1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11
12 #include <asm/pgtable-bits.h>
13
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR PAGE_OFFSET
16 #else
17
18 #define ADDRESS_SPACE_END (UL(-1))
19
20 #ifdef CONFIG_64BIT
21 /* Leave 2GB for kernel and BPF at the end of the address space */
22 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
23 #else
24 #define KERNEL_LINK_ADDR PAGE_OFFSET
25 #endif
26
27 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
28 #define VMALLOC_END (PAGE_OFFSET - 1)
29 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
30
31 #define BPF_JIT_REGION_SIZE (SZ_128M)
32 #ifdef CONFIG_64BIT
33 /* KASLR should leave at least 128MB for BPF after the kernel */
34 #define BPF_JIT_REGION_START PFN_ALIGN((unsigned long)&_end)
35 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
36 #else
37 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
38 #define BPF_JIT_REGION_END (VMALLOC_END)
39 #endif
40
41 /* Modules always live before the kernel */
42 #ifdef CONFIG_64BIT
43 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
44 #define MODULES_END (PFN_ALIGN((unsigned long)&_start))
45 #endif
46
47 /*
48 * Roughly size the vmemmap space to be large enough to fit enough
49 * struct pages to map half the virtual address space. Then
50 * position vmemmap directly below the VMALLOC region.
51 */
52 #define VMEMMAP_SHIFT \
53 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
54 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
55 #define VMEMMAP_END (VMALLOC_START - 1)
56 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
57
58 /*
59 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
60 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
61 */
62 #define vmemmap ((struct page *)VMEMMAP_START)
63
64 #define PCI_IO_SIZE SZ_16M
65 #define PCI_IO_END VMEMMAP_START
66 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
67
68 #define FIXADDR_TOP PCI_IO_START
69 #ifdef CONFIG_64BIT
70 #define FIXADDR_SIZE PMD_SIZE
71 #else
72 #define FIXADDR_SIZE PGDIR_SIZE
73 #endif
74 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
75 #endif
76
77 #ifndef __ASSEMBLY__
78
79 /* Page Upper Directory not used in RISC-V */
80 #include <asm-generic/pgtable-nopud.h>
81 #include <asm/page.h>
82 #include <asm/tlbflush.h>
83 #include <linux/mm_types.h>
84
85 #ifdef CONFIG_64BIT
86 #include <asm/pgtable-64.h>
87 #else
88 #include <asm/pgtable-32.h>
89 #endif /* CONFIG_64BIT */
90
91 #ifdef CONFIG_MMU
92 /* Number of entries in the page global directory */
93 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
94 /* Number of entries in the page table */
95 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
96
97 /* Number of PGD entries that a user-mode program can use */
98 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
99
100 /* Page protection bits */
101 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
102
103 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
104 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
105 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
106 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
107 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
108 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
109 _PAGE_EXEC | _PAGE_WRITE)
110
111 #define PAGE_COPY PAGE_READ
112 #define PAGE_COPY_EXEC PAGE_EXEC
113 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
114 #define PAGE_SHARED PAGE_WRITE
115 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
116
117 #define _PAGE_KERNEL (_PAGE_READ \
118 | _PAGE_WRITE \
119 | _PAGE_PRESENT \
120 | _PAGE_ACCESSED \
121 | _PAGE_DIRTY)
122
123 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
124 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
125 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
126 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
127 | _PAGE_EXEC)
128
129 #define PAGE_TABLE __pgprot(_PAGE_TABLE)
130
131 /*
132 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
133 * change the properties of memory regions.
134 */
135 #define _PAGE_IOREMAP _PAGE_KERNEL
136
137 extern pgd_t swapper_pg_dir[];
138
139 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
140 #define __P000 PAGE_NONE
141 #define __P001 PAGE_READ
142 #define __P010 PAGE_COPY
143 #define __P011 PAGE_COPY
144 #define __P100 PAGE_EXEC
145 #define __P101 PAGE_READ_EXEC
146 #define __P110 PAGE_COPY_EXEC
147 #define __P111 PAGE_COPY_READ_EXEC
148
149 /* MAP_SHARED permissions: xwr */
150 #define __S000 PAGE_NONE
151 #define __S001 PAGE_READ
152 #define __S010 PAGE_SHARED
153 #define __S011 PAGE_SHARED
154 #define __S100 PAGE_EXEC
155 #define __S101 PAGE_READ_EXEC
156 #define __S110 PAGE_SHARED_EXEC
157 #define __S111 PAGE_SHARED_EXEC
158
pmd_present(pmd_t pmd)159 static inline int pmd_present(pmd_t pmd)
160 {
161 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
162 }
163
pmd_none(pmd_t pmd)164 static inline int pmd_none(pmd_t pmd)
165 {
166 return (pmd_val(pmd) == 0);
167 }
168
pmd_bad(pmd_t pmd)169 static inline int pmd_bad(pmd_t pmd)
170 {
171 return !pmd_present(pmd);
172 }
173
174 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pmd)175 static inline int pmd_leaf(pmd_t pmd)
176 {
177 return pmd_present(pmd) &&
178 (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
179 }
180
set_pmd(pmd_t * pmdp,pmd_t pmd)181 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
182 {
183 *pmdp = pmd;
184 }
185
pmd_clear(pmd_t * pmdp)186 static inline void pmd_clear(pmd_t *pmdp)
187 {
188 set_pmd(pmdp, __pmd(0));
189 }
190
pfn_pgd(unsigned long pfn,pgprot_t prot)191 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
192 {
193 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
194 }
195
_pgd_pfn(pgd_t pgd)196 static inline unsigned long _pgd_pfn(pgd_t pgd)
197 {
198 return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
199 }
200
pmd_page(pmd_t pmd)201 static inline struct page *pmd_page(pmd_t pmd)
202 {
203 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
204 }
205
pmd_page_vaddr(pmd_t pmd)206 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
207 {
208 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
209 }
210
211 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)212 static inline unsigned long pte_pfn(pte_t pte)
213 {
214 return (pte_val(pte) >> _PAGE_PFN_SHIFT);
215 }
216
217 #define pte_page(x) pfn_to_page(pte_pfn(x))
218
219 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)220 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
221 {
222 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
223 }
224
225 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
226
pte_present(pte_t pte)227 static inline int pte_present(pte_t pte)
228 {
229 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
230 }
231
pte_none(pte_t pte)232 static inline int pte_none(pte_t pte)
233 {
234 return (pte_val(pte) == 0);
235 }
236
pte_write(pte_t pte)237 static inline int pte_write(pte_t pte)
238 {
239 return pte_val(pte) & _PAGE_WRITE;
240 }
241
pte_exec(pte_t pte)242 static inline int pte_exec(pte_t pte)
243 {
244 return pte_val(pte) & _PAGE_EXEC;
245 }
246
pte_huge(pte_t pte)247 static inline int pte_huge(pte_t pte)
248 {
249 return pte_present(pte)
250 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
251 }
252
pte_dirty(pte_t pte)253 static inline int pte_dirty(pte_t pte)
254 {
255 return pte_val(pte) & _PAGE_DIRTY;
256 }
257
pte_young(pte_t pte)258 static inline int pte_young(pte_t pte)
259 {
260 return pte_val(pte) & _PAGE_ACCESSED;
261 }
262
pte_special(pte_t pte)263 static inline int pte_special(pte_t pte)
264 {
265 return pte_val(pte) & _PAGE_SPECIAL;
266 }
267
268 /* static inline pte_t pte_rdprotect(pte_t pte) */
269
pte_wrprotect(pte_t pte)270 static inline pte_t pte_wrprotect(pte_t pte)
271 {
272 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
273 }
274
275 /* static inline pte_t pte_mkread(pte_t pte) */
276
pte_mkwrite(pte_t pte)277 static inline pte_t pte_mkwrite(pte_t pte)
278 {
279 return __pte(pte_val(pte) | _PAGE_WRITE);
280 }
281
282 /* static inline pte_t pte_mkexec(pte_t pte) */
283
pte_mkdirty(pte_t pte)284 static inline pte_t pte_mkdirty(pte_t pte)
285 {
286 return __pte(pte_val(pte) | _PAGE_DIRTY);
287 }
288
pte_mkclean(pte_t pte)289 static inline pte_t pte_mkclean(pte_t pte)
290 {
291 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
292 }
293
pte_mkyoung(pte_t pte)294 static inline pte_t pte_mkyoung(pte_t pte)
295 {
296 return __pte(pte_val(pte) | _PAGE_ACCESSED);
297 }
298
pte_mkold(pte_t pte)299 static inline pte_t pte_mkold(pte_t pte)
300 {
301 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
302 }
303
pte_mkspecial(pte_t pte)304 static inline pte_t pte_mkspecial(pte_t pte)
305 {
306 return __pte(pte_val(pte) | _PAGE_SPECIAL);
307 }
308
pte_mkhuge(pte_t pte)309 static inline pte_t pte_mkhuge(pte_t pte)
310 {
311 return pte;
312 }
313
314 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)315 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
316 {
317 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
318 }
319
320 #define pgd_ERROR(e) \
321 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
322
323
324 /* Commit new configuration to MMU hardware */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)325 static inline void update_mmu_cache(struct vm_area_struct *vma,
326 unsigned long address, pte_t *ptep)
327 {
328 /*
329 * The kernel assumes that TLBs don't cache invalid entries, but
330 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
331 * cache flush; it is necessary even after writing invalid entries.
332 * Relying on flush_tlb_fix_spurious_fault would suffice, but
333 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
334 */
335 local_flush_tlb_page(address);
336 }
337
338 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)339 static inline int pte_same(pte_t pte_a, pte_t pte_b)
340 {
341 return pte_val(pte_a) == pte_val(pte_b);
342 }
343
344 /*
345 * Certain architectures need to do special things when PTEs within
346 * a page table are directly modified. Thus, the following hook is
347 * made available.
348 */
set_pte(pte_t * ptep,pte_t pteval)349 static inline void set_pte(pte_t *ptep, pte_t pteval)
350 {
351 *ptep = pteval;
352 }
353
354 void flush_icache_pte(pte_t pte);
355
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)356 static inline void set_pte_at(struct mm_struct *mm,
357 unsigned long addr, pte_t *ptep, pte_t pteval)
358 {
359 if (pte_present(pteval) && pte_exec(pteval))
360 flush_icache_pte(pteval);
361
362 set_pte(ptep, pteval);
363 }
364
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)365 static inline void pte_clear(struct mm_struct *mm,
366 unsigned long addr, pte_t *ptep)
367 {
368 set_pte_at(mm, addr, ptep, __pte(0));
369 }
370
371 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)372 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
373 unsigned long address, pte_t *ptep,
374 pte_t entry, int dirty)
375 {
376 if (!pte_same(*ptep, entry))
377 set_pte_at(vma->vm_mm, address, ptep, entry);
378 /*
379 * update_mmu_cache will unconditionally execute, handling both
380 * the case that the PTE changed and the spurious fault case.
381 */
382 return true;
383 }
384
385 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)386 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
387 unsigned long address, pte_t *ptep)
388 {
389 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
390 }
391
392 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)393 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
394 unsigned long address,
395 pte_t *ptep)
396 {
397 if (!pte_young(*ptep))
398 return 0;
399 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
400 }
401
402 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)403 static inline void ptep_set_wrprotect(struct mm_struct *mm,
404 unsigned long address, pte_t *ptep)
405 {
406 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
407 }
408
409 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)410 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
411 unsigned long address, pte_t *ptep)
412 {
413 /*
414 * This comment is borrowed from x86, but applies equally to RISC-V:
415 *
416 * Clearing the accessed bit without a TLB flush
417 * doesn't cause data corruption. [ It could cause incorrect
418 * page aging and the (mistaken) reclaim of hot pages, but the
419 * chance of that should be relatively low. ]
420 *
421 * So as a performance optimization don't flush the TLB when
422 * clearing the accessed bit, it will eventually be flushed by
423 * a context switch or a VM operation anyway. [ In the rare
424 * event of it not getting flushed for a long time the delay
425 * shouldn't really matter because there's no real memory
426 * pressure for swapout to react to. ]
427 */
428 return ptep_test_and_clear_young(vma, address, ptep);
429 }
430
431 /*
432 * Encode and decode a swap entry
433 *
434 * Format of swap PTE:
435 * bit 0: _PAGE_PRESENT (zero)
436 * bit 1: _PAGE_PROT_NONE (zero)
437 * bits 2 to 6: swap type
438 * bits 7 to XLEN-1: swap offset
439 */
440 #define __SWP_TYPE_SHIFT 2
441 #define __SWP_TYPE_BITS 5
442 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
443 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
444
445 #define MAX_SWAPFILES_CHECK() \
446 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
447
448 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
449 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
450 #define __swp_entry(type, offset) ((swp_entry_t) \
451 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
452
453 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
454 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
455
456 /*
457 * In the RV64 Linux scheme, we give the user half of the virtual-address space
458 * and give the kernel the other (upper) half.
459 */
460 #ifdef CONFIG_64BIT
461 #define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
462 #else
463 #define KERN_VIRT_START FIXADDR_START
464 #endif
465
466 /*
467 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
468 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
469 */
470 #ifdef CONFIG_64BIT
471 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
472 #else
473 #define TASK_SIZE FIXADDR_START
474 #endif
475
476 #else /* CONFIG_MMU */
477
478 #define PAGE_SHARED __pgprot(0)
479 #define PAGE_KERNEL __pgprot(0)
480 #define swapper_pg_dir NULL
481 #define TASK_SIZE 0xffffffffUL
482 #define VMALLOC_START 0
483 #define VMALLOC_END TASK_SIZE
484
__kernel_map_pages(struct page * page,int numpages,int enable)485 static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {}
486
487 #endif /* !CONFIG_MMU */
488
489 #define kern_addr_valid(addr) (1) /* FIXME */
490
491 extern char _start[];
492 extern void *dtb_early_va;
493 extern uintptr_t dtb_early_pa;
494 void setup_bootmem(void);
495 void paging_init(void);
496 void misc_mem_init(void);
497
498 #define FIRST_USER_ADDRESS 0
499
500 /*
501 * ZERO_PAGE is a global shared page that is always zero,
502 * used for zero-mapped memory areas, etc.
503 */
504 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
505 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
506
507 #endif /* !__ASSEMBLY__ */
508
509 #endif /* _ASM_RISCV_PGTABLE_H */
510