1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820/api.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/set_memory.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56 #include <asm/ftrace.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 #define DEFINE_POPULATE(fname, type1, type2, init) \
63 static inline void fname##_init(struct mm_struct *mm, \
64 type1##_t *arg1, type2##_t *arg2, bool init) \
65 { \
66 if (init) \
67 fname##_safe(mm, arg1, arg2); \
68 else \
69 fname(mm, arg1, arg2); \
70 }
71
72 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
73 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
74 DEFINE_POPULATE(pud_populate, pud, pmd, init)
75 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
76
77 #define DEFINE_ENTRY(type1, type2, init) \
78 static inline void set_##type1##_init(type1##_t *arg1, \
79 type2##_t arg2, bool init) \
80 { \
81 if (init) \
82 set_##type1##_safe(arg1, arg2); \
83 else \
84 set_##type1(arg1, arg2); \
85 }
86
87 DEFINE_ENTRY(p4d, p4d, init)
88 DEFINE_ENTRY(pud, pud, init)
89 DEFINE_ENTRY(pmd, pmd, init)
90 DEFINE_ENTRY(pte, pte, init)
91
92
93 /*
94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
95 * physical space so we can cache the place of the first one and move
96 * around without checking the pgd every time.
97 */
98
99 /* Bits supported by the hardware: */
100 pteval_t __supported_pte_mask __read_mostly = ~0;
101 /* Bits allowed in normal kernel mappings: */
102 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
103 EXPORT_SYMBOL_GPL(__supported_pte_mask);
104 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
105 EXPORT_SYMBOL(__default_kernel_pte_mask);
106
107 int force_personality32;
108
109 /*
110 * noexec32=on|off
111 * Control non executable heap for 32bit processes.
112 * To control the stack too use noexec=off
113 *
114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115 * off PROT_READ implies PROT_EXEC
116 */
nonx32_setup(char * str)117 static int __init nonx32_setup(char *str)
118 {
119 if (!strcmp(str, "on"))
120 force_personality32 &= ~READ_IMPLIES_EXEC;
121 else if (!strcmp(str, "off"))
122 force_personality32 |= READ_IMPLIES_EXEC;
123 return 1;
124 }
125 __setup("noexec32=", nonx32_setup);
126
sync_global_pgds_l5(unsigned long start,unsigned long end)127 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
128 {
129 unsigned long addr;
130
131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
132 const pgd_t *pgd_ref = pgd_offset_k(addr);
133 struct page *page;
134
135 /* Check for overflow */
136 if (addr < start)
137 break;
138
139 if (pgd_none(*pgd_ref))
140 continue;
141
142 spin_lock(&pgd_lock);
143 list_for_each_entry(page, &pgd_list, lru) {
144 pgd_t *pgd;
145 spinlock_t *pgt_lock;
146
147 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
148 /* the pgt_lock only for Xen */
149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
150 spin_lock(pgt_lock);
151
152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
154
155 if (pgd_none(*pgd))
156 set_pgd(pgd, *pgd_ref);
157
158 spin_unlock(pgt_lock);
159 }
160 spin_unlock(&pgd_lock);
161 }
162 }
163
sync_global_pgds_l4(unsigned long start,unsigned long end)164 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
165 {
166 unsigned long addr;
167
168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
169 pgd_t *pgd_ref = pgd_offset_k(addr);
170 const p4d_t *p4d_ref;
171 struct page *page;
172
173 /*
174 * With folded p4d, pgd_none() is always false, we need to
175 * handle synchonization on p4d level.
176 */
177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
178 p4d_ref = p4d_offset(pgd_ref, addr);
179
180 if (p4d_none(*p4d_ref))
181 continue;
182
183 spin_lock(&pgd_lock);
184 list_for_each_entry(page, &pgd_list, lru) {
185 pgd_t *pgd;
186 p4d_t *p4d;
187 spinlock_t *pgt_lock;
188
189 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
190 p4d = p4d_offset(pgd, addr);
191 /* the pgt_lock only for Xen */
192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
193 spin_lock(pgt_lock);
194
195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
196 BUG_ON(p4d_page_vaddr(*p4d)
197 != p4d_page_vaddr(*p4d_ref));
198
199 if (p4d_none(*p4d))
200 set_p4d(p4d, *p4d_ref);
201
202 spin_unlock(pgt_lock);
203 }
204 spin_unlock(&pgd_lock);
205 }
206 }
207
208 /*
209 * When memory was added make sure all the processes MM have
210 * suitable PGD entries in the local PGD level page.
211 */
sync_global_pgds(unsigned long start,unsigned long end)212 static void sync_global_pgds(unsigned long start, unsigned long end)
213 {
214 if (pgtable_l5_enabled())
215 sync_global_pgds_l5(start, end);
216 else
217 sync_global_pgds_l4(start, end);
218 }
219
220 /*
221 * NOTE: This function is marked __ref because it calls __init function
222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
223 */
spp_getpage(void)224 static __ref void *spp_getpage(void)
225 {
226 void *ptr;
227
228 if (after_bootmem)
229 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
230 else
231 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
232
233 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
234 panic("set_pte_phys: cannot allocate page data %s\n",
235 after_bootmem ? "after bootmem" : "");
236 }
237
238 pr_debug("spp_getpage %p\n", ptr);
239
240 return ptr;
241 }
242
fill_p4d(pgd_t * pgd,unsigned long vaddr)243 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
244 {
245 if (pgd_none(*pgd)) {
246 p4d_t *p4d = (p4d_t *)spp_getpage();
247 pgd_populate(&init_mm, pgd, p4d);
248 if (p4d != p4d_offset(pgd, 0))
249 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
250 p4d, p4d_offset(pgd, 0));
251 }
252 return p4d_offset(pgd, vaddr);
253 }
254
fill_pud(p4d_t * p4d,unsigned long vaddr)255 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
256 {
257 if (p4d_none(*p4d)) {
258 pud_t *pud = (pud_t *)spp_getpage();
259 p4d_populate(&init_mm, p4d, pud);
260 if (pud != pud_offset(p4d, 0))
261 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
262 pud, pud_offset(p4d, 0));
263 }
264 return pud_offset(p4d, vaddr);
265 }
266
fill_pmd(pud_t * pud,unsigned long vaddr)267 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
268 {
269 if (pud_none(*pud)) {
270 pmd_t *pmd = (pmd_t *) spp_getpage();
271 pud_populate(&init_mm, pud, pmd);
272 if (pmd != pmd_offset(pud, 0))
273 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
274 pmd, pmd_offset(pud, 0));
275 }
276 return pmd_offset(pud, vaddr);
277 }
278
fill_pte(pmd_t * pmd,unsigned long vaddr)279 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
280 {
281 if (pmd_none(*pmd)) {
282 pte_t *pte = (pte_t *) spp_getpage();
283 pmd_populate_kernel(&init_mm, pmd, pte);
284 if (pte != pte_offset_kernel(pmd, 0))
285 printk(KERN_ERR "PAGETABLE BUG #03!\n");
286 }
287 return pte_offset_kernel(pmd, vaddr);
288 }
289
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)290 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
291 {
292 pmd_t *pmd = fill_pmd(pud, vaddr);
293 pte_t *pte = fill_pte(pmd, vaddr);
294
295 set_pte(pte, new_pte);
296
297 /*
298 * It's enough to flush this one mapping.
299 * (PGE mappings get flushed as well)
300 */
301 flush_tlb_one_kernel(vaddr);
302 }
303
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)304 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
305 {
306 p4d_t *p4d = p4d_page + p4d_index(vaddr);
307 pud_t *pud = fill_pud(p4d, vaddr);
308
309 __set_pte_vaddr(pud, vaddr, new_pte);
310 }
311
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)312 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
313 {
314 pud_t *pud = pud_page + pud_index(vaddr);
315
316 __set_pte_vaddr(pud, vaddr, new_pte);
317 }
318
set_pte_vaddr(unsigned long vaddr,pte_t pteval)319 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
320 {
321 pgd_t *pgd;
322 p4d_t *p4d_page;
323
324 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
325
326 pgd = pgd_offset_k(vaddr);
327 if (pgd_none(*pgd)) {
328 printk(KERN_ERR
329 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
330 return;
331 }
332
333 p4d_page = p4d_offset(pgd, 0);
334 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
335 }
336
populate_extra_pmd(unsigned long vaddr)337 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
338 {
339 pgd_t *pgd;
340 p4d_t *p4d;
341 pud_t *pud;
342
343 pgd = pgd_offset_k(vaddr);
344 p4d = fill_p4d(pgd, vaddr);
345 pud = fill_pud(p4d, vaddr);
346 return fill_pmd(pud, vaddr);
347 }
348
populate_extra_pte(unsigned long vaddr)349 pte_t * __init populate_extra_pte(unsigned long vaddr)
350 {
351 pmd_t *pmd;
352
353 pmd = populate_extra_pmd(vaddr);
354 return fill_pte(pmd, vaddr);
355 }
356
357 /*
358 * Create large page table mappings for a range of physical addresses.
359 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)360 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
361 enum page_cache_mode cache)
362 {
363 pgd_t *pgd;
364 p4d_t *p4d;
365 pud_t *pud;
366 pmd_t *pmd;
367 pgprot_t prot;
368
369 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
370 protval_4k_2_large(cachemode2protval(cache));
371 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
372 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
373 pgd = pgd_offset_k((unsigned long)__va(phys));
374 if (pgd_none(*pgd)) {
375 p4d = (p4d_t *) spp_getpage();
376 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
377 _PAGE_USER));
378 }
379 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
380 if (p4d_none(*p4d)) {
381 pud = (pud_t *) spp_getpage();
382 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
383 _PAGE_USER));
384 }
385 pud = pud_offset(p4d, (unsigned long)__va(phys));
386 if (pud_none(*pud)) {
387 pmd = (pmd_t *) spp_getpage();
388 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
389 _PAGE_USER));
390 }
391 pmd = pmd_offset(pud, phys);
392 BUG_ON(!pmd_none(*pmd));
393 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
394 }
395 }
396
init_extra_mapping_wb(unsigned long phys,unsigned long size)397 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
398 {
399 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
400 }
401
init_extra_mapping_uc(unsigned long phys,unsigned long size)402 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
403 {
404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
405 }
406
407 /*
408 * The head.S code sets up the kernel high mapping:
409 *
410 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
411 *
412 * phys_base holds the negative offset to the kernel, which is added
413 * to the compile time generated pmds. This results in invalid pmds up
414 * to the point where we hit the physaddr 0 mapping.
415 *
416 * We limit the mappings to the region from _text to _brk_end. _brk_end
417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
418 * well, as they are located before _text:
419 */
cleanup_highmap(void)420 void __init cleanup_highmap(void)
421 {
422 unsigned long vaddr = __START_KERNEL_map;
423 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
424 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
425 pmd_t *pmd = level2_kernel_pgt;
426
427 /*
428 * Native path, max_pfn_mapped is not set yet.
429 * Xen has valid max_pfn_mapped set in
430 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
431 */
432 if (max_pfn_mapped)
433 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
434
435 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
436 if (pmd_none(*pmd))
437 continue;
438 if (vaddr < (unsigned long) _text || vaddr > end)
439 set_pmd(pmd, __pmd(0));
440 }
441 }
442
443 /*
444 * Create PTE level page table mapping for physical addresses.
445 * It returns the last physical address mapped.
446 */
447 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot,bool init)448 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
449 pgprot_t prot, bool init)
450 {
451 unsigned long pages = 0, paddr_next;
452 unsigned long paddr_last = paddr_end;
453 pte_t *pte;
454 int i;
455
456 pte = pte_page + pte_index(paddr);
457 i = pte_index(paddr);
458
459 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
460 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
461 if (paddr >= paddr_end) {
462 if (!after_bootmem &&
463 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
464 E820_TYPE_RAM) &&
465 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
466 E820_TYPE_RESERVED_KERN))
467 set_pte_init(pte, __pte(0), init);
468 continue;
469 }
470
471 /*
472 * We will re-use the existing mapping.
473 * Xen for example has some special requirements, like mapping
474 * pagetable pages as RO. So assume someone who pre-setup
475 * these mappings are more intelligent.
476 */
477 if (!pte_none(*pte)) {
478 if (!after_bootmem)
479 pages++;
480 continue;
481 }
482
483 if (0)
484 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
485 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
486 pages++;
487 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
488 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
489 }
490
491 update_page_count(PG_LEVEL_4K, pages);
492
493 return paddr_last;
494 }
495
496 /*
497 * Create PMD level page table mapping for physical addresses. The virtual
498 * and physical address have to be aligned at this level.
499 * It returns the last physical address mapped.
500 */
501 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)502 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
503 unsigned long page_size_mask, pgprot_t prot, bool init)
504 {
505 unsigned long pages = 0, paddr_next;
506 unsigned long paddr_last = paddr_end;
507
508 int i = pmd_index(paddr);
509
510 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
511 pmd_t *pmd = pmd_page + pmd_index(paddr);
512 pte_t *pte;
513 pgprot_t new_prot = prot;
514
515 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
516 if (paddr >= paddr_end) {
517 if (!after_bootmem &&
518 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
519 E820_TYPE_RAM) &&
520 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
521 E820_TYPE_RESERVED_KERN))
522 set_pmd_init(pmd, __pmd(0), init);
523 continue;
524 }
525
526 if (!pmd_none(*pmd)) {
527 if (!pmd_large(*pmd)) {
528 spin_lock(&init_mm.page_table_lock);
529 pte = (pte_t *)pmd_page_vaddr(*pmd);
530 paddr_last = phys_pte_init(pte, paddr,
531 paddr_end, prot,
532 init);
533 spin_unlock(&init_mm.page_table_lock);
534 continue;
535 }
536 /*
537 * If we are ok with PG_LEVEL_2M mapping, then we will
538 * use the existing mapping,
539 *
540 * Otherwise, we will split the large page mapping but
541 * use the same existing protection bits except for
542 * large page, so that we don't violate Intel's TLB
543 * Application note (317080) which says, while changing
544 * the page sizes, new and old translations should
545 * not differ with respect to page frame and
546 * attributes.
547 */
548 if (page_size_mask & (1 << PG_LEVEL_2M)) {
549 if (!after_bootmem)
550 pages++;
551 paddr_last = paddr_next;
552 continue;
553 }
554 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
555 }
556
557 if (page_size_mask & (1<<PG_LEVEL_2M)) {
558 pages++;
559 spin_lock(&init_mm.page_table_lock);
560 set_pte_init((pte_t *)pmd,
561 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
562 __pgprot(pgprot_val(prot) | _PAGE_PSE)),
563 init);
564 spin_unlock(&init_mm.page_table_lock);
565 paddr_last = paddr_next;
566 continue;
567 }
568
569 pte = alloc_low_page();
570 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
571
572 spin_lock(&init_mm.page_table_lock);
573 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
574 spin_unlock(&init_mm.page_table_lock);
575 }
576 update_page_count(PG_LEVEL_2M, pages);
577 return paddr_last;
578 }
579
580 /*
581 * Create PUD level page table mapping for physical addresses. The virtual
582 * and physical address do not have to be aligned at this level. KASLR can
583 * randomize virtual addresses up to this level.
584 * It returns the last physical address mapped.
585 */
586 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t _prot,bool init)587 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
588 unsigned long page_size_mask, pgprot_t _prot, bool init)
589 {
590 unsigned long pages = 0, paddr_next;
591 unsigned long paddr_last = paddr_end;
592 unsigned long vaddr = (unsigned long)__va(paddr);
593 int i = pud_index(vaddr);
594
595 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
596 pud_t *pud;
597 pmd_t *pmd;
598 pgprot_t prot = _prot;
599
600 vaddr = (unsigned long)__va(paddr);
601 pud = pud_page + pud_index(vaddr);
602 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
603
604 if (paddr >= paddr_end) {
605 if (!after_bootmem &&
606 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
607 E820_TYPE_RAM) &&
608 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
609 E820_TYPE_RESERVED_KERN))
610 set_pud_init(pud, __pud(0), init);
611 continue;
612 }
613
614 if (!pud_none(*pud)) {
615 if (!pud_large(*pud)) {
616 pmd = pmd_offset(pud, 0);
617 paddr_last = phys_pmd_init(pmd, paddr,
618 paddr_end,
619 page_size_mask,
620 prot, init);
621 continue;
622 }
623 /*
624 * If we are ok with PG_LEVEL_1G mapping, then we will
625 * use the existing mapping.
626 *
627 * Otherwise, we will split the gbpage mapping but use
628 * the same existing protection bits except for large
629 * page, so that we don't violate Intel's TLB
630 * Application note (317080) which says, while changing
631 * the page sizes, new and old translations should
632 * not differ with respect to page frame and
633 * attributes.
634 */
635 if (page_size_mask & (1 << PG_LEVEL_1G)) {
636 if (!after_bootmem)
637 pages++;
638 paddr_last = paddr_next;
639 continue;
640 }
641 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
642 }
643
644 if (page_size_mask & (1<<PG_LEVEL_1G)) {
645 pages++;
646 spin_lock(&init_mm.page_table_lock);
647
648 prot = __pgprot(pgprot_val(prot) | _PAGE_PSE);
649
650 set_pte_init((pte_t *)pud,
651 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
652 prot),
653 init);
654 spin_unlock(&init_mm.page_table_lock);
655 paddr_last = paddr_next;
656 continue;
657 }
658
659 pmd = alloc_low_page();
660 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
661 page_size_mask, prot, init);
662
663 spin_lock(&init_mm.page_table_lock);
664 pud_populate_init(&init_mm, pud, pmd, init);
665 spin_unlock(&init_mm.page_table_lock);
666 }
667
668 update_page_count(PG_LEVEL_1G, pages);
669
670 return paddr_last;
671 }
672
673 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)674 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
675 unsigned long page_size_mask, pgprot_t prot, bool init)
676 {
677 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
678
679 paddr_last = paddr_end;
680 vaddr = (unsigned long)__va(paddr);
681 vaddr_end = (unsigned long)__va(paddr_end);
682
683 if (!pgtable_l5_enabled())
684 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
685 page_size_mask, prot, init);
686
687 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
688 p4d_t *p4d = p4d_page + p4d_index(vaddr);
689 pud_t *pud;
690
691 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
692 paddr = __pa(vaddr);
693
694 if (paddr >= paddr_end) {
695 paddr_next = __pa(vaddr_next);
696 if (!after_bootmem &&
697 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
698 E820_TYPE_RAM) &&
699 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
700 E820_TYPE_RESERVED_KERN))
701 set_p4d_init(p4d, __p4d(0), init);
702 continue;
703 }
704
705 if (!p4d_none(*p4d)) {
706 pud = pud_offset(p4d, 0);
707 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
708 page_size_mask, prot, init);
709 continue;
710 }
711
712 pud = alloc_low_page();
713 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
714 page_size_mask, prot, init);
715
716 spin_lock(&init_mm.page_table_lock);
717 p4d_populate_init(&init_mm, p4d, pud, init);
718 spin_unlock(&init_mm.page_table_lock);
719 }
720
721 return paddr_last;
722 }
723
724 static unsigned long __meminit
__kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)725 __kernel_physical_mapping_init(unsigned long paddr_start,
726 unsigned long paddr_end,
727 unsigned long page_size_mask,
728 pgprot_t prot, bool init)
729 {
730 bool pgd_changed = false;
731 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
732
733 paddr_last = paddr_end;
734 vaddr = (unsigned long)__va(paddr_start);
735 vaddr_end = (unsigned long)__va(paddr_end);
736 vaddr_start = vaddr;
737
738 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
739 pgd_t *pgd = pgd_offset_k(vaddr);
740 p4d_t *p4d;
741
742 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
743
744 if (pgd_val(*pgd)) {
745 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
746 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
747 __pa(vaddr_end),
748 page_size_mask,
749 prot, init);
750 continue;
751 }
752
753 p4d = alloc_low_page();
754 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
755 page_size_mask, prot, init);
756
757 spin_lock(&init_mm.page_table_lock);
758 if (pgtable_l5_enabled())
759 pgd_populate_init(&init_mm, pgd, p4d, init);
760 else
761 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
762 (pud_t *) p4d, init);
763
764 spin_unlock(&init_mm.page_table_lock);
765 pgd_changed = true;
766 }
767
768 if (pgd_changed)
769 sync_global_pgds(vaddr_start, vaddr_end - 1);
770
771 return paddr_last;
772 }
773
774
775 /*
776 * Create page table mapping for the physical memory for specific physical
777 * addresses. Note that it can only be used to populate non-present entries.
778 * The virtual and physical addresses have to be aligned on PMD level
779 * down. It returns the last physical address mapped.
780 */
781 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot)782 kernel_physical_mapping_init(unsigned long paddr_start,
783 unsigned long paddr_end,
784 unsigned long page_size_mask, pgprot_t prot)
785 {
786 return __kernel_physical_mapping_init(paddr_start, paddr_end,
787 page_size_mask, prot, true);
788 }
789
790 /*
791 * This function is similar to kernel_physical_mapping_init() above with the
792 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
793 * when updating the mapping. The caller is responsible to flush the TLBs after
794 * the function returns.
795 */
796 unsigned long __meminit
kernel_physical_mapping_change(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)797 kernel_physical_mapping_change(unsigned long paddr_start,
798 unsigned long paddr_end,
799 unsigned long page_size_mask)
800 {
801 return __kernel_physical_mapping_init(paddr_start, paddr_end,
802 page_size_mask, PAGE_KERNEL,
803 false);
804 }
805
806 #ifndef CONFIG_NUMA
initmem_init(void)807 void __init initmem_init(void)
808 {
809 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
810 }
811 #endif
812
paging_init(void)813 void __init paging_init(void)
814 {
815 sparse_init();
816
817 /*
818 * clear the default setting with node 0
819 * note: don't use nodes_clear here, that is really clearing when
820 * numa support is not compiled in, and later node_set_state
821 * will not set it back.
822 */
823 node_clear_state(0, N_MEMORY);
824 node_clear_state(0, N_NORMAL_MEMORY);
825
826 zone_sizes_init();
827 }
828
829 /*
830 * Memory hotplug specific functions
831 */
832 #ifdef CONFIG_MEMORY_HOTPLUG
833 /*
834 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
835 * updating.
836 */
update_end_of_memory_vars(u64 start,u64 size)837 static void update_end_of_memory_vars(u64 start, u64 size)
838 {
839 unsigned long end_pfn = PFN_UP(start + size);
840
841 if (end_pfn > max_pfn) {
842 max_pfn = end_pfn;
843 max_low_pfn = end_pfn;
844 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
845 }
846 }
847
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct mhp_params * params)848 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
849 struct mhp_params *params)
850 {
851 int ret;
852
853 ret = __add_pages(nid, start_pfn, nr_pages, params);
854 WARN_ON_ONCE(ret);
855
856 /* update max_pfn, max_low_pfn and high_memory */
857 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
858 nr_pages << PAGE_SHIFT);
859
860 return ret;
861 }
862
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)863 int arch_add_memory(int nid, u64 start, u64 size,
864 struct mhp_params *params)
865 {
866 unsigned long start_pfn = start >> PAGE_SHIFT;
867 unsigned long nr_pages = size >> PAGE_SHIFT;
868
869 init_memory_mapping(start, start + size, params->pgprot);
870
871 return add_pages(nid, start_pfn, nr_pages, params);
872 }
873
874 #define PAGE_INUSE 0xFD
875
free_pagetable(struct page * page,int order)876 static void __meminit free_pagetable(struct page *page, int order)
877 {
878 unsigned long magic;
879 unsigned int nr_pages = 1 << order;
880
881 /* bootmem page has reserved flag */
882 if (PageReserved(page)) {
883 __ClearPageReserved(page);
884
885 magic = (unsigned long)page->freelist;
886 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
887 while (nr_pages--)
888 put_page_bootmem(page++);
889 } else
890 while (nr_pages--)
891 free_reserved_page(page++);
892 } else
893 free_pages((unsigned long)page_address(page), order);
894 }
895
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)896 static void __meminit free_hugepage_table(struct page *page,
897 struct vmem_altmap *altmap)
898 {
899 if (altmap)
900 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
901 else
902 free_pagetable(page, get_order(PMD_SIZE));
903 }
904
free_pte_table(pte_t * pte_start,pmd_t * pmd)905 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
906 {
907 pte_t *pte;
908 int i;
909
910 for (i = 0; i < PTRS_PER_PTE; i++) {
911 pte = pte_start + i;
912 if (!pte_none(*pte))
913 return;
914 }
915
916 /* free a pte talbe */
917 free_pagetable(pmd_page(*pmd), 0);
918 spin_lock(&init_mm.page_table_lock);
919 pmd_clear(pmd);
920 spin_unlock(&init_mm.page_table_lock);
921 }
922
free_pmd_table(pmd_t * pmd_start,pud_t * pud)923 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
924 {
925 pmd_t *pmd;
926 int i;
927
928 for (i = 0; i < PTRS_PER_PMD; i++) {
929 pmd = pmd_start + i;
930 if (!pmd_none(*pmd))
931 return;
932 }
933
934 /* free a pmd talbe */
935 free_pagetable(pud_page(*pud), 0);
936 spin_lock(&init_mm.page_table_lock);
937 pud_clear(pud);
938 spin_unlock(&init_mm.page_table_lock);
939 }
940
free_pud_table(pud_t * pud_start,p4d_t * p4d)941 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
942 {
943 pud_t *pud;
944 int i;
945
946 for (i = 0; i < PTRS_PER_PUD; i++) {
947 pud = pud_start + i;
948 if (!pud_none(*pud))
949 return;
950 }
951
952 /* free a pud talbe */
953 free_pagetable(p4d_page(*p4d), 0);
954 spin_lock(&init_mm.page_table_lock);
955 p4d_clear(p4d);
956 spin_unlock(&init_mm.page_table_lock);
957 }
958
959 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)960 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
961 bool direct)
962 {
963 unsigned long next, pages = 0;
964 pte_t *pte;
965 void *page_addr;
966 phys_addr_t phys_addr;
967
968 pte = pte_start + pte_index(addr);
969 for (; addr < end; addr = next, pte++) {
970 next = (addr + PAGE_SIZE) & PAGE_MASK;
971 if (next > end)
972 next = end;
973
974 if (!pte_present(*pte))
975 continue;
976
977 /*
978 * We mapped [0,1G) memory as identity mapping when
979 * initializing, in arch/x86/kernel/head_64.S. These
980 * pagetables cannot be removed.
981 */
982 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
983 if (phys_addr < (phys_addr_t)0x40000000)
984 return;
985
986 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
987 /*
988 * Do not free direct mapping pages since they were
989 * freed when offlining, or simplely not in use.
990 */
991 if (!direct)
992 free_pagetable(pte_page(*pte), 0);
993
994 spin_lock(&init_mm.page_table_lock);
995 pte_clear(&init_mm, addr, pte);
996 spin_unlock(&init_mm.page_table_lock);
997
998 /* For non-direct mapping, pages means nothing. */
999 pages++;
1000 } else {
1001 /*
1002 * If we are here, we are freeing vmemmap pages since
1003 * direct mapped memory ranges to be freed are aligned.
1004 *
1005 * If we are not removing the whole page, it means
1006 * other page structs in this page are being used and
1007 * we canot remove them. So fill the unused page_structs
1008 * with 0xFD, and remove the page when it is wholly
1009 * filled with 0xFD.
1010 */
1011 memset((void *)addr, PAGE_INUSE, next - addr);
1012
1013 page_addr = page_address(pte_page(*pte));
1014 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1015 free_pagetable(pte_page(*pte), 0);
1016
1017 spin_lock(&init_mm.page_table_lock);
1018 pte_clear(&init_mm, addr, pte);
1019 spin_unlock(&init_mm.page_table_lock);
1020 }
1021 }
1022 }
1023
1024 /* Call free_pte_table() in remove_pmd_table(). */
1025 flush_tlb_all();
1026 if (direct)
1027 update_page_count(PG_LEVEL_4K, -pages);
1028 }
1029
1030 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)1031 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1032 bool direct, struct vmem_altmap *altmap)
1033 {
1034 unsigned long next, pages = 0;
1035 pte_t *pte_base;
1036 pmd_t *pmd;
1037 void *page_addr;
1038
1039 pmd = pmd_start + pmd_index(addr);
1040 for (; addr < end; addr = next, pmd++) {
1041 next = pmd_addr_end(addr, end);
1042
1043 if (!pmd_present(*pmd))
1044 continue;
1045
1046 if (pmd_large(*pmd)) {
1047 if (IS_ALIGNED(addr, PMD_SIZE) &&
1048 IS_ALIGNED(next, PMD_SIZE)) {
1049 if (!direct)
1050 free_hugepage_table(pmd_page(*pmd),
1051 altmap);
1052
1053 spin_lock(&init_mm.page_table_lock);
1054 pmd_clear(pmd);
1055 spin_unlock(&init_mm.page_table_lock);
1056 pages++;
1057 } else {
1058 /* If here, we are freeing vmemmap pages. */
1059 memset((void *)addr, PAGE_INUSE, next - addr);
1060
1061 page_addr = page_address(pmd_page(*pmd));
1062 if (!memchr_inv(page_addr, PAGE_INUSE,
1063 PMD_SIZE)) {
1064 free_hugepage_table(pmd_page(*pmd),
1065 altmap);
1066
1067 spin_lock(&init_mm.page_table_lock);
1068 pmd_clear(pmd);
1069 spin_unlock(&init_mm.page_table_lock);
1070 }
1071 }
1072
1073 continue;
1074 }
1075
1076 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1077 remove_pte_table(pte_base, addr, next, direct);
1078 free_pte_table(pte_base, pmd);
1079 }
1080
1081 /* Call free_pmd_table() in remove_pud_table(). */
1082 if (direct)
1083 update_page_count(PG_LEVEL_2M, -pages);
1084 }
1085
1086 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1087 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1088 struct vmem_altmap *altmap, bool direct)
1089 {
1090 unsigned long next, pages = 0;
1091 pmd_t *pmd_base;
1092 pud_t *pud;
1093 void *page_addr;
1094
1095 pud = pud_start + pud_index(addr);
1096 for (; addr < end; addr = next, pud++) {
1097 next = pud_addr_end(addr, end);
1098
1099 if (!pud_present(*pud))
1100 continue;
1101
1102 if (pud_large(*pud)) {
1103 if (IS_ALIGNED(addr, PUD_SIZE) &&
1104 IS_ALIGNED(next, PUD_SIZE)) {
1105 if (!direct)
1106 free_pagetable(pud_page(*pud),
1107 get_order(PUD_SIZE));
1108
1109 spin_lock(&init_mm.page_table_lock);
1110 pud_clear(pud);
1111 spin_unlock(&init_mm.page_table_lock);
1112 pages++;
1113 } else {
1114 /* If here, we are freeing vmemmap pages. */
1115 memset((void *)addr, PAGE_INUSE, next - addr);
1116
1117 page_addr = page_address(pud_page(*pud));
1118 if (!memchr_inv(page_addr, PAGE_INUSE,
1119 PUD_SIZE)) {
1120 free_pagetable(pud_page(*pud),
1121 get_order(PUD_SIZE));
1122
1123 spin_lock(&init_mm.page_table_lock);
1124 pud_clear(pud);
1125 spin_unlock(&init_mm.page_table_lock);
1126 }
1127 }
1128
1129 continue;
1130 }
1131
1132 pmd_base = pmd_offset(pud, 0);
1133 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1134 free_pmd_table(pmd_base, pud);
1135 }
1136
1137 if (direct)
1138 update_page_count(PG_LEVEL_1G, -pages);
1139 }
1140
1141 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1142 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1143 struct vmem_altmap *altmap, bool direct)
1144 {
1145 unsigned long next, pages = 0;
1146 pud_t *pud_base;
1147 p4d_t *p4d;
1148
1149 p4d = p4d_start + p4d_index(addr);
1150 for (; addr < end; addr = next, p4d++) {
1151 next = p4d_addr_end(addr, end);
1152
1153 if (!p4d_present(*p4d))
1154 continue;
1155
1156 BUILD_BUG_ON(p4d_large(*p4d));
1157
1158 pud_base = pud_offset(p4d, 0);
1159 remove_pud_table(pud_base, addr, next, altmap, direct);
1160 /*
1161 * For 4-level page tables we do not want to free PUDs, but in the
1162 * 5-level case we should free them. This code will have to change
1163 * to adapt for boot-time switching between 4 and 5 level page tables.
1164 */
1165 if (pgtable_l5_enabled())
1166 free_pud_table(pud_base, p4d);
1167 }
1168
1169 if (direct)
1170 update_page_count(PG_LEVEL_512G, -pages);
1171 }
1172
1173 /* start and end are both virtual address. */
1174 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1175 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1176 struct vmem_altmap *altmap)
1177 {
1178 unsigned long next;
1179 unsigned long addr;
1180 pgd_t *pgd;
1181 p4d_t *p4d;
1182
1183 for (addr = start; addr < end; addr = next) {
1184 next = pgd_addr_end(addr, end);
1185
1186 pgd = pgd_offset_k(addr);
1187 if (!pgd_present(*pgd))
1188 continue;
1189
1190 p4d = p4d_offset(pgd, 0);
1191 remove_p4d_table(p4d, addr, next, altmap, direct);
1192 }
1193
1194 flush_tlb_all();
1195 }
1196
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1197 void __ref vmemmap_free(unsigned long start, unsigned long end,
1198 struct vmem_altmap *altmap)
1199 {
1200 remove_pagetable(start, end, false, altmap);
1201 }
1202
1203 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1204 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1205 {
1206 start = (unsigned long)__va(start);
1207 end = (unsigned long)__va(end);
1208
1209 remove_pagetable(start, end, true, NULL);
1210 }
1211
arch_remove_memory(int nid,u64 start,u64 size,struct vmem_altmap * altmap)1212 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1213 struct vmem_altmap *altmap)
1214 {
1215 unsigned long start_pfn = start >> PAGE_SHIFT;
1216 unsigned long nr_pages = size >> PAGE_SHIFT;
1217
1218 __remove_pages(start_pfn, nr_pages, altmap);
1219 kernel_physical_mapping_remove(start, start + size);
1220 }
1221 #endif /* CONFIG_MEMORY_HOTPLUG */
1222
1223 static struct kcore_list kcore_vsyscall;
1224
register_page_bootmem_info(void)1225 static void __init register_page_bootmem_info(void)
1226 {
1227 #ifdef CONFIG_NUMA
1228 int i;
1229
1230 for_each_online_node(i)
1231 register_page_bootmem_info_node(NODE_DATA(i));
1232 #endif
1233 }
1234
1235 /*
1236 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1237 * Only the level which needs to be synchronized between all page-tables is
1238 * allocated because the synchronization can be expensive.
1239 */
preallocate_vmalloc_pages(void)1240 static void __init preallocate_vmalloc_pages(void)
1241 {
1242 unsigned long addr;
1243 const char *lvl;
1244
1245 for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1246 pgd_t *pgd = pgd_offset_k(addr);
1247 p4d_t *p4d;
1248 pud_t *pud;
1249
1250 lvl = "p4d";
1251 p4d = p4d_alloc(&init_mm, pgd, addr);
1252 if (!p4d)
1253 goto failed;
1254
1255 if (pgtable_l5_enabled())
1256 continue;
1257
1258 /*
1259 * The goal here is to allocate all possibly required
1260 * hardware page tables pointed to by the top hardware
1261 * level.
1262 *
1263 * On 4-level systems, the P4D layer is folded away and
1264 * the above code does no preallocation. Below, go down
1265 * to the pud _software_ level to ensure the second
1266 * hardware level is allocated on 4-level systems too.
1267 */
1268 lvl = "pud";
1269 pud = pud_alloc(&init_mm, p4d, addr);
1270 if (!pud)
1271 goto failed;
1272 }
1273
1274 return;
1275
1276 failed:
1277
1278 /*
1279 * The pages have to be there now or they will be missing in
1280 * process page-tables later.
1281 */
1282 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1283 }
1284
mem_init(void)1285 void __init mem_init(void)
1286 {
1287 pci_iommu_alloc();
1288
1289 /* clear_bss() already clear the empty_zero_page */
1290
1291 /* this will put all memory onto the freelists */
1292 memblock_free_all();
1293 after_bootmem = 1;
1294 x86_init.hyper.init_after_bootmem();
1295
1296 /*
1297 * Must be done after boot memory is put on freelist, because here we
1298 * might set fields in deferred struct pages that have not yet been
1299 * initialized, and memblock_free_all() initializes all the reserved
1300 * deferred pages for us.
1301 */
1302 register_page_bootmem_info();
1303
1304 /* Register memory areas for /proc/kcore */
1305 if (get_gate_vma(&init_mm))
1306 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1307
1308 preallocate_vmalloc_pages();
1309
1310 mem_init_print_info(NULL);
1311 }
1312
1313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1314 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1315 {
1316 /*
1317 * More CPUs always led to greater speedups on tested systems, up to
1318 * all the nodes' CPUs. Use all since the system is otherwise idle
1319 * now.
1320 */
1321 return max_t(int, cpumask_weight(node_cpumask), 1);
1322 }
1323 #endif
1324
1325 int kernel_set_to_readonly;
1326
mark_rodata_ro(void)1327 void mark_rodata_ro(void)
1328 {
1329 unsigned long start = PFN_ALIGN(_text);
1330 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1331 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1332 unsigned long text_end = PFN_ALIGN(_etext);
1333 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1334 unsigned long all_end;
1335
1336 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1337 (end - start) >> 10);
1338 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1339
1340 kernel_set_to_readonly = 1;
1341
1342 /*
1343 * The rodata/data/bss/brk section (but not the kernel text!)
1344 * should also be not-executable.
1345 *
1346 * We align all_end to PMD_SIZE because the existing mapping
1347 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1348 * split the PMD and the reminder between _brk_end and the end
1349 * of the PMD will remain mapped executable.
1350 *
1351 * Any PMD which was setup after the one which covers _brk_end
1352 * has been zapped already via cleanup_highmem().
1353 */
1354 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1355 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1356
1357 set_ftrace_ops_ro();
1358
1359 #ifdef CONFIG_CPA_DEBUG
1360 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1361 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1362
1363 printk(KERN_INFO "Testing CPA: again\n");
1364 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1365 #endif
1366
1367 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1368 (void *)text_end, (void *)rodata_start);
1369 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1370 (void *)rodata_end, (void *)_sdata);
1371
1372 debug_checkwx();
1373 }
1374
kern_addr_valid(unsigned long addr)1375 int kern_addr_valid(unsigned long addr)
1376 {
1377 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1378 pgd_t *pgd;
1379 p4d_t *p4d;
1380 pud_t *pud;
1381 pmd_t *pmd;
1382 pte_t *pte;
1383
1384 if (above != 0 && above != -1UL)
1385 return 0;
1386
1387 pgd = pgd_offset_k(addr);
1388 if (pgd_none(*pgd))
1389 return 0;
1390
1391 p4d = p4d_offset(pgd, addr);
1392 if (!p4d_present(*p4d))
1393 return 0;
1394
1395 pud = pud_offset(p4d, addr);
1396 if (!pud_present(*pud))
1397 return 0;
1398
1399 if (pud_large(*pud))
1400 return pfn_valid(pud_pfn(*pud));
1401
1402 pmd = pmd_offset(pud, addr);
1403 if (!pmd_present(*pmd))
1404 return 0;
1405
1406 if (pmd_large(*pmd))
1407 return pfn_valid(pmd_pfn(*pmd));
1408
1409 pte = pte_offset_kernel(pmd, addr);
1410 if (pte_none(*pte))
1411 return 0;
1412
1413 return pfn_valid(pte_pfn(*pte));
1414 }
1415
1416 /*
1417 * Block size is the minimum amount of memory which can be hotplugged or
1418 * hotremoved. It must be power of two and must be equal or larger than
1419 * MIN_MEMORY_BLOCK_SIZE.
1420 */
1421 #define MAX_BLOCK_SIZE (2UL << 30)
1422
1423 /* Amount of ram needed to start using large blocks */
1424 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1425
1426 /* Adjustable memory block size */
1427 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1428 int __init set_memory_block_size_order(unsigned int order)
1429 {
1430 unsigned long size = 1UL << order;
1431
1432 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1433 return -EINVAL;
1434
1435 set_memory_block_size = size;
1436 return 0;
1437 }
1438
probe_memory_block_size(void)1439 static unsigned long probe_memory_block_size(void)
1440 {
1441 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1442 unsigned long bz;
1443
1444 /* If memory block size has been set, then use it */
1445 bz = set_memory_block_size;
1446 if (bz)
1447 goto done;
1448
1449 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1450 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1451 bz = MIN_MEMORY_BLOCK_SIZE;
1452 goto done;
1453 }
1454
1455 /*
1456 * Use max block size to minimize overhead on bare metal, where
1457 * alignment for memory hotplug isn't a concern.
1458 */
1459 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1460 bz = MAX_BLOCK_SIZE;
1461 goto done;
1462 }
1463
1464 /* Find the largest allowed block size that aligns to memory end */
1465 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1466 if (IS_ALIGNED(boot_mem_end, bz))
1467 break;
1468 }
1469 done:
1470 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1471
1472 return bz;
1473 }
1474
1475 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1476 unsigned long memory_block_size_bytes(void)
1477 {
1478 if (!memory_block_size_probed)
1479 memory_block_size_probed = probe_memory_block_size();
1480
1481 return memory_block_size_probed;
1482 }
1483
1484 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1485 /*
1486 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1487 */
1488 static long __meminitdata addr_start, addr_end;
1489 static void __meminitdata *p_start, *p_end;
1490 static int __meminitdata node_start;
1491
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1492 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1493 unsigned long end, int node, struct vmem_altmap *altmap)
1494 {
1495 unsigned long addr;
1496 unsigned long next;
1497 pgd_t *pgd;
1498 p4d_t *p4d;
1499 pud_t *pud;
1500 pmd_t *pmd;
1501
1502 for (addr = start; addr < end; addr = next) {
1503 next = pmd_addr_end(addr, end);
1504
1505 pgd = vmemmap_pgd_populate(addr, node);
1506 if (!pgd)
1507 return -ENOMEM;
1508
1509 p4d = vmemmap_p4d_populate(pgd, addr, node);
1510 if (!p4d)
1511 return -ENOMEM;
1512
1513 pud = vmemmap_pud_populate(p4d, addr, node);
1514 if (!pud)
1515 return -ENOMEM;
1516
1517 pmd = pmd_offset(pud, addr);
1518 if (pmd_none(*pmd)) {
1519 void *p;
1520
1521 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1522 if (p) {
1523 pte_t entry;
1524
1525 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1526 PAGE_KERNEL_LARGE);
1527 set_pmd(pmd, __pmd(pte_val(entry)));
1528
1529 /* check to see if we have contiguous blocks */
1530 if (p_end != p || node_start != node) {
1531 if (p_start)
1532 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1533 addr_start, addr_end-1, p_start, p_end-1, node_start);
1534 addr_start = addr;
1535 node_start = node;
1536 p_start = p;
1537 }
1538
1539 addr_end = addr + PMD_SIZE;
1540 p_end = p + PMD_SIZE;
1541 continue;
1542 } else if (altmap)
1543 return -ENOMEM; /* no fallback */
1544 } else if (pmd_large(*pmd)) {
1545 vmemmap_verify((pte_t *)pmd, node, addr, next);
1546 continue;
1547 }
1548 if (vmemmap_populate_basepages(addr, next, node, NULL))
1549 return -ENOMEM;
1550 }
1551 return 0;
1552 }
1553
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1554 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1555 struct vmem_altmap *altmap)
1556 {
1557 int err;
1558
1559 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1560 err = vmemmap_populate_basepages(start, end, node, NULL);
1561 else if (boot_cpu_has(X86_FEATURE_PSE))
1562 err = vmemmap_populate_hugepages(start, end, node, altmap);
1563 else if (altmap) {
1564 pr_err_once("%s: no cpu support for altmap allocations\n",
1565 __func__);
1566 err = -ENOMEM;
1567 } else
1568 err = vmemmap_populate_basepages(start, end, node, NULL);
1569 if (!err)
1570 sync_global_pgds(start, end - 1);
1571 return err;
1572 }
1573
1574 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1575 void register_page_bootmem_memmap(unsigned long section_nr,
1576 struct page *start_page, unsigned long nr_pages)
1577 {
1578 unsigned long addr = (unsigned long)start_page;
1579 unsigned long end = (unsigned long)(start_page + nr_pages);
1580 unsigned long next;
1581 pgd_t *pgd;
1582 p4d_t *p4d;
1583 pud_t *pud;
1584 pmd_t *pmd;
1585 unsigned int nr_pmd_pages;
1586 struct page *page;
1587
1588 for (; addr < end; addr = next) {
1589 pte_t *pte = NULL;
1590
1591 pgd = pgd_offset_k(addr);
1592 if (pgd_none(*pgd)) {
1593 next = (addr + PAGE_SIZE) & PAGE_MASK;
1594 continue;
1595 }
1596 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1597
1598 p4d = p4d_offset(pgd, addr);
1599 if (p4d_none(*p4d)) {
1600 next = (addr + PAGE_SIZE) & PAGE_MASK;
1601 continue;
1602 }
1603 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1604
1605 pud = pud_offset(p4d, addr);
1606 if (pud_none(*pud)) {
1607 next = (addr + PAGE_SIZE) & PAGE_MASK;
1608 continue;
1609 }
1610 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1611
1612 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1613 next = (addr + PAGE_SIZE) & PAGE_MASK;
1614 pmd = pmd_offset(pud, addr);
1615 if (pmd_none(*pmd))
1616 continue;
1617 get_page_bootmem(section_nr, pmd_page(*pmd),
1618 MIX_SECTION_INFO);
1619
1620 pte = pte_offset_kernel(pmd, addr);
1621 if (pte_none(*pte))
1622 continue;
1623 get_page_bootmem(section_nr, pte_page(*pte),
1624 SECTION_INFO);
1625 } else {
1626 next = pmd_addr_end(addr, end);
1627
1628 pmd = pmd_offset(pud, addr);
1629 if (pmd_none(*pmd))
1630 continue;
1631
1632 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1633 page = pmd_page(*pmd);
1634 while (nr_pmd_pages--)
1635 get_page_bootmem(section_nr, page++,
1636 SECTION_INFO);
1637 }
1638 }
1639 }
1640 #endif
1641
vmemmap_populate_print_last(void)1642 void __meminit vmemmap_populate_print_last(void)
1643 {
1644 if (p_start) {
1645 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1646 addr_start, addr_end-1, p_start, p_end-1, node_start);
1647 p_start = NULL;
1648 p_end = NULL;
1649 node_start = 0;
1650 }
1651 }
1652 #endif
1653