• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15 
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-debugfs.h"
19 #include "blk-mq-sched.h"
20 #include "blk-mq-tag.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24 
25 /*
26  * Scheduling domains: the device is divided into multiple domains based on the
27  * request type.
28  */
29 enum {
30 	KYBER_READ,
31 	KYBER_WRITE,
32 	KYBER_DISCARD,
33 	KYBER_OTHER,
34 	KYBER_NUM_DOMAINS,
35 };
36 
37 static const char *kyber_domain_names[] = {
38 	[KYBER_READ] = "READ",
39 	[KYBER_WRITE] = "WRITE",
40 	[KYBER_DISCARD] = "DISCARD",
41 	[KYBER_OTHER] = "OTHER",
42 };
43 
44 enum {
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Maximum device-wide depth for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate the
57  * device with only a fraction of the maximum possible queue depth. So, we cap
58  * these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_WRITE] = 128,
63 	[KYBER_DISCARD] = 64,
64 	[KYBER_OTHER] = 16,
65 };
66 
67 /*
68  * Default latency targets for each scheduling domain.
69  */
70 static const u64 kyber_latency_targets[] = {
71 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75 
76 /*
77  * Batch size (number of requests we'll dispatch in a row) for each scheduling
78  * domain.
79  */
80 static const unsigned int kyber_batch_size[] = {
81 	[KYBER_READ] = 16,
82 	[KYBER_WRITE] = 8,
83 	[KYBER_DISCARD] = 1,
84 	[KYBER_OTHER] = 1,
85 };
86 
87 /*
88  * Requests latencies are recorded in a histogram with buckets defined relative
89  * to the target latency:
90  *
91  * <= 1/4 * target latency
92  * <= 1/2 * target latency
93  * <= 3/4 * target latency
94  * <= target latency
95  * <= 1 1/4 * target latency
96  * <= 1 1/2 * target latency
97  * <= 1 3/4 * target latency
98  * > 1 3/4 * target latency
99  */
100 enum {
101 	/*
102 	 * The width of the latency histogram buckets is
103 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 	 */
105 	KYBER_LATENCY_SHIFT = 2,
106 	/*
107 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 	 * thus, "good".
109 	 */
110 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114 
115 /*
116  * We measure both the total latency and the I/O latency (i.e., latency after
117  * submitting to the device).
118  */
119 enum {
120 	KYBER_TOTAL_LATENCY,
121 	KYBER_IO_LATENCY,
122 };
123 
124 static const char *kyber_latency_type_names[] = {
125 	[KYBER_TOTAL_LATENCY] = "total",
126 	[KYBER_IO_LATENCY] = "I/O",
127 };
128 
129 /*
130  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131  * domain except for KYBER_OTHER.
132  */
133 struct kyber_cpu_latency {
134 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136 
137 /*
138  * There is a same mapping between ctx & hctx and kcq & khd,
139  * we use request->mq_ctx->index_hw to index the kcq in khd.
140  */
141 struct kyber_ctx_queue {
142 	/*
143 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 	 * Also protect the rqs on rq_list when merge.
145 	 */
146 	spinlock_t lock;
147 	struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149 
150 struct kyber_queue_data {
151 	struct request_queue *q;
152 
153 	/*
154 	 * Each scheduling domain has a limited number of in-flight requests
155 	 * device-wide, limited by these tokens.
156 	 */
157 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158 
159 	/*
160 	 * Async request percentage, converted to per-word depth for
161 	 * sbitmap_get_shallow().
162 	 */
163 	unsigned int async_depth;
164 
165 	struct kyber_cpu_latency __percpu *cpu_latency;
166 
167 	/* Timer for stats aggregation and adjusting domain tokens. */
168 	struct timer_list timer;
169 
170 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171 
172 	unsigned long latency_timeout[KYBER_OTHER];
173 
174 	int domain_p99[KYBER_OTHER];
175 
176 	/* Target latencies in nanoseconds. */
177 	u64 latency_targets[KYBER_OTHER];
178 };
179 
180 struct kyber_hctx_data {
181 	spinlock_t lock;
182 	struct list_head rqs[KYBER_NUM_DOMAINS];
183 	unsigned int cur_domain;
184 	unsigned int batching;
185 	struct kyber_ctx_queue *kcqs;
186 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189 	atomic_t wait_index[KYBER_NUM_DOMAINS];
190 };
191 
192 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193 			     void *key);
194 
kyber_sched_domain(unsigned int op)195 static unsigned int kyber_sched_domain(unsigned int op)
196 {
197 	switch (op & REQ_OP_MASK) {
198 	case REQ_OP_READ:
199 		return KYBER_READ;
200 	case REQ_OP_WRITE:
201 		return KYBER_WRITE;
202 	case REQ_OP_DISCARD:
203 		return KYBER_DISCARD;
204 	default:
205 		return KYBER_OTHER;
206 	}
207 }
208 
flush_latency_buckets(struct kyber_queue_data * kqd,struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type)209 static void flush_latency_buckets(struct kyber_queue_data *kqd,
210 				  struct kyber_cpu_latency *cpu_latency,
211 				  unsigned int sched_domain, unsigned int type)
212 {
213 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215 	unsigned int bucket;
216 
217 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
219 }
220 
221 /*
222  * Calculate the histogram bucket with the given percentile rank, or -1 if there
223  * aren't enough samples yet.
224  */
calculate_percentile(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int type,unsigned int percentile)225 static int calculate_percentile(struct kyber_queue_data *kqd,
226 				unsigned int sched_domain, unsigned int type,
227 				unsigned int percentile)
228 {
229 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230 	unsigned int bucket, samples = 0, percentile_samples;
231 
232 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233 		samples += buckets[bucket];
234 
235 	if (!samples)
236 		return -1;
237 
238 	/*
239 	 * We do the calculation once we have 500 samples or one second passes
240 	 * since the first sample was recorded, whichever comes first.
241 	 */
242 	if (!kqd->latency_timeout[sched_domain])
243 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244 	if (samples < 500 &&
245 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246 		return -1;
247 	}
248 	kqd->latency_timeout[sched_domain] = 0;
249 
250 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252 		if (buckets[bucket] >= percentile_samples)
253 			break;
254 		percentile_samples -= buckets[bucket];
255 	}
256 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
257 
258 	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259 			    kyber_latency_type_names[type], percentile,
260 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261 
262 	return bucket;
263 }
264 
kyber_resize_domain(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int depth)265 static void kyber_resize_domain(struct kyber_queue_data *kqd,
266 				unsigned int sched_domain, unsigned int depth)
267 {
268 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271 		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272 				   depth);
273 	}
274 }
275 
kyber_timer_fn(struct timer_list * t)276 static void kyber_timer_fn(struct timer_list *t)
277 {
278 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279 	unsigned int sched_domain;
280 	int cpu;
281 	bool bad = false;
282 
283 	/* Sum all of the per-cpu latency histograms. */
284 	for_each_online_cpu(cpu) {
285 		struct kyber_cpu_latency *cpu_latency;
286 
287 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 					      KYBER_TOTAL_LATENCY);
291 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 					      KYBER_IO_LATENCY);
293 		}
294 	}
295 
296 	/*
297 	 * Check if any domains have a high I/O latency, which might indicate
298 	 * congestion in the device. Note that we use the p90; we don't want to
299 	 * be too sensitive to outliers here.
300 	 */
301 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302 		int p90;
303 
304 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305 					   90);
306 		if (p90 >= KYBER_GOOD_BUCKETS)
307 			bad = true;
308 	}
309 
310 	/*
311 	 * Adjust the scheduling domain depths. If we determined that there was
312 	 * congestion, we throttle all domains with good latencies. Either way,
313 	 * we ease up on throttling domains with bad latencies.
314 	 */
315 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316 		unsigned int orig_depth, depth;
317 		int p99;
318 
319 		p99 = calculate_percentile(kqd, sched_domain,
320 					   KYBER_TOTAL_LATENCY, 99);
321 		/*
322 		 * This is kind of subtle: different domains will not
323 		 * necessarily have enough samples to calculate the latency
324 		 * percentiles during the same window, so we have to remember
325 		 * the p99 for the next time we observe congestion; once we do,
326 		 * we don't want to throttle again until we get more data, so we
327 		 * reset it to -1.
328 		 */
329 		if (bad) {
330 			if (p99 < 0)
331 				p99 = kqd->domain_p99[sched_domain];
332 			kqd->domain_p99[sched_domain] = -1;
333 		} else if (p99 >= 0) {
334 			kqd->domain_p99[sched_domain] = p99;
335 		}
336 		if (p99 < 0)
337 			continue;
338 
339 		/*
340 		 * If this domain has bad latency, throttle less. Otherwise,
341 		 * throttle more iff we determined that there is congestion.
342 		 *
343 		 * The new depth is scaled linearly with the p99 latency vs the
344 		 * latency target. E.g., if the p99 is 3/4 of the target, then
345 		 * we throttle down to 3/4 of the current depth, and if the p99
346 		 * is 2x the target, then we double the depth.
347 		 */
348 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351 			kyber_resize_domain(kqd, sched_domain, depth);
352 		}
353 	}
354 }
355 
kyber_queue_data_alloc(struct request_queue * q)356 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
357 {
358 	struct kyber_queue_data *kqd;
359 	int ret = -ENOMEM;
360 	int i;
361 
362 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
363 	if (!kqd)
364 		goto err;
365 
366 	kqd->q = q;
367 
368 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
369 					    GFP_KERNEL | __GFP_ZERO);
370 	if (!kqd->cpu_latency)
371 		goto err_kqd;
372 
373 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
374 
375 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
376 		WARN_ON(!kyber_depth[i]);
377 		WARN_ON(!kyber_batch_size[i]);
378 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
379 					      kyber_depth[i], -1, false,
380 					      GFP_KERNEL, q->node);
381 		if (ret) {
382 			while (--i >= 0)
383 				sbitmap_queue_free(&kqd->domain_tokens[i]);
384 			goto err_buckets;
385 		}
386 	}
387 
388 	for (i = 0; i < KYBER_OTHER; i++) {
389 		kqd->domain_p99[i] = -1;
390 		kqd->latency_targets[i] = kyber_latency_targets[i];
391 	}
392 
393 	return kqd;
394 
395 err_buckets:
396 	free_percpu(kqd->cpu_latency);
397 err_kqd:
398 	kfree(kqd);
399 err:
400 	return ERR_PTR(ret);
401 }
402 
kyber_init_sched(struct request_queue * q,struct elevator_type * e)403 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
404 {
405 	struct kyber_queue_data *kqd;
406 	struct elevator_queue *eq;
407 
408 	eq = elevator_alloc(q, e);
409 	if (!eq)
410 		return -ENOMEM;
411 
412 	kqd = kyber_queue_data_alloc(q);
413 	if (IS_ERR(kqd)) {
414 		kobject_put(&eq->kobj);
415 		return PTR_ERR(kqd);
416 	}
417 
418 	blk_stat_enable_accounting(q);
419 
420 	eq->elevator_data = kqd;
421 	q->elevator = eq;
422 
423 	return 0;
424 }
425 
kyber_exit_sched(struct elevator_queue * e)426 static void kyber_exit_sched(struct elevator_queue *e)
427 {
428 	struct kyber_queue_data *kqd = e->elevator_data;
429 	int i;
430 
431 	del_timer_sync(&kqd->timer);
432 
433 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
434 		sbitmap_queue_free(&kqd->domain_tokens[i]);
435 	free_percpu(kqd->cpu_latency);
436 	kfree(kqd);
437 }
438 
kyber_ctx_queue_init(struct kyber_ctx_queue * kcq)439 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
440 {
441 	unsigned int i;
442 
443 	spin_lock_init(&kcq->lock);
444 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
445 		INIT_LIST_HEAD(&kcq->rq_list[i]);
446 }
447 
kyber_depth_updated(struct blk_mq_hw_ctx * hctx)448 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
449 {
450 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
451 	struct blk_mq_tags *tags = hctx->sched_tags;
452 	unsigned int shift = tags->bitmap_tags->sb.shift;
453 
454 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
455 
456 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
457 }
458 
kyber_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)459 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
460 {
461 	struct kyber_hctx_data *khd;
462 	int i;
463 
464 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
465 	if (!khd)
466 		return -ENOMEM;
467 
468 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
469 				       sizeof(struct kyber_ctx_queue),
470 				       GFP_KERNEL, hctx->numa_node);
471 	if (!khd->kcqs)
472 		goto err_khd;
473 
474 	for (i = 0; i < hctx->nr_ctx; i++)
475 		kyber_ctx_queue_init(&khd->kcqs[i]);
476 
477 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
478 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
479 				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
480 			while (--i >= 0)
481 				sbitmap_free(&khd->kcq_map[i]);
482 			goto err_kcqs;
483 		}
484 	}
485 
486 	spin_lock_init(&khd->lock);
487 
488 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
489 		INIT_LIST_HEAD(&khd->rqs[i]);
490 		khd->domain_wait[i].sbq = NULL;
491 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
492 					  kyber_domain_wake);
493 		khd->domain_wait[i].wait.private = hctx;
494 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
495 		atomic_set(&khd->wait_index[i], 0);
496 	}
497 
498 	khd->cur_domain = 0;
499 	khd->batching = 0;
500 
501 	hctx->sched_data = khd;
502 	kyber_depth_updated(hctx);
503 
504 	return 0;
505 
506 err_kcqs:
507 	kfree(khd->kcqs);
508 err_khd:
509 	kfree(khd);
510 	return -ENOMEM;
511 }
512 
kyber_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)513 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
514 {
515 	struct kyber_hctx_data *khd = hctx->sched_data;
516 	int i;
517 
518 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
519 		sbitmap_free(&khd->kcq_map[i]);
520 	kfree(khd->kcqs);
521 	kfree(hctx->sched_data);
522 }
523 
rq_get_domain_token(struct request * rq)524 static int rq_get_domain_token(struct request *rq)
525 {
526 	return (long)rq->elv.priv[0];
527 }
528 
rq_set_domain_token(struct request * rq,int token)529 static void rq_set_domain_token(struct request *rq, int token)
530 {
531 	rq->elv.priv[0] = (void *)(long)token;
532 }
533 
rq_clear_domain_token(struct kyber_queue_data * kqd,struct request * rq)534 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
535 				  struct request *rq)
536 {
537 	unsigned int sched_domain;
538 	int nr;
539 
540 	nr = rq_get_domain_token(rq);
541 	if (nr != -1) {
542 		sched_domain = kyber_sched_domain(rq->cmd_flags);
543 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
544 				    rq->mq_ctx->cpu);
545 	}
546 }
547 
kyber_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)548 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
549 {
550 	/*
551 	 * We use the scheduler tags as per-hardware queue queueing tokens.
552 	 * Async requests can be limited at this stage.
553 	 */
554 	if (!op_is_sync(op)) {
555 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
556 
557 		data->shallow_depth = kqd->async_depth;
558 	}
559 }
560 
kyber_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)561 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
562 		unsigned int nr_segs)
563 {
564 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
565 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
566 	struct kyber_hctx_data *khd = hctx->sched_data;
567 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
568 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
569 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
570 	bool merged;
571 
572 	spin_lock(&kcq->lock);
573 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
574 	spin_unlock(&kcq->lock);
575 
576 	return merged;
577 }
578 
kyber_prepare_request(struct request * rq)579 static void kyber_prepare_request(struct request *rq)
580 {
581 	rq_set_domain_token(rq, -1);
582 }
583 
kyber_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * rq_list,bool at_head)584 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
585 				  struct list_head *rq_list, bool at_head)
586 {
587 	struct kyber_hctx_data *khd = hctx->sched_data;
588 	struct request *rq, *next;
589 
590 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
591 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
592 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
593 		struct list_head *head = &kcq->rq_list[sched_domain];
594 
595 		spin_lock(&kcq->lock);
596 		if (at_head)
597 			list_move(&rq->queuelist, head);
598 		else
599 			list_move_tail(&rq->queuelist, head);
600 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
601 				rq->mq_ctx->index_hw[hctx->type]);
602 		blk_mq_sched_request_inserted(rq);
603 		spin_unlock(&kcq->lock);
604 	}
605 }
606 
kyber_finish_request(struct request * rq)607 static void kyber_finish_request(struct request *rq)
608 {
609 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
610 
611 	rq_clear_domain_token(kqd, rq);
612 }
613 
add_latency_sample(struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type,u64 target,u64 latency)614 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
615 			       unsigned int sched_domain, unsigned int type,
616 			       u64 target, u64 latency)
617 {
618 	unsigned int bucket;
619 	u64 divisor;
620 
621 	if (latency > 0) {
622 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
623 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
624 			       KYBER_LATENCY_BUCKETS - 1);
625 	} else {
626 		bucket = 0;
627 	}
628 
629 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
630 }
631 
kyber_completed_request(struct request * rq,u64 now)632 static void kyber_completed_request(struct request *rq, u64 now)
633 {
634 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
635 	struct kyber_cpu_latency *cpu_latency;
636 	unsigned int sched_domain;
637 	u64 target;
638 
639 	sched_domain = kyber_sched_domain(rq->cmd_flags);
640 	if (sched_domain == KYBER_OTHER)
641 		return;
642 
643 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
644 	target = kqd->latency_targets[sched_domain];
645 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
646 			   target, now - rq->start_time_ns);
647 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
648 			   now - rq->io_start_time_ns);
649 	put_cpu_ptr(kqd->cpu_latency);
650 
651 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
652 }
653 
654 struct flush_kcq_data {
655 	struct kyber_hctx_data *khd;
656 	unsigned int sched_domain;
657 	struct list_head *list;
658 };
659 
flush_busy_kcq(struct sbitmap * sb,unsigned int bitnr,void * data)660 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
661 {
662 	struct flush_kcq_data *flush_data = data;
663 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
664 
665 	spin_lock(&kcq->lock);
666 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
667 			      flush_data->list);
668 	sbitmap_clear_bit(sb, bitnr);
669 	spin_unlock(&kcq->lock);
670 
671 	return true;
672 }
673 
kyber_flush_busy_kcqs(struct kyber_hctx_data * khd,unsigned int sched_domain,struct list_head * list)674 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
675 				  unsigned int sched_domain,
676 				  struct list_head *list)
677 {
678 	struct flush_kcq_data data = {
679 		.khd = khd,
680 		.sched_domain = sched_domain,
681 		.list = list,
682 	};
683 
684 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
685 			     flush_busy_kcq, &data);
686 }
687 
kyber_domain_wake(wait_queue_entry_t * wqe,unsigned mode,int flags,void * key)688 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
689 			     void *key)
690 {
691 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
692 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
693 
694 	sbitmap_del_wait_queue(wait);
695 	blk_mq_run_hw_queue(hctx, true);
696 	return 1;
697 }
698 
kyber_get_domain_token(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)699 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
700 				  struct kyber_hctx_data *khd,
701 				  struct blk_mq_hw_ctx *hctx)
702 {
703 	unsigned int sched_domain = khd->cur_domain;
704 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
705 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
706 	struct sbq_wait_state *ws;
707 	int nr;
708 
709 	nr = __sbitmap_queue_get(domain_tokens);
710 
711 	/*
712 	 * If we failed to get a domain token, make sure the hardware queue is
713 	 * run when one becomes available. Note that this is serialized on
714 	 * khd->lock, but we still need to be careful about the waker.
715 	 */
716 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
717 		ws = sbq_wait_ptr(domain_tokens,
718 				  &khd->wait_index[sched_domain]);
719 		khd->domain_ws[sched_domain] = ws;
720 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
721 
722 		/*
723 		 * Try again in case a token was freed before we got on the wait
724 		 * queue.
725 		 */
726 		nr = __sbitmap_queue_get(domain_tokens);
727 	}
728 
729 	/*
730 	 * If we got a token while we were on the wait queue, remove ourselves
731 	 * from the wait queue to ensure that all wake ups make forward
732 	 * progress. It's possible that the waker already deleted the entry
733 	 * between the !list_empty_careful() check and us grabbing the lock, but
734 	 * list_del_init() is okay with that.
735 	 */
736 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
737 		ws = khd->domain_ws[sched_domain];
738 		spin_lock_irq(&ws->wait.lock);
739 		sbitmap_del_wait_queue(wait);
740 		spin_unlock_irq(&ws->wait.lock);
741 	}
742 
743 	return nr;
744 }
745 
746 static struct request *
kyber_dispatch_cur_domain(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)747 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
748 			  struct kyber_hctx_data *khd,
749 			  struct blk_mq_hw_ctx *hctx)
750 {
751 	struct list_head *rqs;
752 	struct request *rq;
753 	int nr;
754 
755 	rqs = &khd->rqs[khd->cur_domain];
756 
757 	/*
758 	 * If we already have a flushed request, then we just need to get a
759 	 * token for it. Otherwise, if there are pending requests in the kcqs,
760 	 * flush the kcqs, but only if we can get a token. If not, we should
761 	 * leave the requests in the kcqs so that they can be merged. Note that
762 	 * khd->lock serializes the flushes, so if we observed any bit set in
763 	 * the kcq_map, we will always get a request.
764 	 */
765 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
766 	if (rq) {
767 		nr = kyber_get_domain_token(kqd, khd, hctx);
768 		if (nr >= 0) {
769 			khd->batching++;
770 			rq_set_domain_token(rq, nr);
771 			list_del_init(&rq->queuelist);
772 			return rq;
773 		} else {
774 			trace_kyber_throttled(kqd->q,
775 					      kyber_domain_names[khd->cur_domain]);
776 		}
777 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
778 		nr = kyber_get_domain_token(kqd, khd, hctx);
779 		if (nr >= 0) {
780 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
781 			rq = list_first_entry(rqs, struct request, queuelist);
782 			khd->batching++;
783 			rq_set_domain_token(rq, nr);
784 			list_del_init(&rq->queuelist);
785 			return rq;
786 		} else {
787 			trace_kyber_throttled(kqd->q,
788 					      kyber_domain_names[khd->cur_domain]);
789 		}
790 	}
791 
792 	/* There were either no pending requests or no tokens. */
793 	return NULL;
794 }
795 
kyber_dispatch_request(struct blk_mq_hw_ctx * hctx)796 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
797 {
798 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
799 	struct kyber_hctx_data *khd = hctx->sched_data;
800 	struct request *rq;
801 	int i;
802 
803 	spin_lock(&khd->lock);
804 
805 	/*
806 	 * First, if we are still entitled to batch, try to dispatch a request
807 	 * from the batch.
808 	 */
809 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
810 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
811 		if (rq)
812 			goto out;
813 	}
814 
815 	/*
816 	 * Either,
817 	 * 1. We were no longer entitled to a batch.
818 	 * 2. The domain we were batching didn't have any requests.
819 	 * 3. The domain we were batching was out of tokens.
820 	 *
821 	 * Start another batch. Note that this wraps back around to the original
822 	 * domain if no other domains have requests or tokens.
823 	 */
824 	khd->batching = 0;
825 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
826 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
827 			khd->cur_domain = 0;
828 		else
829 			khd->cur_domain++;
830 
831 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
832 		if (rq)
833 			goto out;
834 	}
835 
836 	rq = NULL;
837 out:
838 	spin_unlock(&khd->lock);
839 	return rq;
840 }
841 
kyber_has_work(struct blk_mq_hw_ctx * hctx)842 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
843 {
844 	struct kyber_hctx_data *khd = hctx->sched_data;
845 	int i;
846 
847 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
848 		if (!list_empty_careful(&khd->rqs[i]) ||
849 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
850 			return true;
851 	}
852 
853 	return false;
854 }
855 
856 #define KYBER_LAT_SHOW_STORE(domain, name)				\
857 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
858 				       char *page)			\
859 {									\
860 	struct kyber_queue_data *kqd = e->elevator_data;		\
861 									\
862 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
863 }									\
864 									\
865 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
866 					const char *page, size_t count)	\
867 {									\
868 	struct kyber_queue_data *kqd = e->elevator_data;		\
869 	unsigned long long nsec;					\
870 	int ret;							\
871 									\
872 	ret = kstrtoull(page, 10, &nsec);				\
873 	if (ret)							\
874 		return ret;						\
875 									\
876 	kqd->latency_targets[domain] = nsec;				\
877 									\
878 	return count;							\
879 }
880 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
881 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
882 #undef KYBER_LAT_SHOW_STORE
883 
884 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
885 static struct elv_fs_entry kyber_sched_attrs[] = {
886 	KYBER_LAT_ATTR(read),
887 	KYBER_LAT_ATTR(write),
888 	__ATTR_NULL
889 };
890 #undef KYBER_LAT_ATTR
891 
892 #ifdef CONFIG_BLK_DEBUG_FS
893 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
894 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
895 {									\
896 	struct request_queue *q = data;					\
897 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
898 									\
899 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
900 	return 0;							\
901 }									\
902 									\
903 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
904 	__acquires(&khd->lock)						\
905 {									\
906 	struct blk_mq_hw_ctx *hctx = m->private;			\
907 	struct kyber_hctx_data *khd = hctx->sched_data;			\
908 									\
909 	spin_lock(&khd->lock);						\
910 	return seq_list_start(&khd->rqs[domain], *pos);			\
911 }									\
912 									\
913 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
914 				     loff_t *pos)			\
915 {									\
916 	struct blk_mq_hw_ctx *hctx = m->private;			\
917 	struct kyber_hctx_data *khd = hctx->sched_data;			\
918 									\
919 	return seq_list_next(v, &khd->rqs[domain], pos);		\
920 }									\
921 									\
922 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
923 	__releases(&khd->lock)						\
924 {									\
925 	struct blk_mq_hw_ctx *hctx = m->private;			\
926 	struct kyber_hctx_data *khd = hctx->sched_data;			\
927 									\
928 	spin_unlock(&khd->lock);					\
929 }									\
930 									\
931 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
932 	.start	= kyber_##name##_rqs_start,				\
933 	.next	= kyber_##name##_rqs_next,				\
934 	.stop	= kyber_##name##_rqs_stop,				\
935 	.show	= blk_mq_debugfs_rq_show,				\
936 };									\
937 									\
938 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
939 {									\
940 	struct blk_mq_hw_ctx *hctx = data;				\
941 	struct kyber_hctx_data *khd = hctx->sched_data;			\
942 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
943 									\
944 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
945 	return 0;							\
946 }
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ,read)947 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
948 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
949 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
951 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
952 
953 static int kyber_async_depth_show(void *data, struct seq_file *m)
954 {
955 	struct request_queue *q = data;
956 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
957 
958 	seq_printf(m, "%u\n", kqd->async_depth);
959 	return 0;
960 }
961 
kyber_cur_domain_show(void * data,struct seq_file * m)962 static int kyber_cur_domain_show(void *data, struct seq_file *m)
963 {
964 	struct blk_mq_hw_ctx *hctx = data;
965 	struct kyber_hctx_data *khd = hctx->sched_data;
966 
967 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
968 	return 0;
969 }
970 
kyber_batching_show(void * data,struct seq_file * m)971 static int kyber_batching_show(void *data, struct seq_file *m)
972 {
973 	struct blk_mq_hw_ctx *hctx = data;
974 	struct kyber_hctx_data *khd = hctx->sched_data;
975 
976 	seq_printf(m, "%u\n", khd->batching);
977 	return 0;
978 }
979 
980 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
981 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
982 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
983 	KYBER_QUEUE_DOMAIN_ATTRS(read),
984 	KYBER_QUEUE_DOMAIN_ATTRS(write),
985 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
986 	KYBER_QUEUE_DOMAIN_ATTRS(other),
987 	{"async_depth", 0400, kyber_async_depth_show},
988 	{},
989 };
990 #undef KYBER_QUEUE_DOMAIN_ATTRS
991 
992 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
993 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
994 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
995 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
996 	KYBER_HCTX_DOMAIN_ATTRS(read),
997 	KYBER_HCTX_DOMAIN_ATTRS(write),
998 	KYBER_HCTX_DOMAIN_ATTRS(discard),
999 	KYBER_HCTX_DOMAIN_ATTRS(other),
1000 	{"cur_domain", 0400, kyber_cur_domain_show},
1001 	{"batching", 0400, kyber_batching_show},
1002 	{},
1003 };
1004 #undef KYBER_HCTX_DOMAIN_ATTRS
1005 #endif
1006 
1007 static struct elevator_type kyber_sched = {
1008 	.ops = {
1009 		.init_sched = kyber_init_sched,
1010 		.exit_sched = kyber_exit_sched,
1011 		.init_hctx = kyber_init_hctx,
1012 		.exit_hctx = kyber_exit_hctx,
1013 		.limit_depth = kyber_limit_depth,
1014 		.bio_merge = kyber_bio_merge,
1015 		.prepare_request = kyber_prepare_request,
1016 		.insert_requests = kyber_insert_requests,
1017 		.finish_request = kyber_finish_request,
1018 		.requeue_request = kyber_finish_request,
1019 		.completed_request = kyber_completed_request,
1020 		.dispatch_request = kyber_dispatch_request,
1021 		.has_work = kyber_has_work,
1022 		.depth_updated = kyber_depth_updated,
1023 	},
1024 #ifdef CONFIG_BLK_DEBUG_FS
1025 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1026 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1027 #endif
1028 	.elevator_attrs = kyber_sched_attrs,
1029 	.elevator_name = "kyber",
1030 	.elevator_owner = THIS_MODULE,
1031 };
1032 
kyber_init(void)1033 static int __init kyber_init(void)
1034 {
1035 	return elv_register(&kyber_sched);
1036 }
1037 
kyber_exit(void)1038 static void __exit kyber_exit(void)
1039 {
1040 	elv_unregister(&kyber_sched);
1041 }
1042 
1043 module_init(kyber_init);
1044 module_exit(kyber_exit);
1045 
1046 MODULE_AUTHOR("Omar Sandoval");
1047 MODULE_LICENSE("GPL");
1048 MODULE_DESCRIPTION("Kyber I/O scheduler");
1049