• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include "blk.h"
129 #include "blk-mq.h"
130 #include "blk-mq-tag.h"
131 #include "blk-mq-sched.h"
132 #include "bfq-iosched.h"
133 #include "blk-wbt.h"
134 
135 #define BFQ_BFQQ_FNS(name)						\
136 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
137 {									\
138 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
139 }									\
140 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
141 {									\
142 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
143 }									\
144 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
145 {									\
146 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
147 }
148 
149 BFQ_BFQQ_FNS(just_created);
150 BFQ_BFQQ_FNS(busy);
151 BFQ_BFQQ_FNS(wait_request);
152 BFQ_BFQQ_FNS(non_blocking_wait_rq);
153 BFQ_BFQQ_FNS(fifo_expire);
154 BFQ_BFQQ_FNS(has_short_ttime);
155 BFQ_BFQQ_FNS(sync);
156 BFQ_BFQQ_FNS(IO_bound);
157 BFQ_BFQQ_FNS(in_large_burst);
158 BFQ_BFQQ_FNS(coop);
159 BFQ_BFQQ_FNS(split_coop);
160 BFQ_BFQQ_FNS(softrt_update);
161 BFQ_BFQQ_FNS(has_waker);
162 #undef BFQ_BFQQ_FNS						\
163 
164 /* Expiration time of sync (0) and async (1) requests, in ns. */
165 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166 
167 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168 static const int bfq_back_max = 16 * 1024;
169 
170 /* Penalty of a backwards seek, in number of sectors. */
171 static const int bfq_back_penalty = 2;
172 
173 /* Idling period duration, in ns. */
174 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175 
176 /* Minimum number of assigned budgets for which stats are safe to compute. */
177 static const int bfq_stats_min_budgets = 194;
178 
179 /* Default maximum budget values, in sectors and number of requests. */
180 static const int bfq_default_max_budget = 16 * 1024;
181 
182 /*
183  * When a sync request is dispatched, the queue that contains that
184  * request, and all the ancestor entities of that queue, are charged
185  * with the number of sectors of the request. In contrast, if the
186  * request is async, then the queue and its ancestor entities are
187  * charged with the number of sectors of the request, multiplied by
188  * the factor below. This throttles the bandwidth for async I/O,
189  * w.r.t. to sync I/O, and it is done to counter the tendency of async
190  * writes to steal I/O throughput to reads.
191  *
192  * The current value of this parameter is the result of a tuning with
193  * several hardware and software configurations. We tried to find the
194  * lowest value for which writes do not cause noticeable problems to
195  * reads. In fact, the lower this parameter, the stabler I/O control,
196  * in the following respect.  The lower this parameter is, the less
197  * the bandwidth enjoyed by a group decreases
198  * - when the group does writes, w.r.t. to when it does reads;
199  * - when other groups do reads, w.r.t. to when they do writes.
200  */
201 static const int bfq_async_charge_factor = 3;
202 
203 /* Default timeout values, in jiffies, approximating CFQ defaults. */
204 const int bfq_timeout = HZ / 8;
205 
206 /*
207  * Time limit for merging (see comments in bfq_setup_cooperator). Set
208  * to the slowest value that, in our tests, proved to be effective in
209  * removing false positives, while not causing true positives to miss
210  * queue merging.
211  *
212  * As can be deduced from the low time limit below, queue merging, if
213  * successful, happens at the very beginning of the I/O of the involved
214  * cooperating processes, as a consequence of the arrival of the very
215  * first requests from each cooperator.  After that, there is very
216  * little chance to find cooperators.
217  */
218 static const unsigned long bfq_merge_time_limit = HZ/10;
219 
220 static struct kmem_cache *bfq_pool;
221 
222 /* Below this threshold (in ns), we consider thinktime immediate. */
223 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
224 
225 /* hw_tag detection: parallel requests threshold and min samples needed. */
226 #define BFQ_HW_QUEUE_THRESHOLD	3
227 #define BFQ_HW_QUEUE_SAMPLES	32
228 
229 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
230 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
231 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 	(get_sdist(last_pos, rq) >			\
233 	 BFQQ_SEEK_THR &&				\
234 	 (!blk_queue_nonrot(bfqd->queue) ||		\
235 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
236 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
237 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
238 /*
239  * Sync random I/O is likely to be confused with soft real-time I/O,
240  * because it is characterized by limited throughput and apparently
241  * isochronous arrival pattern. To avoid false positives, queues
242  * containing only random (seeky) I/O are prevented from being tagged
243  * as soft real-time.
244  */
245 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
246 
247 /* Min number of samples required to perform peak-rate update */
248 #define BFQ_RATE_MIN_SAMPLES	32
249 /* Min observation time interval required to perform a peak-rate update (ns) */
250 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
251 /* Target observation time interval for a peak-rate update (ns) */
252 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
253 
254 /*
255  * Shift used for peak-rate fixed precision calculations.
256  * With
257  * - the current shift: 16 positions
258  * - the current type used to store rate: u32
259  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261  * the range of rates that can be stored is
262  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264  * [15, 65G] sectors/sec
265  * Which, assuming a sector size of 512B, corresponds to a range of
266  * [7.5K, 33T] B/sec
267  */
268 #define BFQ_RATE_SHIFT		16
269 
270 /*
271  * When configured for computing the duration of the weight-raising
272  * for interactive queues automatically (see the comments at the
273  * beginning of this file), BFQ does it using the following formula:
274  * duration = (ref_rate / r) * ref_wr_duration,
275  * where r is the peak rate of the device, and ref_rate and
276  * ref_wr_duration are two reference parameters.  In particular,
277  * ref_rate is the peak rate of the reference storage device (see
278  * below), and ref_wr_duration is about the maximum time needed, with
279  * BFQ and while reading two files in parallel, to load typical large
280  * applications on the reference device (see the comments on
281  * max_service_from_wr below, for more details on how ref_wr_duration
282  * is obtained).  In practice, the slower/faster the device at hand
283  * is, the more/less it takes to load applications with respect to the
284  * reference device.  Accordingly, the longer/shorter BFQ grants
285  * weight raising to interactive applications.
286  *
287  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288  * depending on whether the device is rotational or non-rotational.
289  *
290  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291  * are the reference values for a rotational device, whereas
292  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293  * non-rotational device. The reference rates are not the actual peak
294  * rates of the devices used as a reference, but slightly lower
295  * values. The reason for using slightly lower values is that the
296  * peak-rate estimator tends to yield slightly lower values than the
297  * actual peak rate (it can yield the actual peak rate only if there
298  * is only one process doing I/O, and the process does sequential
299  * I/O).
300  *
301  * The reference peak rates are measured in sectors/usec, left-shifted
302  * by BFQ_RATE_SHIFT.
303  */
304 static int ref_rate[2] = {14000, 33000};
305 /*
306  * To improve readability, a conversion function is used to initialize
307  * the following array, which entails that the array can be
308  * initialized only in a function.
309  */
310 static int ref_wr_duration[2];
311 
312 /*
313  * BFQ uses the above-detailed, time-based weight-raising mechanism to
314  * privilege interactive tasks. This mechanism is vulnerable to the
315  * following false positives: I/O-bound applications that will go on
316  * doing I/O for much longer than the duration of weight
317  * raising. These applications have basically no benefit from being
318  * weight-raised at the beginning of their I/O. On the opposite end,
319  * while being weight-raised, these applications
320  * a) unjustly steal throughput to applications that may actually need
321  * low latency;
322  * b) make BFQ uselessly perform device idling; device idling results
323  * in loss of device throughput with most flash-based storage, and may
324  * increase latencies when used purposelessly.
325  *
326  * BFQ tries to reduce these problems, by adopting the following
327  * countermeasure. To introduce this countermeasure, we need first to
328  * finish explaining how the duration of weight-raising for
329  * interactive tasks is computed.
330  *
331  * For a bfq_queue deemed as interactive, the duration of weight
332  * raising is dynamically adjusted, as a function of the estimated
333  * peak rate of the device, so as to be equal to the time needed to
334  * execute the 'largest' interactive task we benchmarked so far. By
335  * largest task, we mean the task for which each involved process has
336  * to do more I/O than for any of the other tasks we benchmarked. This
337  * reference interactive task is the start-up of LibreOffice Writer,
338  * and in this task each process/bfq_queue needs to have at most ~110K
339  * sectors transferred.
340  *
341  * This last piece of information enables BFQ to reduce the actual
342  * duration of weight-raising for at least one class of I/O-bound
343  * applications: those doing sequential or quasi-sequential I/O. An
344  * example is file copy. In fact, once started, the main I/O-bound
345  * processes of these applications usually consume the above 110K
346  * sectors in much less time than the processes of an application that
347  * is starting, because these I/O-bound processes will greedily devote
348  * almost all their CPU cycles only to their target,
349  * throughput-friendly I/O operations. This is even more true if BFQ
350  * happens to be underestimating the device peak rate, and thus
351  * overestimating the duration of weight raising. But, according to
352  * our measurements, once transferred 110K sectors, these processes
353  * have no right to be weight-raised any longer.
354  *
355  * Basing on the last consideration, BFQ ends weight-raising for a
356  * bfq_queue if the latter happens to have received an amount of
357  * service at least equal to the following constant. The constant is
358  * set to slightly more than 110K, to have a minimum safety margin.
359  *
360  * This early ending of weight-raising reduces the amount of time
361  * during which interactive false positives cause the two problems
362  * described at the beginning of these comments.
363  */
364 static const unsigned long max_service_from_wr = 120000;
365 
366 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
367 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
368 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)369 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
370 {
371 	return bic->bfqq[is_sync];
372 }
373 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)374 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
375 {
376 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync];
377 
378 	/* Clear bic pointer if bfqq is detached from this bic */
379 	if (old_bfqq && old_bfqq->bic == bic)
380 		old_bfqq->bic = NULL;
381 
382 	bic->bfqq[is_sync] = bfqq;
383 }
384 
bic_to_bfqd(struct bfq_io_cq * bic)385 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
386 {
387 	return bic->icq.q->elevator->elevator_data;
388 }
389 
390 /**
391  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
392  * @icq: the iocontext queue.
393  */
icq_to_bic(struct io_cq * icq)394 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
395 {
396 	/* bic->icq is the first member, %NULL will convert to %NULL */
397 	return container_of(icq, struct bfq_io_cq, icq);
398 }
399 
400 /**
401  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
402  * @bfqd: the lookup key.
403  * @ioc: the io_context of the process doing I/O.
404  * @q: the request queue.
405  */
bfq_bic_lookup(struct bfq_data * bfqd,struct io_context * ioc,struct request_queue * q)406 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
407 					struct io_context *ioc,
408 					struct request_queue *q)
409 {
410 	if (ioc) {
411 		unsigned long flags;
412 		struct bfq_io_cq *icq;
413 
414 		spin_lock_irqsave(&q->queue_lock, flags);
415 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
416 		spin_unlock_irqrestore(&q->queue_lock, flags);
417 
418 		return icq;
419 	}
420 
421 	return NULL;
422 }
423 
424 /*
425  * Scheduler run of queue, if there are requests pending and no one in the
426  * driver that will restart queueing.
427  */
bfq_schedule_dispatch(struct bfq_data * bfqd)428 void bfq_schedule_dispatch(struct bfq_data *bfqd)
429 {
430 	lockdep_assert_held(&bfqd->lock);
431 
432 	if (bfqd->queued != 0) {
433 		bfq_log(bfqd, "schedule dispatch");
434 		blk_mq_run_hw_queues(bfqd->queue, true);
435 	}
436 }
437 
438 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
439 
440 #define bfq_sample_valid(samples)	((samples) > 80)
441 
442 /*
443  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
444  * We choose the request that is closer to the head right now.  Distance
445  * behind the head is penalized and only allowed to a certain extent.
446  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)447 static struct request *bfq_choose_req(struct bfq_data *bfqd,
448 				      struct request *rq1,
449 				      struct request *rq2,
450 				      sector_t last)
451 {
452 	sector_t s1, s2, d1 = 0, d2 = 0;
453 	unsigned long back_max;
454 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
455 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
456 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
457 
458 	if (!rq1 || rq1 == rq2)
459 		return rq2;
460 	if (!rq2)
461 		return rq1;
462 
463 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
464 		return rq1;
465 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
466 		return rq2;
467 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
468 		return rq1;
469 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
470 		return rq2;
471 
472 	s1 = blk_rq_pos(rq1);
473 	s2 = blk_rq_pos(rq2);
474 
475 	/*
476 	 * By definition, 1KiB is 2 sectors.
477 	 */
478 	back_max = bfqd->bfq_back_max * 2;
479 
480 	/*
481 	 * Strict one way elevator _except_ in the case where we allow
482 	 * short backward seeks which are biased as twice the cost of a
483 	 * similar forward seek.
484 	 */
485 	if (s1 >= last)
486 		d1 = s1 - last;
487 	else if (s1 + back_max >= last)
488 		d1 = (last - s1) * bfqd->bfq_back_penalty;
489 	else
490 		wrap |= BFQ_RQ1_WRAP;
491 
492 	if (s2 >= last)
493 		d2 = s2 - last;
494 	else if (s2 + back_max >= last)
495 		d2 = (last - s2) * bfqd->bfq_back_penalty;
496 	else
497 		wrap |= BFQ_RQ2_WRAP;
498 
499 	/* Found required data */
500 
501 	/*
502 	 * By doing switch() on the bit mask "wrap" we avoid having to
503 	 * check two variables for all permutations: --> faster!
504 	 */
505 	switch (wrap) {
506 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
507 		if (d1 < d2)
508 			return rq1;
509 		else if (d2 < d1)
510 			return rq2;
511 
512 		if (s1 >= s2)
513 			return rq1;
514 		else
515 			return rq2;
516 
517 	case BFQ_RQ2_WRAP:
518 		return rq1;
519 	case BFQ_RQ1_WRAP:
520 		return rq2;
521 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
522 	default:
523 		/*
524 		 * Since both rqs are wrapped,
525 		 * start with the one that's further behind head
526 		 * (--> only *one* back seek required),
527 		 * since back seek takes more time than forward.
528 		 */
529 		if (s1 <= s2)
530 			return rq1;
531 		else
532 			return rq2;
533 	}
534 }
535 
536 /*
537  * Async I/O can easily starve sync I/O (both sync reads and sync
538  * writes), by consuming all tags. Similarly, storms of sync writes,
539  * such as those that sync(2) may trigger, can starve sync reads.
540  * Limit depths of async I/O and sync writes so as to counter both
541  * problems.
542  */
bfq_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)543 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
544 {
545 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
546 
547 	if (op_is_sync(op) && !op_is_write(op))
548 		return;
549 
550 	data->shallow_depth =
551 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
552 
553 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
554 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
555 			data->shallow_depth);
556 }
557 
558 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)559 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
560 		     sector_t sector, struct rb_node **ret_parent,
561 		     struct rb_node ***rb_link)
562 {
563 	struct rb_node **p, *parent;
564 	struct bfq_queue *bfqq = NULL;
565 
566 	parent = NULL;
567 	p = &root->rb_node;
568 	while (*p) {
569 		struct rb_node **n;
570 
571 		parent = *p;
572 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
573 
574 		/*
575 		 * Sort strictly based on sector. Smallest to the left,
576 		 * largest to the right.
577 		 */
578 		if (sector > blk_rq_pos(bfqq->next_rq))
579 			n = &(*p)->rb_right;
580 		else if (sector < blk_rq_pos(bfqq->next_rq))
581 			n = &(*p)->rb_left;
582 		else
583 			break;
584 		p = n;
585 		bfqq = NULL;
586 	}
587 
588 	*ret_parent = parent;
589 	if (rb_link)
590 		*rb_link = p;
591 
592 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
593 		(unsigned long long)sector,
594 		bfqq ? bfqq->pid : 0);
595 
596 	return bfqq;
597 }
598 
bfq_too_late_for_merging(struct bfq_queue * bfqq)599 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
600 {
601 	return bfqq->service_from_backlogged > 0 &&
602 		time_is_before_jiffies(bfqq->first_IO_time +
603 				       bfq_merge_time_limit);
604 }
605 
606 /*
607  * The following function is not marked as __cold because it is
608  * actually cold, but for the same performance goal described in the
609  * comments on the likely() at the beginning of
610  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
611  * execution time for the case where this function is not invoked, we
612  * had to add an unlikely() in each involved if().
613  */
614 void __cold
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)615 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
616 {
617 	struct rb_node **p, *parent;
618 	struct bfq_queue *__bfqq;
619 
620 	if (bfqq->pos_root) {
621 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
622 		bfqq->pos_root = NULL;
623 	}
624 
625 	/* oom_bfqq does not participate in queue merging */
626 	if (bfqq == &bfqd->oom_bfqq)
627 		return;
628 
629 	/*
630 	 * bfqq cannot be merged any longer (see comments in
631 	 * bfq_setup_cooperator): no point in adding bfqq into the
632 	 * position tree.
633 	 */
634 	if (bfq_too_late_for_merging(bfqq))
635 		return;
636 
637 	if (bfq_class_idle(bfqq))
638 		return;
639 	if (!bfqq->next_rq)
640 		return;
641 
642 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
643 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
644 			blk_rq_pos(bfqq->next_rq), &parent, &p);
645 	if (!__bfqq) {
646 		rb_link_node(&bfqq->pos_node, parent, p);
647 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
648 	} else
649 		bfqq->pos_root = NULL;
650 }
651 
652 /*
653  * The following function returns false either if every active queue
654  * must receive the same share of the throughput (symmetric scenario),
655  * or, as a special case, if bfqq must receive a share of the
656  * throughput lower than or equal to the share that every other active
657  * queue must receive.  If bfqq does sync I/O, then these are the only
658  * two cases where bfqq happens to be guaranteed its share of the
659  * throughput even if I/O dispatching is not plugged when bfqq remains
660  * temporarily empty (for more details, see the comments in the
661  * function bfq_better_to_idle()). For this reason, the return value
662  * of this function is used to check whether I/O-dispatch plugging can
663  * be avoided.
664  *
665  * The above first case (symmetric scenario) occurs when:
666  * 1) all active queues have the same weight,
667  * 2) all active queues belong to the same I/O-priority class,
668  * 3) all active groups at the same level in the groups tree have the same
669  *    weight,
670  * 4) all active groups at the same level in the groups tree have the same
671  *    number of children.
672  *
673  * Unfortunately, keeping the necessary state for evaluating exactly
674  * the last two symmetry sub-conditions above would be quite complex
675  * and time consuming. Therefore this function evaluates, instead,
676  * only the following stronger three sub-conditions, for which it is
677  * much easier to maintain the needed state:
678  * 1) all active queues have the same weight,
679  * 2) all active queues belong to the same I/O-priority class,
680  * 3) there are no active groups.
681  * In particular, the last condition is always true if hierarchical
682  * support or the cgroups interface are not enabled, thus no state
683  * needs to be maintained in this case.
684  */
bfq_asymmetric_scenario(struct bfq_data * bfqd,struct bfq_queue * bfqq)685 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
686 				   struct bfq_queue *bfqq)
687 {
688 	bool smallest_weight = bfqq &&
689 		bfqq->weight_counter &&
690 		bfqq->weight_counter ==
691 		container_of(
692 			rb_first_cached(&bfqd->queue_weights_tree),
693 			struct bfq_weight_counter,
694 			weights_node);
695 
696 	/*
697 	 * For queue weights to differ, queue_weights_tree must contain
698 	 * at least two nodes.
699 	 */
700 	bool varied_queue_weights = !smallest_weight &&
701 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
702 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
703 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
704 
705 	bool multiple_classes_busy =
706 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
707 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
708 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
709 
710 	return varied_queue_weights || multiple_classes_busy
711 #ifdef CONFIG_BFQ_GROUP_IOSCHED
712 	       || bfqd->num_groups_with_pending_reqs > 0
713 #endif
714 		;
715 }
716 
717 /*
718  * If the weight-counter tree passed as input contains no counter for
719  * the weight of the input queue, then add that counter; otherwise just
720  * increment the existing counter.
721  *
722  * Note that weight-counter trees contain few nodes in mostly symmetric
723  * scenarios. For example, if all queues have the same weight, then the
724  * weight-counter tree for the queues may contain at most one node.
725  * This holds even if low_latency is on, because weight-raised queues
726  * are not inserted in the tree.
727  * In most scenarios, the rate at which nodes are created/destroyed
728  * should be low too.
729  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)730 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
731 			  struct rb_root_cached *root)
732 {
733 	struct bfq_entity *entity = &bfqq->entity;
734 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
735 	bool leftmost = true;
736 
737 	/*
738 	 * Do not insert if the queue is already associated with a
739 	 * counter, which happens if:
740 	 *   1) a request arrival has caused the queue to become both
741 	 *      non-weight-raised, and hence change its weight, and
742 	 *      backlogged; in this respect, each of the two events
743 	 *      causes an invocation of this function,
744 	 *   2) this is the invocation of this function caused by the
745 	 *      second event. This second invocation is actually useless,
746 	 *      and we handle this fact by exiting immediately. More
747 	 *      efficient or clearer solutions might possibly be adopted.
748 	 */
749 	if (bfqq->weight_counter)
750 		return;
751 
752 	while (*new) {
753 		struct bfq_weight_counter *__counter = container_of(*new,
754 						struct bfq_weight_counter,
755 						weights_node);
756 		parent = *new;
757 
758 		if (entity->weight == __counter->weight) {
759 			bfqq->weight_counter = __counter;
760 			goto inc_counter;
761 		}
762 		if (entity->weight < __counter->weight)
763 			new = &((*new)->rb_left);
764 		else {
765 			new = &((*new)->rb_right);
766 			leftmost = false;
767 		}
768 	}
769 
770 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
771 				       GFP_ATOMIC);
772 
773 	/*
774 	 * In the unlucky event of an allocation failure, we just
775 	 * exit. This will cause the weight of queue to not be
776 	 * considered in bfq_asymmetric_scenario, which, in its turn,
777 	 * causes the scenario to be deemed wrongly symmetric in case
778 	 * bfqq's weight would have been the only weight making the
779 	 * scenario asymmetric.  On the bright side, no unbalance will
780 	 * however occur when bfqq becomes inactive again (the
781 	 * invocation of this function is triggered by an activation
782 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
783 	 * if !bfqq->weight_counter.
784 	 */
785 	if (unlikely(!bfqq->weight_counter))
786 		return;
787 
788 	bfqq->weight_counter->weight = entity->weight;
789 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
790 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
791 				leftmost);
792 
793 inc_counter:
794 	bfqq->weight_counter->num_active++;
795 	bfqq->ref++;
796 }
797 
798 /*
799  * Decrement the weight counter associated with the queue, and, if the
800  * counter reaches 0, remove the counter from the tree.
801  * See the comments to the function bfq_weights_tree_add() for considerations
802  * about overhead.
803  */
__bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)804 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
805 			       struct bfq_queue *bfqq,
806 			       struct rb_root_cached *root)
807 {
808 	if (!bfqq->weight_counter)
809 		return;
810 
811 	bfqq->weight_counter->num_active--;
812 	if (bfqq->weight_counter->num_active > 0)
813 		goto reset_entity_pointer;
814 
815 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
816 	kfree(bfqq->weight_counter);
817 
818 reset_entity_pointer:
819 	bfqq->weight_counter = NULL;
820 	bfq_put_queue(bfqq);
821 }
822 
823 /*
824  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
825  * of active groups for each queue's inactive parent entity.
826  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq)827 void bfq_weights_tree_remove(struct bfq_data *bfqd,
828 			     struct bfq_queue *bfqq)
829 {
830 	struct bfq_entity *entity = bfqq->entity.parent;
831 
832 	for_each_entity(entity) {
833 		struct bfq_sched_data *sd = entity->my_sched_data;
834 
835 		if (sd->next_in_service || sd->in_service_entity) {
836 			/*
837 			 * entity is still active, because either
838 			 * next_in_service or in_service_entity is not
839 			 * NULL (see the comments on the definition of
840 			 * next_in_service for details on why
841 			 * in_service_entity must be checked too).
842 			 *
843 			 * As a consequence, its parent entities are
844 			 * active as well, and thus this loop must
845 			 * stop here.
846 			 */
847 			break;
848 		}
849 
850 		/*
851 		 * The decrement of num_groups_with_pending_reqs is
852 		 * not performed immediately upon the deactivation of
853 		 * entity, but it is delayed to when it also happens
854 		 * that the first leaf descendant bfqq of entity gets
855 		 * all its pending requests completed. The following
856 		 * instructions perform this delayed decrement, if
857 		 * needed. See the comments on
858 		 * num_groups_with_pending_reqs for details.
859 		 */
860 		if (entity->in_groups_with_pending_reqs) {
861 			entity->in_groups_with_pending_reqs = false;
862 			bfqd->num_groups_with_pending_reqs--;
863 		}
864 	}
865 
866 	/*
867 	 * Next function is invoked last, because it causes bfqq to be
868 	 * freed if the following holds: bfqq is not in service and
869 	 * has no dispatched request. DO NOT use bfqq after the next
870 	 * function invocation.
871 	 */
872 	__bfq_weights_tree_remove(bfqd, bfqq,
873 				  &bfqd->queue_weights_tree);
874 }
875 
876 /*
877  * Return expired entry, or NULL to just start from scratch in rbtree.
878  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)879 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
880 				      struct request *last)
881 {
882 	struct request *rq;
883 
884 	if (bfq_bfqq_fifo_expire(bfqq))
885 		return NULL;
886 
887 	bfq_mark_bfqq_fifo_expire(bfqq);
888 
889 	rq = rq_entry_fifo(bfqq->fifo.next);
890 
891 	if (rq == last || ktime_get_ns() < rq->fifo_time)
892 		return NULL;
893 
894 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
895 	return rq;
896 }
897 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)898 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
899 					struct bfq_queue *bfqq,
900 					struct request *last)
901 {
902 	struct rb_node *rbnext = rb_next(&last->rb_node);
903 	struct rb_node *rbprev = rb_prev(&last->rb_node);
904 	struct request *next, *prev = NULL;
905 
906 	/* Follow expired path, else get first next available. */
907 	next = bfq_check_fifo(bfqq, last);
908 	if (next)
909 		return next;
910 
911 	if (rbprev)
912 		prev = rb_entry_rq(rbprev);
913 
914 	if (rbnext)
915 		next = rb_entry_rq(rbnext);
916 	else {
917 		rbnext = rb_first(&bfqq->sort_list);
918 		if (rbnext && rbnext != &last->rb_node)
919 			next = rb_entry_rq(rbnext);
920 	}
921 
922 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
923 }
924 
925 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)926 static unsigned long bfq_serv_to_charge(struct request *rq,
927 					struct bfq_queue *bfqq)
928 {
929 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
930 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
931 		return blk_rq_sectors(rq);
932 
933 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
934 }
935 
936 /**
937  * bfq_updated_next_req - update the queue after a new next_rq selection.
938  * @bfqd: the device data the queue belongs to.
939  * @bfqq: the queue to update.
940  *
941  * If the first request of a queue changes we make sure that the queue
942  * has enough budget to serve at least its first request (if the
943  * request has grown).  We do this because if the queue has not enough
944  * budget for its first request, it has to go through two dispatch
945  * rounds to actually get it dispatched.
946  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)947 static void bfq_updated_next_req(struct bfq_data *bfqd,
948 				 struct bfq_queue *bfqq)
949 {
950 	struct bfq_entity *entity = &bfqq->entity;
951 	struct request *next_rq = bfqq->next_rq;
952 	unsigned long new_budget;
953 
954 	if (!next_rq)
955 		return;
956 
957 	if (bfqq == bfqd->in_service_queue)
958 		/*
959 		 * In order not to break guarantees, budgets cannot be
960 		 * changed after an entity has been selected.
961 		 */
962 		return;
963 
964 	new_budget = max_t(unsigned long,
965 			   max_t(unsigned long, bfqq->max_budget,
966 				 bfq_serv_to_charge(next_rq, bfqq)),
967 			   entity->service);
968 	if (entity->budget != new_budget) {
969 		entity->budget = new_budget;
970 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
971 					 new_budget);
972 		bfq_requeue_bfqq(bfqd, bfqq, false);
973 	}
974 }
975 
bfq_wr_duration(struct bfq_data * bfqd)976 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
977 {
978 	u64 dur;
979 
980 	if (bfqd->bfq_wr_max_time > 0)
981 		return bfqd->bfq_wr_max_time;
982 
983 	dur = bfqd->rate_dur_prod;
984 	do_div(dur, bfqd->peak_rate);
985 
986 	/*
987 	 * Limit duration between 3 and 25 seconds. The upper limit
988 	 * has been conservatively set after the following worst case:
989 	 * on a QEMU/KVM virtual machine
990 	 * - running in a slow PC
991 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
992 	 * - serving a heavy I/O workload, such as the sequential reading
993 	 *   of several files
994 	 * mplayer took 23 seconds to start, if constantly weight-raised.
995 	 *
996 	 * As for higher values than that accommodating the above bad
997 	 * scenario, tests show that higher values would often yield
998 	 * the opposite of the desired result, i.e., would worsen
999 	 * responsiveness by allowing non-interactive applications to
1000 	 * preserve weight raising for too long.
1001 	 *
1002 	 * On the other end, lower values than 3 seconds make it
1003 	 * difficult for most interactive tasks to complete their jobs
1004 	 * before weight-raising finishes.
1005 	 */
1006 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1007 }
1008 
1009 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)1010 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1011 					  struct bfq_data *bfqd)
1012 {
1013 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1014 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1015 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1016 }
1017 
1018 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)1019 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1020 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1021 {
1022 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1023 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1024 
1025 	if (bic->saved_has_short_ttime)
1026 		bfq_mark_bfqq_has_short_ttime(bfqq);
1027 	else
1028 		bfq_clear_bfqq_has_short_ttime(bfqq);
1029 
1030 	if (bic->saved_IO_bound)
1031 		bfq_mark_bfqq_IO_bound(bfqq);
1032 	else
1033 		bfq_clear_bfqq_IO_bound(bfqq);
1034 
1035 	bfqq->entity.new_weight = bic->saved_weight;
1036 	bfqq->ttime = bic->saved_ttime;
1037 	bfqq->wr_coeff = bic->saved_wr_coeff;
1038 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1039 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1040 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1041 
1042 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1043 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1044 				   bfqq->wr_cur_max_time))) {
1045 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1046 		    !bfq_bfqq_in_large_burst(bfqq) &&
1047 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1048 					     bfq_wr_duration(bfqd))) {
1049 			switch_back_to_interactive_wr(bfqq, bfqd);
1050 		} else {
1051 			bfqq->wr_coeff = 1;
1052 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1053 				     "resume state: switching off wr");
1054 		}
1055 	}
1056 
1057 	/* make sure weight will be updated, however we got here */
1058 	bfqq->entity.prio_changed = 1;
1059 
1060 	if (likely(!busy))
1061 		return;
1062 
1063 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1064 		bfqd->wr_busy_queues++;
1065 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1066 		bfqd->wr_busy_queues--;
1067 }
1068 
bfqq_process_refs(struct bfq_queue * bfqq)1069 static int bfqq_process_refs(struct bfq_queue *bfqq)
1070 {
1071 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1072 		(bfqq->weight_counter != NULL);
1073 }
1074 
1075 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1076 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1077 {
1078 	struct bfq_queue *item;
1079 	struct hlist_node *n;
1080 
1081 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1082 		hlist_del_init(&item->burst_list_node);
1083 
1084 	/*
1085 	 * Start the creation of a new burst list only if there is no
1086 	 * active queue. See comments on the conditional invocation of
1087 	 * bfq_handle_burst().
1088 	 */
1089 	if (bfq_tot_busy_queues(bfqd) == 0) {
1090 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1091 		bfqd->burst_size = 1;
1092 	} else
1093 		bfqd->burst_size = 0;
1094 
1095 	bfqd->burst_parent_entity = bfqq->entity.parent;
1096 }
1097 
1098 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1099 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1100 {
1101 	/* Increment burst size to take into account also bfqq */
1102 	bfqd->burst_size++;
1103 
1104 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1105 		struct bfq_queue *pos, *bfqq_item;
1106 		struct hlist_node *n;
1107 
1108 		/*
1109 		 * Enough queues have been activated shortly after each
1110 		 * other to consider this burst as large.
1111 		 */
1112 		bfqd->large_burst = true;
1113 
1114 		/*
1115 		 * We can now mark all queues in the burst list as
1116 		 * belonging to a large burst.
1117 		 */
1118 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1119 				     burst_list_node)
1120 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1121 		bfq_mark_bfqq_in_large_burst(bfqq);
1122 
1123 		/*
1124 		 * From now on, and until the current burst finishes, any
1125 		 * new queue being activated shortly after the last queue
1126 		 * was inserted in the burst can be immediately marked as
1127 		 * belonging to a large burst. So the burst list is not
1128 		 * needed any more. Remove it.
1129 		 */
1130 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1131 					  burst_list_node)
1132 			hlist_del_init(&pos->burst_list_node);
1133 	} else /*
1134 		* Burst not yet large: add bfqq to the burst list. Do
1135 		* not increment the ref counter for bfqq, because bfqq
1136 		* is removed from the burst list before freeing bfqq
1137 		* in put_queue.
1138 		*/
1139 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1140 }
1141 
1142 /*
1143  * If many queues belonging to the same group happen to be created
1144  * shortly after each other, then the processes associated with these
1145  * queues have typically a common goal. In particular, bursts of queue
1146  * creations are usually caused by services or applications that spawn
1147  * many parallel threads/processes. Examples are systemd during boot,
1148  * or git grep. To help these processes get their job done as soon as
1149  * possible, it is usually better to not grant either weight-raising
1150  * or device idling to their queues, unless these queues must be
1151  * protected from the I/O flowing through other active queues.
1152  *
1153  * In this comment we describe, firstly, the reasons why this fact
1154  * holds, and, secondly, the next function, which implements the main
1155  * steps needed to properly mark these queues so that they can then be
1156  * treated in a different way.
1157  *
1158  * The above services or applications benefit mostly from a high
1159  * throughput: the quicker the requests of the activated queues are
1160  * cumulatively served, the sooner the target job of these queues gets
1161  * completed. As a consequence, weight-raising any of these queues,
1162  * which also implies idling the device for it, is almost always
1163  * counterproductive, unless there are other active queues to isolate
1164  * these new queues from. If there no other active queues, then
1165  * weight-raising these new queues just lowers throughput in most
1166  * cases.
1167  *
1168  * On the other hand, a burst of queue creations may be caused also by
1169  * the start of an application that does not consist of a lot of
1170  * parallel I/O-bound threads. In fact, with a complex application,
1171  * several short processes may need to be executed to start-up the
1172  * application. In this respect, to start an application as quickly as
1173  * possible, the best thing to do is in any case to privilege the I/O
1174  * related to the application with respect to all other
1175  * I/O. Therefore, the best strategy to start as quickly as possible
1176  * an application that causes a burst of queue creations is to
1177  * weight-raise all the queues created during the burst. This is the
1178  * exact opposite of the best strategy for the other type of bursts.
1179  *
1180  * In the end, to take the best action for each of the two cases, the
1181  * two types of bursts need to be distinguished. Fortunately, this
1182  * seems relatively easy, by looking at the sizes of the bursts. In
1183  * particular, we found a threshold such that only bursts with a
1184  * larger size than that threshold are apparently caused by
1185  * services or commands such as systemd or git grep. For brevity,
1186  * hereafter we call just 'large' these bursts. BFQ *does not*
1187  * weight-raise queues whose creation occurs in a large burst. In
1188  * addition, for each of these queues BFQ performs or does not perform
1189  * idling depending on which choice boosts the throughput more. The
1190  * exact choice depends on the device and request pattern at
1191  * hand.
1192  *
1193  * Unfortunately, false positives may occur while an interactive task
1194  * is starting (e.g., an application is being started). The
1195  * consequence is that the queues associated with the task do not
1196  * enjoy weight raising as expected. Fortunately these false positives
1197  * are very rare. They typically occur if some service happens to
1198  * start doing I/O exactly when the interactive task starts.
1199  *
1200  * Turning back to the next function, it is invoked only if there are
1201  * no active queues (apart from active queues that would belong to the
1202  * same, possible burst bfqq would belong to), and it implements all
1203  * the steps needed to detect the occurrence of a large burst and to
1204  * properly mark all the queues belonging to it (so that they can then
1205  * be treated in a different way). This goal is achieved by
1206  * maintaining a "burst list" that holds, temporarily, the queues that
1207  * belong to the burst in progress. The list is then used to mark
1208  * these queues as belonging to a large burst if the burst does become
1209  * large. The main steps are the following.
1210  *
1211  * . when the very first queue is created, the queue is inserted into the
1212  *   list (as it could be the first queue in a possible burst)
1213  *
1214  * . if the current burst has not yet become large, and a queue Q that does
1215  *   not yet belong to the burst is activated shortly after the last time
1216  *   at which a new queue entered the burst list, then the function appends
1217  *   Q to the burst list
1218  *
1219  * . if, as a consequence of the previous step, the burst size reaches
1220  *   the large-burst threshold, then
1221  *
1222  *     . all the queues in the burst list are marked as belonging to a
1223  *       large burst
1224  *
1225  *     . the burst list is deleted; in fact, the burst list already served
1226  *       its purpose (keeping temporarily track of the queues in a burst,
1227  *       so as to be able to mark them as belonging to a large burst in the
1228  *       previous sub-step), and now is not needed any more
1229  *
1230  *     . the device enters a large-burst mode
1231  *
1232  * . if a queue Q that does not belong to the burst is created while
1233  *   the device is in large-burst mode and shortly after the last time
1234  *   at which a queue either entered the burst list or was marked as
1235  *   belonging to the current large burst, then Q is immediately marked
1236  *   as belonging to a large burst.
1237  *
1238  * . if a queue Q that does not belong to the burst is created a while
1239  *   later, i.e., not shortly after, than the last time at which a queue
1240  *   either entered the burst list or was marked as belonging to the
1241  *   current large burst, then the current burst is deemed as finished and:
1242  *
1243  *        . the large-burst mode is reset if set
1244  *
1245  *        . the burst list is emptied
1246  *
1247  *        . Q is inserted in the burst list, as Q may be the first queue
1248  *          in a possible new burst (then the burst list contains just Q
1249  *          after this step).
1250  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1251 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1252 {
1253 	/*
1254 	 * If bfqq is already in the burst list or is part of a large
1255 	 * burst, or finally has just been split, then there is
1256 	 * nothing else to do.
1257 	 */
1258 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1259 	    bfq_bfqq_in_large_burst(bfqq) ||
1260 	    time_is_after_eq_jiffies(bfqq->split_time +
1261 				     msecs_to_jiffies(10)))
1262 		return;
1263 
1264 	/*
1265 	 * If bfqq's creation happens late enough, or bfqq belongs to
1266 	 * a different group than the burst group, then the current
1267 	 * burst is finished, and related data structures must be
1268 	 * reset.
1269 	 *
1270 	 * In this respect, consider the special case where bfqq is
1271 	 * the very first queue created after BFQ is selected for this
1272 	 * device. In this case, last_ins_in_burst and
1273 	 * burst_parent_entity are not yet significant when we get
1274 	 * here. But it is easy to verify that, whether or not the
1275 	 * following condition is true, bfqq will end up being
1276 	 * inserted into the burst list. In particular the list will
1277 	 * happen to contain only bfqq. And this is exactly what has
1278 	 * to happen, as bfqq may be the first queue of the first
1279 	 * burst.
1280 	 */
1281 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1282 	    bfqd->bfq_burst_interval) ||
1283 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1284 		bfqd->large_burst = false;
1285 		bfq_reset_burst_list(bfqd, bfqq);
1286 		goto end;
1287 	}
1288 
1289 	/*
1290 	 * If we get here, then bfqq is being activated shortly after the
1291 	 * last queue. So, if the current burst is also large, we can mark
1292 	 * bfqq as belonging to this large burst immediately.
1293 	 */
1294 	if (bfqd->large_burst) {
1295 		bfq_mark_bfqq_in_large_burst(bfqq);
1296 		goto end;
1297 	}
1298 
1299 	/*
1300 	 * If we get here, then a large-burst state has not yet been
1301 	 * reached, but bfqq is being activated shortly after the last
1302 	 * queue. Then we add bfqq to the burst.
1303 	 */
1304 	bfq_add_to_burst(bfqd, bfqq);
1305 end:
1306 	/*
1307 	 * At this point, bfqq either has been added to the current
1308 	 * burst or has caused the current burst to terminate and a
1309 	 * possible new burst to start. In particular, in the second
1310 	 * case, bfqq has become the first queue in the possible new
1311 	 * burst.  In both cases last_ins_in_burst needs to be moved
1312 	 * forward.
1313 	 */
1314 	bfqd->last_ins_in_burst = jiffies;
1315 }
1316 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1317 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1318 {
1319 	struct bfq_entity *entity = &bfqq->entity;
1320 
1321 	return entity->budget - entity->service;
1322 }
1323 
1324 /*
1325  * If enough samples have been computed, return the current max budget
1326  * stored in bfqd, which is dynamically updated according to the
1327  * estimated disk peak rate; otherwise return the default max budget
1328  */
bfq_max_budget(struct bfq_data * bfqd)1329 static int bfq_max_budget(struct bfq_data *bfqd)
1330 {
1331 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1332 		return bfq_default_max_budget;
1333 	else
1334 		return bfqd->bfq_max_budget;
1335 }
1336 
1337 /*
1338  * Return min budget, which is a fraction of the current or default
1339  * max budget (trying with 1/32)
1340  */
bfq_min_budget(struct bfq_data * bfqd)1341 static int bfq_min_budget(struct bfq_data *bfqd)
1342 {
1343 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1344 		return bfq_default_max_budget / 32;
1345 	else
1346 		return bfqd->bfq_max_budget / 32;
1347 }
1348 
1349 /*
1350  * The next function, invoked after the input queue bfqq switches from
1351  * idle to busy, updates the budget of bfqq. The function also tells
1352  * whether the in-service queue should be expired, by returning
1353  * true. The purpose of expiring the in-service queue is to give bfqq
1354  * the chance to possibly preempt the in-service queue, and the reason
1355  * for preempting the in-service queue is to achieve one of the two
1356  * goals below.
1357  *
1358  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1359  * expired because it has remained idle. In particular, bfqq may have
1360  * expired for one of the following two reasons:
1361  *
1362  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1363  *   and did not make it to issue a new request before its last
1364  *   request was served;
1365  *
1366  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1367  *   a new request before the expiration of the idling-time.
1368  *
1369  * Even if bfqq has expired for one of the above reasons, the process
1370  * associated with the queue may be however issuing requests greedily,
1371  * and thus be sensitive to the bandwidth it receives (bfqq may have
1372  * remained idle for other reasons: CPU high load, bfqq not enjoying
1373  * idling, I/O throttling somewhere in the path from the process to
1374  * the I/O scheduler, ...). But if, after every expiration for one of
1375  * the above two reasons, bfqq has to wait for the service of at least
1376  * one full budget of another queue before being served again, then
1377  * bfqq is likely to get a much lower bandwidth or resource time than
1378  * its reserved ones. To address this issue, two countermeasures need
1379  * to be taken.
1380  *
1381  * First, the budget and the timestamps of bfqq need to be updated in
1382  * a special way on bfqq reactivation: they need to be updated as if
1383  * bfqq did not remain idle and did not expire. In fact, if they are
1384  * computed as if bfqq expired and remained idle until reactivation,
1385  * then the process associated with bfqq is treated as if, instead of
1386  * being greedy, it stopped issuing requests when bfqq remained idle,
1387  * and restarts issuing requests only on this reactivation. In other
1388  * words, the scheduler does not help the process recover the "service
1389  * hole" between bfqq expiration and reactivation. As a consequence,
1390  * the process receives a lower bandwidth than its reserved one. In
1391  * contrast, to recover this hole, the budget must be updated as if
1392  * bfqq was not expired at all before this reactivation, i.e., it must
1393  * be set to the value of the remaining budget when bfqq was
1394  * expired. Along the same line, timestamps need to be assigned the
1395  * value they had the last time bfqq was selected for service, i.e.,
1396  * before last expiration. Thus timestamps need to be back-shifted
1397  * with respect to their normal computation (see [1] for more details
1398  * on this tricky aspect).
1399  *
1400  * Secondly, to allow the process to recover the hole, the in-service
1401  * queue must be expired too, to give bfqq the chance to preempt it
1402  * immediately. In fact, if bfqq has to wait for a full budget of the
1403  * in-service queue to be completed, then it may become impossible to
1404  * let the process recover the hole, even if the back-shifted
1405  * timestamps of bfqq are lower than those of the in-service queue. If
1406  * this happens for most or all of the holes, then the process may not
1407  * receive its reserved bandwidth. In this respect, it is worth noting
1408  * that, being the service of outstanding requests unpreemptible, a
1409  * little fraction of the holes may however be unrecoverable, thereby
1410  * causing a little loss of bandwidth.
1411  *
1412  * The last important point is detecting whether bfqq does need this
1413  * bandwidth recovery. In this respect, the next function deems the
1414  * process associated with bfqq greedy, and thus allows it to recover
1415  * the hole, if: 1) the process is waiting for the arrival of a new
1416  * request (which implies that bfqq expired for one of the above two
1417  * reasons), and 2) such a request has arrived soon. The first
1418  * condition is controlled through the flag non_blocking_wait_rq,
1419  * while the second through the flag arrived_in_time. If both
1420  * conditions hold, then the function computes the budget in the
1421  * above-described special way, and signals that the in-service queue
1422  * should be expired. Timestamp back-shifting is done later in
1423  * __bfq_activate_entity.
1424  *
1425  * 2. Reduce latency. Even if timestamps are not backshifted to let
1426  * the process associated with bfqq recover a service hole, bfqq may
1427  * however happen to have, after being (re)activated, a lower finish
1428  * timestamp than the in-service queue.	 That is, the next budget of
1429  * bfqq may have to be completed before the one of the in-service
1430  * queue. If this is the case, then preempting the in-service queue
1431  * allows this goal to be achieved, apart from the unpreemptible,
1432  * outstanding requests mentioned above.
1433  *
1434  * Unfortunately, regardless of which of the above two goals one wants
1435  * to achieve, service trees need first to be updated to know whether
1436  * the in-service queue must be preempted. To have service trees
1437  * correctly updated, the in-service queue must be expired and
1438  * rescheduled, and bfqq must be scheduled too. This is one of the
1439  * most costly operations (in future versions, the scheduling
1440  * mechanism may be re-designed in such a way to make it possible to
1441  * know whether preemption is needed without needing to update service
1442  * trees). In addition, queue preemptions almost always cause random
1443  * I/O, which may in turn cause loss of throughput. Finally, there may
1444  * even be no in-service queue when the next function is invoked (so,
1445  * no queue to compare timestamps with). Because of these facts, the
1446  * next function adopts the following simple scheme to avoid costly
1447  * operations, too frequent preemptions and too many dependencies on
1448  * the state of the scheduler: it requests the expiration of the
1449  * in-service queue (unconditionally) only for queues that need to
1450  * recover a hole. Then it delegates to other parts of the code the
1451  * responsibility of handling the above case 2.
1452  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time)1453 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1454 						struct bfq_queue *bfqq,
1455 						bool arrived_in_time)
1456 {
1457 	struct bfq_entity *entity = &bfqq->entity;
1458 
1459 	/*
1460 	 * In the next compound condition, we check also whether there
1461 	 * is some budget left, because otherwise there is no point in
1462 	 * trying to go on serving bfqq with this same budget: bfqq
1463 	 * would be expired immediately after being selected for
1464 	 * service. This would only cause useless overhead.
1465 	 */
1466 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1467 	    bfq_bfqq_budget_left(bfqq) > 0) {
1468 		/*
1469 		 * We do not clear the flag non_blocking_wait_rq here, as
1470 		 * the latter is used in bfq_activate_bfqq to signal
1471 		 * that timestamps need to be back-shifted (and is
1472 		 * cleared right after).
1473 		 */
1474 
1475 		/*
1476 		 * In next assignment we rely on that either
1477 		 * entity->service or entity->budget are not updated
1478 		 * on expiration if bfqq is empty (see
1479 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1480 		 * remain unchanged after such an expiration, and the
1481 		 * following statement therefore assigns to
1482 		 * entity->budget the remaining budget on such an
1483 		 * expiration.
1484 		 */
1485 		entity->budget = min_t(unsigned long,
1486 				       bfq_bfqq_budget_left(bfqq),
1487 				       bfqq->max_budget);
1488 
1489 		/*
1490 		 * At this point, we have used entity->service to get
1491 		 * the budget left (needed for updating
1492 		 * entity->budget). Thus we finally can, and have to,
1493 		 * reset entity->service. The latter must be reset
1494 		 * because bfqq would otherwise be charged again for
1495 		 * the service it has received during its previous
1496 		 * service slot(s).
1497 		 */
1498 		entity->service = 0;
1499 
1500 		return true;
1501 	}
1502 
1503 	/*
1504 	 * We can finally complete expiration, by setting service to 0.
1505 	 */
1506 	entity->service = 0;
1507 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1508 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1509 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1510 	return false;
1511 }
1512 
1513 /*
1514  * Return the farthest past time instant according to jiffies
1515  * macros.
1516  */
bfq_smallest_from_now(void)1517 static unsigned long bfq_smallest_from_now(void)
1518 {
1519 	return jiffies - MAX_JIFFY_OFFSET;
1520 }
1521 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1522 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1523 					     struct bfq_queue *bfqq,
1524 					     unsigned int old_wr_coeff,
1525 					     bool wr_or_deserves_wr,
1526 					     bool interactive,
1527 					     bool in_burst,
1528 					     bool soft_rt)
1529 {
1530 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1531 		/* start a weight-raising period */
1532 		if (interactive) {
1533 			bfqq->service_from_wr = 0;
1534 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1535 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1536 		} else {
1537 			/*
1538 			 * No interactive weight raising in progress
1539 			 * here: assign minus infinity to
1540 			 * wr_start_at_switch_to_srt, to make sure
1541 			 * that, at the end of the soft-real-time
1542 			 * weight raising periods that is starting
1543 			 * now, no interactive weight-raising period
1544 			 * may be wrongly considered as still in
1545 			 * progress (and thus actually started by
1546 			 * mistake).
1547 			 */
1548 			bfqq->wr_start_at_switch_to_srt =
1549 				bfq_smallest_from_now();
1550 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1551 				BFQ_SOFTRT_WEIGHT_FACTOR;
1552 			bfqq->wr_cur_max_time =
1553 				bfqd->bfq_wr_rt_max_time;
1554 		}
1555 
1556 		/*
1557 		 * If needed, further reduce budget to make sure it is
1558 		 * close to bfqq's backlog, so as to reduce the
1559 		 * scheduling-error component due to a too large
1560 		 * budget. Do not care about throughput consequences,
1561 		 * but only about latency. Finally, do not assign a
1562 		 * too small budget either, to avoid increasing
1563 		 * latency by causing too frequent expirations.
1564 		 */
1565 		bfqq->entity.budget = min_t(unsigned long,
1566 					    bfqq->entity.budget,
1567 					    2 * bfq_min_budget(bfqd));
1568 	} else if (old_wr_coeff > 1) {
1569 		if (interactive) { /* update wr coeff and duration */
1570 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1571 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1572 		} else if (in_burst)
1573 			bfqq->wr_coeff = 1;
1574 		else if (soft_rt) {
1575 			/*
1576 			 * The application is now or still meeting the
1577 			 * requirements for being deemed soft rt.  We
1578 			 * can then correctly and safely (re)charge
1579 			 * the weight-raising duration for the
1580 			 * application with the weight-raising
1581 			 * duration for soft rt applications.
1582 			 *
1583 			 * In particular, doing this recharge now, i.e.,
1584 			 * before the weight-raising period for the
1585 			 * application finishes, reduces the probability
1586 			 * of the following negative scenario:
1587 			 * 1) the weight of a soft rt application is
1588 			 *    raised at startup (as for any newly
1589 			 *    created application),
1590 			 * 2) since the application is not interactive,
1591 			 *    at a certain time weight-raising is
1592 			 *    stopped for the application,
1593 			 * 3) at that time the application happens to
1594 			 *    still have pending requests, and hence
1595 			 *    is destined to not have a chance to be
1596 			 *    deemed soft rt before these requests are
1597 			 *    completed (see the comments to the
1598 			 *    function bfq_bfqq_softrt_next_start()
1599 			 *    for details on soft rt detection),
1600 			 * 4) these pending requests experience a high
1601 			 *    latency because the application is not
1602 			 *    weight-raised while they are pending.
1603 			 */
1604 			if (bfqq->wr_cur_max_time !=
1605 				bfqd->bfq_wr_rt_max_time) {
1606 				bfqq->wr_start_at_switch_to_srt =
1607 					bfqq->last_wr_start_finish;
1608 
1609 				bfqq->wr_cur_max_time =
1610 					bfqd->bfq_wr_rt_max_time;
1611 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1612 					BFQ_SOFTRT_WEIGHT_FACTOR;
1613 			}
1614 			bfqq->last_wr_start_finish = jiffies;
1615 		}
1616 	}
1617 }
1618 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1619 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1620 					struct bfq_queue *bfqq)
1621 {
1622 	return bfqq->dispatched == 0 &&
1623 		time_is_before_jiffies(
1624 			bfqq->budget_timeout +
1625 			bfqd->bfq_wr_min_idle_time);
1626 }
1627 
1628 
1629 /*
1630  * Return true if bfqq is in a higher priority class, or has a higher
1631  * weight than the in-service queue.
1632  */
bfq_bfqq_higher_class_or_weight(struct bfq_queue * bfqq,struct bfq_queue * in_serv_bfqq)1633 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1634 					    struct bfq_queue *in_serv_bfqq)
1635 {
1636 	int bfqq_weight, in_serv_weight;
1637 
1638 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1639 		return true;
1640 
1641 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1642 		bfqq_weight = bfqq->entity.weight;
1643 		in_serv_weight = in_serv_bfqq->entity.weight;
1644 	} else {
1645 		if (bfqq->entity.parent)
1646 			bfqq_weight = bfqq->entity.parent->weight;
1647 		else
1648 			bfqq_weight = bfqq->entity.weight;
1649 		if (in_serv_bfqq->entity.parent)
1650 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1651 		else
1652 			in_serv_weight = in_serv_bfqq->entity.weight;
1653 	}
1654 
1655 	return bfqq_weight > in_serv_weight;
1656 }
1657 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1658 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1659 					     struct bfq_queue *bfqq,
1660 					     int old_wr_coeff,
1661 					     struct request *rq,
1662 					     bool *interactive)
1663 {
1664 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1665 		bfqq_wants_to_preempt,
1666 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1667 		/*
1668 		 * See the comments on
1669 		 * bfq_bfqq_update_budg_for_activation for
1670 		 * details on the usage of the next variable.
1671 		 */
1672 		arrived_in_time =  ktime_get_ns() <=
1673 			bfqq->ttime.last_end_request +
1674 			bfqd->bfq_slice_idle * 3;
1675 
1676 
1677 	/*
1678 	 * bfqq deserves to be weight-raised if:
1679 	 * - it is sync,
1680 	 * - it does not belong to a large burst,
1681 	 * - it has been idle for enough time or is soft real-time,
1682 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1683 	 */
1684 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1685 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1686 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1687 		!in_burst &&
1688 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1689 		bfqq->dispatched == 0;
1690 	*interactive = !in_burst && idle_for_long_time;
1691 	wr_or_deserves_wr = bfqd->low_latency &&
1692 		(bfqq->wr_coeff > 1 ||
1693 		 (bfq_bfqq_sync(bfqq) &&
1694 		  bfqq->bic && (*interactive || soft_rt)));
1695 
1696 	/*
1697 	 * Using the last flag, update budget and check whether bfqq
1698 	 * may want to preempt the in-service queue.
1699 	 */
1700 	bfqq_wants_to_preempt =
1701 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1702 						    arrived_in_time);
1703 
1704 	/*
1705 	 * If bfqq happened to be activated in a burst, but has been
1706 	 * idle for much more than an interactive queue, then we
1707 	 * assume that, in the overall I/O initiated in the burst, the
1708 	 * I/O associated with bfqq is finished. So bfqq does not need
1709 	 * to be treated as a queue belonging to a burst
1710 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1711 	 * if set, and remove bfqq from the burst list if it's
1712 	 * there. We do not decrement burst_size, because the fact
1713 	 * that bfqq does not need to belong to the burst list any
1714 	 * more does not invalidate the fact that bfqq was created in
1715 	 * a burst.
1716 	 */
1717 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1718 	    idle_for_long_time &&
1719 	    time_is_before_jiffies(
1720 		    bfqq->budget_timeout +
1721 		    msecs_to_jiffies(10000))) {
1722 		hlist_del_init(&bfqq->burst_list_node);
1723 		bfq_clear_bfqq_in_large_burst(bfqq);
1724 	}
1725 
1726 	bfq_clear_bfqq_just_created(bfqq);
1727 
1728 
1729 	if (!bfq_bfqq_IO_bound(bfqq)) {
1730 		if (arrived_in_time) {
1731 			bfqq->requests_within_timer++;
1732 			if (bfqq->requests_within_timer >=
1733 			    bfqd->bfq_requests_within_timer)
1734 				bfq_mark_bfqq_IO_bound(bfqq);
1735 		} else
1736 			bfqq->requests_within_timer = 0;
1737 	}
1738 
1739 	if (bfqd->low_latency) {
1740 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1741 			/* wraparound */
1742 			bfqq->split_time =
1743 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1744 
1745 		if (time_is_before_jiffies(bfqq->split_time +
1746 					   bfqd->bfq_wr_min_idle_time)) {
1747 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1748 							 old_wr_coeff,
1749 							 wr_or_deserves_wr,
1750 							 *interactive,
1751 							 in_burst,
1752 							 soft_rt);
1753 
1754 			if (old_wr_coeff != bfqq->wr_coeff)
1755 				bfqq->entity.prio_changed = 1;
1756 		}
1757 	}
1758 
1759 	bfqq->last_idle_bklogged = jiffies;
1760 	bfqq->service_from_backlogged = 0;
1761 	bfq_clear_bfqq_softrt_update(bfqq);
1762 
1763 	bfq_add_bfqq_busy(bfqd, bfqq);
1764 
1765 	/*
1766 	 * Expire in-service queue only if preemption may be needed
1767 	 * for guarantees. In particular, we care only about two
1768 	 * cases. The first is that bfqq has to recover a service
1769 	 * hole, as explained in the comments on
1770 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1771 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1772 	 * carry time-critical I/O, then bfqq's bandwidth is less
1773 	 * important than that of queues that carry time-critical I/O.
1774 	 * So, as a further constraint, we consider this case only if
1775 	 * bfqq is at least as weight-raised, i.e., at least as time
1776 	 * critical, as the in-service queue.
1777 	 *
1778 	 * The second case is that bfqq is in a higher priority class,
1779 	 * or has a higher weight than the in-service queue. If this
1780 	 * condition does not hold, we don't care because, even if
1781 	 * bfqq does not start to be served immediately, the resulting
1782 	 * delay for bfqq's I/O is however lower or much lower than
1783 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1784 	 *
1785 	 * In both cases, preemption is needed only if, according to
1786 	 * the timestamps of both bfqq and of the in-service queue,
1787 	 * bfqq actually is the next queue to serve. So, to reduce
1788 	 * useless preemptions, the return value of
1789 	 * next_queue_may_preempt() is considered in the next compound
1790 	 * condition too. Yet next_queue_may_preempt() just checks a
1791 	 * simple, necessary condition for bfqq to be the next queue
1792 	 * to serve. In fact, to evaluate a sufficient condition, the
1793 	 * timestamps of the in-service queue would need to be
1794 	 * updated, and this operation is quite costly (see the
1795 	 * comments on bfq_bfqq_update_budg_for_activation()).
1796 	 */
1797 	if (bfqd->in_service_queue &&
1798 	    ((bfqq_wants_to_preempt &&
1799 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1800 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
1801 	    next_queue_may_preempt(bfqd))
1802 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1803 				false, BFQQE_PREEMPTED);
1804 }
1805 
bfq_reset_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)1806 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1807 				   struct bfq_queue *bfqq)
1808 {
1809 	/* invalidate baseline total service time */
1810 	bfqq->last_serv_time_ns = 0;
1811 
1812 	/*
1813 	 * Reset pointer in case we are waiting for
1814 	 * some request completion.
1815 	 */
1816 	bfqd->waited_rq = NULL;
1817 
1818 	/*
1819 	 * If bfqq has a short think time, then start by setting the
1820 	 * inject limit to 0 prudentially, because the service time of
1821 	 * an injected I/O request may be higher than the think time
1822 	 * of bfqq, and therefore, if one request was injected when
1823 	 * bfqq remains empty, this injected request might delay the
1824 	 * service of the next I/O request for bfqq significantly. In
1825 	 * case bfqq can actually tolerate some injection, then the
1826 	 * adaptive update will however raise the limit soon. This
1827 	 * lucky circumstance holds exactly because bfqq has a short
1828 	 * think time, and thus, after remaining empty, is likely to
1829 	 * get new I/O enqueued---and then completed---before being
1830 	 * expired. This is the very pattern that gives the
1831 	 * limit-update algorithm the chance to measure the effect of
1832 	 * injection on request service times, and then to update the
1833 	 * limit accordingly.
1834 	 *
1835 	 * However, in the following special case, the inject limit is
1836 	 * left to 1 even if the think time is short: bfqq's I/O is
1837 	 * synchronized with that of some other queue, i.e., bfqq may
1838 	 * receive new I/O only after the I/O of the other queue is
1839 	 * completed. Keeping the inject limit to 1 allows the
1840 	 * blocking I/O to be served while bfqq is in service. And
1841 	 * this is very convenient both for bfqq and for overall
1842 	 * throughput, as explained in detail in the comments in
1843 	 * bfq_update_has_short_ttime().
1844 	 *
1845 	 * On the opposite end, if bfqq has a long think time, then
1846 	 * start directly by 1, because:
1847 	 * a) on the bright side, keeping at most one request in
1848 	 * service in the drive is unlikely to cause any harm to the
1849 	 * latency of bfqq's requests, as the service time of a single
1850 	 * request is likely to be lower than the think time of bfqq;
1851 	 * b) on the downside, after becoming empty, bfqq is likely to
1852 	 * expire before getting its next request. With this request
1853 	 * arrival pattern, it is very hard to sample total service
1854 	 * times and update the inject limit accordingly (see comments
1855 	 * on bfq_update_inject_limit()). So the limit is likely to be
1856 	 * never, or at least seldom, updated.  As a consequence, by
1857 	 * setting the limit to 1, we avoid that no injection ever
1858 	 * occurs with bfqq. On the downside, this proactive step
1859 	 * further reduces chances to actually compute the baseline
1860 	 * total service time. Thus it reduces chances to execute the
1861 	 * limit-update algorithm and possibly raise the limit to more
1862 	 * than 1.
1863 	 */
1864 	if (bfq_bfqq_has_short_ttime(bfqq))
1865 		bfqq->inject_limit = 0;
1866 	else
1867 		bfqq->inject_limit = 1;
1868 
1869 	bfqq->decrease_time_jif = jiffies;
1870 }
1871 
bfq_add_request(struct request * rq)1872 static void bfq_add_request(struct request *rq)
1873 {
1874 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1875 	struct bfq_data *bfqd = bfqq->bfqd;
1876 	struct request *next_rq, *prev;
1877 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1878 	bool interactive = false;
1879 
1880 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1881 	bfqq->queued[rq_is_sync(rq)]++;
1882 	bfqd->queued++;
1883 
1884 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1885 		/*
1886 		 * Detect whether bfqq's I/O seems synchronized with
1887 		 * that of some other queue, i.e., whether bfqq, after
1888 		 * remaining empty, happens to receive new I/O only
1889 		 * right after some I/O request of the other queue has
1890 		 * been completed. We call waker queue the other
1891 		 * queue, and we assume, for simplicity, that bfqq may
1892 		 * have at most one waker queue.
1893 		 *
1894 		 * A remarkable throughput boost can be reached by
1895 		 * unconditionally injecting the I/O of the waker
1896 		 * queue, every time a new bfq_dispatch_request
1897 		 * happens to be invoked while I/O is being plugged
1898 		 * for bfqq.  In addition to boosting throughput, this
1899 		 * unblocks bfqq's I/O, thereby improving bandwidth
1900 		 * and latency for bfqq. Note that these same results
1901 		 * may be achieved with the general injection
1902 		 * mechanism, but less effectively. For details on
1903 		 * this aspect, see the comments on the choice of the
1904 		 * queue for injection in bfq_select_queue().
1905 		 *
1906 		 * Turning back to the detection of a waker queue, a
1907 		 * queue Q is deemed as a waker queue for bfqq if, for
1908 		 * two consecutive times, bfqq happens to become non
1909 		 * empty right after a request of Q has been
1910 		 * completed. In particular, on the first time, Q is
1911 		 * tentatively set as a candidate waker queue, while
1912 		 * on the second time, the flag
1913 		 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1914 		 * is a waker queue for bfqq. These detection steps
1915 		 * are performed only if bfqq has a long think time,
1916 		 * so as to make it more likely that bfqq's I/O is
1917 		 * actually being blocked by a synchronization. This
1918 		 * last filter, plus the above two-times requirement,
1919 		 * make false positives less likely.
1920 		 *
1921 		 * NOTE
1922 		 *
1923 		 * The sooner a waker queue is detected, the sooner
1924 		 * throughput can be boosted by injecting I/O from the
1925 		 * waker queue. Fortunately, detection is likely to be
1926 		 * actually fast, for the following reasons. While
1927 		 * blocked by synchronization, bfqq has a long think
1928 		 * time. This implies that bfqq's inject limit is at
1929 		 * least equal to 1 (see the comments in
1930 		 * bfq_update_inject_limit()). So, thanks to
1931 		 * injection, the waker queue is likely to be served
1932 		 * during the very first I/O-plugging time interval
1933 		 * for bfqq. This triggers the first step of the
1934 		 * detection mechanism. Thanks again to injection, the
1935 		 * candidate waker queue is then likely to be
1936 		 * confirmed no later than during the next
1937 		 * I/O-plugging interval for bfqq.
1938 		 */
1939 		if (bfqd->last_completed_rq_bfqq &&
1940 		    !bfq_bfqq_has_short_ttime(bfqq) &&
1941 		    ktime_get_ns() - bfqd->last_completion <
1942 		    200 * NSEC_PER_USEC) {
1943 			if (bfqd->last_completed_rq_bfqq != bfqq &&
1944 			    bfqd->last_completed_rq_bfqq !=
1945 			    bfqq->waker_bfqq) {
1946 				/*
1947 				 * First synchronization detected with
1948 				 * a candidate waker queue, or with a
1949 				 * different candidate waker queue
1950 				 * from the current one.
1951 				 */
1952 				bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1953 
1954 				/*
1955 				 * If the waker queue disappears, then
1956 				 * bfqq->waker_bfqq must be reset. To
1957 				 * this goal, we maintain in each
1958 				 * waker queue a list, woken_list, of
1959 				 * all the queues that reference the
1960 				 * waker queue through their
1961 				 * waker_bfqq pointer. When the waker
1962 				 * queue exits, the waker_bfqq pointer
1963 				 * of all the queues in the woken_list
1964 				 * is reset.
1965 				 *
1966 				 * In addition, if bfqq is already in
1967 				 * the woken_list of a waker queue,
1968 				 * then, before being inserted into
1969 				 * the woken_list of a new waker
1970 				 * queue, bfqq must be removed from
1971 				 * the woken_list of the old waker
1972 				 * queue.
1973 				 */
1974 				if (!hlist_unhashed(&bfqq->woken_list_node))
1975 					hlist_del_init(&bfqq->woken_list_node);
1976 				hlist_add_head(&bfqq->woken_list_node,
1977 				    &bfqd->last_completed_rq_bfqq->woken_list);
1978 
1979 				bfq_clear_bfqq_has_waker(bfqq);
1980 			} else if (bfqd->last_completed_rq_bfqq ==
1981 				   bfqq->waker_bfqq &&
1982 				   !bfq_bfqq_has_waker(bfqq)) {
1983 				/*
1984 				 * synchronization with waker_bfqq
1985 				 * seen for the second time
1986 				 */
1987 				bfq_mark_bfqq_has_waker(bfqq);
1988 			}
1989 		}
1990 
1991 		/*
1992 		 * Periodically reset inject limit, to make sure that
1993 		 * the latter eventually drops in case workload
1994 		 * changes, see step (3) in the comments on
1995 		 * bfq_update_inject_limit().
1996 		 */
1997 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1998 					     msecs_to_jiffies(1000)))
1999 			bfq_reset_inject_limit(bfqd, bfqq);
2000 
2001 		/*
2002 		 * The following conditions must hold to setup a new
2003 		 * sampling of total service time, and then a new
2004 		 * update of the inject limit:
2005 		 * - bfqq is in service, because the total service
2006 		 *   time is evaluated only for the I/O requests of
2007 		 *   the queues in service;
2008 		 * - this is the right occasion to compute or to
2009 		 *   lower the baseline total service time, because
2010 		 *   there are actually no requests in the drive,
2011 		 *   or
2012 		 *   the baseline total service time is available, and
2013 		 *   this is the right occasion to compute the other
2014 		 *   quantity needed to update the inject limit, i.e.,
2015 		 *   the total service time caused by the amount of
2016 		 *   injection allowed by the current value of the
2017 		 *   limit. It is the right occasion because injection
2018 		 *   has actually been performed during the service
2019 		 *   hole, and there are still in-flight requests,
2020 		 *   which are very likely to be exactly the injected
2021 		 *   requests, or part of them;
2022 		 * - the minimum interval for sampling the total
2023 		 *   service time and updating the inject limit has
2024 		 *   elapsed.
2025 		 */
2026 		if (bfqq == bfqd->in_service_queue &&
2027 		    (bfqd->rq_in_driver == 0 ||
2028 		     (bfqq->last_serv_time_ns > 0 &&
2029 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2030 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2031 					      msecs_to_jiffies(10))) {
2032 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2033 			/*
2034 			 * Start the state machine for measuring the
2035 			 * total service time of rq: setting
2036 			 * wait_dispatch will cause bfqd->waited_rq to
2037 			 * be set when rq will be dispatched.
2038 			 */
2039 			bfqd->wait_dispatch = true;
2040 			/*
2041 			 * If there is no I/O in service in the drive,
2042 			 * then possible injection occurred before the
2043 			 * arrival of rq will not affect the total
2044 			 * service time of rq. So the injection limit
2045 			 * must not be updated as a function of such
2046 			 * total service time, unless new injection
2047 			 * occurs before rq is completed. To have the
2048 			 * injection limit updated only in the latter
2049 			 * case, reset rqs_injected here (rqs_injected
2050 			 * will be set in case injection is performed
2051 			 * on bfqq before rq is completed).
2052 			 */
2053 			if (bfqd->rq_in_driver == 0)
2054 				bfqd->rqs_injected = false;
2055 		}
2056 	}
2057 
2058 	elv_rb_add(&bfqq->sort_list, rq);
2059 
2060 	/*
2061 	 * Check if this request is a better next-serve candidate.
2062 	 */
2063 	prev = bfqq->next_rq;
2064 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2065 	bfqq->next_rq = next_rq;
2066 
2067 	/*
2068 	 * Adjust priority tree position, if next_rq changes.
2069 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2070 	 */
2071 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2072 		bfq_pos_tree_add_move(bfqd, bfqq);
2073 
2074 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2075 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2076 						 rq, &interactive);
2077 	else {
2078 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2079 		    time_is_before_jiffies(
2080 				bfqq->last_wr_start_finish +
2081 				bfqd->bfq_wr_min_inter_arr_async)) {
2082 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2083 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2084 
2085 			bfqd->wr_busy_queues++;
2086 			bfqq->entity.prio_changed = 1;
2087 		}
2088 		if (prev != bfqq->next_rq)
2089 			bfq_updated_next_req(bfqd, bfqq);
2090 	}
2091 
2092 	/*
2093 	 * Assign jiffies to last_wr_start_finish in the following
2094 	 * cases:
2095 	 *
2096 	 * . if bfqq is not going to be weight-raised, because, for
2097 	 *   non weight-raised queues, last_wr_start_finish stores the
2098 	 *   arrival time of the last request; as of now, this piece
2099 	 *   of information is used only for deciding whether to
2100 	 *   weight-raise async queues
2101 	 *
2102 	 * . if bfqq is not weight-raised, because, if bfqq is now
2103 	 *   switching to weight-raised, then last_wr_start_finish
2104 	 *   stores the time when weight-raising starts
2105 	 *
2106 	 * . if bfqq is interactive, because, regardless of whether
2107 	 *   bfqq is currently weight-raised, the weight-raising
2108 	 *   period must start or restart (this case is considered
2109 	 *   separately because it is not detected by the above
2110 	 *   conditions, if bfqq is already weight-raised)
2111 	 *
2112 	 * last_wr_start_finish has to be updated also if bfqq is soft
2113 	 * real-time, because the weight-raising period is constantly
2114 	 * restarted on idle-to-busy transitions for these queues, but
2115 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2116 	 * needed.
2117 	 */
2118 	if (bfqd->low_latency &&
2119 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2120 		bfqq->last_wr_start_finish = jiffies;
2121 }
2122 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)2123 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2124 					  struct bio *bio,
2125 					  struct request_queue *q)
2126 {
2127 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2128 
2129 
2130 	if (bfqq)
2131 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2132 
2133 	return NULL;
2134 }
2135 
get_sdist(sector_t last_pos,struct request * rq)2136 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2137 {
2138 	if (last_pos)
2139 		return abs(blk_rq_pos(rq) - last_pos);
2140 
2141 	return 0;
2142 }
2143 
2144 #if 0 /* Still not clear if we can do without next two functions */
2145 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2146 {
2147 	struct bfq_data *bfqd = q->elevator->elevator_data;
2148 
2149 	bfqd->rq_in_driver++;
2150 }
2151 
2152 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2153 {
2154 	struct bfq_data *bfqd = q->elevator->elevator_data;
2155 
2156 	bfqd->rq_in_driver--;
2157 }
2158 #endif
2159 
bfq_remove_request(struct request_queue * q,struct request * rq)2160 static void bfq_remove_request(struct request_queue *q,
2161 			       struct request *rq)
2162 {
2163 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2164 	struct bfq_data *bfqd = bfqq->bfqd;
2165 	const int sync = rq_is_sync(rq);
2166 
2167 	if (bfqq->next_rq == rq) {
2168 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2169 		bfq_updated_next_req(bfqd, bfqq);
2170 	}
2171 
2172 	if (rq->queuelist.prev != &rq->queuelist)
2173 		list_del_init(&rq->queuelist);
2174 	bfqq->queued[sync]--;
2175 	bfqd->queued--;
2176 	elv_rb_del(&bfqq->sort_list, rq);
2177 
2178 	elv_rqhash_del(q, rq);
2179 	if (q->last_merge == rq)
2180 		q->last_merge = NULL;
2181 
2182 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2183 		bfqq->next_rq = NULL;
2184 
2185 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2186 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2187 			/*
2188 			 * bfqq emptied. In normal operation, when
2189 			 * bfqq is empty, bfqq->entity.service and
2190 			 * bfqq->entity.budget must contain,
2191 			 * respectively, the service received and the
2192 			 * budget used last time bfqq emptied. These
2193 			 * facts do not hold in this case, as at least
2194 			 * this last removal occurred while bfqq is
2195 			 * not in service. To avoid inconsistencies,
2196 			 * reset both bfqq->entity.service and
2197 			 * bfqq->entity.budget, if bfqq has still a
2198 			 * process that may issue I/O requests to it.
2199 			 */
2200 			bfqq->entity.budget = bfqq->entity.service = 0;
2201 		}
2202 
2203 		/*
2204 		 * Remove queue from request-position tree as it is empty.
2205 		 */
2206 		if (bfqq->pos_root) {
2207 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2208 			bfqq->pos_root = NULL;
2209 		}
2210 	} else {
2211 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2212 		if (unlikely(!bfqd->nonrot_with_queueing))
2213 			bfq_pos_tree_add_move(bfqd, bfqq);
2214 	}
2215 
2216 	if (rq->cmd_flags & REQ_META)
2217 		bfqq->meta_pending--;
2218 
2219 }
2220 
bfq_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2221 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2222 		unsigned int nr_segs)
2223 {
2224 	struct bfq_data *bfqd = q->elevator->elevator_data;
2225 	struct request *free = NULL;
2226 	/*
2227 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2228 	 * store its return value for later use, to avoid nesting
2229 	 * queue_lock inside the bfqd->lock. We assume that the bic
2230 	 * returned by bfq_bic_lookup does not go away before
2231 	 * bfqd->lock is taken.
2232 	 */
2233 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2234 	bool ret;
2235 
2236 	spin_lock_irq(&bfqd->lock);
2237 
2238 	if (bic) {
2239 		/*
2240 		 * Make sure cgroup info is uptodate for current process before
2241 		 * considering the merge.
2242 		 */
2243 		bfq_bic_update_cgroup(bic, bio);
2244 
2245 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2246 	} else {
2247 		bfqd->bio_bfqq = NULL;
2248 	}
2249 	bfqd->bio_bic = bic;
2250 
2251 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2252 
2253 	spin_unlock_irq(&bfqd->lock);
2254 	if (free)
2255 		blk_mq_free_request(free);
2256 
2257 	return ret;
2258 }
2259 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)2260 static int bfq_request_merge(struct request_queue *q, struct request **req,
2261 			     struct bio *bio)
2262 {
2263 	struct bfq_data *bfqd = q->elevator->elevator_data;
2264 	struct request *__rq;
2265 
2266 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2267 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2268 		*req = __rq;
2269 
2270 		if (blk_discard_mergable(__rq))
2271 			return ELEVATOR_DISCARD_MERGE;
2272 		return ELEVATOR_FRONT_MERGE;
2273 	}
2274 
2275 	return ELEVATOR_NO_MERGE;
2276 }
2277 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)2278 static void bfq_request_merged(struct request_queue *q, struct request *req,
2279 			       enum elv_merge type)
2280 {
2281 	if (type == ELEVATOR_FRONT_MERGE &&
2282 	    rb_prev(&req->rb_node) &&
2283 	    blk_rq_pos(req) <
2284 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2285 				    struct request, rb_node))) {
2286 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2287 		struct bfq_data *bfqd;
2288 		struct request *prev, *next_rq;
2289 
2290 		if (!bfqq)
2291 			return;
2292 
2293 		bfqd = bfqq->bfqd;
2294 
2295 		/* Reposition request in its sort_list */
2296 		elv_rb_del(&bfqq->sort_list, req);
2297 		elv_rb_add(&bfqq->sort_list, req);
2298 
2299 		/* Choose next request to be served for bfqq */
2300 		prev = bfqq->next_rq;
2301 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2302 					 bfqd->last_position);
2303 		bfqq->next_rq = next_rq;
2304 		/*
2305 		 * If next_rq changes, update both the queue's budget to
2306 		 * fit the new request and the queue's position in its
2307 		 * rq_pos_tree.
2308 		 */
2309 		if (prev != bfqq->next_rq) {
2310 			bfq_updated_next_req(bfqd, bfqq);
2311 			/*
2312 			 * See comments on bfq_pos_tree_add_move() for
2313 			 * the unlikely().
2314 			 */
2315 			if (unlikely(!bfqd->nonrot_with_queueing))
2316 				bfq_pos_tree_add_move(bfqd, bfqq);
2317 		}
2318 	}
2319 }
2320 
2321 /*
2322  * This function is called to notify the scheduler that the requests
2323  * rq and 'next' have been merged, with 'next' going away.  BFQ
2324  * exploits this hook to address the following issue: if 'next' has a
2325  * fifo_time lower that rq, then the fifo_time of rq must be set to
2326  * the value of 'next', to not forget the greater age of 'next'.
2327  *
2328  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2329  * on that rq is picked from the hash table q->elevator->hash, which,
2330  * in its turn, is filled only with I/O requests present in
2331  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2332  * the function that fills this hash table (elv_rqhash_add) is called
2333  * only by bfq_insert_request.
2334  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)2335 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2336 				struct request *next)
2337 {
2338 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2339 		*next_bfqq = RQ_BFQQ(next);
2340 
2341 	if (!bfqq)
2342 		goto remove;
2343 
2344 	/*
2345 	 * If next and rq belong to the same bfq_queue and next is older
2346 	 * than rq, then reposition rq in the fifo (by substituting next
2347 	 * with rq). Otherwise, if next and rq belong to different
2348 	 * bfq_queues, never reposition rq: in fact, we would have to
2349 	 * reposition it with respect to next's position in its own fifo,
2350 	 * which would most certainly be too expensive with respect to
2351 	 * the benefits.
2352 	 */
2353 	if (bfqq == next_bfqq &&
2354 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2355 	    next->fifo_time < rq->fifo_time) {
2356 		list_del_init(&rq->queuelist);
2357 		list_replace_init(&next->queuelist, &rq->queuelist);
2358 		rq->fifo_time = next->fifo_time;
2359 	}
2360 
2361 	if (bfqq->next_rq == next)
2362 		bfqq->next_rq = rq;
2363 
2364 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2365 remove:
2366 	/* Merged request may be in the IO scheduler. Remove it. */
2367 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2368 		bfq_remove_request(next->q, next);
2369 		if (next_bfqq)
2370 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2371 						    next->cmd_flags);
2372 	}
2373 }
2374 
2375 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)2376 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2377 {
2378 	if (bfq_bfqq_busy(bfqq))
2379 		bfqq->bfqd->wr_busy_queues--;
2380 	bfqq->wr_coeff = 1;
2381 	bfqq->wr_cur_max_time = 0;
2382 	bfqq->last_wr_start_finish = jiffies;
2383 	/*
2384 	 * Trigger a weight change on the next invocation of
2385 	 * __bfq_entity_update_weight_prio.
2386 	 */
2387 	bfqq->entity.prio_changed = 1;
2388 }
2389 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2390 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2391 			     struct bfq_group *bfqg)
2392 {
2393 	int i, j;
2394 
2395 	for (i = 0; i < 2; i++)
2396 		for (j = 0; j < IOPRIO_BE_NR; j++)
2397 			if (bfqg->async_bfqq[i][j])
2398 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2399 	if (bfqg->async_idle_bfqq)
2400 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2401 }
2402 
bfq_end_wr(struct bfq_data * bfqd)2403 static void bfq_end_wr(struct bfq_data *bfqd)
2404 {
2405 	struct bfq_queue *bfqq;
2406 
2407 	spin_lock_irq(&bfqd->lock);
2408 
2409 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2410 		bfq_bfqq_end_wr(bfqq);
2411 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2412 		bfq_bfqq_end_wr(bfqq);
2413 	bfq_end_wr_async(bfqd);
2414 
2415 	spin_unlock_irq(&bfqd->lock);
2416 }
2417 
bfq_io_struct_pos(void * io_struct,bool request)2418 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2419 {
2420 	if (request)
2421 		return blk_rq_pos(io_struct);
2422 	else
2423 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2424 }
2425 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2426 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2427 				  sector_t sector)
2428 {
2429 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2430 	       BFQQ_CLOSE_THR;
2431 }
2432 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2433 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2434 					 struct bfq_queue *bfqq,
2435 					 sector_t sector)
2436 {
2437 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2438 	struct rb_node *parent, *node;
2439 	struct bfq_queue *__bfqq;
2440 
2441 	if (RB_EMPTY_ROOT(root))
2442 		return NULL;
2443 
2444 	/*
2445 	 * First, if we find a request starting at the end of the last
2446 	 * request, choose it.
2447 	 */
2448 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2449 	if (__bfqq)
2450 		return __bfqq;
2451 
2452 	/*
2453 	 * If the exact sector wasn't found, the parent of the NULL leaf
2454 	 * will contain the closest sector (rq_pos_tree sorted by
2455 	 * next_request position).
2456 	 */
2457 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2458 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2459 		return __bfqq;
2460 
2461 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2462 		node = rb_next(&__bfqq->pos_node);
2463 	else
2464 		node = rb_prev(&__bfqq->pos_node);
2465 	if (!node)
2466 		return NULL;
2467 
2468 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2469 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2470 		return __bfqq;
2471 
2472 	return NULL;
2473 }
2474 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2475 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2476 						   struct bfq_queue *cur_bfqq,
2477 						   sector_t sector)
2478 {
2479 	struct bfq_queue *bfqq;
2480 
2481 	/*
2482 	 * We shall notice if some of the queues are cooperating,
2483 	 * e.g., working closely on the same area of the device. In
2484 	 * that case, we can group them together and: 1) don't waste
2485 	 * time idling, and 2) serve the union of their requests in
2486 	 * the best possible order for throughput.
2487 	 */
2488 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2489 	if (!bfqq || bfqq == cur_bfqq)
2490 		return NULL;
2491 
2492 	return bfqq;
2493 }
2494 
2495 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2496 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2497 {
2498 	int process_refs, new_process_refs;
2499 	struct bfq_queue *__bfqq;
2500 
2501 	/*
2502 	 * If there are no process references on the new_bfqq, then it is
2503 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2504 	 * may have dropped their last reference (not just their last process
2505 	 * reference).
2506 	 */
2507 	if (!bfqq_process_refs(new_bfqq))
2508 		return NULL;
2509 
2510 	/* Avoid a circular list and skip interim queue merges. */
2511 	while ((__bfqq = new_bfqq->new_bfqq)) {
2512 		if (__bfqq == bfqq)
2513 			return NULL;
2514 		new_bfqq = __bfqq;
2515 	}
2516 
2517 	process_refs = bfqq_process_refs(bfqq);
2518 	new_process_refs = bfqq_process_refs(new_bfqq);
2519 	/*
2520 	 * If the process for the bfqq has gone away, there is no
2521 	 * sense in merging the queues.
2522 	 */
2523 	if (process_refs == 0 || new_process_refs == 0)
2524 		return NULL;
2525 
2526 	/*
2527 	 * Make sure merged queues belong to the same parent. Parents could
2528 	 * have changed since the time we decided the two queues are suitable
2529 	 * for merging.
2530 	 */
2531 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2532 		return NULL;
2533 
2534 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2535 		new_bfqq->pid);
2536 
2537 	/*
2538 	 * Merging is just a redirection: the requests of the process
2539 	 * owning one of the two queues are redirected to the other queue.
2540 	 * The latter queue, in its turn, is set as shared if this is the
2541 	 * first time that the requests of some process are redirected to
2542 	 * it.
2543 	 *
2544 	 * We redirect bfqq to new_bfqq and not the opposite, because
2545 	 * we are in the context of the process owning bfqq, thus we
2546 	 * have the io_cq of this process. So we can immediately
2547 	 * configure this io_cq to redirect the requests of the
2548 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2549 	 * not available any more (new_bfqq->bic == NULL).
2550 	 *
2551 	 * Anyway, even in case new_bfqq coincides with the in-service
2552 	 * queue, redirecting requests the in-service queue is the
2553 	 * best option, as we feed the in-service queue with new
2554 	 * requests close to the last request served and, by doing so,
2555 	 * are likely to increase the throughput.
2556 	 */
2557 	bfqq->new_bfqq = new_bfqq;
2558 	/*
2559 	 * The above assignment schedules the following redirections:
2560 	 * each time some I/O for bfqq arrives, the process that
2561 	 * generated that I/O is disassociated from bfqq and
2562 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2563 	 * in advance, adding the number of processes that are
2564 	 * expected to be associated with new_bfqq as they happen to
2565 	 * issue I/O.
2566 	 */
2567 	new_bfqq->ref += process_refs;
2568 	return new_bfqq;
2569 }
2570 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2571 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2572 					struct bfq_queue *new_bfqq)
2573 {
2574 	if (bfq_too_late_for_merging(new_bfqq))
2575 		return false;
2576 
2577 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2578 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2579 		return false;
2580 
2581 	/*
2582 	 * If either of the queues has already been detected as seeky,
2583 	 * then merging it with the other queue is unlikely to lead to
2584 	 * sequential I/O.
2585 	 */
2586 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2587 		return false;
2588 
2589 	/*
2590 	 * Interleaved I/O is known to be done by (some) applications
2591 	 * only for reads, so it does not make sense to merge async
2592 	 * queues.
2593 	 */
2594 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2595 		return false;
2596 
2597 	return true;
2598 }
2599 
2600 /*
2601  * Attempt to schedule a merge of bfqq with the currently in-service
2602  * queue or with a close queue among the scheduled queues.  Return
2603  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2604  * structure otherwise.
2605  *
2606  * The OOM queue is not allowed to participate to cooperation: in fact, since
2607  * the requests temporarily redirected to the OOM queue could be redirected
2608  * again to dedicated queues at any time, the state needed to correctly
2609  * handle merging with the OOM queue would be quite complex and expensive
2610  * to maintain. Besides, in such a critical condition as an out of memory,
2611  * the benefits of queue merging may be little relevant, or even negligible.
2612  *
2613  * WARNING: queue merging may impair fairness among non-weight raised
2614  * queues, for at least two reasons: 1) the original weight of a
2615  * merged queue may change during the merged state, 2) even being the
2616  * weight the same, a merged queue may be bloated with many more
2617  * requests than the ones produced by its originally-associated
2618  * process.
2619  */
2620 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request)2621 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2622 		     void *io_struct, bool request)
2623 {
2624 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2625 
2626 	/* if a merge has already been setup, then proceed with that first */
2627 	if (bfqq->new_bfqq)
2628 		return bfqq->new_bfqq;
2629 
2630 	/*
2631 	 * Do not perform queue merging if the device is non
2632 	 * rotational and performs internal queueing. In fact, such a
2633 	 * device reaches a high speed through internal parallelism
2634 	 * and pipelining. This means that, to reach a high
2635 	 * throughput, it must have many requests enqueued at the same
2636 	 * time. But, in this configuration, the internal scheduling
2637 	 * algorithm of the device does exactly the job of queue
2638 	 * merging: it reorders requests so as to obtain as much as
2639 	 * possible a sequential I/O pattern. As a consequence, with
2640 	 * the workload generated by processes doing interleaved I/O,
2641 	 * the throughput reached by the device is likely to be the
2642 	 * same, with and without queue merging.
2643 	 *
2644 	 * Disabling merging also provides a remarkable benefit in
2645 	 * terms of throughput. Merging tends to make many workloads
2646 	 * artificially more uneven, because of shared queues
2647 	 * remaining non empty for incomparably more time than
2648 	 * non-merged queues. This may accentuate workload
2649 	 * asymmetries. For example, if one of the queues in a set of
2650 	 * merged queues has a higher weight than a normal queue, then
2651 	 * the shared queue may inherit such a high weight and, by
2652 	 * staying almost always active, may force BFQ to perform I/O
2653 	 * plugging most of the time. This evidently makes it harder
2654 	 * for BFQ to let the device reach a high throughput.
2655 	 *
2656 	 * Finally, the likely() macro below is not used because one
2657 	 * of the two branches is more likely than the other, but to
2658 	 * have the code path after the following if() executed as
2659 	 * fast as possible for the case of a non rotational device
2660 	 * with queueing. We want it because this is the fastest kind
2661 	 * of device. On the opposite end, the likely() may lengthen
2662 	 * the execution time of BFQ for the case of slower devices
2663 	 * (rotational or at least without queueing). But in this case
2664 	 * the execution time of BFQ matters very little, if not at
2665 	 * all.
2666 	 */
2667 	if (likely(bfqd->nonrot_with_queueing))
2668 		return NULL;
2669 
2670 	/*
2671 	 * Prevent bfqq from being merged if it has been created too
2672 	 * long ago. The idea is that true cooperating processes, and
2673 	 * thus their associated bfq_queues, are supposed to be
2674 	 * created shortly after each other. This is the case, e.g.,
2675 	 * for KVM/QEMU and dump I/O threads. Basing on this
2676 	 * assumption, the following filtering greatly reduces the
2677 	 * probability that two non-cooperating processes, which just
2678 	 * happen to do close I/O for some short time interval, have
2679 	 * their queues merged by mistake.
2680 	 */
2681 	if (bfq_too_late_for_merging(bfqq))
2682 		return NULL;
2683 
2684 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2685 		return NULL;
2686 
2687 	/* If there is only one backlogged queue, don't search. */
2688 	if (bfq_tot_busy_queues(bfqd) == 1)
2689 		return NULL;
2690 
2691 	in_service_bfqq = bfqd->in_service_queue;
2692 
2693 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2694 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2695 	    bfq_rq_close_to_sector(io_struct, request,
2696 				   bfqd->in_serv_last_pos) &&
2697 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2698 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2699 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2700 		if (new_bfqq)
2701 			return new_bfqq;
2702 	}
2703 	/*
2704 	 * Check whether there is a cooperator among currently scheduled
2705 	 * queues. The only thing we need is that the bio/request is not
2706 	 * NULL, as we need it to establish whether a cooperator exists.
2707 	 */
2708 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2709 			bfq_io_struct_pos(io_struct, request));
2710 
2711 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2712 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2713 		return bfq_setup_merge(bfqq, new_bfqq);
2714 
2715 	return NULL;
2716 }
2717 
bfq_bfqq_save_state(struct bfq_queue * bfqq)2718 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2719 {
2720 	struct bfq_io_cq *bic = bfqq->bic;
2721 
2722 	/*
2723 	 * If !bfqq->bic, the queue is already shared or its requests
2724 	 * have already been redirected to a shared queue; both idle window
2725 	 * and weight raising state have already been saved. Do nothing.
2726 	 */
2727 	if (!bic)
2728 		return;
2729 
2730 	bic->saved_weight = bfqq->entity.orig_weight;
2731 	bic->saved_ttime = bfqq->ttime;
2732 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2733 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2734 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2735 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2736 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2737 		     !bfq_bfqq_in_large_burst(bfqq) &&
2738 		     bfqq->bfqd->low_latency)) {
2739 		/*
2740 		 * bfqq being merged right after being created: bfqq
2741 		 * would have deserved interactive weight raising, but
2742 		 * did not make it to be set in a weight-raised state,
2743 		 * because of this early merge.	Store directly the
2744 		 * weight-raising state that would have been assigned
2745 		 * to bfqq, so that to avoid that bfqq unjustly fails
2746 		 * to enjoy weight raising if split soon.
2747 		 */
2748 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2749 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2750 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2751 		bic->saved_last_wr_start_finish = jiffies;
2752 	} else {
2753 		bic->saved_wr_coeff = bfqq->wr_coeff;
2754 		bic->saved_wr_start_at_switch_to_srt =
2755 			bfqq->wr_start_at_switch_to_srt;
2756 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2757 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2758 	}
2759 }
2760 
bfq_release_process_ref(struct bfq_data * bfqd,struct bfq_queue * bfqq)2761 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2762 {
2763 	/*
2764 	 * To prevent bfqq's service guarantees from being violated,
2765 	 * bfqq may be left busy, i.e., queued for service, even if
2766 	 * empty (see comments in __bfq_bfqq_expire() for
2767 	 * details). But, if no process will send requests to bfqq any
2768 	 * longer, then there is no point in keeping bfqq queued for
2769 	 * service. In addition, keeping bfqq queued for service, but
2770 	 * with no process ref any longer, may have caused bfqq to be
2771 	 * freed when dequeued from service. But this is assumed to
2772 	 * never happen.
2773 	 */
2774 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2775 	    bfqq != bfqd->in_service_queue)
2776 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2777 
2778 	bfq_put_queue(bfqq);
2779 }
2780 
2781 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2782 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2783 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2784 {
2785 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2786 		(unsigned long)new_bfqq->pid);
2787 	/* Save weight raising and idle window of the merged queues */
2788 	bfq_bfqq_save_state(bfqq);
2789 	bfq_bfqq_save_state(new_bfqq);
2790 	if (bfq_bfqq_IO_bound(bfqq))
2791 		bfq_mark_bfqq_IO_bound(new_bfqq);
2792 	bfq_clear_bfqq_IO_bound(bfqq);
2793 
2794 	/*
2795 	 * If bfqq is weight-raised, then let new_bfqq inherit
2796 	 * weight-raising. To reduce false positives, neglect the case
2797 	 * where bfqq has just been created, but has not yet made it
2798 	 * to be weight-raised (which may happen because EQM may merge
2799 	 * bfqq even before bfq_add_request is executed for the first
2800 	 * time for bfqq). Handling this case would however be very
2801 	 * easy, thanks to the flag just_created.
2802 	 */
2803 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2804 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2805 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2806 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2807 		new_bfqq->wr_start_at_switch_to_srt =
2808 			bfqq->wr_start_at_switch_to_srt;
2809 		if (bfq_bfqq_busy(new_bfqq))
2810 			bfqd->wr_busy_queues++;
2811 		new_bfqq->entity.prio_changed = 1;
2812 	}
2813 
2814 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2815 		bfqq->wr_coeff = 1;
2816 		bfqq->entity.prio_changed = 1;
2817 		if (bfq_bfqq_busy(bfqq))
2818 			bfqd->wr_busy_queues--;
2819 	}
2820 
2821 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2822 		     bfqd->wr_busy_queues);
2823 
2824 	/*
2825 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2826 	 */
2827 	bic_set_bfqq(bic, new_bfqq, true);
2828 	bfq_mark_bfqq_coop(new_bfqq);
2829 	/*
2830 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2831 	 * set new_bfqq->bic to NULL. bfqq either:
2832 	 * - does not belong to any bic any more, and hence bfqq->bic must
2833 	 *   be set to NULL, or
2834 	 * - is a queue whose owning bics have already been redirected to a
2835 	 *   different queue, hence the queue is destined to not belong to
2836 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2837 	 *   assignment causes no harm).
2838 	 */
2839 	new_bfqq->bic = NULL;
2840 	/*
2841 	 * If the queue is shared, the pid is the pid of one of the associated
2842 	 * processes. Which pid depends on the exact sequence of merge events
2843 	 * the queue underwent. So printing such a pid is useless and confusing
2844 	 * because it reports a random pid between those of the associated
2845 	 * processes.
2846 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2847 	 * a pid in logging messages.
2848 	 */
2849 	new_bfqq->pid = -1;
2850 	bfqq->bic = NULL;
2851 	bfq_release_process_ref(bfqd, bfqq);
2852 }
2853 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2854 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2855 				struct bio *bio)
2856 {
2857 	struct bfq_data *bfqd = q->elevator->elevator_data;
2858 	bool is_sync = op_is_sync(bio->bi_opf);
2859 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2860 
2861 	/*
2862 	 * Disallow merge of a sync bio into an async request.
2863 	 */
2864 	if (is_sync && !rq_is_sync(rq))
2865 		return false;
2866 
2867 	/*
2868 	 * Lookup the bfqq that this bio will be queued with. Allow
2869 	 * merge only if rq is queued there.
2870 	 */
2871 	if (!bfqq)
2872 		return false;
2873 
2874 	/*
2875 	 * We take advantage of this function to perform an early merge
2876 	 * of the queues of possible cooperating processes.
2877 	 */
2878 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2879 	if (new_bfqq) {
2880 		/*
2881 		 * bic still points to bfqq, then it has not yet been
2882 		 * redirected to some other bfq_queue, and a queue
2883 		 * merge between bfqq and new_bfqq can be safely
2884 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2885 		 * and bfqq can be put.
2886 		 */
2887 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2888 				new_bfqq);
2889 		/*
2890 		 * If we get here, bio will be queued into new_queue,
2891 		 * so use new_bfqq to decide whether bio and rq can be
2892 		 * merged.
2893 		 */
2894 		bfqq = new_bfqq;
2895 
2896 		/*
2897 		 * Change also bqfd->bio_bfqq, as
2898 		 * bfqd->bio_bic now points to new_bfqq, and
2899 		 * this function may be invoked again (and then may
2900 		 * use again bqfd->bio_bfqq).
2901 		 */
2902 		bfqd->bio_bfqq = bfqq;
2903 	}
2904 
2905 	return bfqq == RQ_BFQQ(rq);
2906 }
2907 
2908 /*
2909  * Set the maximum time for the in-service queue to consume its
2910  * budget. This prevents seeky processes from lowering the throughput.
2911  * In practice, a time-slice service scheme is used with seeky
2912  * processes.
2913  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)2914 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2915 				   struct bfq_queue *bfqq)
2916 {
2917 	unsigned int timeout_coeff;
2918 
2919 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2920 		timeout_coeff = 1;
2921 	else
2922 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2923 
2924 	bfqd->last_budget_start = ktime_get();
2925 
2926 	bfqq->budget_timeout = jiffies +
2927 		bfqd->bfq_timeout * timeout_coeff;
2928 }
2929 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)2930 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2931 				       struct bfq_queue *bfqq)
2932 {
2933 	if (bfqq) {
2934 		bfq_clear_bfqq_fifo_expire(bfqq);
2935 
2936 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2937 
2938 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2939 		    bfqq->wr_coeff > 1 &&
2940 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2941 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2942 			/*
2943 			 * For soft real-time queues, move the start
2944 			 * of the weight-raising period forward by the
2945 			 * time the queue has not received any
2946 			 * service. Otherwise, a relatively long
2947 			 * service delay is likely to cause the
2948 			 * weight-raising period of the queue to end,
2949 			 * because of the short duration of the
2950 			 * weight-raising period of a soft real-time
2951 			 * queue.  It is worth noting that this move
2952 			 * is not so dangerous for the other queues,
2953 			 * because soft real-time queues are not
2954 			 * greedy.
2955 			 *
2956 			 * To not add a further variable, we use the
2957 			 * overloaded field budget_timeout to
2958 			 * determine for how long the queue has not
2959 			 * received service, i.e., how much time has
2960 			 * elapsed since the queue expired. However,
2961 			 * this is a little imprecise, because
2962 			 * budget_timeout is set to jiffies if bfqq
2963 			 * not only expires, but also remains with no
2964 			 * request.
2965 			 */
2966 			if (time_after(bfqq->budget_timeout,
2967 				       bfqq->last_wr_start_finish))
2968 				bfqq->last_wr_start_finish +=
2969 					jiffies - bfqq->budget_timeout;
2970 			else
2971 				bfqq->last_wr_start_finish = jiffies;
2972 		}
2973 
2974 		bfq_set_budget_timeout(bfqd, bfqq);
2975 		bfq_log_bfqq(bfqd, bfqq,
2976 			     "set_in_service_queue, cur-budget = %d",
2977 			     bfqq->entity.budget);
2978 	}
2979 
2980 	bfqd->in_service_queue = bfqq;
2981 	bfqd->in_serv_last_pos = 0;
2982 }
2983 
2984 /*
2985  * Get and set a new queue for service.
2986  */
bfq_set_in_service_queue(struct bfq_data * bfqd)2987 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2988 {
2989 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2990 
2991 	__bfq_set_in_service_queue(bfqd, bfqq);
2992 	return bfqq;
2993 }
2994 
bfq_arm_slice_timer(struct bfq_data * bfqd)2995 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2996 {
2997 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2998 	u32 sl;
2999 
3000 	bfq_mark_bfqq_wait_request(bfqq);
3001 
3002 	/*
3003 	 * We don't want to idle for seeks, but we do want to allow
3004 	 * fair distribution of slice time for a process doing back-to-back
3005 	 * seeks. So allow a little bit of time for him to submit a new rq.
3006 	 */
3007 	sl = bfqd->bfq_slice_idle;
3008 	/*
3009 	 * Unless the queue is being weight-raised or the scenario is
3010 	 * asymmetric, grant only minimum idle time if the queue
3011 	 * is seeky. A long idling is preserved for a weight-raised
3012 	 * queue, or, more in general, in an asymmetric scenario,
3013 	 * because a long idling is needed for guaranteeing to a queue
3014 	 * its reserved share of the throughput (in particular, it is
3015 	 * needed if the queue has a higher weight than some other
3016 	 * queue).
3017 	 */
3018 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3019 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3020 		sl = min_t(u64, sl, BFQ_MIN_TT);
3021 	else if (bfqq->wr_coeff > 1)
3022 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3023 
3024 	bfqd->last_idling_start = ktime_get();
3025 	bfqd->last_idling_start_jiffies = jiffies;
3026 
3027 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3028 		      HRTIMER_MODE_REL);
3029 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3030 }
3031 
3032 /*
3033  * In autotuning mode, max_budget is dynamically recomputed as the
3034  * amount of sectors transferred in timeout at the estimated peak
3035  * rate. This enables BFQ to utilize a full timeslice with a full
3036  * budget, even if the in-service queue is served at peak rate. And
3037  * this maximises throughput with sequential workloads.
3038  */
bfq_calc_max_budget(struct bfq_data * bfqd)3039 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3040 {
3041 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3042 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3043 }
3044 
3045 /*
3046  * Update parameters related to throughput and responsiveness, as a
3047  * function of the estimated peak rate. See comments on
3048  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3049  */
update_thr_responsiveness_params(struct bfq_data * bfqd)3050 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3051 {
3052 	if (bfqd->bfq_user_max_budget == 0) {
3053 		bfqd->bfq_max_budget =
3054 			bfq_calc_max_budget(bfqd);
3055 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3056 	}
3057 }
3058 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)3059 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3060 				       struct request *rq)
3061 {
3062 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3063 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3064 		bfqd->peak_rate_samples = 1;
3065 		bfqd->sequential_samples = 0;
3066 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3067 			blk_rq_sectors(rq);
3068 	} else /* no new rq dispatched, just reset the number of samples */
3069 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3070 
3071 	bfq_log(bfqd,
3072 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3073 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3074 		bfqd->tot_sectors_dispatched);
3075 }
3076 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)3077 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3078 {
3079 	u32 rate, weight, divisor;
3080 
3081 	/*
3082 	 * For the convergence property to hold (see comments on
3083 	 * bfq_update_peak_rate()) and for the assessment to be
3084 	 * reliable, a minimum number of samples must be present, and
3085 	 * a minimum amount of time must have elapsed. If not so, do
3086 	 * not compute new rate. Just reset parameters, to get ready
3087 	 * for a new evaluation attempt.
3088 	 */
3089 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3090 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3091 		goto reset_computation;
3092 
3093 	/*
3094 	 * If a new request completion has occurred after last
3095 	 * dispatch, then, to approximate the rate at which requests
3096 	 * have been served by the device, it is more precise to
3097 	 * extend the observation interval to the last completion.
3098 	 */
3099 	bfqd->delta_from_first =
3100 		max_t(u64, bfqd->delta_from_first,
3101 		      bfqd->last_completion - bfqd->first_dispatch);
3102 
3103 	/*
3104 	 * Rate computed in sects/usec, and not sects/nsec, for
3105 	 * precision issues.
3106 	 */
3107 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3108 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3109 
3110 	/*
3111 	 * Peak rate not updated if:
3112 	 * - the percentage of sequential dispatches is below 3/4 of the
3113 	 *   total, and rate is below the current estimated peak rate
3114 	 * - rate is unreasonably high (> 20M sectors/sec)
3115 	 */
3116 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3117 	     rate <= bfqd->peak_rate) ||
3118 		rate > 20<<BFQ_RATE_SHIFT)
3119 		goto reset_computation;
3120 
3121 	/*
3122 	 * We have to update the peak rate, at last! To this purpose,
3123 	 * we use a low-pass filter. We compute the smoothing constant
3124 	 * of the filter as a function of the 'weight' of the new
3125 	 * measured rate.
3126 	 *
3127 	 * As can be seen in next formulas, we define this weight as a
3128 	 * quantity proportional to how sequential the workload is,
3129 	 * and to how long the observation time interval is.
3130 	 *
3131 	 * The weight runs from 0 to 8. The maximum value of the
3132 	 * weight, 8, yields the minimum value for the smoothing
3133 	 * constant. At this minimum value for the smoothing constant,
3134 	 * the measured rate contributes for half of the next value of
3135 	 * the estimated peak rate.
3136 	 *
3137 	 * So, the first step is to compute the weight as a function
3138 	 * of how sequential the workload is. Note that the weight
3139 	 * cannot reach 9, because bfqd->sequential_samples cannot
3140 	 * become equal to bfqd->peak_rate_samples, which, in its
3141 	 * turn, holds true because bfqd->sequential_samples is not
3142 	 * incremented for the first sample.
3143 	 */
3144 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3145 
3146 	/*
3147 	 * Second step: further refine the weight as a function of the
3148 	 * duration of the observation interval.
3149 	 */
3150 	weight = min_t(u32, 8,
3151 		       div_u64(weight * bfqd->delta_from_first,
3152 			       BFQ_RATE_REF_INTERVAL));
3153 
3154 	/*
3155 	 * Divisor ranging from 10, for minimum weight, to 2, for
3156 	 * maximum weight.
3157 	 */
3158 	divisor = 10 - weight;
3159 
3160 	/*
3161 	 * Finally, update peak rate:
3162 	 *
3163 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3164 	 */
3165 	bfqd->peak_rate *= divisor-1;
3166 	bfqd->peak_rate /= divisor;
3167 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3168 
3169 	bfqd->peak_rate += rate;
3170 
3171 	/*
3172 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3173 	 * the minimum representable values reported in the comments
3174 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3175 	 * divisions by zero where bfqd->peak_rate is used as a
3176 	 * divisor.
3177 	 */
3178 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3179 
3180 	update_thr_responsiveness_params(bfqd);
3181 
3182 reset_computation:
3183 	bfq_reset_rate_computation(bfqd, rq);
3184 }
3185 
3186 /*
3187  * Update the read/write peak rate (the main quantity used for
3188  * auto-tuning, see update_thr_responsiveness_params()).
3189  *
3190  * It is not trivial to estimate the peak rate (correctly): because of
3191  * the presence of sw and hw queues between the scheduler and the
3192  * device components that finally serve I/O requests, it is hard to
3193  * say exactly when a given dispatched request is served inside the
3194  * device, and for how long. As a consequence, it is hard to know
3195  * precisely at what rate a given set of requests is actually served
3196  * by the device.
3197  *
3198  * On the opposite end, the dispatch time of any request is trivially
3199  * available, and, from this piece of information, the "dispatch rate"
3200  * of requests can be immediately computed. So, the idea in the next
3201  * function is to use what is known, namely request dispatch times
3202  * (plus, when useful, request completion times), to estimate what is
3203  * unknown, namely in-device request service rate.
3204  *
3205  * The main issue is that, because of the above facts, the rate at
3206  * which a certain set of requests is dispatched over a certain time
3207  * interval can vary greatly with respect to the rate at which the
3208  * same requests are then served. But, since the size of any
3209  * intermediate queue is limited, and the service scheme is lossless
3210  * (no request is silently dropped), the following obvious convergence
3211  * property holds: the number of requests dispatched MUST become
3212  * closer and closer to the number of requests completed as the
3213  * observation interval grows. This is the key property used in
3214  * the next function to estimate the peak service rate as a function
3215  * of the observed dispatch rate. The function assumes to be invoked
3216  * on every request dispatch.
3217  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)3218 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3219 {
3220 	u64 now_ns = ktime_get_ns();
3221 
3222 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3223 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3224 			bfqd->peak_rate_samples);
3225 		bfq_reset_rate_computation(bfqd, rq);
3226 		goto update_last_values; /* will add one sample */
3227 	}
3228 
3229 	/*
3230 	 * Device idle for very long: the observation interval lasting
3231 	 * up to this dispatch cannot be a valid observation interval
3232 	 * for computing a new peak rate (similarly to the late-
3233 	 * completion event in bfq_completed_request()). Go to
3234 	 * update_rate_and_reset to have the following three steps
3235 	 * taken:
3236 	 * - close the observation interval at the last (previous)
3237 	 *   request dispatch or completion
3238 	 * - compute rate, if possible, for that observation interval
3239 	 * - start a new observation interval with this dispatch
3240 	 */
3241 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3242 	    bfqd->rq_in_driver == 0)
3243 		goto update_rate_and_reset;
3244 
3245 	/* Update sampling information */
3246 	bfqd->peak_rate_samples++;
3247 
3248 	if ((bfqd->rq_in_driver > 0 ||
3249 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3250 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3251 		bfqd->sequential_samples++;
3252 
3253 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3254 
3255 	/* Reset max observed rq size every 32 dispatches */
3256 	if (likely(bfqd->peak_rate_samples % 32))
3257 		bfqd->last_rq_max_size =
3258 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3259 	else
3260 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3261 
3262 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3263 
3264 	/* Target observation interval not yet reached, go on sampling */
3265 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3266 		goto update_last_values;
3267 
3268 update_rate_and_reset:
3269 	bfq_update_rate_reset(bfqd, rq);
3270 update_last_values:
3271 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3272 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3273 		bfqd->in_serv_last_pos = bfqd->last_position;
3274 	bfqd->last_dispatch = now_ns;
3275 }
3276 
3277 /*
3278  * Remove request from internal lists.
3279  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)3280 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3281 {
3282 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3283 
3284 	/*
3285 	 * For consistency, the next instruction should have been
3286 	 * executed after removing the request from the queue and
3287 	 * dispatching it.  We execute instead this instruction before
3288 	 * bfq_remove_request() (and hence introduce a temporary
3289 	 * inconsistency), for efficiency.  In fact, should this
3290 	 * dispatch occur for a non in-service bfqq, this anticipated
3291 	 * increment prevents two counters related to bfqq->dispatched
3292 	 * from risking to be, first, uselessly decremented, and then
3293 	 * incremented again when the (new) value of bfqq->dispatched
3294 	 * happens to be taken into account.
3295 	 */
3296 	bfqq->dispatched++;
3297 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3298 
3299 	bfq_remove_request(q, rq);
3300 }
3301 
3302 /*
3303  * There is a case where idling does not have to be performed for
3304  * throughput concerns, but to preserve the throughput share of
3305  * the process associated with bfqq.
3306  *
3307  * To introduce this case, we can note that allowing the drive
3308  * to enqueue more than one request at a time, and hence
3309  * delegating de facto final scheduling decisions to the
3310  * drive's internal scheduler, entails loss of control on the
3311  * actual request service order. In particular, the critical
3312  * situation is when requests from different processes happen
3313  * to be present, at the same time, in the internal queue(s)
3314  * of the drive. In such a situation, the drive, by deciding
3315  * the service order of the internally-queued requests, does
3316  * determine also the actual throughput distribution among
3317  * these processes. But the drive typically has no notion or
3318  * concern about per-process throughput distribution, and
3319  * makes its decisions only on a per-request basis. Therefore,
3320  * the service distribution enforced by the drive's internal
3321  * scheduler is likely to coincide with the desired throughput
3322  * distribution only in a completely symmetric, or favorably
3323  * skewed scenario where:
3324  * (i-a) each of these processes must get the same throughput as
3325  *	 the others,
3326  * (i-b) in case (i-a) does not hold, it holds that the process
3327  *       associated with bfqq must receive a lower or equal
3328  *	 throughput than any of the other processes;
3329  * (ii)  the I/O of each process has the same properties, in
3330  *       terms of locality (sequential or random), direction
3331  *       (reads or writes), request sizes, greediness
3332  *       (from I/O-bound to sporadic), and so on;
3333 
3334  * In fact, in such a scenario, the drive tends to treat the requests
3335  * of each process in about the same way as the requests of the
3336  * others, and thus to provide each of these processes with about the
3337  * same throughput.  This is exactly the desired throughput
3338  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3339  * even more convenient distribution for (the process associated with)
3340  * bfqq.
3341  *
3342  * In contrast, in any asymmetric or unfavorable scenario, device
3343  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3344  * that bfqq receives its assigned fraction of the device throughput
3345  * (see [1] for details).
3346  *
3347  * The problem is that idling may significantly reduce throughput with
3348  * certain combinations of types of I/O and devices. An important
3349  * example is sync random I/O on flash storage with command
3350  * queueing. So, unless bfqq falls in cases where idling also boosts
3351  * throughput, it is important to check conditions (i-a), i(-b) and
3352  * (ii) accurately, so as to avoid idling when not strictly needed for
3353  * service guarantees.
3354  *
3355  * Unfortunately, it is extremely difficult to thoroughly check
3356  * condition (ii). And, in case there are active groups, it becomes
3357  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3358  * if there are active groups, then, for conditions (i-a) or (i-b) to
3359  * become false 'indirectly', it is enough that an active group
3360  * contains more active processes or sub-groups than some other active
3361  * group. More precisely, for conditions (i-a) or (i-b) to become
3362  * false because of such a group, it is not even necessary that the
3363  * group is (still) active: it is sufficient that, even if the group
3364  * has become inactive, some of its descendant processes still have
3365  * some request already dispatched but still waiting for
3366  * completion. In fact, requests have still to be guaranteed their
3367  * share of the throughput even after being dispatched. In this
3368  * respect, it is easy to show that, if a group frequently becomes
3369  * inactive while still having in-flight requests, and if, when this
3370  * happens, the group is not considered in the calculation of whether
3371  * the scenario is asymmetric, then the group may fail to be
3372  * guaranteed its fair share of the throughput (basically because
3373  * idling may not be performed for the descendant processes of the
3374  * group, but it had to be).  We address this issue with the following
3375  * bi-modal behavior, implemented in the function
3376  * bfq_asymmetric_scenario().
3377  *
3378  * If there are groups with requests waiting for completion
3379  * (as commented above, some of these groups may even be
3380  * already inactive), then the scenario is tagged as
3381  * asymmetric, conservatively, without checking any of the
3382  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3383  * This behavior matches also the fact that groups are created
3384  * exactly if controlling I/O is a primary concern (to
3385  * preserve bandwidth and latency guarantees).
3386  *
3387  * On the opposite end, if there are no groups with requests waiting
3388  * for completion, then only conditions (i-a) and (i-b) are actually
3389  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3390  * idling is not performed, regardless of whether condition (ii)
3391  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3392  * hold, then idling is allowed, and the device tends to be prevented
3393  * from queueing many requests, possibly of several processes. Since
3394  * there are no groups with requests waiting for completion, then, to
3395  * control conditions (i-a) and (i-b) it is enough to check just
3396  * whether all the queues with requests waiting for completion also
3397  * have the same weight.
3398  *
3399  * Not checking condition (ii) evidently exposes bfqq to the
3400  * risk of getting less throughput than its fair share.
3401  * However, for queues with the same weight, a further
3402  * mechanism, preemption, mitigates or even eliminates this
3403  * problem. And it does so without consequences on overall
3404  * throughput. This mechanism and its benefits are explained
3405  * in the next three paragraphs.
3406  *
3407  * Even if a queue, say Q, is expired when it remains idle, Q
3408  * can still preempt the new in-service queue if the next
3409  * request of Q arrives soon (see the comments on
3410  * bfq_bfqq_update_budg_for_activation). If all queues and
3411  * groups have the same weight, this form of preemption,
3412  * combined with the hole-recovery heuristic described in the
3413  * comments on function bfq_bfqq_update_budg_for_activation,
3414  * are enough to preserve a correct bandwidth distribution in
3415  * the mid term, even without idling. In fact, even if not
3416  * idling allows the internal queues of the device to contain
3417  * many requests, and thus to reorder requests, we can rather
3418  * safely assume that the internal scheduler still preserves a
3419  * minimum of mid-term fairness.
3420  *
3421  * More precisely, this preemption-based, idleless approach
3422  * provides fairness in terms of IOPS, and not sectors per
3423  * second. This can be seen with a simple example. Suppose
3424  * that there are two queues with the same weight, but that
3425  * the first queue receives requests of 8 sectors, while the
3426  * second queue receives requests of 1024 sectors. In
3427  * addition, suppose that each of the two queues contains at
3428  * most one request at a time, which implies that each queue
3429  * always remains idle after it is served. Finally, after
3430  * remaining idle, each queue receives very quickly a new
3431  * request. It follows that the two queues are served
3432  * alternatively, preempting each other if needed. This
3433  * implies that, although both queues have the same weight,
3434  * the queue with large requests receives a service that is
3435  * 1024/8 times as high as the service received by the other
3436  * queue.
3437  *
3438  * The motivation for using preemption instead of idling (for
3439  * queues with the same weight) is that, by not idling,
3440  * service guarantees are preserved (completely or at least in
3441  * part) without minimally sacrificing throughput. And, if
3442  * there is no active group, then the primary expectation for
3443  * this device is probably a high throughput.
3444  *
3445  * We are now left only with explaining the two sub-conditions in the
3446  * additional compound condition that is checked below for deciding
3447  * whether the scenario is asymmetric. To explain the first
3448  * sub-condition, we need to add that the function
3449  * bfq_asymmetric_scenario checks the weights of only
3450  * non-weight-raised queues, for efficiency reasons (see comments on
3451  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3452  * is checked explicitly here. More precisely, the compound condition
3453  * below takes into account also the fact that, even if bfqq is being
3454  * weight-raised, the scenario is still symmetric if all queues with
3455  * requests waiting for completion happen to be
3456  * weight-raised. Actually, we should be even more precise here, and
3457  * differentiate between interactive weight raising and soft real-time
3458  * weight raising.
3459  *
3460  * The second sub-condition checked in the compound condition is
3461  * whether there is a fair amount of already in-flight I/O not
3462  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3463  * following reason. The drive may decide to serve in-flight
3464  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3465  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3466  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3467  * basically uncontrolled amount of I/O from other queues may be
3468  * dispatched too, possibly causing the service of bfqq's I/O to be
3469  * delayed even longer in the drive. This problem gets more and more
3470  * serious as the speed and the queue depth of the drive grow,
3471  * because, as these two quantities grow, the probability to find no
3472  * queue busy but many requests in flight grows too. By contrast,
3473  * plugging I/O dispatching minimizes the delay induced by already
3474  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3475  * lose because of this delay.
3476  *
3477  * As a side note, it is worth considering that the above
3478  * device-idling countermeasures may however fail in the following
3479  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3480  * in a time period during which all symmetry sub-conditions hold, and
3481  * therefore the device is allowed to enqueue many requests, but at
3482  * some later point in time some sub-condition stops to hold, then it
3483  * may become impossible to make requests be served in the desired
3484  * order until all the requests already queued in the device have been
3485  * served. The last sub-condition commented above somewhat mitigates
3486  * this problem for weight-raised queues.
3487  */
idling_needed_for_service_guarantees(struct bfq_data * bfqd,struct bfq_queue * bfqq)3488 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3489 						 struct bfq_queue *bfqq)
3490 {
3491 	/* No point in idling for bfqq if it won't get requests any longer */
3492 	if (unlikely(!bfqq_process_refs(bfqq)))
3493 		return false;
3494 
3495 	return (bfqq->wr_coeff > 1 &&
3496 		(bfqd->wr_busy_queues <
3497 		 bfq_tot_busy_queues(bfqd) ||
3498 		 bfqd->rq_in_driver >=
3499 		 bfqq->dispatched + 4)) ||
3500 		bfq_asymmetric_scenario(bfqd, bfqq);
3501 }
3502 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3503 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3504 			      enum bfqq_expiration reason)
3505 {
3506 	/*
3507 	 * If this bfqq is shared between multiple processes, check
3508 	 * to make sure that those processes are still issuing I/Os
3509 	 * within the mean seek distance. If not, it may be time to
3510 	 * break the queues apart again.
3511 	 */
3512 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3513 		bfq_mark_bfqq_split_coop(bfqq);
3514 
3515 	/*
3516 	 * Consider queues with a higher finish virtual time than
3517 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3518 	 * true, then bfqq's bandwidth would be violated if an
3519 	 * uncontrolled amount of I/O from these queues were
3520 	 * dispatched while bfqq is waiting for its new I/O to
3521 	 * arrive. This is exactly what may happen if this is a forced
3522 	 * expiration caused by a preemption attempt, and if bfqq is
3523 	 * not re-scheduled. To prevent this from happening, re-queue
3524 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3525 	 * empty. By doing so, bfqq is granted to be served before the
3526 	 * above queues (provided that bfqq is of course eligible).
3527 	 */
3528 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3529 	    !(reason == BFQQE_PREEMPTED &&
3530 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3531 		if (bfqq->dispatched == 0)
3532 			/*
3533 			 * Overloading budget_timeout field to store
3534 			 * the time at which the queue remains with no
3535 			 * backlog and no outstanding request; used by
3536 			 * the weight-raising mechanism.
3537 			 */
3538 			bfqq->budget_timeout = jiffies;
3539 
3540 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3541 	} else {
3542 		bfq_requeue_bfqq(bfqd, bfqq, true);
3543 		/*
3544 		 * Resort priority tree of potential close cooperators.
3545 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3546 		 */
3547 		if (unlikely(!bfqd->nonrot_with_queueing &&
3548 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3549 			bfq_pos_tree_add_move(bfqd, bfqq);
3550 	}
3551 
3552 	/*
3553 	 * All in-service entities must have been properly deactivated
3554 	 * or requeued before executing the next function, which
3555 	 * resets all in-service entities as no more in service. This
3556 	 * may cause bfqq to be freed. If this happens, the next
3557 	 * function returns true.
3558 	 */
3559 	return __bfq_bfqd_reset_in_service(bfqd);
3560 }
3561 
3562 /**
3563  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3564  * @bfqd: device data.
3565  * @bfqq: queue to update.
3566  * @reason: reason for expiration.
3567  *
3568  * Handle the feedback on @bfqq budget at queue expiration.
3569  * See the body for detailed comments.
3570  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3571 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3572 				     struct bfq_queue *bfqq,
3573 				     enum bfqq_expiration reason)
3574 {
3575 	struct request *next_rq;
3576 	int budget, min_budget;
3577 
3578 	min_budget = bfq_min_budget(bfqd);
3579 
3580 	if (bfqq->wr_coeff == 1)
3581 		budget = bfqq->max_budget;
3582 	else /*
3583 	      * Use a constant, low budget for weight-raised queues,
3584 	      * to help achieve a low latency. Keep it slightly higher
3585 	      * than the minimum possible budget, to cause a little
3586 	      * bit fewer expirations.
3587 	      */
3588 		budget = 2 * min_budget;
3589 
3590 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3591 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3592 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3593 		budget, bfq_min_budget(bfqd));
3594 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3595 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3596 
3597 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3598 		switch (reason) {
3599 		/*
3600 		 * Caveat: in all the following cases we trade latency
3601 		 * for throughput.
3602 		 */
3603 		case BFQQE_TOO_IDLE:
3604 			/*
3605 			 * This is the only case where we may reduce
3606 			 * the budget: if there is no request of the
3607 			 * process still waiting for completion, then
3608 			 * we assume (tentatively) that the timer has
3609 			 * expired because the batch of requests of
3610 			 * the process could have been served with a
3611 			 * smaller budget.  Hence, betting that
3612 			 * process will behave in the same way when it
3613 			 * becomes backlogged again, we reduce its
3614 			 * next budget.  As long as we guess right,
3615 			 * this budget cut reduces the latency
3616 			 * experienced by the process.
3617 			 *
3618 			 * However, if there are still outstanding
3619 			 * requests, then the process may have not yet
3620 			 * issued its next request just because it is
3621 			 * still waiting for the completion of some of
3622 			 * the still outstanding ones.  So in this
3623 			 * subcase we do not reduce its budget, on the
3624 			 * contrary we increase it to possibly boost
3625 			 * the throughput, as discussed in the
3626 			 * comments to the BUDGET_TIMEOUT case.
3627 			 */
3628 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3629 				budget = min(budget * 2, bfqd->bfq_max_budget);
3630 			else {
3631 				if (budget > 5 * min_budget)
3632 					budget -= 4 * min_budget;
3633 				else
3634 					budget = min_budget;
3635 			}
3636 			break;
3637 		case BFQQE_BUDGET_TIMEOUT:
3638 			/*
3639 			 * We double the budget here because it gives
3640 			 * the chance to boost the throughput if this
3641 			 * is not a seeky process (and has bumped into
3642 			 * this timeout because of, e.g., ZBR).
3643 			 */
3644 			budget = min(budget * 2, bfqd->bfq_max_budget);
3645 			break;
3646 		case BFQQE_BUDGET_EXHAUSTED:
3647 			/*
3648 			 * The process still has backlog, and did not
3649 			 * let either the budget timeout or the disk
3650 			 * idling timeout expire. Hence it is not
3651 			 * seeky, has a short thinktime and may be
3652 			 * happy with a higher budget too. So
3653 			 * definitely increase the budget of this good
3654 			 * candidate to boost the disk throughput.
3655 			 */
3656 			budget = min(budget * 4, bfqd->bfq_max_budget);
3657 			break;
3658 		case BFQQE_NO_MORE_REQUESTS:
3659 			/*
3660 			 * For queues that expire for this reason, it
3661 			 * is particularly important to keep the
3662 			 * budget close to the actual service they
3663 			 * need. Doing so reduces the timestamp
3664 			 * misalignment problem described in the
3665 			 * comments in the body of
3666 			 * __bfq_activate_entity. In fact, suppose
3667 			 * that a queue systematically expires for
3668 			 * BFQQE_NO_MORE_REQUESTS and presents a
3669 			 * new request in time to enjoy timestamp
3670 			 * back-shifting. The larger the budget of the
3671 			 * queue is with respect to the service the
3672 			 * queue actually requests in each service
3673 			 * slot, the more times the queue can be
3674 			 * reactivated with the same virtual finish
3675 			 * time. It follows that, even if this finish
3676 			 * time is pushed to the system virtual time
3677 			 * to reduce the consequent timestamp
3678 			 * misalignment, the queue unjustly enjoys for
3679 			 * many re-activations a lower finish time
3680 			 * than all newly activated queues.
3681 			 *
3682 			 * The service needed by bfqq is measured
3683 			 * quite precisely by bfqq->entity.service.
3684 			 * Since bfqq does not enjoy device idling,
3685 			 * bfqq->entity.service is equal to the number
3686 			 * of sectors that the process associated with
3687 			 * bfqq requested to read/write before waiting
3688 			 * for request completions, or blocking for
3689 			 * other reasons.
3690 			 */
3691 			budget = max_t(int, bfqq->entity.service, min_budget);
3692 			break;
3693 		default:
3694 			return;
3695 		}
3696 	} else if (!bfq_bfqq_sync(bfqq)) {
3697 		/*
3698 		 * Async queues get always the maximum possible
3699 		 * budget, as for them we do not care about latency
3700 		 * (in addition, their ability to dispatch is limited
3701 		 * by the charging factor).
3702 		 */
3703 		budget = bfqd->bfq_max_budget;
3704 	}
3705 
3706 	bfqq->max_budget = budget;
3707 
3708 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3709 	    !bfqd->bfq_user_max_budget)
3710 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3711 
3712 	/*
3713 	 * If there is still backlog, then assign a new budget, making
3714 	 * sure that it is large enough for the next request.  Since
3715 	 * the finish time of bfqq must be kept in sync with the
3716 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3717 	 * update.
3718 	 *
3719 	 * If there is no backlog, then no need to update the budget;
3720 	 * it will be updated on the arrival of a new request.
3721 	 */
3722 	next_rq = bfqq->next_rq;
3723 	if (next_rq)
3724 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3725 					    bfq_serv_to_charge(next_rq, bfqq));
3726 
3727 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3728 			next_rq ? blk_rq_sectors(next_rq) : 0,
3729 			bfqq->entity.budget);
3730 }
3731 
3732 /*
3733  * Return true if the process associated with bfqq is "slow". The slow
3734  * flag is used, in addition to the budget timeout, to reduce the
3735  * amount of service provided to seeky processes, and thus reduce
3736  * their chances to lower the throughput. More details in the comments
3737  * on the function bfq_bfqq_expire().
3738  *
3739  * An important observation is in order: as discussed in the comments
3740  * on the function bfq_update_peak_rate(), with devices with internal
3741  * queues, it is hard if ever possible to know when and for how long
3742  * an I/O request is processed by the device (apart from the trivial
3743  * I/O pattern where a new request is dispatched only after the
3744  * previous one has been completed). This makes it hard to evaluate
3745  * the real rate at which the I/O requests of each bfq_queue are
3746  * served.  In fact, for an I/O scheduler like BFQ, serving a
3747  * bfq_queue means just dispatching its requests during its service
3748  * slot (i.e., until the budget of the queue is exhausted, or the
3749  * queue remains idle, or, finally, a timeout fires). But, during the
3750  * service slot of a bfq_queue, around 100 ms at most, the device may
3751  * be even still processing requests of bfq_queues served in previous
3752  * service slots. On the opposite end, the requests of the in-service
3753  * bfq_queue may be completed after the service slot of the queue
3754  * finishes.
3755  *
3756  * Anyway, unless more sophisticated solutions are used
3757  * (where possible), the sum of the sizes of the requests dispatched
3758  * during the service slot of a bfq_queue is probably the only
3759  * approximation available for the service received by the bfq_queue
3760  * during its service slot. And this sum is the quantity used in this
3761  * function to evaluate the I/O speed of a process.
3762  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)3763 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3764 				 bool compensate, enum bfqq_expiration reason,
3765 				 unsigned long *delta_ms)
3766 {
3767 	ktime_t delta_ktime;
3768 	u32 delta_usecs;
3769 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3770 
3771 	if (!bfq_bfqq_sync(bfqq))
3772 		return false;
3773 
3774 	if (compensate)
3775 		delta_ktime = bfqd->last_idling_start;
3776 	else
3777 		delta_ktime = ktime_get();
3778 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3779 	delta_usecs = ktime_to_us(delta_ktime);
3780 
3781 	/* don't use too short time intervals */
3782 	if (delta_usecs < 1000) {
3783 		if (blk_queue_nonrot(bfqd->queue))
3784 			 /*
3785 			  * give same worst-case guarantees as idling
3786 			  * for seeky
3787 			  */
3788 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3789 		else /* charge at least one seek */
3790 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3791 
3792 		return slow;
3793 	}
3794 
3795 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3796 
3797 	/*
3798 	 * Use only long (> 20ms) intervals to filter out excessive
3799 	 * spikes in service rate estimation.
3800 	 */
3801 	if (delta_usecs > 20000) {
3802 		/*
3803 		 * Caveat for rotational devices: processes doing I/O
3804 		 * in the slower disk zones tend to be slow(er) even
3805 		 * if not seeky. In this respect, the estimated peak
3806 		 * rate is likely to be an average over the disk
3807 		 * surface. Accordingly, to not be too harsh with
3808 		 * unlucky processes, a process is deemed slow only if
3809 		 * its rate has been lower than half of the estimated
3810 		 * peak rate.
3811 		 */
3812 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3813 	}
3814 
3815 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3816 
3817 	return slow;
3818 }
3819 
3820 /*
3821  * To be deemed as soft real-time, an application must meet two
3822  * requirements. First, the application must not require an average
3823  * bandwidth higher than the approximate bandwidth required to playback or
3824  * record a compressed high-definition video.
3825  * The next function is invoked on the completion of the last request of a
3826  * batch, to compute the next-start time instant, soft_rt_next_start, such
3827  * that, if the next request of the application does not arrive before
3828  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3829  *
3830  * The second requirement is that the request pattern of the application is
3831  * isochronous, i.e., that, after issuing a request or a batch of requests,
3832  * the application stops issuing new requests until all its pending requests
3833  * have been completed. After that, the application may issue a new batch,
3834  * and so on.
3835  * For this reason the next function is invoked to compute
3836  * soft_rt_next_start only for applications that meet this requirement,
3837  * whereas soft_rt_next_start is set to infinity for applications that do
3838  * not.
3839  *
3840  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3841  * happen to meet, occasionally or systematically, both the above
3842  * bandwidth and isochrony requirements. This may happen at least in
3843  * the following circumstances. First, if the CPU load is high. The
3844  * application may stop issuing requests while the CPUs are busy
3845  * serving other processes, then restart, then stop again for a while,
3846  * and so on. The other circumstances are related to the storage
3847  * device: the storage device is highly loaded or reaches a low-enough
3848  * throughput with the I/O of the application (e.g., because the I/O
3849  * is random and/or the device is slow). In all these cases, the
3850  * I/O of the application may be simply slowed down enough to meet
3851  * the bandwidth and isochrony requirements. To reduce the probability
3852  * that greedy applications are deemed as soft real-time in these
3853  * corner cases, a further rule is used in the computation of
3854  * soft_rt_next_start: the return value of this function is forced to
3855  * be higher than the maximum between the following two quantities.
3856  *
3857  * (a) Current time plus: (1) the maximum time for which the arrival
3858  *     of a request is waited for when a sync queue becomes idle,
3859  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3860  *     postpone for a moment the reason for adding a few extra
3861  *     jiffies; we get back to it after next item (b).  Lower-bounding
3862  *     the return value of this function with the current time plus
3863  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3864  *     because the latter issue their next request as soon as possible
3865  *     after the last one has been completed. In contrast, a soft
3866  *     real-time application spends some time processing data, after a
3867  *     batch of its requests has been completed.
3868  *
3869  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3870  *     above, greedy applications may happen to meet both the
3871  *     bandwidth and isochrony requirements under heavy CPU or
3872  *     storage-device load. In more detail, in these scenarios, these
3873  *     applications happen, only for limited time periods, to do I/O
3874  *     slowly enough to meet all the requirements described so far,
3875  *     including the filtering in above item (a). These slow-speed
3876  *     time intervals are usually interspersed between other time
3877  *     intervals during which these applications do I/O at a very high
3878  *     speed. Fortunately, exactly because of the high speed of the
3879  *     I/O in the high-speed intervals, the values returned by this
3880  *     function happen to be so high, near the end of any such
3881  *     high-speed interval, to be likely to fall *after* the end of
3882  *     the low-speed time interval that follows. These high values are
3883  *     stored in bfqq->soft_rt_next_start after each invocation of
3884  *     this function. As a consequence, if the last value of
3885  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3886  *     next value that this function may return, then, from the very
3887  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3888  *     likely to be constantly kept so high that any I/O request
3889  *     issued during the low-speed interval is considered as arriving
3890  *     to soon for the application to be deemed as soft
3891  *     real-time. Then, in the high-speed interval that follows, the
3892  *     application will not be deemed as soft real-time, just because
3893  *     it will do I/O at a high speed. And so on.
3894  *
3895  * Getting back to the filtering in item (a), in the following two
3896  * cases this filtering might be easily passed by a greedy
3897  * application, if the reference quantity was just
3898  * bfqd->bfq_slice_idle:
3899  * 1) HZ is so low that the duration of a jiffy is comparable to or
3900  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3901  *    devices with HZ=100. The time granularity may be so coarse
3902  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3903  *    is rather lower than the exact value.
3904  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3905  *    for a while, then suddenly 'jump' by several units to recover the lost
3906  *    increments. This seems to happen, e.g., inside virtual machines.
3907  * To address this issue, in the filtering in (a) we do not use as a
3908  * reference time interval just bfqd->bfq_slice_idle, but
3909  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3910  * minimum number of jiffies for which the filter seems to be quite
3911  * precise also in embedded systems and KVM/QEMU virtual machines.
3912  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)3913 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3914 						struct bfq_queue *bfqq)
3915 {
3916 	return max3(bfqq->soft_rt_next_start,
3917 		    bfqq->last_idle_bklogged +
3918 		    HZ * bfqq->service_from_backlogged /
3919 		    bfqd->bfq_wr_max_softrt_rate,
3920 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3921 }
3922 
3923 /**
3924  * bfq_bfqq_expire - expire a queue.
3925  * @bfqd: device owning the queue.
3926  * @bfqq: the queue to expire.
3927  * @compensate: if true, compensate for the time spent idling.
3928  * @reason: the reason causing the expiration.
3929  *
3930  * If the process associated with bfqq does slow I/O (e.g., because it
3931  * issues random requests), we charge bfqq with the time it has been
3932  * in service instead of the service it has received (see
3933  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3934  * a consequence, bfqq will typically get higher timestamps upon
3935  * reactivation, and hence it will be rescheduled as if it had
3936  * received more service than what it has actually received. In the
3937  * end, bfqq receives less service in proportion to how slowly its
3938  * associated process consumes its budgets (and hence how seriously it
3939  * tends to lower the throughput). In addition, this time-charging
3940  * strategy guarantees time fairness among slow processes. In
3941  * contrast, if the process associated with bfqq is not slow, we
3942  * charge bfqq exactly with the service it has received.
3943  *
3944  * Charging time to the first type of queues and the exact service to
3945  * the other has the effect of using the WF2Q+ policy to schedule the
3946  * former on a timeslice basis, without violating service domain
3947  * guarantees among the latter.
3948  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)3949 void bfq_bfqq_expire(struct bfq_data *bfqd,
3950 		     struct bfq_queue *bfqq,
3951 		     bool compensate,
3952 		     enum bfqq_expiration reason)
3953 {
3954 	bool slow;
3955 	unsigned long delta = 0;
3956 	struct bfq_entity *entity = &bfqq->entity;
3957 
3958 	/*
3959 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3960 	 */
3961 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3962 
3963 	/*
3964 	 * As above explained, charge slow (typically seeky) and
3965 	 * timed-out queues with the time and not the service
3966 	 * received, to favor sequential workloads.
3967 	 *
3968 	 * Processes doing I/O in the slower disk zones will tend to
3969 	 * be slow(er) even if not seeky. Therefore, since the
3970 	 * estimated peak rate is actually an average over the disk
3971 	 * surface, these processes may timeout just for bad luck. To
3972 	 * avoid punishing them, do not charge time to processes that
3973 	 * succeeded in consuming at least 2/3 of their budget. This
3974 	 * allows BFQ to preserve enough elasticity to still perform
3975 	 * bandwidth, and not time, distribution with little unlucky
3976 	 * or quasi-sequential processes.
3977 	 */
3978 	if (bfqq->wr_coeff == 1 &&
3979 	    (slow ||
3980 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3981 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3982 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3983 
3984 	if (reason == BFQQE_TOO_IDLE &&
3985 	    entity->service <= 2 * entity->budget / 10)
3986 		bfq_clear_bfqq_IO_bound(bfqq);
3987 
3988 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3989 		bfqq->last_wr_start_finish = jiffies;
3990 
3991 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3992 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3993 		/*
3994 		 * If we get here, and there are no outstanding
3995 		 * requests, then the request pattern is isochronous
3996 		 * (see the comments on the function
3997 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3998 		 * soft_rt_next_start. And we do it, unless bfqq is in
3999 		 * interactive weight raising. We do not do it in the
4000 		 * latter subcase, for the following reason. bfqq may
4001 		 * be conveying the I/O needed to load a soft
4002 		 * real-time application. Such an application will
4003 		 * actually exhibit a soft real-time I/O pattern after
4004 		 * it finally starts doing its job. But, if
4005 		 * soft_rt_next_start is computed here for an
4006 		 * interactive bfqq, and bfqq had received a lot of
4007 		 * service before remaining with no outstanding
4008 		 * request (likely to happen on a fast device), then
4009 		 * soft_rt_next_start would be assigned such a high
4010 		 * value that, for a very long time, bfqq would be
4011 		 * prevented from being possibly considered as soft
4012 		 * real time.
4013 		 *
4014 		 * If, instead, the queue still has outstanding
4015 		 * requests, then we have to wait for the completion
4016 		 * of all the outstanding requests to discover whether
4017 		 * the request pattern is actually isochronous.
4018 		 */
4019 		if (bfqq->dispatched == 0 &&
4020 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
4021 			bfqq->soft_rt_next_start =
4022 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4023 		else if (bfqq->dispatched > 0) {
4024 			/*
4025 			 * Schedule an update of soft_rt_next_start to when
4026 			 * the task may be discovered to be isochronous.
4027 			 */
4028 			bfq_mark_bfqq_softrt_update(bfqq);
4029 		}
4030 	}
4031 
4032 	bfq_log_bfqq(bfqd, bfqq,
4033 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4034 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4035 
4036 	/*
4037 	 * bfqq expired, so no total service time needs to be computed
4038 	 * any longer: reset state machine for measuring total service
4039 	 * times.
4040 	 */
4041 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4042 	bfqd->waited_rq = NULL;
4043 
4044 	/*
4045 	 * Increase, decrease or leave budget unchanged according to
4046 	 * reason.
4047 	 */
4048 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4049 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4050 		/* bfqq is gone, no more actions on it */
4051 		return;
4052 
4053 	/* mark bfqq as waiting a request only if a bic still points to it */
4054 	if (!bfq_bfqq_busy(bfqq) &&
4055 	    reason != BFQQE_BUDGET_TIMEOUT &&
4056 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4057 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4058 		/*
4059 		 * Not setting service to 0, because, if the next rq
4060 		 * arrives in time, the queue will go on receiving
4061 		 * service with this same budget (as if it never expired)
4062 		 */
4063 	} else
4064 		entity->service = 0;
4065 
4066 	/*
4067 	 * Reset the received-service counter for every parent entity.
4068 	 * Differently from what happens with bfqq->entity.service,
4069 	 * the resetting of this counter never needs to be postponed
4070 	 * for parent entities. In fact, in case bfqq may have a
4071 	 * chance to go on being served using the last, partially
4072 	 * consumed budget, bfqq->entity.service needs to be kept,
4073 	 * because if bfqq then actually goes on being served using
4074 	 * the same budget, the last value of bfqq->entity.service is
4075 	 * needed to properly decrement bfqq->entity.budget by the
4076 	 * portion already consumed. In contrast, it is not necessary
4077 	 * to keep entity->service for parent entities too, because
4078 	 * the bubble up of the new value of bfqq->entity.budget will
4079 	 * make sure that the budgets of parent entities are correct,
4080 	 * even in case bfqq and thus parent entities go on receiving
4081 	 * service with the same budget.
4082 	 */
4083 	entity = entity->parent;
4084 	for_each_entity(entity)
4085 		entity->service = 0;
4086 }
4087 
4088 /*
4089  * Budget timeout is not implemented through a dedicated timer, but
4090  * just checked on request arrivals and completions, as well as on
4091  * idle timer expirations.
4092  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)4093 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4094 {
4095 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4096 }
4097 
4098 /*
4099  * If we expire a queue that is actively waiting (i.e., with the
4100  * device idled) for the arrival of a new request, then we may incur
4101  * the timestamp misalignment problem described in the body of the
4102  * function __bfq_activate_entity. Hence we return true only if this
4103  * condition does not hold, or if the queue is slow enough to deserve
4104  * only to be kicked off for preserving a high throughput.
4105  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)4106 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4107 {
4108 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4109 		"may_budget_timeout: wait_request %d left %d timeout %d",
4110 		bfq_bfqq_wait_request(bfqq),
4111 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4112 		bfq_bfqq_budget_timeout(bfqq));
4113 
4114 	return (!bfq_bfqq_wait_request(bfqq) ||
4115 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4116 		&&
4117 		bfq_bfqq_budget_timeout(bfqq);
4118 }
4119 
idling_boosts_thr_without_issues(struct bfq_data * bfqd,struct bfq_queue * bfqq)4120 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4121 					     struct bfq_queue *bfqq)
4122 {
4123 	bool rot_without_queueing =
4124 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4125 		bfqq_sequential_and_IO_bound,
4126 		idling_boosts_thr;
4127 
4128 	/* No point in idling for bfqq if it won't get requests any longer */
4129 	if (unlikely(!bfqq_process_refs(bfqq)))
4130 		return false;
4131 
4132 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4133 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4134 
4135 	/*
4136 	 * The next variable takes into account the cases where idling
4137 	 * boosts the throughput.
4138 	 *
4139 	 * The value of the variable is computed considering, first, that
4140 	 * idling is virtually always beneficial for the throughput if:
4141 	 * (a) the device is not NCQ-capable and rotational, or
4142 	 * (b) regardless of the presence of NCQ, the device is rotational and
4143 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4144 	 * (c) regardless of whether it is rotational, the device is
4145 	 *     not NCQ-capable and the request pattern for bfqq is
4146 	 *     I/O-bound and sequential.
4147 	 *
4148 	 * Secondly, and in contrast to the above item (b), idling an
4149 	 * NCQ-capable flash-based device would not boost the
4150 	 * throughput even with sequential I/O; rather it would lower
4151 	 * the throughput in proportion to how fast the device
4152 	 * is. Accordingly, the next variable is true if any of the
4153 	 * above conditions (a), (b) or (c) is true, and, in
4154 	 * particular, happens to be false if bfqd is an NCQ-capable
4155 	 * flash-based device.
4156 	 */
4157 	idling_boosts_thr = rot_without_queueing ||
4158 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4159 		 bfqq_sequential_and_IO_bound);
4160 
4161 	/*
4162 	 * The return value of this function is equal to that of
4163 	 * idling_boosts_thr, unless a special case holds. In this
4164 	 * special case, described below, idling may cause problems to
4165 	 * weight-raised queues.
4166 	 *
4167 	 * When the request pool is saturated (e.g., in the presence
4168 	 * of write hogs), if the processes associated with
4169 	 * non-weight-raised queues ask for requests at a lower rate,
4170 	 * then processes associated with weight-raised queues have a
4171 	 * higher probability to get a request from the pool
4172 	 * immediately (or at least soon) when they need one. Thus
4173 	 * they have a higher probability to actually get a fraction
4174 	 * of the device throughput proportional to their high
4175 	 * weight. This is especially true with NCQ-capable drives,
4176 	 * which enqueue several requests in advance, and further
4177 	 * reorder internally-queued requests.
4178 	 *
4179 	 * For this reason, we force to false the return value if
4180 	 * there are weight-raised busy queues. In this case, and if
4181 	 * bfqq is not weight-raised, this guarantees that the device
4182 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4183 	 * then idling will be guaranteed by another variable, see
4184 	 * below). Combined with the timestamping rules of BFQ (see
4185 	 * [1] for details), this behavior causes bfqq, and hence any
4186 	 * sync non-weight-raised queue, to get a lower number of
4187 	 * requests served, and thus to ask for a lower number of
4188 	 * requests from the request pool, before the busy
4189 	 * weight-raised queues get served again. This often mitigates
4190 	 * starvation problems in the presence of heavy write
4191 	 * workloads and NCQ, thereby guaranteeing a higher
4192 	 * application and system responsiveness in these hostile
4193 	 * scenarios.
4194 	 */
4195 	return idling_boosts_thr &&
4196 		bfqd->wr_busy_queues == 0;
4197 }
4198 
4199 /*
4200  * For a queue that becomes empty, device idling is allowed only if
4201  * this function returns true for that queue. As a consequence, since
4202  * device idling plays a critical role for both throughput boosting
4203  * and service guarantees, the return value of this function plays a
4204  * critical role as well.
4205  *
4206  * In a nutshell, this function returns true only if idling is
4207  * beneficial for throughput or, even if detrimental for throughput,
4208  * idling is however necessary to preserve service guarantees (low
4209  * latency, desired throughput distribution, ...). In particular, on
4210  * NCQ-capable devices, this function tries to return false, so as to
4211  * help keep the drives' internal queues full, whenever this helps the
4212  * device boost the throughput without causing any service-guarantee
4213  * issue.
4214  *
4215  * Most of the issues taken into account to get the return value of
4216  * this function are not trivial. We discuss these issues in the two
4217  * functions providing the main pieces of information needed by this
4218  * function.
4219  */
bfq_better_to_idle(struct bfq_queue * bfqq)4220 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4221 {
4222 	struct bfq_data *bfqd = bfqq->bfqd;
4223 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4224 
4225 	/* No point in idling for bfqq if it won't get requests any longer */
4226 	if (unlikely(!bfqq_process_refs(bfqq)))
4227 		return false;
4228 
4229 	if (unlikely(bfqd->strict_guarantees))
4230 		return true;
4231 
4232 	/*
4233 	 * Idling is performed only if slice_idle > 0. In addition, we
4234 	 * do not idle if
4235 	 * (a) bfqq is async
4236 	 * (b) bfqq is in the idle io prio class: in this case we do
4237 	 * not idle because we want to minimize the bandwidth that
4238 	 * queues in this class can steal to higher-priority queues
4239 	 */
4240 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4241 	   bfq_class_idle(bfqq))
4242 		return false;
4243 
4244 	idling_boosts_thr_with_no_issue =
4245 		idling_boosts_thr_without_issues(bfqd, bfqq);
4246 
4247 	idling_needed_for_service_guar =
4248 		idling_needed_for_service_guarantees(bfqd, bfqq);
4249 
4250 	/*
4251 	 * We have now the two components we need to compute the
4252 	 * return value of the function, which is true only if idling
4253 	 * either boosts the throughput (without issues), or is
4254 	 * necessary to preserve service guarantees.
4255 	 */
4256 	return idling_boosts_thr_with_no_issue ||
4257 		idling_needed_for_service_guar;
4258 }
4259 
4260 /*
4261  * If the in-service queue is empty but the function bfq_better_to_idle
4262  * returns true, then:
4263  * 1) the queue must remain in service and cannot be expired, and
4264  * 2) the device must be idled to wait for the possible arrival of a new
4265  *    request for the queue.
4266  * See the comments on the function bfq_better_to_idle for the reasons
4267  * why performing device idling is the best choice to boost the throughput
4268  * and preserve service guarantees when bfq_better_to_idle itself
4269  * returns true.
4270  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)4271 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4272 {
4273 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4274 }
4275 
4276 /*
4277  * This function chooses the queue from which to pick the next extra
4278  * I/O request to inject, if it finds a compatible queue. See the
4279  * comments on bfq_update_inject_limit() for details on the injection
4280  * mechanism, and for the definitions of the quantities mentioned
4281  * below.
4282  */
4283 static struct bfq_queue *
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)4284 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4285 {
4286 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4287 	unsigned int limit = in_serv_bfqq->inject_limit;
4288 	/*
4289 	 * If
4290 	 * - bfqq is not weight-raised and therefore does not carry
4291 	 *   time-critical I/O,
4292 	 * or
4293 	 * - regardless of whether bfqq is weight-raised, bfqq has
4294 	 *   however a long think time, during which it can absorb the
4295 	 *   effect of an appropriate number of extra I/O requests
4296 	 *   from other queues (see bfq_update_inject_limit for
4297 	 *   details on the computation of this number);
4298 	 * then injection can be performed without restrictions.
4299 	 */
4300 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4301 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4302 
4303 	/*
4304 	 * If
4305 	 * - the baseline total service time could not be sampled yet,
4306 	 *   so the inject limit happens to be still 0, and
4307 	 * - a lot of time has elapsed since the plugging of I/O
4308 	 *   dispatching started, so drive speed is being wasted
4309 	 *   significantly;
4310 	 * then temporarily raise inject limit to one request.
4311 	 */
4312 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4313 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4314 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4315 				      bfqd->bfq_slice_idle)
4316 		)
4317 		limit = 1;
4318 
4319 	if (bfqd->rq_in_driver >= limit)
4320 		return NULL;
4321 
4322 	/*
4323 	 * Linear search of the source queue for injection; but, with
4324 	 * a high probability, very few steps are needed to find a
4325 	 * candidate queue, i.e., a queue with enough budget left for
4326 	 * its next request. In fact:
4327 	 * - BFQ dynamically updates the budget of every queue so as
4328 	 *   to accommodate the expected backlog of the queue;
4329 	 * - if a queue gets all its requests dispatched as injected
4330 	 *   service, then the queue is removed from the active list
4331 	 *   (and re-added only if it gets new requests, but then it
4332 	 *   is assigned again enough budget for its new backlog).
4333 	 */
4334 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4335 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4336 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4337 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4338 		    bfq_bfqq_budget_left(bfqq)) {
4339 			/*
4340 			 * Allow for only one large in-flight request
4341 			 * on non-rotational devices, for the
4342 			 * following reason. On non-rotationl drives,
4343 			 * large requests take much longer than
4344 			 * smaller requests to be served. In addition,
4345 			 * the drive prefers to serve large requests
4346 			 * w.r.t. to small ones, if it can choose. So,
4347 			 * having more than one large requests queued
4348 			 * in the drive may easily make the next first
4349 			 * request of the in-service queue wait for so
4350 			 * long to break bfqq's service guarantees. On
4351 			 * the bright side, large requests let the
4352 			 * drive reach a very high throughput, even if
4353 			 * there is only one in-flight large request
4354 			 * at a time.
4355 			 */
4356 			if (blk_queue_nonrot(bfqd->queue) &&
4357 			    blk_rq_sectors(bfqq->next_rq) >=
4358 			    BFQQ_SECT_THR_NONROT)
4359 				limit = min_t(unsigned int, 1, limit);
4360 			else
4361 				limit = in_serv_bfqq->inject_limit;
4362 
4363 			if (bfqd->rq_in_driver < limit) {
4364 				bfqd->rqs_injected = true;
4365 				return bfqq;
4366 			}
4367 		}
4368 
4369 	return NULL;
4370 }
4371 
4372 /*
4373  * Select a queue for service.  If we have a current queue in service,
4374  * check whether to continue servicing it, or retrieve and set a new one.
4375  */
bfq_select_queue(struct bfq_data * bfqd)4376 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4377 {
4378 	struct bfq_queue *bfqq;
4379 	struct request *next_rq;
4380 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4381 
4382 	bfqq = bfqd->in_service_queue;
4383 	if (!bfqq)
4384 		goto new_queue;
4385 
4386 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4387 
4388 	/*
4389 	 * Do not expire bfqq for budget timeout if bfqq may be about
4390 	 * to enjoy device idling. The reason why, in this case, we
4391 	 * prevent bfqq from expiring is the same as in the comments
4392 	 * on the case where bfq_bfqq_must_idle() returns true, in
4393 	 * bfq_completed_request().
4394 	 */
4395 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4396 	    !bfq_bfqq_must_idle(bfqq))
4397 		goto expire;
4398 
4399 check_queue:
4400 	/*
4401 	 * This loop is rarely executed more than once. Even when it
4402 	 * happens, it is much more convenient to re-execute this loop
4403 	 * than to return NULL and trigger a new dispatch to get a
4404 	 * request served.
4405 	 */
4406 	next_rq = bfqq->next_rq;
4407 	/*
4408 	 * If bfqq has requests queued and it has enough budget left to
4409 	 * serve them, keep the queue, otherwise expire it.
4410 	 */
4411 	if (next_rq) {
4412 		if (bfq_serv_to_charge(next_rq, bfqq) >
4413 			bfq_bfqq_budget_left(bfqq)) {
4414 			/*
4415 			 * Expire the queue for budget exhaustion,
4416 			 * which makes sure that the next budget is
4417 			 * enough to serve the next request, even if
4418 			 * it comes from the fifo expired path.
4419 			 */
4420 			reason = BFQQE_BUDGET_EXHAUSTED;
4421 			goto expire;
4422 		} else {
4423 			/*
4424 			 * The idle timer may be pending because we may
4425 			 * not disable disk idling even when a new request
4426 			 * arrives.
4427 			 */
4428 			if (bfq_bfqq_wait_request(bfqq)) {
4429 				/*
4430 				 * If we get here: 1) at least a new request
4431 				 * has arrived but we have not disabled the
4432 				 * timer because the request was too small,
4433 				 * 2) then the block layer has unplugged
4434 				 * the device, causing the dispatch to be
4435 				 * invoked.
4436 				 *
4437 				 * Since the device is unplugged, now the
4438 				 * requests are probably large enough to
4439 				 * provide a reasonable throughput.
4440 				 * So we disable idling.
4441 				 */
4442 				bfq_clear_bfqq_wait_request(bfqq);
4443 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4444 			}
4445 			goto keep_queue;
4446 		}
4447 	}
4448 
4449 	/*
4450 	 * No requests pending. However, if the in-service queue is idling
4451 	 * for a new request, or has requests waiting for a completion and
4452 	 * may idle after their completion, then keep it anyway.
4453 	 *
4454 	 * Yet, inject service from other queues if it boosts
4455 	 * throughput and is possible.
4456 	 */
4457 	if (bfq_bfqq_wait_request(bfqq) ||
4458 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4459 		struct bfq_queue *async_bfqq =
4460 			bfqq->bic && bfqq->bic->bfqq[0] &&
4461 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4462 			bfqq->bic->bfqq[0]->next_rq ?
4463 			bfqq->bic->bfqq[0] : NULL;
4464 
4465 		/*
4466 		 * The next three mutually-exclusive ifs decide
4467 		 * whether to try injection, and choose the queue to
4468 		 * pick an I/O request from.
4469 		 *
4470 		 * The first if checks whether the process associated
4471 		 * with bfqq has also async I/O pending. If so, it
4472 		 * injects such I/O unconditionally. Injecting async
4473 		 * I/O from the same process can cause no harm to the
4474 		 * process. On the contrary, it can only increase
4475 		 * bandwidth and reduce latency for the process.
4476 		 *
4477 		 * The second if checks whether there happens to be a
4478 		 * non-empty waker queue for bfqq, i.e., a queue whose
4479 		 * I/O needs to be completed for bfqq to receive new
4480 		 * I/O. This happens, e.g., if bfqq is associated with
4481 		 * a process that does some sync. A sync generates
4482 		 * extra blocking I/O, which must be completed before
4483 		 * the process associated with bfqq can go on with its
4484 		 * I/O. If the I/O of the waker queue is not served,
4485 		 * then bfqq remains empty, and no I/O is dispatched,
4486 		 * until the idle timeout fires for bfqq. This is
4487 		 * likely to result in lower bandwidth and higher
4488 		 * latencies for bfqq, and in a severe loss of total
4489 		 * throughput. The best action to take is therefore to
4490 		 * serve the waker queue as soon as possible. So do it
4491 		 * (without relying on the third alternative below for
4492 		 * eventually serving waker_bfqq's I/O; see the last
4493 		 * paragraph for further details). This systematic
4494 		 * injection of I/O from the waker queue does not
4495 		 * cause any delay to bfqq's I/O. On the contrary,
4496 		 * next bfqq's I/O is brought forward dramatically,
4497 		 * for it is not blocked for milliseconds.
4498 		 *
4499 		 * The third if checks whether bfqq is a queue for
4500 		 * which it is better to avoid injection. It is so if
4501 		 * bfqq delivers more throughput when served without
4502 		 * any further I/O from other queues in the middle, or
4503 		 * if the service times of bfqq's I/O requests both
4504 		 * count more than overall throughput, and may be
4505 		 * easily increased by injection (this happens if bfqq
4506 		 * has a short think time). If none of these
4507 		 * conditions holds, then a candidate queue for
4508 		 * injection is looked for through
4509 		 * bfq_choose_bfqq_for_injection(). Note that the
4510 		 * latter may return NULL (for example if the inject
4511 		 * limit for bfqq is currently 0).
4512 		 *
4513 		 * NOTE: motivation for the second alternative
4514 		 *
4515 		 * Thanks to the way the inject limit is updated in
4516 		 * bfq_update_has_short_ttime(), it is rather likely
4517 		 * that, if I/O is being plugged for bfqq and the
4518 		 * waker queue has pending I/O requests that are
4519 		 * blocking bfqq's I/O, then the third alternative
4520 		 * above lets the waker queue get served before the
4521 		 * I/O-plugging timeout fires. So one may deem the
4522 		 * second alternative superfluous. It is not, because
4523 		 * the third alternative may be way less effective in
4524 		 * case of a synchronization. For two main
4525 		 * reasons. First, throughput may be low because the
4526 		 * inject limit may be too low to guarantee the same
4527 		 * amount of injected I/O, from the waker queue or
4528 		 * other queues, that the second alternative
4529 		 * guarantees (the second alternative unconditionally
4530 		 * injects a pending I/O request of the waker queue
4531 		 * for each bfq_dispatch_request()). Second, with the
4532 		 * third alternative, the duration of the plugging,
4533 		 * i.e., the time before bfqq finally receives new I/O,
4534 		 * may not be minimized, because the waker queue may
4535 		 * happen to be served only after other queues.
4536 		 */
4537 		if (async_bfqq &&
4538 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4539 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4540 		    bfq_bfqq_budget_left(async_bfqq))
4541 			bfqq = bfqq->bic->bfqq[0];
4542 		else if (bfq_bfqq_has_waker(bfqq) &&
4543 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4544 			   bfqq->waker_bfqq->next_rq &&
4545 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4546 					      bfqq->waker_bfqq) <=
4547 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4548 			)
4549 			bfqq = bfqq->waker_bfqq;
4550 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4551 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4552 			  !bfq_bfqq_has_short_ttime(bfqq)))
4553 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4554 		else
4555 			bfqq = NULL;
4556 
4557 		goto keep_queue;
4558 	}
4559 
4560 	reason = BFQQE_NO_MORE_REQUESTS;
4561 expire:
4562 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4563 new_queue:
4564 	bfqq = bfq_set_in_service_queue(bfqd);
4565 	if (bfqq) {
4566 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4567 		goto check_queue;
4568 	}
4569 keep_queue:
4570 	if (bfqq)
4571 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4572 	else
4573 		bfq_log(bfqd, "select_queue: no queue returned");
4574 
4575 	return bfqq;
4576 }
4577 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)4578 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4579 {
4580 	struct bfq_entity *entity = &bfqq->entity;
4581 
4582 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4583 		bfq_log_bfqq(bfqd, bfqq,
4584 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4585 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4586 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4587 			bfqq->wr_coeff,
4588 			bfqq->entity.weight, bfqq->entity.orig_weight);
4589 
4590 		if (entity->prio_changed)
4591 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4592 
4593 		/*
4594 		 * If the queue was activated in a burst, or too much
4595 		 * time has elapsed from the beginning of this
4596 		 * weight-raising period, then end weight raising.
4597 		 */
4598 		if (bfq_bfqq_in_large_burst(bfqq))
4599 			bfq_bfqq_end_wr(bfqq);
4600 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4601 						bfqq->wr_cur_max_time)) {
4602 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4603 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4604 					       bfq_wr_duration(bfqd)))
4605 				bfq_bfqq_end_wr(bfqq);
4606 			else {
4607 				switch_back_to_interactive_wr(bfqq, bfqd);
4608 				bfqq->entity.prio_changed = 1;
4609 			}
4610 		}
4611 		if (bfqq->wr_coeff > 1 &&
4612 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4613 		    bfqq->service_from_wr > max_service_from_wr) {
4614 			/* see comments on max_service_from_wr */
4615 			bfq_bfqq_end_wr(bfqq);
4616 		}
4617 	}
4618 	/*
4619 	 * To improve latency (for this or other queues), immediately
4620 	 * update weight both if it must be raised and if it must be
4621 	 * lowered. Since, entity may be on some active tree here, and
4622 	 * might have a pending change of its ioprio class, invoke
4623 	 * next function with the last parameter unset (see the
4624 	 * comments on the function).
4625 	 */
4626 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4627 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4628 						entity, false);
4629 }
4630 
4631 /*
4632  * Dispatch next request from bfqq.
4633  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4634 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4635 						 struct bfq_queue *bfqq)
4636 {
4637 	struct request *rq = bfqq->next_rq;
4638 	unsigned long service_to_charge;
4639 
4640 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4641 
4642 	bfq_bfqq_served(bfqq, service_to_charge);
4643 
4644 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4645 		bfqd->wait_dispatch = false;
4646 		bfqd->waited_rq = rq;
4647 	}
4648 
4649 	bfq_dispatch_remove(bfqd->queue, rq);
4650 
4651 	if (bfqq != bfqd->in_service_queue)
4652 		goto return_rq;
4653 
4654 	/*
4655 	 * If weight raising has to terminate for bfqq, then next
4656 	 * function causes an immediate update of bfqq's weight,
4657 	 * without waiting for next activation. As a consequence, on
4658 	 * expiration, bfqq will be timestamped as if has never been
4659 	 * weight-raised during this service slot, even if it has
4660 	 * received part or even most of the service as a
4661 	 * weight-raised queue. This inflates bfqq's timestamps, which
4662 	 * is beneficial, as bfqq is then more willing to leave the
4663 	 * device immediately to possible other weight-raised queues.
4664 	 */
4665 	bfq_update_wr_data(bfqd, bfqq);
4666 
4667 	/*
4668 	 * Expire bfqq, pretending that its budget expired, if bfqq
4669 	 * belongs to CLASS_IDLE and other queues are waiting for
4670 	 * service.
4671 	 */
4672 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4673 		goto return_rq;
4674 
4675 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4676 
4677 return_rq:
4678 	return rq;
4679 }
4680 
bfq_has_work(struct blk_mq_hw_ctx * hctx)4681 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4682 {
4683 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4684 
4685 	if (!atomic_read(&hctx->elevator_queued))
4686 		return false;
4687 
4688 	/*
4689 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4690 	 * most a call to dispatch for nothing
4691 	 */
4692 	return !list_empty_careful(&bfqd->dispatch) ||
4693 		bfq_tot_busy_queues(bfqd) > 0;
4694 }
4695 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4696 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4697 {
4698 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4699 	struct request *rq = NULL;
4700 	struct bfq_queue *bfqq = NULL;
4701 
4702 	if (!list_empty(&bfqd->dispatch)) {
4703 		rq = list_first_entry(&bfqd->dispatch, struct request,
4704 				      queuelist);
4705 		list_del_init(&rq->queuelist);
4706 
4707 		bfqq = RQ_BFQQ(rq);
4708 
4709 		if (bfqq) {
4710 			/*
4711 			 * Increment counters here, because this
4712 			 * dispatch does not follow the standard
4713 			 * dispatch flow (where counters are
4714 			 * incremented)
4715 			 */
4716 			bfqq->dispatched++;
4717 
4718 			goto inc_in_driver_start_rq;
4719 		}
4720 
4721 		/*
4722 		 * We exploit the bfq_finish_requeue_request hook to
4723 		 * decrement rq_in_driver, but
4724 		 * bfq_finish_requeue_request will not be invoked on
4725 		 * this request. So, to avoid unbalance, just start
4726 		 * this request, without incrementing rq_in_driver. As
4727 		 * a negative consequence, rq_in_driver is deceptively
4728 		 * lower than it should be while this request is in
4729 		 * service. This may cause bfq_schedule_dispatch to be
4730 		 * invoked uselessly.
4731 		 *
4732 		 * As for implementing an exact solution, the
4733 		 * bfq_finish_requeue_request hook, if defined, is
4734 		 * probably invoked also on this request. So, by
4735 		 * exploiting this hook, we could 1) increment
4736 		 * rq_in_driver here, and 2) decrement it in
4737 		 * bfq_finish_requeue_request. Such a solution would
4738 		 * let the value of the counter be always accurate,
4739 		 * but it would entail using an extra interface
4740 		 * function. This cost seems higher than the benefit,
4741 		 * being the frequency of non-elevator-private
4742 		 * requests very low.
4743 		 */
4744 		goto start_rq;
4745 	}
4746 
4747 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4748 		bfq_tot_busy_queues(bfqd));
4749 
4750 	if (bfq_tot_busy_queues(bfqd) == 0)
4751 		goto exit;
4752 
4753 	/*
4754 	 * Force device to serve one request at a time if
4755 	 * strict_guarantees is true. Forcing this service scheme is
4756 	 * currently the ONLY way to guarantee that the request
4757 	 * service order enforced by the scheduler is respected by a
4758 	 * queueing device. Otherwise the device is free even to make
4759 	 * some unlucky request wait for as long as the device
4760 	 * wishes.
4761 	 *
4762 	 * Of course, serving one request at a time may cause loss of
4763 	 * throughput.
4764 	 */
4765 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4766 		goto exit;
4767 
4768 	bfqq = bfq_select_queue(bfqd);
4769 	if (!bfqq)
4770 		goto exit;
4771 
4772 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4773 
4774 	if (rq) {
4775 inc_in_driver_start_rq:
4776 		bfqd->rq_in_driver++;
4777 start_rq:
4778 		rq->rq_flags |= RQF_STARTED;
4779 	}
4780 exit:
4781 	return rq;
4782 }
4783 
4784 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4785 static void bfq_update_dispatch_stats(struct request_queue *q,
4786 				      struct request *rq,
4787 				      struct bfq_queue *in_serv_queue,
4788 				      bool idle_timer_disabled)
4789 {
4790 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4791 
4792 	if (!idle_timer_disabled && !bfqq)
4793 		return;
4794 
4795 	/*
4796 	 * rq and bfqq are guaranteed to exist until this function
4797 	 * ends, for the following reasons. First, rq can be
4798 	 * dispatched to the device, and then can be completed and
4799 	 * freed, only after this function ends. Second, rq cannot be
4800 	 * merged (and thus freed because of a merge) any longer,
4801 	 * because it has already started. Thus rq cannot be freed
4802 	 * before this function ends, and, since rq has a reference to
4803 	 * bfqq, the same guarantee holds for bfqq too.
4804 	 *
4805 	 * In addition, the following queue lock guarantees that
4806 	 * bfqq_group(bfqq) exists as well.
4807 	 */
4808 	spin_lock_irq(&q->queue_lock);
4809 	if (idle_timer_disabled)
4810 		/*
4811 		 * Since the idle timer has been disabled,
4812 		 * in_serv_queue contained some request when
4813 		 * __bfq_dispatch_request was invoked above, which
4814 		 * implies that rq was picked exactly from
4815 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4816 		 * therefore guaranteed to exist because of the above
4817 		 * arguments.
4818 		 */
4819 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4820 	if (bfqq) {
4821 		struct bfq_group *bfqg = bfqq_group(bfqq);
4822 
4823 		bfqg_stats_update_avg_queue_size(bfqg);
4824 		bfqg_stats_set_start_empty_time(bfqg);
4825 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4826 	}
4827 	spin_unlock_irq(&q->queue_lock);
4828 }
4829 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4830 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4831 					     struct request *rq,
4832 					     struct bfq_queue *in_serv_queue,
4833 					     bool idle_timer_disabled) {}
4834 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4835 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4836 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4837 {
4838 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4839 	struct request *rq;
4840 	struct bfq_queue *in_serv_queue;
4841 	bool waiting_rq, idle_timer_disabled = false;
4842 
4843 	spin_lock_irq(&bfqd->lock);
4844 
4845 	in_serv_queue = bfqd->in_service_queue;
4846 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4847 
4848 	rq = __bfq_dispatch_request(hctx);
4849 	if (in_serv_queue == bfqd->in_service_queue) {
4850 		idle_timer_disabled =
4851 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4852 	}
4853 
4854 	spin_unlock_irq(&bfqd->lock);
4855 	bfq_update_dispatch_stats(hctx->queue, rq,
4856 			idle_timer_disabled ? in_serv_queue : NULL,
4857 				idle_timer_disabled);
4858 
4859 	return rq;
4860 }
4861 
4862 /*
4863  * Task holds one reference to the queue, dropped when task exits.  Each rq
4864  * in-flight on this queue also holds a reference, dropped when rq is freed.
4865  *
4866  * Scheduler lock must be held here. Recall not to use bfqq after calling
4867  * this function on it.
4868  */
bfq_put_queue(struct bfq_queue * bfqq)4869 void bfq_put_queue(struct bfq_queue *bfqq)
4870 {
4871 	struct bfq_queue *item;
4872 	struct hlist_node *n;
4873 	struct bfq_group *bfqg = bfqq_group(bfqq);
4874 
4875 	if (bfqq->bfqd)
4876 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4877 			     bfqq, bfqq->ref);
4878 
4879 	bfqq->ref--;
4880 	if (bfqq->ref)
4881 		return;
4882 
4883 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4884 		hlist_del_init(&bfqq->burst_list_node);
4885 		/*
4886 		 * Decrement also burst size after the removal, if the
4887 		 * process associated with bfqq is exiting, and thus
4888 		 * does not contribute to the burst any longer. This
4889 		 * decrement helps filter out false positives of large
4890 		 * bursts, when some short-lived process (often due to
4891 		 * the execution of commands by some service) happens
4892 		 * to start and exit while a complex application is
4893 		 * starting, and thus spawning several processes that
4894 		 * do I/O (and that *must not* be treated as a large
4895 		 * burst, see comments on bfq_handle_burst).
4896 		 *
4897 		 * In particular, the decrement is performed only if:
4898 		 * 1) bfqq is not a merged queue, because, if it is,
4899 		 * then this free of bfqq is not triggered by the exit
4900 		 * of the process bfqq is associated with, but exactly
4901 		 * by the fact that bfqq has just been merged.
4902 		 * 2) burst_size is greater than 0, to handle
4903 		 * unbalanced decrements. Unbalanced decrements may
4904 		 * happen in te following case: bfqq is inserted into
4905 		 * the current burst list--without incrementing
4906 		 * bust_size--because of a split, but the current
4907 		 * burst list is not the burst list bfqq belonged to
4908 		 * (see comments on the case of a split in
4909 		 * bfq_set_request).
4910 		 */
4911 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4912 			bfqq->bfqd->burst_size--;
4913 	}
4914 
4915 	/*
4916 	 * bfqq does not exist any longer, so it cannot be woken by
4917 	 * any other queue, and cannot wake any other queue. Then bfqq
4918 	 * must be removed from the woken list of its possible waker
4919 	 * queue, and all queues in the woken list of bfqq must stop
4920 	 * having a waker queue. Strictly speaking, these updates
4921 	 * should be performed when bfqq remains with no I/O source
4922 	 * attached to it, which happens before bfqq gets freed. In
4923 	 * particular, this happens when the last process associated
4924 	 * with bfqq exits or gets associated with a different
4925 	 * queue. However, both events lead to bfqq being freed soon,
4926 	 * and dangling references would come out only after bfqq gets
4927 	 * freed. So these updates are done here, as a simple and safe
4928 	 * way to handle all cases.
4929 	 */
4930 	/* remove bfqq from woken list */
4931 	if (!hlist_unhashed(&bfqq->woken_list_node))
4932 		hlist_del_init(&bfqq->woken_list_node);
4933 
4934 	/* reset waker for all queues in woken list */
4935 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4936 				  woken_list_node) {
4937 		item->waker_bfqq = NULL;
4938 		bfq_clear_bfqq_has_waker(item);
4939 		hlist_del_init(&item->woken_list_node);
4940 	}
4941 
4942 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4943 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4944 
4945 	kmem_cache_free(bfq_pool, bfqq);
4946 	bfqg_and_blkg_put(bfqg);
4947 }
4948 
bfq_put_cooperator(struct bfq_queue * bfqq)4949 void bfq_put_cooperator(struct bfq_queue *bfqq)
4950 {
4951 	struct bfq_queue *__bfqq, *next;
4952 
4953 	/*
4954 	 * If this queue was scheduled to merge with another queue, be
4955 	 * sure to drop the reference taken on that queue (and others in
4956 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4957 	 */
4958 	__bfqq = bfqq->new_bfqq;
4959 	while (__bfqq) {
4960 		if (__bfqq == bfqq)
4961 			break;
4962 		next = __bfqq->new_bfqq;
4963 		bfq_put_queue(__bfqq);
4964 		__bfqq = next;
4965 	}
4966 }
4967 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4968 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4969 {
4970 	if (bfqq == bfqd->in_service_queue) {
4971 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
4972 		bfq_schedule_dispatch(bfqd);
4973 	}
4974 
4975 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4976 
4977 	bfq_put_cooperator(bfqq);
4978 
4979 	bfq_release_process_ref(bfqd, bfqq);
4980 }
4981 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)4982 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4983 {
4984 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4985 	struct bfq_data *bfqd;
4986 
4987 	if (bfqq)
4988 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4989 
4990 	if (bfqq && bfqd) {
4991 		unsigned long flags;
4992 
4993 		spin_lock_irqsave(&bfqd->lock, flags);
4994 		bic_set_bfqq(bic, NULL, is_sync);
4995 		bfq_exit_bfqq(bfqd, bfqq);
4996 		spin_unlock_irqrestore(&bfqd->lock, flags);
4997 	}
4998 }
4999 
bfq_exit_icq(struct io_cq * icq)5000 static void bfq_exit_icq(struct io_cq *icq)
5001 {
5002 	struct bfq_io_cq *bic = icq_to_bic(icq);
5003 
5004 	bfq_exit_icq_bfqq(bic, true);
5005 	bfq_exit_icq_bfqq(bic, false);
5006 }
5007 
5008 /*
5009  * Update the entity prio values; note that the new values will not
5010  * be used until the next (re)activation.
5011  */
5012 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)5013 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5014 {
5015 	struct task_struct *tsk = current;
5016 	int ioprio_class;
5017 	struct bfq_data *bfqd = bfqq->bfqd;
5018 
5019 	if (!bfqd)
5020 		return;
5021 
5022 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5023 	switch (ioprio_class) {
5024 	default:
5025 		pr_err("bdi %s: bfq: bad prio class %d\n",
5026 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5027 				ioprio_class);
5028 		fallthrough;
5029 	case IOPRIO_CLASS_NONE:
5030 		/*
5031 		 * No prio set, inherit CPU scheduling settings.
5032 		 */
5033 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5034 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5035 		break;
5036 	case IOPRIO_CLASS_RT:
5037 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5038 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5039 		break;
5040 	case IOPRIO_CLASS_BE:
5041 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5042 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5043 		break;
5044 	case IOPRIO_CLASS_IDLE:
5045 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5046 		bfqq->new_ioprio = 7;
5047 		break;
5048 	}
5049 
5050 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5051 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5052 			bfqq->new_ioprio);
5053 		bfqq->new_ioprio = IOPRIO_BE_NR - 1;
5054 	}
5055 
5056 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5057 	bfqq->entity.prio_changed = 1;
5058 }
5059 
5060 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5061 				       struct bio *bio, bool is_sync,
5062 				       struct bfq_io_cq *bic);
5063 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)5064 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5065 {
5066 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5067 	struct bfq_queue *bfqq;
5068 	int ioprio = bic->icq.ioc->ioprio;
5069 
5070 	/*
5071 	 * This condition may trigger on a newly created bic, be sure to
5072 	 * drop the lock before returning.
5073 	 */
5074 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5075 		return;
5076 
5077 	bic->ioprio = ioprio;
5078 
5079 	bfqq = bic_to_bfqq(bic, false);
5080 	if (bfqq) {
5081 		struct bfq_queue *old_bfqq = bfqq;
5082 
5083 		bfqq = bfq_get_queue(bfqd, bio, false, bic);
5084 		bic_set_bfqq(bic, bfqq, false);
5085 		bfq_release_process_ref(bfqd, old_bfqq);
5086 	}
5087 
5088 	bfqq = bic_to_bfqq(bic, true);
5089 	if (bfqq)
5090 		bfq_set_next_ioprio_data(bfqq, bic);
5091 }
5092 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)5093 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5094 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5095 {
5096 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5097 	INIT_LIST_HEAD(&bfqq->fifo);
5098 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5099 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5100 	INIT_HLIST_HEAD(&bfqq->woken_list);
5101 
5102 	bfqq->ref = 0;
5103 	bfqq->bfqd = bfqd;
5104 
5105 	if (bic)
5106 		bfq_set_next_ioprio_data(bfqq, bic);
5107 
5108 	if (is_sync) {
5109 		/*
5110 		 * No need to mark as has_short_ttime if in
5111 		 * idle_class, because no device idling is performed
5112 		 * for queues in idle class
5113 		 */
5114 		if (!bfq_class_idle(bfqq))
5115 			/* tentatively mark as has_short_ttime */
5116 			bfq_mark_bfqq_has_short_ttime(bfqq);
5117 		bfq_mark_bfqq_sync(bfqq);
5118 		bfq_mark_bfqq_just_created(bfqq);
5119 	} else
5120 		bfq_clear_bfqq_sync(bfqq);
5121 
5122 	/* set end request to minus infinity from now */
5123 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5124 
5125 	bfq_mark_bfqq_IO_bound(bfqq);
5126 
5127 	bfqq->pid = pid;
5128 
5129 	/* Tentative initial value to trade off between thr and lat */
5130 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5131 	bfqq->budget_timeout = bfq_smallest_from_now();
5132 
5133 	bfqq->wr_coeff = 1;
5134 	bfqq->last_wr_start_finish = jiffies;
5135 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5136 	bfqq->split_time = bfq_smallest_from_now();
5137 
5138 	/*
5139 	 * To not forget the possibly high bandwidth consumed by a
5140 	 * process/queue in the recent past,
5141 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5142 	 * to the current value of bfqq->soft_rt_next_start (see
5143 	 * comments on bfq_bfqq_softrt_next_start).  Set
5144 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5145 	 * no bandwidth so far.
5146 	 */
5147 	bfqq->soft_rt_next_start = jiffies;
5148 
5149 	/* first request is almost certainly seeky */
5150 	bfqq->seek_history = 1;
5151 }
5152 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)5153 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5154 					       struct bfq_group *bfqg,
5155 					       int ioprio_class, int ioprio)
5156 {
5157 	switch (ioprio_class) {
5158 	case IOPRIO_CLASS_RT:
5159 		return &bfqg->async_bfqq[0][ioprio];
5160 	case IOPRIO_CLASS_NONE:
5161 		ioprio = IOPRIO_NORM;
5162 		fallthrough;
5163 	case IOPRIO_CLASS_BE:
5164 		return &bfqg->async_bfqq[1][ioprio];
5165 	case IOPRIO_CLASS_IDLE:
5166 		return &bfqg->async_idle_bfqq;
5167 	default:
5168 		return NULL;
5169 	}
5170 }
5171 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic)5172 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5173 				       struct bio *bio, bool is_sync,
5174 				       struct bfq_io_cq *bic)
5175 {
5176 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5177 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5178 	struct bfq_queue **async_bfqq = NULL;
5179 	struct bfq_queue *bfqq;
5180 	struct bfq_group *bfqg;
5181 
5182 	bfqg = bfq_bio_bfqg(bfqd, bio);
5183 	if (!is_sync) {
5184 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5185 						  ioprio);
5186 		bfqq = *async_bfqq;
5187 		if (bfqq)
5188 			goto out;
5189 	}
5190 
5191 	bfqq = kmem_cache_alloc_node(bfq_pool,
5192 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5193 				     bfqd->queue->node);
5194 
5195 	if (bfqq) {
5196 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5197 			      is_sync);
5198 		bfq_init_entity(&bfqq->entity, bfqg);
5199 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5200 	} else {
5201 		bfqq = &bfqd->oom_bfqq;
5202 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5203 		goto out;
5204 	}
5205 
5206 	/*
5207 	 * Pin the queue now that it's allocated, scheduler exit will
5208 	 * prune it.
5209 	 */
5210 	if (async_bfqq) {
5211 		bfqq->ref++; /*
5212 			      * Extra group reference, w.r.t. sync
5213 			      * queue. This extra reference is removed
5214 			      * only if bfqq->bfqg disappears, to
5215 			      * guarantee that this queue is not freed
5216 			      * until its group goes away.
5217 			      */
5218 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5219 			     bfqq, bfqq->ref);
5220 		*async_bfqq = bfqq;
5221 	}
5222 
5223 out:
5224 	bfqq->ref++; /* get a process reference to this queue */
5225 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5226 	return bfqq;
5227 }
5228 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)5229 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5230 				    struct bfq_queue *bfqq)
5231 {
5232 	struct bfq_ttime *ttime = &bfqq->ttime;
5233 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5234 
5235 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5236 
5237 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5238 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5239 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5240 				     ttime->ttime_samples);
5241 }
5242 
5243 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5244 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5245 		       struct request *rq)
5246 {
5247 	bfqq->seek_history <<= 1;
5248 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5249 
5250 	if (bfqq->wr_coeff > 1 &&
5251 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5252 	    BFQQ_TOTALLY_SEEKY(bfqq))
5253 		bfq_bfqq_end_wr(bfqq);
5254 }
5255 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5256 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5257 				       struct bfq_queue *bfqq,
5258 				       struct bfq_io_cq *bic)
5259 {
5260 	bool has_short_ttime = true, state_changed;
5261 
5262 	/*
5263 	 * No need to update has_short_ttime if bfqq is async or in
5264 	 * idle io prio class, or if bfq_slice_idle is zero, because
5265 	 * no device idling is performed for bfqq in this case.
5266 	 */
5267 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5268 	    bfqd->bfq_slice_idle == 0)
5269 		return;
5270 
5271 	/* Idle window just restored, statistics are meaningless. */
5272 	if (time_is_after_eq_jiffies(bfqq->split_time +
5273 				     bfqd->bfq_wr_min_idle_time))
5274 		return;
5275 
5276 	/* Think time is infinite if no process is linked to
5277 	 * bfqq. Otherwise check average think time to
5278 	 * decide whether to mark as has_short_ttime
5279 	 */
5280 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5281 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5282 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5283 		has_short_ttime = false;
5284 
5285 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5286 
5287 	if (has_short_ttime)
5288 		bfq_mark_bfqq_has_short_ttime(bfqq);
5289 	else
5290 		bfq_clear_bfqq_has_short_ttime(bfqq);
5291 
5292 	/*
5293 	 * Until the base value for the total service time gets
5294 	 * finally computed for bfqq, the inject limit does depend on
5295 	 * the think-time state (short|long). In particular, the limit
5296 	 * is 0 or 1 if the think time is deemed, respectively, as
5297 	 * short or long (details in the comments in
5298 	 * bfq_update_inject_limit()). Accordingly, the next
5299 	 * instructions reset the inject limit if the think-time state
5300 	 * has changed and the above base value is still to be
5301 	 * computed.
5302 	 *
5303 	 * However, the reset is performed only if more than 100 ms
5304 	 * have elapsed since the last update of the inject limit, or
5305 	 * (inclusive) if the change is from short to long think
5306 	 * time. The reason for this waiting is as follows.
5307 	 *
5308 	 * bfqq may have a long think time because of a
5309 	 * synchronization with some other queue, i.e., because the
5310 	 * I/O of some other queue may need to be completed for bfqq
5311 	 * to receive new I/O. Details in the comments on the choice
5312 	 * of the queue for injection in bfq_select_queue().
5313 	 *
5314 	 * As stressed in those comments, if such a synchronization is
5315 	 * actually in place, then, without injection on bfqq, the
5316 	 * blocking I/O cannot happen to served while bfqq is in
5317 	 * service. As a consequence, if bfqq is granted
5318 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5319 	 * is dispatched, until the idle timeout fires. This is likely
5320 	 * to result in lower bandwidth and higher latencies for bfqq,
5321 	 * and in a severe loss of total throughput.
5322 	 *
5323 	 * On the opposite end, a non-zero inject limit may allow the
5324 	 * I/O that blocks bfqq to be executed soon, and therefore
5325 	 * bfqq to receive new I/O soon.
5326 	 *
5327 	 * But, if the blocking gets actually eliminated, then the
5328 	 * next think-time sample for bfqq may be very low. This in
5329 	 * turn may cause bfqq's think time to be deemed
5330 	 * short. Without the 100 ms barrier, this new state change
5331 	 * would cause the body of the next if to be executed
5332 	 * immediately. But this would set to 0 the inject
5333 	 * limit. Without injection, the blocking I/O would cause the
5334 	 * think time of bfqq to become long again, and therefore the
5335 	 * inject limit to be raised again, and so on. The only effect
5336 	 * of such a steady oscillation between the two think-time
5337 	 * states would be to prevent effective injection on bfqq.
5338 	 *
5339 	 * In contrast, if the inject limit is not reset during such a
5340 	 * long time interval as 100 ms, then the number of short
5341 	 * think time samples can grow significantly before the reset
5342 	 * is performed. As a consequence, the think time state can
5343 	 * become stable before the reset. Therefore there will be no
5344 	 * state change when the 100 ms elapse, and no reset of the
5345 	 * inject limit. The inject limit remains steadily equal to 1
5346 	 * both during and after the 100 ms. So injection can be
5347 	 * performed at all times, and throughput gets boosted.
5348 	 *
5349 	 * An inject limit equal to 1 is however in conflict, in
5350 	 * general, with the fact that the think time of bfqq is
5351 	 * short, because injection may be likely to delay bfqq's I/O
5352 	 * (as explained in the comments in
5353 	 * bfq_update_inject_limit()). But this does not happen in
5354 	 * this special case, because bfqq's low think time is due to
5355 	 * an effective handling of a synchronization, through
5356 	 * injection. In this special case, bfqq's I/O does not get
5357 	 * delayed by injection; on the contrary, bfqq's I/O is
5358 	 * brought forward, because it is not blocked for
5359 	 * milliseconds.
5360 	 *
5361 	 * In addition, serving the blocking I/O much sooner, and much
5362 	 * more frequently than once per I/O-plugging timeout, makes
5363 	 * it much quicker to detect a waker queue (the concept of
5364 	 * waker queue is defined in the comments in
5365 	 * bfq_add_request()). This makes it possible to start sooner
5366 	 * to boost throughput more effectively, by injecting the I/O
5367 	 * of the waker queue unconditionally on every
5368 	 * bfq_dispatch_request().
5369 	 *
5370 	 * One last, important benefit of not resetting the inject
5371 	 * limit before 100 ms is that, during this time interval, the
5372 	 * base value for the total service time is likely to get
5373 	 * finally computed for bfqq, freeing the inject limit from
5374 	 * its relation with the think time.
5375 	 */
5376 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5377 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5378 				      msecs_to_jiffies(100)) ||
5379 	     !has_short_ttime))
5380 		bfq_reset_inject_limit(bfqd, bfqq);
5381 }
5382 
5383 /*
5384  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5385  * something we should do about it.
5386  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5387 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5388 			    struct request *rq)
5389 {
5390 	if (rq->cmd_flags & REQ_META)
5391 		bfqq->meta_pending++;
5392 
5393 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5394 
5395 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5396 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5397 				 blk_rq_sectors(rq) < 32;
5398 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5399 
5400 		/*
5401 		 * There is just this request queued: if
5402 		 * - the request is small, and
5403 		 * - we are idling to boost throughput, and
5404 		 * - the queue is not to be expired,
5405 		 * then just exit.
5406 		 *
5407 		 * In this way, if the device is being idled to wait
5408 		 * for a new request from the in-service queue, we
5409 		 * avoid unplugging the device and committing the
5410 		 * device to serve just a small request. In contrast
5411 		 * we wait for the block layer to decide when to
5412 		 * unplug the device: hopefully, new requests will be
5413 		 * merged to this one quickly, then the device will be
5414 		 * unplugged and larger requests will be dispatched.
5415 		 */
5416 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5417 		    !budget_timeout)
5418 			return;
5419 
5420 		/*
5421 		 * A large enough request arrived, or idling is being
5422 		 * performed to preserve service guarantees, or
5423 		 * finally the queue is to be expired: in all these
5424 		 * cases disk idling is to be stopped, so clear
5425 		 * wait_request flag and reset timer.
5426 		 */
5427 		bfq_clear_bfqq_wait_request(bfqq);
5428 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5429 
5430 		/*
5431 		 * The queue is not empty, because a new request just
5432 		 * arrived. Hence we can safely expire the queue, in
5433 		 * case of budget timeout, without risking that the
5434 		 * timestamps of the queue are not updated correctly.
5435 		 * See [1] for more details.
5436 		 */
5437 		if (budget_timeout)
5438 			bfq_bfqq_expire(bfqd, bfqq, false,
5439 					BFQQE_BUDGET_TIMEOUT);
5440 	}
5441 }
5442 
5443 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)5444 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5445 {
5446 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5447 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5448 	bool waiting, idle_timer_disabled = false;
5449 
5450 	if (new_bfqq) {
5451 		/*
5452 		 * Release the request's reference to the old bfqq
5453 		 * and make sure one is taken to the shared queue.
5454 		 */
5455 		new_bfqq->allocated++;
5456 		bfqq->allocated--;
5457 		new_bfqq->ref++;
5458 		/*
5459 		 * If the bic associated with the process
5460 		 * issuing this request still points to bfqq
5461 		 * (and thus has not been already redirected
5462 		 * to new_bfqq or even some other bfq_queue),
5463 		 * then complete the merge and redirect it to
5464 		 * new_bfqq.
5465 		 */
5466 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5467 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5468 					bfqq, new_bfqq);
5469 
5470 		bfq_clear_bfqq_just_created(bfqq);
5471 		/*
5472 		 * rq is about to be enqueued into new_bfqq,
5473 		 * release rq reference on bfqq
5474 		 */
5475 		bfq_put_queue(bfqq);
5476 		rq->elv.priv[1] = new_bfqq;
5477 		bfqq = new_bfqq;
5478 	}
5479 
5480 	bfq_update_io_thinktime(bfqd, bfqq);
5481 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5482 	bfq_update_io_seektime(bfqd, bfqq, rq);
5483 
5484 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5485 	bfq_add_request(rq);
5486 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5487 
5488 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5489 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5490 
5491 	bfq_rq_enqueued(bfqd, bfqq, rq);
5492 
5493 	return idle_timer_disabled;
5494 }
5495 
5496 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5497 static void bfq_update_insert_stats(struct request_queue *q,
5498 				    struct bfq_queue *bfqq,
5499 				    bool idle_timer_disabled,
5500 				    unsigned int cmd_flags)
5501 {
5502 	if (!bfqq)
5503 		return;
5504 
5505 	/*
5506 	 * bfqq still exists, because it can disappear only after
5507 	 * either it is merged with another queue, or the process it
5508 	 * is associated with exits. But both actions must be taken by
5509 	 * the same process currently executing this flow of
5510 	 * instructions.
5511 	 *
5512 	 * In addition, the following queue lock guarantees that
5513 	 * bfqq_group(bfqq) exists as well.
5514 	 */
5515 	spin_lock_irq(&q->queue_lock);
5516 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5517 	if (idle_timer_disabled)
5518 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5519 	spin_unlock_irq(&q->queue_lock);
5520 }
5521 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5522 static inline void bfq_update_insert_stats(struct request_queue *q,
5523 					   struct bfq_queue *bfqq,
5524 					   bool idle_timer_disabled,
5525 					   unsigned int cmd_flags) {}
5526 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5527 
5528 static struct bfq_queue *bfq_init_rq(struct request *rq);
5529 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)5530 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5531 			       bool at_head)
5532 {
5533 	struct request_queue *q = hctx->queue;
5534 	struct bfq_data *bfqd = q->elevator->elevator_data;
5535 	struct bfq_queue *bfqq;
5536 	bool idle_timer_disabled = false;
5537 	unsigned int cmd_flags;
5538 	LIST_HEAD(free);
5539 
5540 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5541 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5542 		bfqg_stats_update_legacy_io(q, rq);
5543 #endif
5544 	spin_lock_irq(&bfqd->lock);
5545 	bfqq = bfq_init_rq(rq);
5546 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
5547 		spin_unlock_irq(&bfqd->lock);
5548 		blk_mq_free_requests(&free);
5549 		return;
5550 	}
5551 
5552 	blk_mq_sched_request_inserted(rq);
5553 
5554 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5555 		if (at_head)
5556 			list_add(&rq->queuelist, &bfqd->dispatch);
5557 		else
5558 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5559 	} else {
5560 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5561 		/*
5562 		 * Update bfqq, because, if a queue merge has occurred
5563 		 * in __bfq_insert_request, then rq has been
5564 		 * redirected into a new queue.
5565 		 */
5566 		bfqq = RQ_BFQQ(rq);
5567 
5568 		if (rq_mergeable(rq)) {
5569 			elv_rqhash_add(q, rq);
5570 			if (!q->last_merge)
5571 				q->last_merge = rq;
5572 		}
5573 	}
5574 
5575 	/*
5576 	 * Cache cmd_flags before releasing scheduler lock, because rq
5577 	 * may disappear afterwards (for example, because of a request
5578 	 * merge).
5579 	 */
5580 	cmd_flags = rq->cmd_flags;
5581 
5582 	spin_unlock_irq(&bfqd->lock);
5583 
5584 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5585 				cmd_flags);
5586 }
5587 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)5588 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5589 				struct list_head *list, bool at_head)
5590 {
5591 	while (!list_empty(list)) {
5592 		struct request *rq;
5593 
5594 		rq = list_first_entry(list, struct request, queuelist);
5595 		list_del_init(&rq->queuelist);
5596 		bfq_insert_request(hctx, rq, at_head);
5597 		atomic_inc(&hctx->elevator_queued);
5598 	}
5599 }
5600 
bfq_update_hw_tag(struct bfq_data * bfqd)5601 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5602 {
5603 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5604 
5605 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5606 				       bfqd->rq_in_driver);
5607 
5608 	if (bfqd->hw_tag == 1)
5609 		return;
5610 
5611 	/*
5612 	 * This sample is valid if the number of outstanding requests
5613 	 * is large enough to allow a queueing behavior.  Note that the
5614 	 * sum is not exact, as it's not taking into account deactivated
5615 	 * requests.
5616 	 */
5617 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5618 		return;
5619 
5620 	/*
5621 	 * If active queue hasn't enough requests and can idle, bfq might not
5622 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5623 	 * case
5624 	 */
5625 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5626 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5627 	    BFQ_HW_QUEUE_THRESHOLD &&
5628 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5629 		return;
5630 
5631 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5632 		return;
5633 
5634 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5635 	bfqd->max_rq_in_driver = 0;
5636 	bfqd->hw_tag_samples = 0;
5637 
5638 	bfqd->nonrot_with_queueing =
5639 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5640 }
5641 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)5642 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5643 {
5644 	u64 now_ns;
5645 	u32 delta_us;
5646 
5647 	bfq_update_hw_tag(bfqd);
5648 
5649 	bfqd->rq_in_driver--;
5650 	bfqq->dispatched--;
5651 
5652 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5653 		/*
5654 		 * Set budget_timeout (which we overload to store the
5655 		 * time at which the queue remains with no backlog and
5656 		 * no outstanding request; used by the weight-raising
5657 		 * mechanism).
5658 		 */
5659 		bfqq->budget_timeout = jiffies;
5660 
5661 		bfq_weights_tree_remove(bfqd, bfqq);
5662 	}
5663 
5664 	now_ns = ktime_get_ns();
5665 
5666 	bfqq->ttime.last_end_request = now_ns;
5667 
5668 	/*
5669 	 * Using us instead of ns, to get a reasonable precision in
5670 	 * computing rate in next check.
5671 	 */
5672 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5673 
5674 	/*
5675 	 * If the request took rather long to complete, and, according
5676 	 * to the maximum request size recorded, this completion latency
5677 	 * implies that the request was certainly served at a very low
5678 	 * rate (less than 1M sectors/sec), then the whole observation
5679 	 * interval that lasts up to this time instant cannot be a
5680 	 * valid time interval for computing a new peak rate.  Invoke
5681 	 * bfq_update_rate_reset to have the following three steps
5682 	 * taken:
5683 	 * - close the observation interval at the last (previous)
5684 	 *   request dispatch or completion
5685 	 * - compute rate, if possible, for that observation interval
5686 	 * - reset to zero samples, which will trigger a proper
5687 	 *   re-initialization of the observation interval on next
5688 	 *   dispatch
5689 	 */
5690 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5691 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5692 			1UL<<(BFQ_RATE_SHIFT - 10))
5693 		bfq_update_rate_reset(bfqd, NULL);
5694 	bfqd->last_completion = now_ns;
5695 	bfqd->last_completed_rq_bfqq = bfqq;
5696 
5697 	/*
5698 	 * If we are waiting to discover whether the request pattern
5699 	 * of the task associated with the queue is actually
5700 	 * isochronous, and both requisites for this condition to hold
5701 	 * are now satisfied, then compute soft_rt_next_start (see the
5702 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5703 	 * do not compute soft_rt_next_start if bfqq is in interactive
5704 	 * weight raising (see the comments in bfq_bfqq_expire() for
5705 	 * an explanation). We schedule this delayed update when bfqq
5706 	 * expires, if it still has in-flight requests.
5707 	 */
5708 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5709 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5710 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5711 		bfqq->soft_rt_next_start =
5712 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5713 
5714 	/*
5715 	 * If this is the in-service queue, check if it needs to be expired,
5716 	 * or if we want to idle in case it has no pending requests.
5717 	 */
5718 	if (bfqd->in_service_queue == bfqq) {
5719 		if (bfq_bfqq_must_idle(bfqq)) {
5720 			if (bfqq->dispatched == 0)
5721 				bfq_arm_slice_timer(bfqd);
5722 			/*
5723 			 * If we get here, we do not expire bfqq, even
5724 			 * if bfqq was in budget timeout or had no
5725 			 * more requests (as controlled in the next
5726 			 * conditional instructions). The reason for
5727 			 * not expiring bfqq is as follows.
5728 			 *
5729 			 * Here bfqq->dispatched > 0 holds, but
5730 			 * bfq_bfqq_must_idle() returned true. This
5731 			 * implies that, even if no request arrives
5732 			 * for bfqq before bfqq->dispatched reaches 0,
5733 			 * bfqq will, however, not be expired on the
5734 			 * completion event that causes bfqq->dispatch
5735 			 * to reach zero. In contrast, on this event,
5736 			 * bfqq will start enjoying device idling
5737 			 * (I/O-dispatch plugging).
5738 			 *
5739 			 * But, if we expired bfqq here, bfqq would
5740 			 * not have the chance to enjoy device idling
5741 			 * when bfqq->dispatched finally reaches
5742 			 * zero. This would expose bfqq to violation
5743 			 * of its reserved service guarantees.
5744 			 */
5745 			return;
5746 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5747 			bfq_bfqq_expire(bfqd, bfqq, false,
5748 					BFQQE_BUDGET_TIMEOUT);
5749 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5750 			 (bfqq->dispatched == 0 ||
5751 			  !bfq_better_to_idle(bfqq)))
5752 			bfq_bfqq_expire(bfqd, bfqq, false,
5753 					BFQQE_NO_MORE_REQUESTS);
5754 	}
5755 
5756 	if (!bfqd->rq_in_driver)
5757 		bfq_schedule_dispatch(bfqd);
5758 }
5759 
bfq_finish_requeue_request_body(struct bfq_queue * bfqq)5760 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5761 {
5762 	bfqq->allocated--;
5763 
5764 	bfq_put_queue(bfqq);
5765 }
5766 
5767 /*
5768  * The processes associated with bfqq may happen to generate their
5769  * cumulative I/O at a lower rate than the rate at which the device
5770  * could serve the same I/O. This is rather probable, e.g., if only
5771  * one process is associated with bfqq and the device is an SSD. It
5772  * results in bfqq becoming often empty while in service. In this
5773  * respect, if BFQ is allowed to switch to another queue when bfqq
5774  * remains empty, then the device goes on being fed with I/O requests,
5775  * and the throughput is not affected. In contrast, if BFQ is not
5776  * allowed to switch to another queue---because bfqq is sync and
5777  * I/O-dispatch needs to be plugged while bfqq is temporarily
5778  * empty---then, during the service of bfqq, there will be frequent
5779  * "service holes", i.e., time intervals during which bfqq gets empty
5780  * and the device can only consume the I/O already queued in its
5781  * hardware queues. During service holes, the device may even get to
5782  * remaining idle. In the end, during the service of bfqq, the device
5783  * is driven at a lower speed than the one it can reach with the kind
5784  * of I/O flowing through bfqq.
5785  *
5786  * To counter this loss of throughput, BFQ implements a "request
5787  * injection mechanism", which tries to fill the above service holes
5788  * with I/O requests taken from other queues. The hard part in this
5789  * mechanism is finding the right amount of I/O to inject, so as to
5790  * both boost throughput and not break bfqq's bandwidth and latency
5791  * guarantees. In this respect, the mechanism maintains a per-queue
5792  * inject limit, computed as below. While bfqq is empty, the injection
5793  * mechanism dispatches extra I/O requests only until the total number
5794  * of I/O requests in flight---i.e., already dispatched but not yet
5795  * completed---remains lower than this limit.
5796  *
5797  * A first definition comes in handy to introduce the algorithm by
5798  * which the inject limit is computed.  We define as first request for
5799  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5800  * service, and causes bfqq to switch from empty to non-empty. The
5801  * algorithm updates the limit as a function of the effect of
5802  * injection on the service times of only the first requests of
5803  * bfqq. The reason for this restriction is that these are the
5804  * requests whose service time is affected most, because they are the
5805  * first to arrive after injection possibly occurred.
5806  *
5807  * To evaluate the effect of injection, the algorithm measures the
5808  * "total service time" of first requests. We define as total service
5809  * time of an I/O request, the time that elapses since when the
5810  * request is enqueued into bfqq, to when it is completed. This
5811  * quantity allows the whole effect of injection to be measured. It is
5812  * easy to see why. Suppose that some requests of other queues are
5813  * actually injected while bfqq is empty, and that a new request R
5814  * then arrives for bfqq. If the device does start to serve all or
5815  * part of the injected requests during the service hole, then,
5816  * because of this extra service, it may delay the next invocation of
5817  * the dispatch hook of BFQ. Then, even after R gets eventually
5818  * dispatched, the device may delay the actual service of R if it is
5819  * still busy serving the extra requests, or if it decides to serve,
5820  * before R, some extra request still present in its queues. As a
5821  * conclusion, the cumulative extra delay caused by injection can be
5822  * easily evaluated by just comparing the total service time of first
5823  * requests with and without injection.
5824  *
5825  * The limit-update algorithm works as follows. On the arrival of a
5826  * first request of bfqq, the algorithm measures the total time of the
5827  * request only if one of the three cases below holds, and, for each
5828  * case, it updates the limit as described below:
5829  *
5830  * (1) If there is no in-flight request. This gives a baseline for the
5831  *     total service time of the requests of bfqq. If the baseline has
5832  *     not been computed yet, then, after computing it, the limit is
5833  *     set to 1, to start boosting throughput, and to prepare the
5834  *     ground for the next case. If the baseline has already been
5835  *     computed, then it is updated, in case it results to be lower
5836  *     than the previous value.
5837  *
5838  * (2) If the limit is higher than 0 and there are in-flight
5839  *     requests. By comparing the total service time in this case with
5840  *     the above baseline, it is possible to know at which extent the
5841  *     current value of the limit is inflating the total service
5842  *     time. If the inflation is below a certain threshold, then bfqq
5843  *     is assumed to be suffering from no perceivable loss of its
5844  *     service guarantees, and the limit is even tentatively
5845  *     increased. If the inflation is above the threshold, then the
5846  *     limit is decreased. Due to the lack of any hysteresis, this
5847  *     logic makes the limit oscillate even in steady workload
5848  *     conditions. Yet we opted for it, because it is fast in reaching
5849  *     the best value for the limit, as a function of the current I/O
5850  *     workload. To reduce oscillations, this step is disabled for a
5851  *     short time interval after the limit happens to be decreased.
5852  *
5853  * (3) Periodically, after resetting the limit, to make sure that the
5854  *     limit eventually drops in case the workload changes. This is
5855  *     needed because, after the limit has gone safely up for a
5856  *     certain workload, it is impossible to guess whether the
5857  *     baseline total service time may have changed, without measuring
5858  *     it again without injection. A more effective version of this
5859  *     step might be to just sample the baseline, by interrupting
5860  *     injection only once, and then to reset/lower the limit only if
5861  *     the total service time with the current limit does happen to be
5862  *     too large.
5863  *
5864  * More details on each step are provided in the comments on the
5865  * pieces of code that implement these steps: the branch handling the
5866  * transition from empty to non empty in bfq_add_request(), the branch
5867  * handling injection in bfq_select_queue(), and the function
5868  * bfq_choose_bfqq_for_injection(). These comments also explain some
5869  * exceptions, made by the injection mechanism in some special cases.
5870  */
bfq_update_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)5871 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5872 				    struct bfq_queue *bfqq)
5873 {
5874 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5875 	unsigned int old_limit = bfqq->inject_limit;
5876 
5877 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
5878 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5879 
5880 		if (tot_time_ns >= threshold && old_limit > 0) {
5881 			bfqq->inject_limit--;
5882 			bfqq->decrease_time_jif = jiffies;
5883 		} else if (tot_time_ns < threshold &&
5884 			   old_limit <= bfqd->max_rq_in_driver)
5885 			bfqq->inject_limit++;
5886 	}
5887 
5888 	/*
5889 	 * Either we still have to compute the base value for the
5890 	 * total service time, and there seem to be the right
5891 	 * conditions to do it, or we can lower the last base value
5892 	 * computed.
5893 	 *
5894 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5895 	 * request in flight, because this function is in the code
5896 	 * path that handles the completion of a request of bfqq, and,
5897 	 * in particular, this function is executed before
5898 	 * bfqd->rq_in_driver is decremented in such a code path.
5899 	 */
5900 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5901 	    tot_time_ns < bfqq->last_serv_time_ns) {
5902 		if (bfqq->last_serv_time_ns == 0) {
5903 			/*
5904 			 * Now we certainly have a base value: make sure we
5905 			 * start trying injection.
5906 			 */
5907 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5908 		}
5909 		bfqq->last_serv_time_ns = tot_time_ns;
5910 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5911 		/*
5912 		 * No I/O injected and no request still in service in
5913 		 * the drive: these are the exact conditions for
5914 		 * computing the base value of the total service time
5915 		 * for bfqq. So let's update this value, because it is
5916 		 * rather variable. For example, it varies if the size
5917 		 * or the spatial locality of the I/O requests in bfqq
5918 		 * change.
5919 		 */
5920 		bfqq->last_serv_time_ns = tot_time_ns;
5921 
5922 
5923 	/* update complete, not waiting for any request completion any longer */
5924 	bfqd->waited_rq = NULL;
5925 	bfqd->rqs_injected = false;
5926 }
5927 
5928 /*
5929  * Handle either a requeue or a finish for rq. The things to do are
5930  * the same in both cases: all references to rq are to be dropped. In
5931  * particular, rq is considered completed from the point of view of
5932  * the scheduler.
5933  */
bfq_finish_requeue_request(struct request * rq)5934 static void bfq_finish_requeue_request(struct request *rq)
5935 {
5936 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5937 	struct bfq_data *bfqd;
5938 	unsigned long flags;
5939 
5940 	/*
5941 	 * rq either is not associated with any icq, or is an already
5942 	 * requeued request that has not (yet) been re-inserted into
5943 	 * a bfq_queue.
5944 	 */
5945 	if (!rq->elv.icq || !bfqq)
5946 		return;
5947 
5948 	bfqd = bfqq->bfqd;
5949 
5950 	if (rq->rq_flags & RQF_STARTED)
5951 		bfqg_stats_update_completion(bfqq_group(bfqq),
5952 					     rq->start_time_ns,
5953 					     rq->io_start_time_ns,
5954 					     rq->cmd_flags);
5955 
5956 	spin_lock_irqsave(&bfqd->lock, flags);
5957 	if (likely(rq->rq_flags & RQF_STARTED)) {
5958 		if (rq == bfqd->waited_rq)
5959 			bfq_update_inject_limit(bfqd, bfqq);
5960 
5961 		bfq_completed_request(bfqq, bfqd);
5962 		atomic_dec(&rq->mq_hctx->elevator_queued);
5963 	}
5964 	bfq_finish_requeue_request_body(bfqq);
5965 	spin_unlock_irqrestore(&bfqd->lock, flags);
5966 
5967 	/*
5968 	 * Reset private fields. In case of a requeue, this allows
5969 	 * this function to correctly do nothing if it is spuriously
5970 	 * invoked again on this same request (see the check at the
5971 	 * beginning of the function). Probably, a better general
5972 	 * design would be to prevent blk-mq from invoking the requeue
5973 	 * or finish hooks of an elevator, for a request that is not
5974 	 * referred by that elevator.
5975 	 *
5976 	 * Resetting the following fields would break the
5977 	 * request-insertion logic if rq is re-inserted into a bfq
5978 	 * internal queue, without a re-preparation. Here we assume
5979 	 * that re-insertions of requeued requests, without
5980 	 * re-preparation, can happen only for pass_through or at_head
5981 	 * requests (which are not re-inserted into bfq internal
5982 	 * queues).
5983 	 */
5984 	rq->elv.priv[0] = NULL;
5985 	rq->elv.priv[1] = NULL;
5986 }
5987 
5988 /*
5989  * Removes the association between the current task and bfqq, assuming
5990  * that bic points to the bfq iocontext of the task.
5991  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5992  * was the last process referring to that bfqq.
5993  */
5994 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)5995 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5996 {
5997 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5998 
5999 	if (bfqq_process_refs(bfqq) == 1) {
6000 		bfqq->pid = current->pid;
6001 		bfq_clear_bfqq_coop(bfqq);
6002 		bfq_clear_bfqq_split_coop(bfqq);
6003 		return bfqq;
6004 	}
6005 
6006 	bic_set_bfqq(bic, NULL, true);
6007 
6008 	bfq_put_cooperator(bfqq);
6009 
6010 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6011 	return NULL;
6012 }
6013 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)6014 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6015 						   struct bfq_io_cq *bic,
6016 						   struct bio *bio,
6017 						   bool split, bool is_sync,
6018 						   bool *new_queue)
6019 {
6020 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6021 
6022 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6023 		return bfqq;
6024 
6025 	if (new_queue)
6026 		*new_queue = true;
6027 
6028 	if (bfqq)
6029 		bfq_put_queue(bfqq);
6030 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6031 
6032 	bic_set_bfqq(bic, bfqq, is_sync);
6033 	if (split && is_sync) {
6034 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6035 		    bic->saved_in_large_burst)
6036 			bfq_mark_bfqq_in_large_burst(bfqq);
6037 		else {
6038 			bfq_clear_bfqq_in_large_burst(bfqq);
6039 			if (bic->was_in_burst_list)
6040 				/*
6041 				 * If bfqq was in the current
6042 				 * burst list before being
6043 				 * merged, then we have to add
6044 				 * it back. And we do not need
6045 				 * to increase burst_size, as
6046 				 * we did not decrement
6047 				 * burst_size when we removed
6048 				 * bfqq from the burst list as
6049 				 * a consequence of a merge
6050 				 * (see comments in
6051 				 * bfq_put_queue). In this
6052 				 * respect, it would be rather
6053 				 * costly to know whether the
6054 				 * current burst list is still
6055 				 * the same burst list from
6056 				 * which bfqq was removed on
6057 				 * the merge. To avoid this
6058 				 * cost, if bfqq was in a
6059 				 * burst list, then we add
6060 				 * bfqq to the current burst
6061 				 * list without any further
6062 				 * check. This can cause
6063 				 * inappropriate insertions,
6064 				 * but rarely enough to not
6065 				 * harm the detection of large
6066 				 * bursts significantly.
6067 				 */
6068 				hlist_add_head(&bfqq->burst_list_node,
6069 					       &bfqd->burst_list);
6070 		}
6071 		bfqq->split_time = jiffies;
6072 	}
6073 
6074 	return bfqq;
6075 }
6076 
6077 /*
6078  * Only reset private fields. The actual request preparation will be
6079  * performed by bfq_init_rq, when rq is either inserted or merged. See
6080  * comments on bfq_init_rq for the reason behind this delayed
6081  * preparation.
6082  */
bfq_prepare_request(struct request * rq)6083 static void bfq_prepare_request(struct request *rq)
6084 {
6085 	/*
6086 	 * Regardless of whether we have an icq attached, we have to
6087 	 * clear the scheduler pointers, as they might point to
6088 	 * previously allocated bic/bfqq structs.
6089 	 */
6090 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6091 }
6092 
6093 /*
6094  * If needed, init rq, allocate bfq data structures associated with
6095  * rq, and increment reference counters in the destination bfq_queue
6096  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6097  * not associated with any bfq_queue.
6098  *
6099  * This function is invoked by the functions that perform rq insertion
6100  * or merging. One may have expected the above preparation operations
6101  * to be performed in bfq_prepare_request, and not delayed to when rq
6102  * is inserted or merged. The rationale behind this delayed
6103  * preparation is that, after the prepare_request hook is invoked for
6104  * rq, rq may still be transformed into a request with no icq, i.e., a
6105  * request not associated with any queue. No bfq hook is invoked to
6106  * signal this transformation. As a consequence, should these
6107  * preparation operations be performed when the prepare_request hook
6108  * is invoked, and should rq be transformed one moment later, bfq
6109  * would end up in an inconsistent state, because it would have
6110  * incremented some queue counters for an rq destined to
6111  * transformation, without any chance to correctly lower these
6112  * counters back. In contrast, no transformation can still happen for
6113  * rq after rq has been inserted or merged. So, it is safe to execute
6114  * these preparation operations when rq is finally inserted or merged.
6115  */
bfq_init_rq(struct request * rq)6116 static struct bfq_queue *bfq_init_rq(struct request *rq)
6117 {
6118 	struct request_queue *q = rq->q;
6119 	struct bio *bio = rq->bio;
6120 	struct bfq_data *bfqd = q->elevator->elevator_data;
6121 	struct bfq_io_cq *bic;
6122 	const int is_sync = rq_is_sync(rq);
6123 	struct bfq_queue *bfqq;
6124 	bool new_queue = false;
6125 	bool bfqq_already_existing = false, split = false;
6126 
6127 	if (unlikely(!rq->elv.icq))
6128 		return NULL;
6129 
6130 	/*
6131 	 * Assuming that elv.priv[1] is set only if everything is set
6132 	 * for this rq. This holds true, because this function is
6133 	 * invoked only for insertion or merging, and, after such
6134 	 * events, a request cannot be manipulated any longer before
6135 	 * being removed from bfq.
6136 	 */
6137 	if (rq->elv.priv[1])
6138 		return rq->elv.priv[1];
6139 
6140 	bic = icq_to_bic(rq->elv.icq);
6141 
6142 	bfq_check_ioprio_change(bic, bio);
6143 
6144 	bfq_bic_update_cgroup(bic, bio);
6145 
6146 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6147 					 &new_queue);
6148 
6149 	if (likely(!new_queue)) {
6150 		/* If the queue was seeky for too long, break it apart. */
6151 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6152 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6153 
6154 			/* Update bic before losing reference to bfqq */
6155 			if (bfq_bfqq_in_large_burst(bfqq))
6156 				bic->saved_in_large_burst = true;
6157 
6158 			bfqq = bfq_split_bfqq(bic, bfqq);
6159 			split = true;
6160 
6161 			if (!bfqq)
6162 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6163 								 true, is_sync,
6164 								 NULL);
6165 			else
6166 				bfqq_already_existing = true;
6167 		}
6168 	}
6169 
6170 	bfqq->allocated++;
6171 	bfqq->ref++;
6172 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6173 		     rq, bfqq, bfqq->ref);
6174 
6175 	rq->elv.priv[0] = bic;
6176 	rq->elv.priv[1] = bfqq;
6177 
6178 	/*
6179 	 * If a bfq_queue has only one process reference, it is owned
6180 	 * by only this bic: we can then set bfqq->bic = bic. in
6181 	 * addition, if the queue has also just been split, we have to
6182 	 * resume its state.
6183 	 */
6184 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6185 		bfqq->bic = bic;
6186 		if (split) {
6187 			/*
6188 			 * The queue has just been split from a shared
6189 			 * queue: restore the idle window and the
6190 			 * possible weight raising period.
6191 			 */
6192 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6193 					      bfqq_already_existing);
6194 		}
6195 	}
6196 
6197 	/*
6198 	 * Consider bfqq as possibly belonging to a burst of newly
6199 	 * created queues only if:
6200 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6201 	 * or
6202 	 * 2) There is no other active queue. In fact, if, in
6203 	 *    contrast, there are active queues not belonging to the
6204 	 *    possible burst bfqq may belong to, then there is no gain
6205 	 *    in considering bfqq as belonging to a burst, and
6206 	 *    therefore in not weight-raising bfqq. See comments on
6207 	 *    bfq_handle_burst().
6208 	 *
6209 	 * This filtering also helps eliminating false positives,
6210 	 * occurring when bfqq does not belong to an actual large
6211 	 * burst, but some background task (e.g., a service) happens
6212 	 * to trigger the creation of new queues very close to when
6213 	 * bfqq and its possible companion queues are created. See
6214 	 * comments on bfq_handle_burst() for further details also on
6215 	 * this issue.
6216 	 */
6217 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6218 		     (bfqd->burst_size > 0 ||
6219 		      bfq_tot_busy_queues(bfqd) == 0)))
6220 		bfq_handle_burst(bfqd, bfqq);
6221 
6222 	return bfqq;
6223 }
6224 
6225 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)6226 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6227 {
6228 	enum bfqq_expiration reason;
6229 	unsigned long flags;
6230 
6231 	spin_lock_irqsave(&bfqd->lock, flags);
6232 
6233 	/*
6234 	 * Considering that bfqq may be in race, we should firstly check
6235 	 * whether bfqq is in service before doing something on it. If
6236 	 * the bfqq in race is not in service, it has already been expired
6237 	 * through __bfq_bfqq_expire func and its wait_request flags has
6238 	 * been cleared in __bfq_bfqd_reset_in_service func.
6239 	 */
6240 	if (bfqq != bfqd->in_service_queue) {
6241 		spin_unlock_irqrestore(&bfqd->lock, flags);
6242 		return;
6243 	}
6244 
6245 	bfq_clear_bfqq_wait_request(bfqq);
6246 
6247 	if (bfq_bfqq_budget_timeout(bfqq))
6248 		/*
6249 		 * Also here the queue can be safely expired
6250 		 * for budget timeout without wasting
6251 		 * guarantees
6252 		 */
6253 		reason = BFQQE_BUDGET_TIMEOUT;
6254 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6255 		/*
6256 		 * The queue may not be empty upon timer expiration,
6257 		 * because we may not disable the timer when the
6258 		 * first request of the in-service queue arrives
6259 		 * during disk idling.
6260 		 */
6261 		reason = BFQQE_TOO_IDLE;
6262 	else
6263 		goto schedule_dispatch;
6264 
6265 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6266 
6267 schedule_dispatch:
6268 	bfq_schedule_dispatch(bfqd);
6269 	spin_unlock_irqrestore(&bfqd->lock, flags);
6270 }
6271 
6272 /*
6273  * Handler of the expiration of the timer running if the in-service queue
6274  * is idling inside its time slice.
6275  */
bfq_idle_slice_timer(struct hrtimer * timer)6276 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6277 {
6278 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6279 					     idle_slice_timer);
6280 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6281 
6282 	/*
6283 	 * Theoretical race here: the in-service queue can be NULL or
6284 	 * different from the queue that was idling if a new request
6285 	 * arrives for the current queue and there is a full dispatch
6286 	 * cycle that changes the in-service queue.  This can hardly
6287 	 * happen, but in the worst case we just expire a queue too
6288 	 * early.
6289 	 */
6290 	if (bfqq)
6291 		bfq_idle_slice_timer_body(bfqd, bfqq);
6292 
6293 	return HRTIMER_NORESTART;
6294 }
6295 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)6296 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6297 				 struct bfq_queue **bfqq_ptr)
6298 {
6299 	struct bfq_queue *bfqq = *bfqq_ptr;
6300 
6301 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6302 	if (bfqq) {
6303 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6304 
6305 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6306 			     bfqq, bfqq->ref);
6307 		bfq_put_queue(bfqq);
6308 		*bfqq_ptr = NULL;
6309 	}
6310 }
6311 
6312 /*
6313  * Release all the bfqg references to its async queues.  If we are
6314  * deallocating the group these queues may still contain requests, so
6315  * we reparent them to the root cgroup (i.e., the only one that will
6316  * exist for sure until all the requests on a device are gone).
6317  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)6318 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6319 {
6320 	int i, j;
6321 
6322 	for (i = 0; i < 2; i++)
6323 		for (j = 0; j < IOPRIO_BE_NR; j++)
6324 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6325 
6326 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6327 }
6328 
6329 /*
6330  * See the comments on bfq_limit_depth for the purpose of
6331  * the depths set in the function. Return minimum shallow depth we'll use.
6332  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)6333 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6334 				      struct sbitmap_queue *bt)
6335 {
6336 	unsigned int i, j, min_shallow = UINT_MAX;
6337 
6338 	/*
6339 	 * In-word depths if no bfq_queue is being weight-raised:
6340 	 * leaving 25% of tags only for sync reads.
6341 	 *
6342 	 * In next formulas, right-shift the value
6343 	 * (1U<<bt->sb.shift), instead of computing directly
6344 	 * (1U<<(bt->sb.shift - something)), to be robust against
6345 	 * any possible value of bt->sb.shift, without having to
6346 	 * limit 'something'.
6347 	 */
6348 	/* no more than 50% of tags for async I/O */
6349 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6350 	/*
6351 	 * no more than 75% of tags for sync writes (25% extra tags
6352 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6353 	 * writes)
6354 	 */
6355 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6356 
6357 	/*
6358 	 * In-word depths in case some bfq_queue is being weight-
6359 	 * raised: leaving ~63% of tags for sync reads. This is the
6360 	 * highest percentage for which, in our tests, application
6361 	 * start-up times didn't suffer from any regression due to tag
6362 	 * shortage.
6363 	 */
6364 	/* no more than ~18% of tags for async I/O */
6365 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6366 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6367 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6368 
6369 	for (i = 0; i < 2; i++)
6370 		for (j = 0; j < 2; j++)
6371 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6372 
6373 	return min_shallow;
6374 }
6375 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)6376 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6377 {
6378 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6379 	struct blk_mq_tags *tags = hctx->sched_tags;
6380 	unsigned int min_shallow;
6381 
6382 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6383 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6384 }
6385 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)6386 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6387 {
6388 	bfq_depth_updated(hctx);
6389 	return 0;
6390 }
6391 
bfq_exit_queue(struct elevator_queue * e)6392 static void bfq_exit_queue(struct elevator_queue *e)
6393 {
6394 	struct bfq_data *bfqd = e->elevator_data;
6395 	struct bfq_queue *bfqq, *n;
6396 
6397 	hrtimer_cancel(&bfqd->idle_slice_timer);
6398 
6399 	spin_lock_irq(&bfqd->lock);
6400 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6401 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6402 	spin_unlock_irq(&bfqd->lock);
6403 
6404 	hrtimer_cancel(&bfqd->idle_slice_timer);
6405 
6406 	/* release oom-queue reference to root group */
6407 	bfqg_and_blkg_put(bfqd->root_group);
6408 
6409 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6410 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6411 #else
6412 	spin_lock_irq(&bfqd->lock);
6413 	bfq_put_async_queues(bfqd, bfqd->root_group);
6414 	kfree(bfqd->root_group);
6415 	spin_unlock_irq(&bfqd->lock);
6416 #endif
6417 
6418 	wbt_enable_default(bfqd->queue);
6419 
6420 	kfree(bfqd);
6421 }
6422 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)6423 static void bfq_init_root_group(struct bfq_group *root_group,
6424 				struct bfq_data *bfqd)
6425 {
6426 	int i;
6427 
6428 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6429 	root_group->entity.parent = NULL;
6430 	root_group->my_entity = NULL;
6431 	root_group->bfqd = bfqd;
6432 #endif
6433 	root_group->rq_pos_tree = RB_ROOT;
6434 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6435 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6436 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6437 }
6438 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)6439 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6440 {
6441 	struct bfq_data *bfqd;
6442 	struct elevator_queue *eq;
6443 
6444 	eq = elevator_alloc(q, e);
6445 	if (!eq)
6446 		return -ENOMEM;
6447 
6448 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6449 	if (!bfqd) {
6450 		kobject_put(&eq->kobj);
6451 		return -ENOMEM;
6452 	}
6453 	eq->elevator_data = bfqd;
6454 
6455 	spin_lock_irq(&q->queue_lock);
6456 	q->elevator = eq;
6457 	spin_unlock_irq(&q->queue_lock);
6458 
6459 	/*
6460 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6461 	 * Grab a permanent reference to it, so that the normal code flow
6462 	 * will not attempt to free it.
6463 	 */
6464 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6465 	bfqd->oom_bfqq.ref++;
6466 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6467 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6468 	bfqd->oom_bfqq.entity.new_weight =
6469 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6470 
6471 	/* oom_bfqq does not participate to bursts */
6472 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6473 
6474 	/*
6475 	 * Trigger weight initialization, according to ioprio, at the
6476 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6477 	 * class won't be changed any more.
6478 	 */
6479 	bfqd->oom_bfqq.entity.prio_changed = 1;
6480 
6481 	bfqd->queue = q;
6482 
6483 	INIT_LIST_HEAD(&bfqd->dispatch);
6484 
6485 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6486 		     HRTIMER_MODE_REL);
6487 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6488 
6489 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6490 	bfqd->num_groups_with_pending_reqs = 0;
6491 
6492 	INIT_LIST_HEAD(&bfqd->active_list);
6493 	INIT_LIST_HEAD(&bfqd->idle_list);
6494 	INIT_HLIST_HEAD(&bfqd->burst_list);
6495 
6496 	bfqd->hw_tag = -1;
6497 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6498 
6499 	bfqd->bfq_max_budget = bfq_default_max_budget;
6500 
6501 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6502 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6503 	bfqd->bfq_back_max = bfq_back_max;
6504 	bfqd->bfq_back_penalty = bfq_back_penalty;
6505 	bfqd->bfq_slice_idle = bfq_slice_idle;
6506 	bfqd->bfq_timeout = bfq_timeout;
6507 
6508 	bfqd->bfq_requests_within_timer = 120;
6509 
6510 	bfqd->bfq_large_burst_thresh = 8;
6511 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6512 
6513 	bfqd->low_latency = true;
6514 
6515 	/*
6516 	 * Trade-off between responsiveness and fairness.
6517 	 */
6518 	bfqd->bfq_wr_coeff = 30;
6519 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6520 	bfqd->bfq_wr_max_time = 0;
6521 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6522 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6523 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6524 					      * Approximate rate required
6525 					      * to playback or record a
6526 					      * high-definition compressed
6527 					      * video.
6528 					      */
6529 	bfqd->wr_busy_queues = 0;
6530 
6531 	/*
6532 	 * Begin by assuming, optimistically, that the device peak
6533 	 * rate is equal to 2/3 of the highest reference rate.
6534 	 */
6535 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6536 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6537 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6538 
6539 	spin_lock_init(&bfqd->lock);
6540 
6541 	/*
6542 	 * The invocation of the next bfq_create_group_hierarchy
6543 	 * function is the head of a chain of function calls
6544 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6545 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6546 	 * has_work hook function. For this reason,
6547 	 * bfq_create_group_hierarchy is invoked only after all
6548 	 * scheduler data has been initialized, apart from the fields
6549 	 * that can be initialized only after invoking
6550 	 * bfq_create_group_hierarchy. This, in particular, enables
6551 	 * has_work to correctly return false. Of course, to avoid
6552 	 * other inconsistencies, the blk-mq stack must then refrain
6553 	 * from invoking further scheduler hooks before this init
6554 	 * function is finished.
6555 	 */
6556 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6557 	if (!bfqd->root_group)
6558 		goto out_free;
6559 	bfq_init_root_group(bfqd->root_group, bfqd);
6560 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6561 
6562 	wbt_disable_default(q);
6563 	return 0;
6564 
6565 out_free:
6566 	kfree(bfqd);
6567 	kobject_put(&eq->kobj);
6568 	return -ENOMEM;
6569 }
6570 
bfq_slab_kill(void)6571 static void bfq_slab_kill(void)
6572 {
6573 	kmem_cache_destroy(bfq_pool);
6574 }
6575 
bfq_slab_setup(void)6576 static int __init bfq_slab_setup(void)
6577 {
6578 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6579 	if (!bfq_pool)
6580 		return -ENOMEM;
6581 	return 0;
6582 }
6583 
bfq_var_show(unsigned int var,char * page)6584 static ssize_t bfq_var_show(unsigned int var, char *page)
6585 {
6586 	return sprintf(page, "%u\n", var);
6587 }
6588 
bfq_var_store(unsigned long * var,const char * page)6589 static int bfq_var_store(unsigned long *var, const char *page)
6590 {
6591 	unsigned long new_val;
6592 	int ret = kstrtoul(page, 10, &new_val);
6593 
6594 	if (ret)
6595 		return ret;
6596 	*var = new_val;
6597 	return 0;
6598 }
6599 
6600 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6601 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6602 {									\
6603 	struct bfq_data *bfqd = e->elevator_data;			\
6604 	u64 __data = __VAR;						\
6605 	if (__CONV == 1)						\
6606 		__data = jiffies_to_msecs(__data);			\
6607 	else if (__CONV == 2)						\
6608 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6609 	return bfq_var_show(__data, (page));				\
6610 }
6611 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6612 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6613 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6614 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6615 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6616 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6617 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6618 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6619 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6620 #undef SHOW_FUNCTION
6621 
6622 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6623 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6624 {									\
6625 	struct bfq_data *bfqd = e->elevator_data;			\
6626 	u64 __data = __VAR;						\
6627 	__data = div_u64(__data, NSEC_PER_USEC);			\
6628 	return bfq_var_show(__data, (page));				\
6629 }
6630 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6631 #undef USEC_SHOW_FUNCTION
6632 
6633 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6634 static ssize_t								\
6635 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6636 {									\
6637 	struct bfq_data *bfqd = e->elevator_data;			\
6638 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6639 	int ret;							\
6640 									\
6641 	ret = bfq_var_store(&__data, (page));				\
6642 	if (ret)							\
6643 		return ret;						\
6644 	if (__data < __min)						\
6645 		__data = __min;						\
6646 	else if (__data > __max)					\
6647 		__data = __max;						\
6648 	if (__CONV == 1)						\
6649 		*(__PTR) = msecs_to_jiffies(__data);			\
6650 	else if (__CONV == 2)						\
6651 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6652 	else								\
6653 		*(__PTR) = __data;					\
6654 	return count;							\
6655 }
6656 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6657 		INT_MAX, 2);
6658 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6659 		INT_MAX, 2);
6660 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6661 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6662 		INT_MAX, 0);
6663 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6664 #undef STORE_FUNCTION
6665 
6666 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6667 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6668 {									\
6669 	struct bfq_data *bfqd = e->elevator_data;			\
6670 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6671 	int ret;							\
6672 									\
6673 	ret = bfq_var_store(&__data, (page));				\
6674 	if (ret)							\
6675 		return ret;						\
6676 	if (__data < __min)						\
6677 		__data = __min;						\
6678 	else if (__data > __max)					\
6679 		__data = __max;						\
6680 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6681 	return count;							\
6682 }
6683 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6684 		    UINT_MAX);
6685 #undef USEC_STORE_FUNCTION
6686 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)6687 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6688 				    const char *page, size_t count)
6689 {
6690 	struct bfq_data *bfqd = e->elevator_data;
6691 	unsigned long __data;
6692 	int ret;
6693 
6694 	ret = bfq_var_store(&__data, (page));
6695 	if (ret)
6696 		return ret;
6697 
6698 	if (__data == 0)
6699 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6700 	else {
6701 		if (__data > INT_MAX)
6702 			__data = INT_MAX;
6703 		bfqd->bfq_max_budget = __data;
6704 	}
6705 
6706 	bfqd->bfq_user_max_budget = __data;
6707 
6708 	return count;
6709 }
6710 
6711 /*
6712  * Leaving this name to preserve name compatibility with cfq
6713  * parameters, but this timeout is used for both sync and async.
6714  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)6715 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6716 				      const char *page, size_t count)
6717 {
6718 	struct bfq_data *bfqd = e->elevator_data;
6719 	unsigned long __data;
6720 	int ret;
6721 
6722 	ret = bfq_var_store(&__data, (page));
6723 	if (ret)
6724 		return ret;
6725 
6726 	if (__data < 1)
6727 		__data = 1;
6728 	else if (__data > INT_MAX)
6729 		__data = INT_MAX;
6730 
6731 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6732 	if (bfqd->bfq_user_max_budget == 0)
6733 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6734 
6735 	return count;
6736 }
6737 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)6738 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6739 				     const char *page, size_t count)
6740 {
6741 	struct bfq_data *bfqd = e->elevator_data;
6742 	unsigned long __data;
6743 	int ret;
6744 
6745 	ret = bfq_var_store(&__data, (page));
6746 	if (ret)
6747 		return ret;
6748 
6749 	if (__data > 1)
6750 		__data = 1;
6751 	if (!bfqd->strict_guarantees && __data == 1
6752 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6753 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6754 
6755 	bfqd->strict_guarantees = __data;
6756 
6757 	return count;
6758 }
6759 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)6760 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6761 				     const char *page, size_t count)
6762 {
6763 	struct bfq_data *bfqd = e->elevator_data;
6764 	unsigned long __data;
6765 	int ret;
6766 
6767 	ret = bfq_var_store(&__data, (page));
6768 	if (ret)
6769 		return ret;
6770 
6771 	if (__data > 1)
6772 		__data = 1;
6773 	if (__data == 0 && bfqd->low_latency != 0)
6774 		bfq_end_wr(bfqd);
6775 	bfqd->low_latency = __data;
6776 
6777 	return count;
6778 }
6779 
6780 #define BFQ_ATTR(name) \
6781 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6782 
6783 static struct elv_fs_entry bfq_attrs[] = {
6784 	BFQ_ATTR(fifo_expire_sync),
6785 	BFQ_ATTR(fifo_expire_async),
6786 	BFQ_ATTR(back_seek_max),
6787 	BFQ_ATTR(back_seek_penalty),
6788 	BFQ_ATTR(slice_idle),
6789 	BFQ_ATTR(slice_idle_us),
6790 	BFQ_ATTR(max_budget),
6791 	BFQ_ATTR(timeout_sync),
6792 	BFQ_ATTR(strict_guarantees),
6793 	BFQ_ATTR(low_latency),
6794 	__ATTR_NULL
6795 };
6796 
6797 static struct elevator_type iosched_bfq_mq = {
6798 	.ops = {
6799 		.limit_depth		= bfq_limit_depth,
6800 		.prepare_request	= bfq_prepare_request,
6801 		.requeue_request        = bfq_finish_requeue_request,
6802 		.finish_request		= bfq_finish_requeue_request,
6803 		.exit_icq		= bfq_exit_icq,
6804 		.insert_requests	= bfq_insert_requests,
6805 		.dispatch_request	= bfq_dispatch_request,
6806 		.next_request		= elv_rb_latter_request,
6807 		.former_request		= elv_rb_former_request,
6808 		.allow_merge		= bfq_allow_bio_merge,
6809 		.bio_merge		= bfq_bio_merge,
6810 		.request_merge		= bfq_request_merge,
6811 		.requests_merged	= bfq_requests_merged,
6812 		.request_merged		= bfq_request_merged,
6813 		.has_work		= bfq_has_work,
6814 		.depth_updated		= bfq_depth_updated,
6815 		.init_hctx		= bfq_init_hctx,
6816 		.init_sched		= bfq_init_queue,
6817 		.exit_sched		= bfq_exit_queue,
6818 	},
6819 
6820 	.icq_size =		sizeof(struct bfq_io_cq),
6821 	.icq_align =		__alignof__(struct bfq_io_cq),
6822 	.elevator_attrs =	bfq_attrs,
6823 	.elevator_name =	"bfq",
6824 	.elevator_owner =	THIS_MODULE,
6825 };
6826 MODULE_ALIAS("bfq-iosched");
6827 
bfq_init(void)6828 static int __init bfq_init(void)
6829 {
6830 	int ret;
6831 
6832 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6833 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6834 	if (ret)
6835 		return ret;
6836 #endif
6837 
6838 	ret = -ENOMEM;
6839 	if (bfq_slab_setup())
6840 		goto err_pol_unreg;
6841 
6842 	/*
6843 	 * Times to load large popular applications for the typical
6844 	 * systems installed on the reference devices (see the
6845 	 * comments before the definition of the next
6846 	 * array). Actually, we use slightly lower values, as the
6847 	 * estimated peak rate tends to be smaller than the actual
6848 	 * peak rate.  The reason for this last fact is that estimates
6849 	 * are computed over much shorter time intervals than the long
6850 	 * intervals typically used for benchmarking. Why? First, to
6851 	 * adapt more quickly to variations. Second, because an I/O
6852 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6853 	 * be run for a long time.
6854 	 */
6855 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6856 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6857 
6858 	ret = elv_register(&iosched_bfq_mq);
6859 	if (ret)
6860 		goto slab_kill;
6861 
6862 	return 0;
6863 
6864 slab_kill:
6865 	bfq_slab_kill();
6866 err_pol_unreg:
6867 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6868 	blkcg_policy_unregister(&blkcg_policy_bfq);
6869 #endif
6870 	return ret;
6871 }
6872 
bfq_exit(void)6873 static void __exit bfq_exit(void)
6874 {
6875 	elv_unregister(&iosched_bfq_mq);
6876 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6877 	blkcg_policy_unregister(&blkcg_policy_bfq);
6878 #endif
6879 	bfq_slab_kill();
6880 }
6881 
6882 module_init(bfq_init);
6883 module_exit(bfq_exit);
6884 
6885 MODULE_AUTHOR("Paolo Valente");
6886 MODULE_LICENSE("GPL");
6887 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6888