1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-debugfs.h"
19 #include "blk-mq-sched.h"
20 #include "blk-mq-tag.h"
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24
25 /*
26 * Scheduling domains: the device is divided into multiple domains based on the
27 * request type.
28 */
29 enum {
30 KYBER_READ,
31 KYBER_WRITE,
32 KYBER_DISCARD,
33 KYBER_OTHER,
34 KYBER_NUM_DOMAINS,
35 };
36
37 static const char *kyber_domain_names[] = {
38 [KYBER_READ] = "READ",
39 [KYBER_WRITE] = "WRITE",
40 [KYBER_DISCARD] = "DISCARD",
41 [KYBER_OTHER] = "OTHER",
42 };
43
44 enum {
45 /*
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
48 * operations.
49 */
50 KYBER_ASYNC_PERCENT = 75,
51 };
52
53 /*
54 * Maximum device-wide depth for each scheduling domain.
55 *
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
59 */
60 static const unsigned int kyber_depth[] = {
61 [KYBER_READ] = 256,
62 [KYBER_WRITE] = 128,
63 [KYBER_DISCARD] = 64,
64 [KYBER_OTHER] = 16,
65 };
66
67 /*
68 * Default latency targets for each scheduling domain.
69 */
70 static const u64 kyber_latency_targets[] = {
71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75
76 /*
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
78 * domain.
79 */
80 static const unsigned int kyber_batch_size[] = {
81 [KYBER_READ] = 16,
82 [KYBER_WRITE] = 8,
83 [KYBER_DISCARD] = 1,
84 [KYBER_OTHER] = 1,
85 };
86
87 /*
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
90 *
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
94 * <= target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
99 */
100 enum {
101 /*
102 * The width of the latency histogram buckets is
103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 */
105 KYBER_LATENCY_SHIFT = 2,
106 /*
107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 * thus, "good".
109 */
110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114
115 /*
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
118 */
119 enum {
120 KYBER_TOTAL_LATENCY,
121 KYBER_IO_LATENCY,
122 };
123
124 static const char *kyber_latency_type_names[] = {
125 [KYBER_TOTAL_LATENCY] = "total",
126 [KYBER_IO_LATENCY] = "I/O",
127 };
128
129 /*
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
132 */
133 struct kyber_cpu_latency {
134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136
137 /*
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
140 */
141 struct kyber_ctx_queue {
142 /*
143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 * Also protect the rqs on rq_list when merge.
145 */
146 spinlock_t lock;
147 struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149
150 struct kyber_queue_data {
151 struct request_queue *q;
152
153 /*
154 * Each scheduling domain has a limited number of in-flight requests
155 * device-wide, limited by these tokens.
156 */
157 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158
159 /*
160 * Async request percentage, converted to per-word depth for
161 * sbitmap_get_shallow().
162 */
163 unsigned int async_depth;
164
165 struct kyber_cpu_latency __percpu *cpu_latency;
166
167 /* Timer for stats aggregation and adjusting domain tokens. */
168 struct timer_list timer;
169
170 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171
172 unsigned long latency_timeout[KYBER_OTHER];
173
174 int domain_p99[KYBER_OTHER];
175
176 /* Target latencies in nanoseconds. */
177 u64 latency_targets[KYBER_OTHER];
178 };
179
180 struct kyber_hctx_data {
181 spinlock_t lock;
182 struct list_head rqs[KYBER_NUM_DOMAINS];
183 unsigned int cur_domain;
184 unsigned int batching;
185 struct kyber_ctx_queue *kcqs;
186 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189 atomic_t wait_index[KYBER_NUM_DOMAINS];
190 };
191
192 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193 void *key);
194
kyber_sched_domain(unsigned int op)195 static unsigned int kyber_sched_domain(unsigned int op)
196 {
197 switch (op & REQ_OP_MASK) {
198 case REQ_OP_READ:
199 return KYBER_READ;
200 case REQ_OP_WRITE:
201 return KYBER_WRITE;
202 case REQ_OP_DISCARD:
203 return KYBER_DISCARD;
204 default:
205 return KYBER_OTHER;
206 }
207 }
208
flush_latency_buckets(struct kyber_queue_data * kqd,struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type)209 static void flush_latency_buckets(struct kyber_queue_data *kqd,
210 struct kyber_cpu_latency *cpu_latency,
211 unsigned int sched_domain, unsigned int type)
212 {
213 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215 unsigned int bucket;
216
217 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
219 }
220
221 /*
222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
223 * aren't enough samples yet.
224 */
calculate_percentile(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int type,unsigned int percentile)225 static int calculate_percentile(struct kyber_queue_data *kqd,
226 unsigned int sched_domain, unsigned int type,
227 unsigned int percentile)
228 {
229 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230 unsigned int bucket, samples = 0, percentile_samples;
231
232 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233 samples += buckets[bucket];
234
235 if (!samples)
236 return -1;
237
238 /*
239 * We do the calculation once we have 500 samples or one second passes
240 * since the first sample was recorded, whichever comes first.
241 */
242 if (!kqd->latency_timeout[sched_domain])
243 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244 if (samples < 500 &&
245 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246 return -1;
247 }
248 kqd->latency_timeout[sched_domain] = 0;
249
250 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252 if (buckets[bucket] >= percentile_samples)
253 break;
254 percentile_samples -= buckets[bucket];
255 }
256 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
257
258 trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259 kyber_latency_type_names[type], percentile,
260 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261
262 return bucket;
263 }
264
kyber_resize_domain(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int depth)265 static void kyber_resize_domain(struct kyber_queue_data *kqd,
266 unsigned int sched_domain, unsigned int depth)
267 {
268 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272 depth);
273 }
274 }
275
kyber_timer_fn(struct timer_list * t)276 static void kyber_timer_fn(struct timer_list *t)
277 {
278 struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279 unsigned int sched_domain;
280 int cpu;
281 bool bad = false;
282
283 /* Sum all of the per-cpu latency histograms. */
284 for_each_online_cpu(cpu) {
285 struct kyber_cpu_latency *cpu_latency;
286
287 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289 flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 KYBER_TOTAL_LATENCY);
291 flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 KYBER_IO_LATENCY);
293 }
294 }
295
296 /*
297 * Check if any domains have a high I/O latency, which might indicate
298 * congestion in the device. Note that we use the p90; we don't want to
299 * be too sensitive to outliers here.
300 */
301 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302 int p90;
303
304 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305 90);
306 if (p90 >= KYBER_GOOD_BUCKETS)
307 bad = true;
308 }
309
310 /*
311 * Adjust the scheduling domain depths. If we determined that there was
312 * congestion, we throttle all domains with good latencies. Either way,
313 * we ease up on throttling domains with bad latencies.
314 */
315 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316 unsigned int orig_depth, depth;
317 int p99;
318
319 p99 = calculate_percentile(kqd, sched_domain,
320 KYBER_TOTAL_LATENCY, 99);
321 /*
322 * This is kind of subtle: different domains will not
323 * necessarily have enough samples to calculate the latency
324 * percentiles during the same window, so we have to remember
325 * the p99 for the next time we observe congestion; once we do,
326 * we don't want to throttle again until we get more data, so we
327 * reset it to -1.
328 */
329 if (bad) {
330 if (p99 < 0)
331 p99 = kqd->domain_p99[sched_domain];
332 kqd->domain_p99[sched_domain] = -1;
333 } else if (p99 >= 0) {
334 kqd->domain_p99[sched_domain] = p99;
335 }
336 if (p99 < 0)
337 continue;
338
339 /*
340 * If this domain has bad latency, throttle less. Otherwise,
341 * throttle more iff we determined that there is congestion.
342 *
343 * The new depth is scaled linearly with the p99 latency vs the
344 * latency target. E.g., if the p99 is 3/4 of the target, then
345 * we throttle down to 3/4 of the current depth, and if the p99
346 * is 2x the target, then we double the depth.
347 */
348 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351 kyber_resize_domain(kqd, sched_domain, depth);
352 }
353 }
354 }
355
kyber_queue_data_alloc(struct request_queue * q)356 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
357 {
358 struct kyber_queue_data *kqd;
359 int ret = -ENOMEM;
360 int i;
361
362 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
363 if (!kqd)
364 goto err;
365
366 kqd->q = q;
367
368 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
369 GFP_KERNEL | __GFP_ZERO);
370 if (!kqd->cpu_latency)
371 goto err_kqd;
372
373 timer_setup(&kqd->timer, kyber_timer_fn, 0);
374
375 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
376 WARN_ON(!kyber_depth[i]);
377 WARN_ON(!kyber_batch_size[i]);
378 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
379 kyber_depth[i], -1, false,
380 GFP_KERNEL, q->node);
381 if (ret) {
382 while (--i >= 0)
383 sbitmap_queue_free(&kqd->domain_tokens[i]);
384 goto err_buckets;
385 }
386 }
387
388 for (i = 0; i < KYBER_OTHER; i++) {
389 kqd->domain_p99[i] = -1;
390 kqd->latency_targets[i] = kyber_latency_targets[i];
391 }
392
393 return kqd;
394
395 err_buckets:
396 free_percpu(kqd->cpu_latency);
397 err_kqd:
398 kfree(kqd);
399 err:
400 return ERR_PTR(ret);
401 }
402
kyber_init_sched(struct request_queue * q,struct elevator_type * e)403 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
404 {
405 struct kyber_queue_data *kqd;
406 struct elevator_queue *eq;
407
408 eq = elevator_alloc(q, e);
409 if (!eq)
410 return -ENOMEM;
411
412 kqd = kyber_queue_data_alloc(q);
413 if (IS_ERR(kqd)) {
414 kobject_put(&eq->kobj);
415 return PTR_ERR(kqd);
416 }
417
418 blk_stat_enable_accounting(q);
419
420 eq->elevator_data = kqd;
421 q->elevator = eq;
422
423 return 0;
424 }
425
kyber_exit_sched(struct elevator_queue * e)426 static void kyber_exit_sched(struct elevator_queue *e)
427 {
428 struct kyber_queue_data *kqd = e->elevator_data;
429 int i;
430
431 del_timer_sync(&kqd->timer);
432
433 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
434 sbitmap_queue_free(&kqd->domain_tokens[i]);
435 free_percpu(kqd->cpu_latency);
436 kfree(kqd);
437 }
438
kyber_ctx_queue_init(struct kyber_ctx_queue * kcq)439 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
440 {
441 unsigned int i;
442
443 spin_lock_init(&kcq->lock);
444 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
445 INIT_LIST_HEAD(&kcq->rq_list[i]);
446 }
447
kyber_depth_updated(struct blk_mq_hw_ctx * hctx)448 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
449 {
450 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
451 struct blk_mq_tags *tags = hctx->sched_tags;
452 unsigned int shift = tags->bitmap_tags->sb.shift;
453
454 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
455
456 sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
457 }
458
kyber_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)459 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
460 {
461 struct kyber_hctx_data *khd;
462 int i;
463
464 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
465 if (!khd)
466 return -ENOMEM;
467
468 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
469 sizeof(struct kyber_ctx_queue),
470 GFP_KERNEL, hctx->numa_node);
471 if (!khd->kcqs)
472 goto err_khd;
473
474 for (i = 0; i < hctx->nr_ctx; i++)
475 kyber_ctx_queue_init(&khd->kcqs[i]);
476
477 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
478 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
479 ilog2(8), GFP_KERNEL, hctx->numa_node)) {
480 while (--i >= 0)
481 sbitmap_free(&khd->kcq_map[i]);
482 goto err_kcqs;
483 }
484 }
485
486 spin_lock_init(&khd->lock);
487
488 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
489 INIT_LIST_HEAD(&khd->rqs[i]);
490 khd->domain_wait[i].sbq = NULL;
491 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
492 kyber_domain_wake);
493 khd->domain_wait[i].wait.private = hctx;
494 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
495 atomic_set(&khd->wait_index[i], 0);
496 }
497
498 khd->cur_domain = 0;
499 khd->batching = 0;
500
501 hctx->sched_data = khd;
502 kyber_depth_updated(hctx);
503
504 return 0;
505
506 err_kcqs:
507 kfree(khd->kcqs);
508 err_khd:
509 kfree(khd);
510 return -ENOMEM;
511 }
512
kyber_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)513 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
514 {
515 struct kyber_hctx_data *khd = hctx->sched_data;
516 int i;
517
518 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
519 sbitmap_free(&khd->kcq_map[i]);
520 kfree(khd->kcqs);
521 kfree(hctx->sched_data);
522 }
523
rq_get_domain_token(struct request * rq)524 static int rq_get_domain_token(struct request *rq)
525 {
526 return (long)rq->elv.priv[0];
527 }
528
rq_set_domain_token(struct request * rq,int token)529 static void rq_set_domain_token(struct request *rq, int token)
530 {
531 rq->elv.priv[0] = (void *)(long)token;
532 }
533
rq_clear_domain_token(struct kyber_queue_data * kqd,struct request * rq)534 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
535 struct request *rq)
536 {
537 unsigned int sched_domain;
538 int nr;
539
540 nr = rq_get_domain_token(rq);
541 if (nr != -1) {
542 sched_domain = kyber_sched_domain(rq->cmd_flags);
543 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
544 rq->mq_ctx->cpu);
545 }
546 }
547
kyber_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)548 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
549 {
550 /*
551 * We use the scheduler tags as per-hardware queue queueing tokens.
552 * Async requests can be limited at this stage.
553 */
554 if (!op_is_sync(op)) {
555 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
556
557 data->shallow_depth = kqd->async_depth;
558 }
559 }
560
kyber_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)561 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
562 unsigned int nr_segs)
563 {
564 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
565 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
566 struct kyber_hctx_data *khd = hctx->sched_data;
567 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
568 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
569 struct list_head *rq_list = &kcq->rq_list[sched_domain];
570 bool merged;
571
572 spin_lock(&kcq->lock);
573 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
574 spin_unlock(&kcq->lock);
575
576 return merged;
577 }
578
kyber_prepare_request(struct request * rq)579 static void kyber_prepare_request(struct request *rq)
580 {
581 rq_set_domain_token(rq, -1);
582 }
583
kyber_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * rq_list,bool at_head)584 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
585 struct list_head *rq_list, bool at_head)
586 {
587 struct kyber_hctx_data *khd = hctx->sched_data;
588 struct request *rq, *next;
589
590 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
591 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
592 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
593 struct list_head *head = &kcq->rq_list[sched_domain];
594
595 spin_lock(&kcq->lock);
596 if (at_head)
597 list_move(&rq->queuelist, head);
598 else
599 list_move_tail(&rq->queuelist, head);
600 sbitmap_set_bit(&khd->kcq_map[sched_domain],
601 rq->mq_ctx->index_hw[hctx->type]);
602 blk_mq_sched_request_inserted(rq);
603 spin_unlock(&kcq->lock);
604 }
605 }
606
kyber_finish_request(struct request * rq)607 static void kyber_finish_request(struct request *rq)
608 {
609 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
610
611 rq_clear_domain_token(kqd, rq);
612 }
613
add_latency_sample(struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type,u64 target,u64 latency)614 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
615 unsigned int sched_domain, unsigned int type,
616 u64 target, u64 latency)
617 {
618 unsigned int bucket;
619 u64 divisor;
620
621 if (latency > 0) {
622 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
623 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
624 KYBER_LATENCY_BUCKETS - 1);
625 } else {
626 bucket = 0;
627 }
628
629 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
630 }
631
kyber_completed_request(struct request * rq,u64 now)632 static void kyber_completed_request(struct request *rq, u64 now)
633 {
634 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
635 struct kyber_cpu_latency *cpu_latency;
636 unsigned int sched_domain;
637 u64 target;
638
639 sched_domain = kyber_sched_domain(rq->cmd_flags);
640 if (sched_domain == KYBER_OTHER)
641 return;
642
643 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
644 target = kqd->latency_targets[sched_domain];
645 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
646 target, now - rq->start_time_ns);
647 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
648 now - rq->io_start_time_ns);
649 put_cpu_ptr(kqd->cpu_latency);
650
651 timer_reduce(&kqd->timer, jiffies + HZ / 10);
652 }
653
654 struct flush_kcq_data {
655 struct kyber_hctx_data *khd;
656 unsigned int sched_domain;
657 struct list_head *list;
658 };
659
flush_busy_kcq(struct sbitmap * sb,unsigned int bitnr,void * data)660 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
661 {
662 struct flush_kcq_data *flush_data = data;
663 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
664
665 spin_lock(&kcq->lock);
666 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
667 flush_data->list);
668 sbitmap_clear_bit(sb, bitnr);
669 spin_unlock(&kcq->lock);
670
671 return true;
672 }
673
kyber_flush_busy_kcqs(struct kyber_hctx_data * khd,unsigned int sched_domain,struct list_head * list)674 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
675 unsigned int sched_domain,
676 struct list_head *list)
677 {
678 struct flush_kcq_data data = {
679 .khd = khd,
680 .sched_domain = sched_domain,
681 .list = list,
682 };
683
684 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
685 flush_busy_kcq, &data);
686 }
687
kyber_domain_wake(wait_queue_entry_t * wqe,unsigned mode,int flags,void * key)688 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
689 void *key)
690 {
691 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
692 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
693
694 sbitmap_del_wait_queue(wait);
695 blk_mq_run_hw_queue(hctx, true);
696 return 1;
697 }
698
kyber_get_domain_token(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)699 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
700 struct kyber_hctx_data *khd,
701 struct blk_mq_hw_ctx *hctx)
702 {
703 unsigned int sched_domain = khd->cur_domain;
704 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
705 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
706 struct sbq_wait_state *ws;
707 int nr;
708
709 nr = __sbitmap_queue_get(domain_tokens);
710
711 /*
712 * If we failed to get a domain token, make sure the hardware queue is
713 * run when one becomes available. Note that this is serialized on
714 * khd->lock, but we still need to be careful about the waker.
715 */
716 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
717 ws = sbq_wait_ptr(domain_tokens,
718 &khd->wait_index[sched_domain]);
719 khd->domain_ws[sched_domain] = ws;
720 sbitmap_add_wait_queue(domain_tokens, ws, wait);
721
722 /*
723 * Try again in case a token was freed before we got on the wait
724 * queue.
725 */
726 nr = __sbitmap_queue_get(domain_tokens);
727 }
728
729 /*
730 * If we got a token while we were on the wait queue, remove ourselves
731 * from the wait queue to ensure that all wake ups make forward
732 * progress. It's possible that the waker already deleted the entry
733 * between the !list_empty_careful() check and us grabbing the lock, but
734 * list_del_init() is okay with that.
735 */
736 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
737 ws = khd->domain_ws[sched_domain];
738 spin_lock_irq(&ws->wait.lock);
739 sbitmap_del_wait_queue(wait);
740 spin_unlock_irq(&ws->wait.lock);
741 }
742
743 return nr;
744 }
745
746 static struct request *
kyber_dispatch_cur_domain(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)747 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
748 struct kyber_hctx_data *khd,
749 struct blk_mq_hw_ctx *hctx)
750 {
751 struct list_head *rqs;
752 struct request *rq;
753 int nr;
754
755 rqs = &khd->rqs[khd->cur_domain];
756
757 /*
758 * If we already have a flushed request, then we just need to get a
759 * token for it. Otherwise, if there are pending requests in the kcqs,
760 * flush the kcqs, but only if we can get a token. If not, we should
761 * leave the requests in the kcqs so that they can be merged. Note that
762 * khd->lock serializes the flushes, so if we observed any bit set in
763 * the kcq_map, we will always get a request.
764 */
765 rq = list_first_entry_or_null(rqs, struct request, queuelist);
766 if (rq) {
767 nr = kyber_get_domain_token(kqd, khd, hctx);
768 if (nr >= 0) {
769 khd->batching++;
770 rq_set_domain_token(rq, nr);
771 list_del_init(&rq->queuelist);
772 return rq;
773 } else {
774 trace_kyber_throttled(kqd->q,
775 kyber_domain_names[khd->cur_domain]);
776 }
777 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
778 nr = kyber_get_domain_token(kqd, khd, hctx);
779 if (nr >= 0) {
780 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
781 rq = list_first_entry(rqs, struct request, queuelist);
782 khd->batching++;
783 rq_set_domain_token(rq, nr);
784 list_del_init(&rq->queuelist);
785 return rq;
786 } else {
787 trace_kyber_throttled(kqd->q,
788 kyber_domain_names[khd->cur_domain]);
789 }
790 }
791
792 /* There were either no pending requests or no tokens. */
793 return NULL;
794 }
795
kyber_dispatch_request(struct blk_mq_hw_ctx * hctx)796 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
797 {
798 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
799 struct kyber_hctx_data *khd = hctx->sched_data;
800 struct request *rq;
801 int i;
802
803 spin_lock(&khd->lock);
804
805 /*
806 * First, if we are still entitled to batch, try to dispatch a request
807 * from the batch.
808 */
809 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
810 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
811 if (rq)
812 goto out;
813 }
814
815 /*
816 * Either,
817 * 1. We were no longer entitled to a batch.
818 * 2. The domain we were batching didn't have any requests.
819 * 3. The domain we were batching was out of tokens.
820 *
821 * Start another batch. Note that this wraps back around to the original
822 * domain if no other domains have requests or tokens.
823 */
824 khd->batching = 0;
825 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
826 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
827 khd->cur_domain = 0;
828 else
829 khd->cur_domain++;
830
831 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
832 if (rq)
833 goto out;
834 }
835
836 rq = NULL;
837 out:
838 spin_unlock(&khd->lock);
839 return rq;
840 }
841
kyber_has_work(struct blk_mq_hw_ctx * hctx)842 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
843 {
844 struct kyber_hctx_data *khd = hctx->sched_data;
845 int i;
846
847 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
848 if (!list_empty_careful(&khd->rqs[i]) ||
849 sbitmap_any_bit_set(&khd->kcq_map[i]))
850 return true;
851 }
852
853 return false;
854 }
855
856 #define KYBER_LAT_SHOW_STORE(domain, name) \
857 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
858 char *page) \
859 { \
860 struct kyber_queue_data *kqd = e->elevator_data; \
861 \
862 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
863 } \
864 \
865 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
866 const char *page, size_t count) \
867 { \
868 struct kyber_queue_data *kqd = e->elevator_data; \
869 unsigned long long nsec; \
870 int ret; \
871 \
872 ret = kstrtoull(page, 10, &nsec); \
873 if (ret) \
874 return ret; \
875 \
876 kqd->latency_targets[domain] = nsec; \
877 \
878 return count; \
879 }
880 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
881 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
882 #undef KYBER_LAT_SHOW_STORE
883
884 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
885 static struct elv_fs_entry kyber_sched_attrs[] = {
886 KYBER_LAT_ATTR(read),
887 KYBER_LAT_ATTR(write),
888 __ATTR_NULL
889 };
890 #undef KYBER_LAT_ATTR
891
892 #ifdef CONFIG_BLK_DEBUG_FS
893 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
894 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
895 { \
896 struct request_queue *q = data; \
897 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
898 \
899 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
900 return 0; \
901 } \
902 \
903 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
904 __acquires(&khd->lock) \
905 { \
906 struct blk_mq_hw_ctx *hctx = m->private; \
907 struct kyber_hctx_data *khd = hctx->sched_data; \
908 \
909 spin_lock(&khd->lock); \
910 return seq_list_start(&khd->rqs[domain], *pos); \
911 } \
912 \
913 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
914 loff_t *pos) \
915 { \
916 struct blk_mq_hw_ctx *hctx = m->private; \
917 struct kyber_hctx_data *khd = hctx->sched_data; \
918 \
919 return seq_list_next(v, &khd->rqs[domain], pos); \
920 } \
921 \
922 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
923 __releases(&khd->lock) \
924 { \
925 struct blk_mq_hw_ctx *hctx = m->private; \
926 struct kyber_hctx_data *khd = hctx->sched_data; \
927 \
928 spin_unlock(&khd->lock); \
929 } \
930 \
931 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
932 .start = kyber_##name##_rqs_start, \
933 .next = kyber_##name##_rqs_next, \
934 .stop = kyber_##name##_rqs_stop, \
935 .show = blk_mq_debugfs_rq_show, \
936 }; \
937 \
938 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
939 { \
940 struct blk_mq_hw_ctx *hctx = data; \
941 struct kyber_hctx_data *khd = hctx->sched_data; \
942 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
943 \
944 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
945 return 0; \
946 }
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ,read)947 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
948 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
949 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
951 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
952
953 static int kyber_async_depth_show(void *data, struct seq_file *m)
954 {
955 struct request_queue *q = data;
956 struct kyber_queue_data *kqd = q->elevator->elevator_data;
957
958 seq_printf(m, "%u\n", kqd->async_depth);
959 return 0;
960 }
961
kyber_cur_domain_show(void * data,struct seq_file * m)962 static int kyber_cur_domain_show(void *data, struct seq_file *m)
963 {
964 struct blk_mq_hw_ctx *hctx = data;
965 struct kyber_hctx_data *khd = hctx->sched_data;
966
967 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
968 return 0;
969 }
970
kyber_batching_show(void * data,struct seq_file * m)971 static int kyber_batching_show(void *data, struct seq_file *m)
972 {
973 struct blk_mq_hw_ctx *hctx = data;
974 struct kyber_hctx_data *khd = hctx->sched_data;
975
976 seq_printf(m, "%u\n", khd->batching);
977 return 0;
978 }
979
980 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
981 {#name "_tokens", 0400, kyber_##name##_tokens_show}
982 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
983 KYBER_QUEUE_DOMAIN_ATTRS(read),
984 KYBER_QUEUE_DOMAIN_ATTRS(write),
985 KYBER_QUEUE_DOMAIN_ATTRS(discard),
986 KYBER_QUEUE_DOMAIN_ATTRS(other),
987 {"async_depth", 0400, kyber_async_depth_show},
988 {},
989 };
990 #undef KYBER_QUEUE_DOMAIN_ATTRS
991
992 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
993 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
994 {#name "_waiting", 0400, kyber_##name##_waiting_show}
995 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
996 KYBER_HCTX_DOMAIN_ATTRS(read),
997 KYBER_HCTX_DOMAIN_ATTRS(write),
998 KYBER_HCTX_DOMAIN_ATTRS(discard),
999 KYBER_HCTX_DOMAIN_ATTRS(other),
1000 {"cur_domain", 0400, kyber_cur_domain_show},
1001 {"batching", 0400, kyber_batching_show},
1002 {},
1003 };
1004 #undef KYBER_HCTX_DOMAIN_ATTRS
1005 #endif
1006
1007 static struct elevator_type kyber_sched = {
1008 .ops = {
1009 .init_sched = kyber_init_sched,
1010 .exit_sched = kyber_exit_sched,
1011 .init_hctx = kyber_init_hctx,
1012 .exit_hctx = kyber_exit_hctx,
1013 .limit_depth = kyber_limit_depth,
1014 .bio_merge = kyber_bio_merge,
1015 .prepare_request = kyber_prepare_request,
1016 .insert_requests = kyber_insert_requests,
1017 .finish_request = kyber_finish_request,
1018 .requeue_request = kyber_finish_request,
1019 .completed_request = kyber_completed_request,
1020 .dispatch_request = kyber_dispatch_request,
1021 .has_work = kyber_has_work,
1022 .depth_updated = kyber_depth_updated,
1023 },
1024 #ifdef CONFIG_BLK_DEBUG_FS
1025 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1026 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1027 #endif
1028 .elevator_attrs = kyber_sched_attrs,
1029 .elevator_name = "kyber",
1030 .elevator_owner = THIS_MODULE,
1031 };
1032
kyber_init(void)1033 static int __init kyber_init(void)
1034 {
1035 return elv_register(&kyber_sched);
1036 }
1037
kyber_exit(void)1038 static void __exit kyber_exit(void)
1039 {
1040 elv_unregister(&kyber_sched);
1041 }
1042
1043 module_init(kyber_init);
1044 module_exit(kyber_exit);
1045
1046 MODULE_AUTHOR("Omar Sandoval");
1047 MODULE_LICENSE("GPL");
1048 MODULE_DESCRIPTION("Kyber I/O scheduler");
1049