPAL))
391 root = of_find_node_by_path("/ibm,opal");
392 else
393 root = of_find_node_by_path("/rtas");
394 if (!root)
395 root = of_find_node_by_path("/");
396
397 numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
398 max_numa_index = of_read_number(&numa_lookup_index[0], 1);
399
400 /* first element of the array is the size and is encode-int */
401 numa_dist_table = of_get_property(root, "ibm,numa-distance-table", NULL);
402 numa_dist_table_length = of_read_number((const __be32 *)&numa_dist_table[0], 1);
403 /* Skip the size which is encoded int */
404 numa_dist_table += sizeof(__be32);
405
406 pr_debug("numa_dist_table_len = %d, numa_dist_indexes_len = %d\n",
407 numa_dist_table_length, max_numa_index);
408
409 for (i = 0; i < max_numa_index; i++)
410 /* +1 skip the max_numa_index in the property */
411 numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
412
413
414 if (numa_dist_table_length != max_numa_index * max_numa_index) {
415 WARN(1, "Wrong NUMA distance information\n");
416 /* consider everybody else just remote. */
417 for (i = 0; i < max_numa_index; i++) {
418 for (j = 0; j < max_numa_index; j++) {
419 int nodeA = numa_id_index_table[i];
420 int nodeB = numa_id_index_table[j];
421
422 if (nodeA == nodeB)
423 numa_distance_table[nodeA][nodeB] = LOCAL_DISTANCE;
424 else
425 numa_distance_table[nodeA][nodeB] = REMOTE_DISTANCE;
426 }
427 }
428 }
429
430 distance_index = 0;
431 for (i = 0; i < max_numa_index; i++) {
432 for (j = 0; j < max_numa_index; j++) {
433 int nodeA = numa_id_index_table[i];
434 int nodeB = numa_id_index_table[j];
435
436 numa_distance_table[nodeA][nodeB] = numa_dist_table[distance_index++];
437 pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, numa_distance_table[nodeA][nodeB]);
438 }
439 }
440 of_node_put(root);
441 }
442
find_primary_domain_index(void)443 static int __init find_primary_domain_index(void)
444 {
445 int index;
446 struct device_node *root;
447
448 /*
449 * Check for which form of affinity.
450 */
451 if (firmware_has_feature(FW_FEATURE_OPAL)) {
452 affinity_form = FORM1_AFFINITY;
453 } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
454 dbg("Using form 2 affinity\n");
455 affinity_form = FORM2_AFFINITY;
456 } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
457 dbg("Using form 1 affinity\n");
458 affinity_form = FORM1_AFFINITY;
459 } else
460 affinity_form = FORM0_AFFINITY;
461
462 if (firmware_has_feature(FW_FEATURE_OPAL))
463 root = of_find_node_by_path("/ibm,opal");
464 else
465 root = of_find_node_by_path("/rtas");
466 if (!root)
467 root = of_find_node_by_path("/");
468
469 /*
470 * This property is a set of 32-bit integers, each representing
471 * an index into the ibm,associativity nodes.
472 *
473 * With form 0 affinity the first integer is for an SMP configuration
474 * (should be all 0's) and the second is for a normal NUMA
475 * configuration. We have only one level of NUMA.
476 *
477 * With form 1 affinity the first integer is the most significant
478 * NUMA boundary and the following are progressively less significant
479 * boundaries. There can be more than one level of NUMA.
480 */
481 distance_ref_points = of_get_property(root,
482 "ibm,associativity-reference-points",
483 &distance_ref_points_depth);
484
485 if (!distance_ref_points) {
486 dbg("NUMA: ibm,associativity-reference-points not found.\n");
487 goto err;
488 }
489
490 distance_ref_points_depth /= sizeof(int);
491 if (affinity_form == FORM0_AFFINITY) {
492 if (distance_ref_points_depth < 2) {
493 printk(KERN_WARNING "NUMA: "
494 "short ibm,associativity-reference-points\n");
495 goto err;
496 }
497
498 index = of_read_number(&distance_ref_points[1], 1);
499 } else {
500 /*
501 * Both FORM1 and FORM2 affinity find the primary domain details
502 * at the same offset.
503 */
504 index = of_read_number(distance_ref_points, 1);
505 }
506 /*
507 * Warn and cap if the hardware supports more than
508 * MAX_DISTANCE_REF_POINTS domains.
509 */
510 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
511 printk(KERN_WARNING "NUMA: distance array capped at "
512 "%d entries\n", MAX_DISTANCE_REF_POINTS);
513 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
514 }
515
516 of_node_put(root);
517 return index;
518
519 err:
520 of_node_put(root);
521 return -1;
522 }
523
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)524 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
525 {
526 struct device_node *memory = NULL;
527
528 memory = of_find_node_by_type(memory, "memory");
529 if (!memory)
530 panic("numa.c: No memory nodes found!");
531
532 *n_addr_cells = of_n_addr_cells(memory);
533 *n_size_cells = of_n_size_cells(memory);
534 of_node_put(memory);
535 }
536
read_n_cells(int n,const __be32 ** buf)537 static unsigned long read_n_cells(int n, const __be32 **buf)
538 {
539 unsigned long result = 0;
540
541 while (n--) {
542 result = (result << 32) | of_read_number(*buf, 1);
543 (*buf)++;
544 }
545 return result;
546 }
547
548 struct assoc_arrays {
549 u32 n_arrays;
550 u32 array_sz;
551 const __be32 *arrays;
552 };
553
554 /*
555 * Retrieve and validate the list of associativity arrays for drconf
556 * memory from the ibm,associativity-lookup-arrays property of the
557 * device tree..
558 *
559 * The layout of the ibm,associativity-lookup-arrays property is a number N
560 * indicating the number of associativity arrays, followed by a number M
561 * indicating the size of each associativity array, followed by a list
562 * of N associativity arrays.
563 */
of_get_assoc_arrays(struct assoc_arrays * aa)564 static int of_get_assoc_arrays(struct assoc_arrays *aa)
565 {
566 struct device_node *memory;
567 const __be32 *prop;
568 u32 len;
569
570 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
571 if (!memory)
572 return -1;
573
574 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
575 if (!prop || len < 2 * sizeof(unsigned int)) {
576 of_node_put(memory);
577 return -1;
578 }
579
580 aa->n_arrays = of_read_number(prop++, 1);
581 aa->array_sz = of_read_number(prop++, 1);
582
583 of_node_put(memory);
584
585 /* Now that we know the number of arrays and size of each array,
586 * revalidate the size of the property read in.
587 */
588 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
589 return -1;
590
591 aa->arrays = prop;
592 return 0;
593 }
594
get_nid_and_numa_distance(struct drmem_lmb * lmb)595 static int get_nid_and_numa_distance(struct drmem_lmb *lmb)
596 {
597 struct assoc_arrays aa = { .arrays = NULL };
598 int default_nid = NUMA_NO_NODE;
599 int nid = default_nid;
600 int rc, index;
601
602 if ((primary_domain_index < 0) || !numa_enabled)
603 return default_nid;
604
605 rc = of_get_assoc_arrays(&aa);
606 if (rc)
607 return default_nid;
608
609 if (primary_domain_index <= aa.array_sz &&
610 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
611 const __be32 *associativity;
612
613 index = lmb->aa_index * aa.array_sz;
614 associativity = &aa.arrays[index];
615 nid = __associativity_to_nid(associativity, aa.array_sz);
616 if (nid > 0 && affinity_form == FORM1_AFFINITY) {
617 /*
618 * lookup array associativity entries have
619 * no length of the array as the first element.
620 */
621 __initialize_form1_numa_distance(associativity, aa.array_sz);
622 }
623 }
624 return nid;
625 }
626
627 /*
628 * This is like of_node_to_nid_single() for memory represented in the
629 * ibm,dynamic-reconfiguration-memory node.
630 */
of_drconf_to_nid_single(struct drmem_lmb * lmb)631 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
632 {
633 struct assoc_arrays aa = { .arrays = NULL };
634 int default_nid = NUMA_NO_NODE;
635 int nid = default_nid;
636 int rc, index;
637
638 if ((primary_domain_index < 0) || !numa_enabled)
639 return default_nid;
640
641 rc = of_get_assoc_arrays(&aa);
642 if (rc)
643 return default_nid;
644
645 if (primary_domain_index <= aa.array_sz &&
646 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
647 const __be32 *associativity;
648
649 index = lmb->aa_index * aa.array_sz;
650 associativity = &aa.arrays[index];
651 nid = __associativity_to_nid(associativity, aa.array_sz);
652 }
653 return nid;
654 }
655
656 #ifdef CONFIG_PPC_SPLPAR
657
__vphn_get_associativity(long lcpu,__be32 * associativity)658 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
659 {
660 long rc, hwid;
661
662 /*
663 * On a shared lpar, device tree will not have node associativity.
664 * At this time lppaca, or its __old_status field may not be
665 * updated. Hence kernel cannot detect if its on a shared lpar. So
666 * request an explicit associativity irrespective of whether the
667 * lpar is shared or dedicated. Use the device tree property as a
668 * fallback. cpu_to_phys_id is only valid between
669 * smp_setup_cpu_maps() and smp_setup_pacas().
670 */
671 if (firmware_has_feature(FW_FEATURE_VPHN)) {
672 if (cpu_to_phys_id)
673 hwid = cpu_to_phys_id[lcpu];
674 else
675 hwid = get_hard_smp_processor_id(lcpu);
676
677 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
678 if (rc == H_SUCCESS)
679 return 0;
680 }
681
682 return -1;
683 }
684
vphn_get_nid(long lcpu)685 static int vphn_get_nid(long lcpu)
686 {
687 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
688
689
690 if (!__vphn_get_associativity(lcpu, associativity))
691 return associativity_to_nid(associativity);
692
693 return NUMA_NO_NODE;
694
695 }
696 #else
697
__vphn_get_associativity(long lcpu,__be32 * associativity)698 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
699 {
700 return -1;
701 }
702
vphn_get_nid(long unused)703 static int vphn_get_nid(long unused)
704 {
705 return NUMA_NO_NODE;
706 }
707 #endif /* CONFIG_PPC_SPLPAR */
708
709 /*
710 * Figure out to which domain a cpu belongs and stick it there.
711 * Return the id of the domain used.
712 */
numa_setup_cpu(unsigned long lcpu)713 static int numa_setup_cpu(unsigned long lcpu)
714 {
715 struct device_node *cpu;
716 int fcpu = cpu_first_thread_sibling(lcpu);
717 int nid = NUMA_NO_NODE;
718
719 if (!cpu_present(lcpu)) {
720 set_cpu_numa_node(lcpu, first_online_node);
721 return first_online_node;
722 }
723
724 /*
725 * If a valid cpu-to-node mapping is already available, use it
726 * directly instead of querying the firmware, since it represents
727 * the most recent mapping notified to us by the platform (eg: VPHN).
728 * Since cpu_to_node binding remains the same for all threads in the
729 * core. If a valid cpu-to-node mapping is already available, for
730 * the first thread in the core, use it.
731 */
732 nid = numa_cpu_lookup_table[fcpu];
733 if (nid >= 0) {
734 map_cpu_to_node(lcpu, nid);
735 return nid;
736 }
737
738 nid = vphn_get_nid(lcpu);
739 if (nid != NUMA_NO_NODE)
740 goto out_present;
741
742 cpu = of_get_cpu_node(lcpu, NULL);
743
744 if (!cpu) {
745 WARN_ON(1);
746 if (cpu_present(lcpu))
747 goto out_present;
748 else
749 goto out;
750 }
751
752 nid = of_node_to_nid_single(cpu);
753 of_node_put(cpu);
754
755 out_present:
756 if (nid < 0 || !node_possible(nid))
757 nid = first_online_node;
758
759 /*
760 * Update for the first thread of the core. All threads of a core
761 * have to be part of the same node. This not only avoids querying
762 * for every other thread in the core, but always avoids a case
763 * where virtual node associativity change causes subsequent threads
764 * of a core to be associated with different nid. However if first
765 * thread is already online, expect it to have a valid mapping.
766 */
767 if (fcpu != lcpu) {
768 WARN_ON(cpu_online(fcpu));
769 map_cpu_to_node(fcpu, nid);
770 }
771
772 map_cpu_to_node(lcpu, nid);
773 out:
774 return nid;
775 }
776
verify_cpu_node_mapping(int cpu,int node)777 static void verify_cpu_node_mapping(int cpu, int node)
778 {
779 int base, sibling, i;
780
781 /* Verify that all the threads in the core belong to the same node */
782 base = cpu_first_thread_sibling(cpu);
783
784 for (i = 0; i < threads_per_core; i++) {
785 sibling = base + i;
786
787 if (sibling == cpu || cpu_is_offline(sibling))
788 continue;
789
790 if (cpu_to_node(sibling) != node) {
791 WARN(1, "CPU thread siblings %d and %d don't belong"
792 " to the same node!\n", cpu, sibling);
793 break;
794 }
795 }
796 }
797
798 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)799 static int ppc_numa_cpu_prepare(unsigned int cpu)
800 {
801 int nid;
802
803 nid = numa_setup_cpu(cpu);
804 verify_cpu_node_mapping(cpu, nid);
805 return 0;
806 }
807
ppc_numa_cpu_dead(unsigned int cpu)808 static int ppc_numa_cpu_dead(unsigned int cpu)
809 {
810 return 0;
811 }
812
813 /*
814 * Check and possibly modify a memory region to enforce the memory limit.
815 *
816 * Returns the size the region should have to enforce the memory limit.
817 * This will either be the original value of size, a truncated value,
818 * or zero. If the returned value of size is 0 the region should be
819 * discarded as it lies wholly above the memory limit.
820 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)821 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
822 unsigned long size)
823 {
824 /*
825 * We use memblock_end_of_DRAM() in here instead of memory_limit because
826 * we've already adjusted it for the limit and it takes care of
827 * having memory holes below the limit. Also, in the case of
828 * iommu_is_off, memory_limit is not set but is implicitly enforced.
829 */
830
831 if (start + size <= memblock_end_of_DRAM())
832 return size;
833
834 if (start >= memblock_end_of_DRAM())
835 return 0;
836
837 return memblock_end_of_DRAM() - start;
838 }
839
840 /*
841 * Reads the counter for a given entry in
842 * linux,drconf-usable-memory property
843 */
read_usm_ranges(const __be32 ** usm)844 static inline int __init read_usm_ranges(const __be32 **usm)
845 {
846 /*
847 * For each lmb in ibm,dynamic-memory a corresponding
848 * entry in linux,drconf-usable-memory property contains
849 * a counter followed by that many (base, size) duple.
850 * read the counter from linux,drconf-usable-memory
851 */
852 return read_n_cells(n_mem_size_cells, usm);
853 }
854
855 /*
856 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
857 * node. This assumes n_mem_{addr,size}_cells have been set.
858 */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)859 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
860 const __be32 **usm,
861 void *data)
862 {
863 unsigned int ranges, is_kexec_kdump = 0;
864 unsigned long base, size, sz;
865 int nid;
866
867 /*
868 * Skip this block if the reserved bit is set in flags (0x80)
869 * or if the block is not assigned to this partition (0x8)
870 */
871 if ((lmb->flags & DRCONF_MEM_RESERVED)
872 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
873 return 0;
874
875 if (*usm)
876 is_kexec_kdump = 1;
877
878 base = lmb->base_addr;
879 size = drmem_lmb_size();
880 ranges = 1;
881
882 if (is_kexec_kdump) {
883 ranges = read_usm_ranges(usm);
884 if (!ranges) /* there are no (base, size) duple */
885 return 0;
886 }
887
888 do {
889 if (is_kexec_kdump) {
890 base = read_n_cells(n_mem_addr_cells, usm);
891 size = read_n_cells(n_mem_size_cells, usm);
892 }
893
894 nid = get_nid_and_numa_distance(lmb);
895 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
896 &nid);
897 node_set_online(nid);
898 sz = numa_enforce_memory_limit(base, size);
899 if (sz)
900 memblock_set_node(base, sz, &memblock.memory, nid);
901 } while (--ranges);
902
903 return 0;
904 }
905
parse_numa_properties(void)906 static int __init parse_numa_properties(void)
907 {
908 struct device_node *memory;
909 int default_nid = 0;
910 unsigned long i;
911 const __be32 *associativity;
912
913 if (numa_enabled == 0) {
914 printk(KERN_WARNING "NUMA disabled by user\n");
915 return -1;
916 }
917
918 primary_domain_index = find_primary_domain_index();
919
920 if (primary_domain_index < 0) {
921 /*
922 * if we fail to parse primary_domain_index from device tree
923 * mark the numa disabled, boot with numa disabled.
924 */
925 numa_enabled = false;
926 return primary_domain_index;
927 }
928
929 dbg("NUMA associativity depth for CPU/Memory: %d\n", primary_domain_index);
930
931 /*
932 * If it is FORM2 initialize the distance table here.
933 */
934 if (affinity_form == FORM2_AFFINITY)
935 initialize_form2_numa_distance_lookup_table();
936
937 /*
938 * Even though we connect cpus to numa domains later in SMP
939 * init, we need to know the node ids now. This is because
940 * each node to be onlined must have NODE_DATA etc backing it.
941 */
942 for_each_present_cpu(i) {
943 __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
944 struct device_node *cpu;
945 int nid = NUMA_NO_NODE;
946
947 memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
948
949 if (__vphn_get_associativity(i, vphn_assoc) == 0) {
950 nid = associativity_to_nid(vphn_assoc);
951 initialize_form1_numa_distance(vphn_assoc);
952 } else {
953
954 /*
955 * Don't fall back to default_nid yet -- we will plug
956 * cpus into nodes once the memory scan has discovered
957 * the topology.
958 */
959 cpu = of_get_cpu_node(i, NULL);
960 BUG_ON(!cpu);
961
962 associativity = of_get_associativity(cpu);
963 if (associativity) {
964 nid = associativity_to_nid(associativity);
965 initialize_form1_numa_distance(associativity);
966 }
967 of_node_put(cpu);
968 }
969
970 /* node_set_online() is an UB if 'nid' is negative */
971 if (likely(nid >= 0))
972 node_set_online(nid);
973 }
974
975 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
976
977 for_each_node_by_type(memory, "memory") {
978 unsigned long start;
979 unsigned long size;
980 int nid;
981 int ranges;
982 const __be32 *memcell_buf;
983 unsigned int len;
984
985 memcell_buf = of_get_property(memory,
986 "linux,usable-memory", &len);
987 if (!memcell_buf || len <= 0)
988 memcell_buf = of_get_property(memory, "reg", &len);
989 if (!memcell_buf || len <= 0)
990 continue;
991
992 /* ranges in cell */
993 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
994 new_range:
995 /* these are order-sensitive, and modify the buffer pointer */
996 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
997 size = read_n_cells(n_mem_size_cells, &memcell_buf);
998
999 /*
1000 * Assumption: either all memory nodes or none will
1001 * have associativity properties. If none, then
1002 * everything goes to default_nid.
1003 */
1004 associativity = of_get_associativity(memory);
1005 if (associativity) {
1006 nid = associativity_to_nid(associativity);
1007 initialize_form1_numa_distance(associativity);
1008 } else
1009 nid = default_nid;
1010
1011 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1012 node_set_online(nid);
1013
1014 size = numa_enforce_memory_limit(start, size);
1015 if (size)
1016 memblock_set_node(start, size, &memblock.memory, nid);
1017
1018 if (--ranges)
1019 goto new_range;
1020 }
1021
1022 /*
1023 * Now do the same thing for each MEMBLOCK listed in the
1024 * ibm,dynamic-memory property in the
1025 * ibm,dynamic-reconfiguration-memory node.
1026 */
1027 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1028 if (memory) {
1029 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1030 of_node_put(memory);
1031 }
1032
1033 return 0;
1034 }
1035
setup_nonnuma(void)1036 static void __init setup_nonnuma(void)
1037 {
1038 unsigned long top_of_ram = memblock_end_of_DRAM();
1039 unsigned long total_ram = memblock_phys_mem_size();
1040 unsigned long start_pfn, end_pfn;
1041 unsigned int nid = 0;
1042 int i;
1043
1044 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1045 top_of_ram, total_ram);
1046 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1047 (top_of_ram - total_ram) >> 20);
1048
1049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1050 fake_numa_create_new_node(end_pfn, &nid);
1051 memblock_set_node(PFN_PHYS(start_pfn),
1052 PFN_PHYS(end_pfn - start_pfn),
1053 &memblock.memory, nid);
1054 node_set_online(nid);
1055 }
1056 }
1057
dump_numa_cpu_topology(void)1058 void __init dump_numa_cpu_topology(void)
1059 {
1060 unsigned int node;
1061 unsigned int cpu, count;
1062
1063 if (!numa_enabled)
1064 return;
1065
1066 for_each_online_node(node) {
1067 pr_info("Node %d CPUs:", node);
1068
1069 count = 0;
1070 /*
1071 * If we used a CPU iterator here we would miss printing
1072 * the holes in the cpumap.
1073 */
1074 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1075 if (cpumask_test_cpu(cpu,
1076 node_to_cpumask_map[node])) {
1077 if (count == 0)
1078 pr_cont(" %u", cpu);
1079 ++count;
1080 } else {
1081 if (count > 1)
1082 pr_cont("-%u", cpu - 1);
1083 count = 0;
1084 }
1085 }
1086
1087 if (count > 1)
1088 pr_cont("-%u", nr_cpu_ids - 1);
1089 pr_cont("\n");
1090 }
1091 }
1092
1093 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)1094 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1095 {
1096 u64 spanned_pages = end_pfn - start_pfn;
1097 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1098 u64 nd_pa;
1099 void *nd;
1100 int tnid;
1101
1102 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1103 if (!nd_pa)
1104 panic("Cannot allocate %zu bytes for node %d data\n",
1105 nd_size, nid);
1106
1107 nd = __va(nd_pa);
1108
1109 /* report and initialize */
1110 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
1111 nd_pa, nd_pa + nd_size - 1);
1112 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1113 if (tnid != nid)
1114 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
1115
1116 node_data[nid] = nd;
1117 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1118 NODE_DATA(nid)->node_id = nid;
1119 NODE_DATA(nid)->node_start_pfn = start_pfn;
1120 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1121 }
1122
find_possible_nodes(void)1123 static void __init find_possible_nodes(void)
1124 {
1125 struct device_node *rtas;
1126 const __be32 *domains = NULL;
1127 int prop_length, max_nodes;
1128 u32 i;
1129
1130 if (!numa_enabled)
1131 return;
1132
1133 rtas = of_find_node_by_path("/rtas");
1134 if (!rtas)
1135 return;
1136
1137 /*
1138 * ibm,current-associativity-domains is a fairly recent property. If
1139 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1140 * Current denotes what the platform can support compared to max
1141 * which denotes what the Hypervisor can support.
1142 *
1143 * If the LPAR is migratable, new nodes might be activated after a LPM,
1144 * so we should consider the max number in that case.
1145 */
1146 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1147 domains = of_get_property(rtas,
1148 "ibm,current-associativity-domains",
1149 &prop_length);
1150 if (!domains) {
1151 domains = of_get_property(rtas, "ibm,max-associativity-domains",
1152 &prop_length);
1153 if (!domains)
1154 goto out;
1155 }
1156
1157 max_nodes = of_read_number(&domains[primary_domain_index], 1);
1158 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1159
1160 for (i = 0; i < max_nodes; i++) {
1161 if (!node_possible(i))
1162 node_set(i, node_possible_map);
1163 }
1164
1165 prop_length /= sizeof(int);
1166 if (prop_length > primary_domain_index + 2)
1167 coregroup_enabled = 1;
1168
1169 out:
1170 of_node_put(rtas);
1171 }
1172
mem_topology_setup(void)1173 void __init mem_topology_setup(void)
1174 {
1175 int cpu;
1176
1177 /*
1178 * Linux/mm assumes node 0 to be online at boot. However this is not
1179 * true on PowerPC, where node 0 is similar to any other node, it
1180 * could be cpuless, memoryless node. So force node 0 to be offline
1181 * for now. This will prevent cpuless, memoryless node 0 showing up
1182 * unnecessarily as online. If a node has cpus or memory that need
1183 * to be online, then node will anyway be marked online.
1184 */
1185 node_set_offline(0);
1186
1187 if (parse_numa_properties())
1188 setup_nonnuma();
1189
1190 /*
1191 * Modify the set of possible NUMA nodes to reflect information
1192 * available about the set of online nodes, and the set of nodes
1193 * that we expect to make use of for this platform's affinity
1194 * calculations.
1195 */
1196 nodes_and(node_possible_map, node_possible_map, node_online_map);
1197
1198 find_possible_nodes();
1199
1200 setup_node_to_cpumask_map();
1201
1202 reset_numa_cpu_lookup_table();
1203
1204 for_each_possible_cpu(cpu) {
1205 /*
1206 * Powerpc with CONFIG_NUMA always used to have a node 0,
1207 * even if it was memoryless or cpuless. For all cpus that
1208 * are possible but not present, cpu_to_node() would point
1209 * to node 0. To remove a cpuless, memoryless dummy node,
1210 * powerpc need to make sure all possible but not present
1211 * cpu_to_node are set to a proper node.
1212 */
1213 numa_setup_cpu(cpu);
1214 }
1215 }
1216
initmem_init(void)1217 void __init initmem_init(void)
1218 {
1219 int nid;
1220
1221 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1222 max_pfn = max_low_pfn;
1223
1224 memblock_dump_all();
1225
1226 for_each_online_node(nid) {
1227 unsigned long start_pfn, end_pfn;
1228
1229 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1230 setup_node_data(nid, start_pfn, end_pfn);
1231 }
1232
1233 sparse_init();
1234
1235 /*
1236 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1237 * even before we online them, so that we can use cpu_to_{node,mem}
1238 * early in boot, cf. smp_prepare_cpus().
1239 * _nocalls() + manual invocation is used because cpuhp is not yet
1240 * initialized for the boot CPU.
1241 */
1242 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1243 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1244 }
1245
early_numa(char * p)1246 static int __init early_numa(char *p)
1247 {
1248 if (!p)
1249 return 0;
1250
1251 if (strstr(p, "off"))
1252 numa_enabled = 0;
1253
1254 if (strstr(p, "debug"))
1255 numa_debug = 1;
1256
1257 p = strstr(p, "fake=");
1258 if (p)
1259 cmdline = p + strlen("fake=");
1260
1261 return 0;
1262 }
1263 early_param("numa", early_numa);
1264
1265 #ifdef CONFIG_MEMORY_HOTPLUG
1266 /*
1267 * Find the node associated with a hot added memory section for
1268 * memory represented in the device tree by the property
1269 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1270 */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1271 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1272 {
1273 struct drmem_lmb *lmb;
1274 unsigned long lmb_size;
1275 int nid = NUMA_NO_NODE;
1276
1277 lmb_size = drmem_lmb_size();
1278
1279 for_each_drmem_lmb(lmb) {
1280 /* skip this block if it is reserved or not assigned to
1281 * this partition */
1282 if ((lmb->flags & DRCONF_MEM_RESERVED)
1283 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1284 continue;
1285
1286 if ((scn_addr < lmb->base_addr)
1287 || (scn_addr >= (lmb->base_addr + lmb_size)))
1288 continue;
1289
1290 nid = of_drconf_to_nid_single(lmb);
1291 break;
1292 }
1293
1294 return nid;
1295 }
1296
1297 /*
1298 * Find the node associated with a hot added memory section for memory
1299 * represented in the device tree as a node (i.e. memory@XXXX) for
1300 * each memblock.
1301 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1302 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1303 {
1304 struct device_node *memory;
1305 int nid = NUMA_NO_NODE;
1306
1307 for_each_node_by_type(memory, "memory") {
1308 unsigned long start, size;
1309 int ranges;
1310 const __be32 *memcell_buf;
1311 unsigned int len;
1312
1313 memcell_buf = of_get_property(memory, "reg", &len);
1314 if (!memcell_buf || len <= 0)
1315 continue;
1316
1317 /* ranges in cell */
1318 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1319
1320 while (ranges--) {
1321 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1322 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1323
1324 if ((scn_addr < start) || (scn_addr >= (start + size)))
1325 continue;
1326
1327 nid = of_node_to_nid_single(memory);
1328 break;
1329 }
1330
1331 if (nid >= 0)
1332 break;
1333 }
1334
1335 of_node_put(memory);
1336
1337 return nid;
1338 }
1339
1340 /*
1341 * Find the node associated with a hot added memory section. Section
1342 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1343 * sections are fully contained within a single MEMBLOCK.
1344 */
hot_add_scn_to_nid(unsigned long scn_addr)1345 int hot_add_scn_to_nid(unsigned long scn_addr)
1346 {
1347 struct device_node *memory = NULL;
1348 int nid;
1349
1350 if (!numa_enabled)
1351 return first_online_node;
1352
1353 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1354 if (memory) {
1355 nid = hot_add_drconf_scn_to_nid(scn_addr);
1356 of_node_put(memory);
1357 } else {
1358 nid = hot_add_node_scn_to_nid(scn_addr);
1359 }
1360
1361 if (nid < 0 || !node_possible(nid))
1362 nid = first_online_node;
1363
1364 return nid;
1365 }
1366
hot_add_drconf_memory_max(void)1367 static u64 hot_add_drconf_memory_max(void)
1368 {
1369 struct device_node *memory = NULL;
1370 struct device_node *dn = NULL;
1371 const __be64 *lrdr = NULL;
1372
1373 dn = of_find_node_by_path("/rtas");
1374 if (dn) {
1375 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1376 of_node_put(dn);
1377 if (lrdr)
1378 return be64_to_cpup(lrdr);
1379 }
1380
1381 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1382 if (memory) {
1383 of_node_put(memory);
1384 return drmem_lmb_memory_max();
1385 }
1386 return 0;
1387 }
1388
1389 /*
1390 * memory_hotplug_max - return max address of memory that may be added
1391 *
1392 * This is currently only used on systems that support drconfig memory
1393 * hotplug.
1394 */
memory_hotplug_max(void)1395 u64 memory_hotplug_max(void)
1396 {
1397 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1398 }
1399 #endif /* CONFIG_MEMORY_HOTPLUG */
1400
1401 /* Virtual Processor Home Node (VPHN) support */
1402 #ifdef CONFIG_PPC_SPLPAR
1403 static int topology_inited;
1404
1405 /*
1406 * Retrieve the new associativity information for a virtual processor's
1407 * home node.
1408 */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1409 static long vphn_get_associativity(unsigned long cpu,
1410 __be32 *associativity)
1411 {
1412 long rc;
1413
1414 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1415 VPHN_FLAG_VCPU, associativity);
1416
1417 switch (rc) {
1418 case H_SUCCESS:
1419 dbg("VPHN hcall succeeded. Reset polling...\n");
1420 goto out;
1421
1422 case H_FUNCTION:
1423 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1424 break;
1425 case H_HARDWARE:
1426 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1427 "preventing VPHN. Disabling polling...\n");
1428 break;
1429 case H_PARAMETER:
1430 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1431 "Disabling polling...\n");
1432 break;
1433 default:
1434 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1435 , rc);
1436 break;
1437 }
1438 out:
1439 return rc;
1440 }
1441
find_and_online_cpu_nid(int cpu)1442 int find_and_online_cpu_nid(int cpu)
1443 {
1444 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1445 int new_nid;
1446
1447 /* Use associativity from first thread for all siblings */
1448 if (vphn_get_associativity(cpu, associativity))
1449 return cpu_to_node(cpu);
1450
1451 new_nid = associativity_to_nid(associativity);
1452 if (new_nid < 0 || !node_possible(new_nid))
1453 new_nid = first_online_node;
1454
1455 if (NODE_DATA(new_nid) == NULL) {
1456 #ifdef CONFIG_MEMORY_HOTPLUG
1457 /*
1458 * Need to ensure that NODE_DATA is initialized for a node from
1459 * available memory (see memblock_alloc_try_nid). If unable to
1460 * init the node, then default to nearest node that has memory
1461 * installed. Skip onlining a node if the subsystems are not
1462 * yet initialized.
1463 */
1464 if (!topology_inited || try_online_node(new_nid))
1465 new_nid = first_online_node;
1466 #else
1467 /*
1468 * Default to using the nearest node that has memory installed.
1469 * Otherwise, it would be necessary to patch the kernel MM code
1470 * to deal with more memoryless-node error conditions.
1471 */
1472 new_nid = first_online_node;
1473 #endif
1474 }
1475
1476 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1477 cpu, new_nid);
1478 return new_nid;
1479 }
1480
cpu_to_coregroup_id(int cpu)1481 int cpu_to_coregroup_id(int cpu)
1482 {
1483 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1484 int index;
1485
1486 if (cpu < 0 || cpu > nr_cpu_ids)
1487 return -1;
1488
1489 if (!coregroup_enabled)
1490 goto out;
1491
1492 if (!firmware_has_feature(FW_FEATURE_VPHN))
1493 goto out;
1494
1495 if (vphn_get_associativity(cpu, associativity))
1496 goto out;
1497
1498 index = of_read_number(associativity, 1);
1499 if (index > primary_domain_index + 1)
1500 return of_read_number(&associativity[index - 1], 1);
1501
1502 out:
1503 return cpu_to_core_id(cpu);
1504 }
1505
topology_update_init(void)1506 static int topology_update_init(void)
1507 {
1508 topology_inited = 1;
1509 return 0;
1510 }
1511 device_initcall(topology_update_init);
1512 #endif /* CONFIG_PPC_SPLPAR */
1513