1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sata_mv.c - Marvell SATA support
4 *
5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6 * Copyright 2005: EMC Corporation, all rights reserved.
7 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 *
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 *
12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 */
14
15 /*
16 * sata_mv TODO list:
17 *
18 * --> Develop a low-power-consumption strategy, and implement it.
19 *
20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21 *
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 * mode to cross-connect two Linux boxes with Marvell cards? If so,
24 * creating LibATA target mode support would be very interesting.
25 *
26 * Target mode, for those without docs, is the ability to directly
27 * connect two SATA ports.
28 */
29
30 /*
31 * 80x1-B2 errata PCI#11:
32 *
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher. The chips may not
36 * work correctly otherwise (note: this is a pretty rare condition).
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62
63 #define DRV_NAME "sata_mv"
64 #define DRV_VERSION "1.28"
65
66 /*
67 * module options
68 */
69
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 "IRQ coalescing I/O count threshold (0..255)");
80
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 "IRQ coalescing time threshold in usecs");
85
86 enum {
87 /* BAR's are enumerated in terms of pci_resource_start() terms */
88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
89 MV_IO_BAR = 2, /* offset 0x18: IO space */
90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
91
92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
94
95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
99
100 MV_PCI_REG_BASE = 0,
101
102 /*
103 * Per-chip ("all ports") interrupt coalescing feature.
104 * This is only for GEN_II / GEN_IIE hardware.
105 *
106 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 */
109 COAL_REG_BASE = 0x18000,
110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
112
113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115
116 /*
117 * Registers for the (unused here) transaction coalescing feature:
118 */
119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
121
122 SATAHC0_REG_BASE = 0x20000,
123 FLASH_CTL = 0x1046c,
124 GPIO_PORT_CTL = 0x104f0,
125 RESET_CFG = 0x180d8,
126
127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
131
132 MV_MAX_Q_DEPTH = 32,
133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
134
135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 * CRPB needs alignment on a 256B boundary. Size == 256B
137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 */
139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
141 MV_MAX_SG_CT = 256,
142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
143
144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 MV_PORT_HC_SHIFT = 2,
146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
149
150 /* Host Flags */
151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
152
153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154
155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156
157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159
160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
161
162 CRQB_FLAG_READ = (1 << 0),
163 CRQB_TAG_SHIFT = 1,
164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
167 CRQB_CMD_ADDR_SHIFT = 8,
168 CRQB_CMD_CS = (0x2 << 11),
169 CRQB_CMD_LAST = (1 << 15),
170
171 CRPB_FLAG_STATUS_SHIFT = 8,
172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
174
175 EPRD_FLAG_END_OF_TBL = (1 << 31),
176
177 /* PCI interface registers */
178
179 MV_PCI_COMMAND = 0xc00,
180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
182
183 PCI_MAIN_CMD_STS = 0xd30,
184 STOP_PCI_MASTER = (1 << 2),
185 PCI_MASTER_EMPTY = (1 << 3),
186 GLOB_SFT_RST = (1 << 4),
187
188 MV_PCI_MODE = 0xd00,
189 MV_PCI_MODE_MASK = 0x30,
190
191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
192 MV_PCI_DISC_TIMER = 0xd04,
193 MV_PCI_MSI_TRIGGER = 0xc38,
194 MV_PCI_SERR_MASK = 0xc28,
195 MV_PCI_XBAR_TMOUT = 0x1d04,
196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
198 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
199 MV_PCI_ERR_COMMAND = 0x1d50,
200
201 PCI_IRQ_CAUSE = 0x1d58,
202 PCI_IRQ_MASK = 0x1d5c,
203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
204
205 PCIE_IRQ_CAUSE = 0x1900,
206 PCIE_IRQ_MASK = 0x1910,
207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
208
209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
211 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
213 SOC_HC_MAIN_IRQ_MASK = 0x20024,
214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
220 PCI_ERR = (1 << 18),
221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
226 GPIO_INT = (1 << 22),
227 SELF_INT = (1 << 23),
228 TWSI_INT = (1 << 24),
229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
232
233 /* SATAHC registers */
234 HC_CFG = 0x00,
235
236 HC_IRQ_CAUSE = 0x14,
237 DMA_IRQ = (1 << 0), /* shift by port # */
238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
239 DEV_IRQ = (1 << 8), /* shift by port # */
240
241 /*
242 * Per-HC (Host-Controller) interrupt coalescing feature.
243 * This is present on all chip generations.
244 *
245 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 */
248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
250
251 SOC_LED_CTRL = 0x2c,
252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
254 /* with dev activity LED */
255
256 /* Shadow block registers */
257 SHD_BLK = 0x100,
258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
259
260 /* SATA registers */
261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
262 SATA_ACTIVE = 0x350,
263 FIS_IRQ_CAUSE = 0x364,
264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
265
266 LTMODE = 0x30c, /* requires read-after-write */
267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
268
269 PHY_MODE2 = 0x330,
270 PHY_MODE3 = 0x310,
271
272 PHY_MODE4 = 0x314, /* requires read-after-write */
273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
277
278 SATA_IFCTL = 0x344,
279 SATA_TESTCTL = 0x348,
280 SATA_IFSTAT = 0x34c,
281 VENDOR_UNIQUE_FIS = 0x35c,
282
283 FISCFG = 0x360,
284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
286
287 PHY_MODE9_GEN2 = 0x398,
288 PHY_MODE9_GEN1 = 0x39c,
289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
290
291 MV5_PHY_MODE = 0x74,
292 MV5_LTMODE = 0x30,
293 MV5_PHY_CTL = 0x0C,
294 SATA_IFCFG = 0x050,
295 LP_PHY_CTL = 0x058,
296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
297 LP_PHY_CTL_PIN_PU_RX = (1 << 1),
298 LP_PHY_CTL_PIN_PU_TX = (1 << 2),
299 LP_PHY_CTL_GEN_TX_3G = (1 << 5),
300 LP_PHY_CTL_GEN_RX_3G = (1 << 9),
301
302 MV_M2_PREAMP_MASK = 0x7e0,
303
304 /* Port registers */
305 EDMA_CFG = 0,
306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
313
314 EDMA_ERR_IRQ_CAUSE = 0x8,
315 EDMA_ERR_IRQ_MASK = 0xc,
316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
318 EDMA_ERR_DEV = (1 << 2), /* device error */
319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
330
331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
336
337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
338
339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
345
346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
347
348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
349 EDMA_ERR_OVERRUN_5 = (1 << 5),
350 EDMA_ERR_UNDERRUN_5 = (1 << 6),
351
352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
353 EDMA_ERR_LNK_CTRL_RX_1 |
354 EDMA_ERR_LNK_CTRL_RX_3 |
355 EDMA_ERR_LNK_CTRL_TX,
356
357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
358 EDMA_ERR_PRD_PAR |
359 EDMA_ERR_DEV_DCON |
360 EDMA_ERR_DEV_CON |
361 EDMA_ERR_SERR |
362 EDMA_ERR_SELF_DIS |
363 EDMA_ERR_CRQB_PAR |
364 EDMA_ERR_CRPB_PAR |
365 EDMA_ERR_INTRL_PAR |
366 EDMA_ERR_IORDY |
367 EDMA_ERR_LNK_CTRL_RX_2 |
368 EDMA_ERR_LNK_DATA_RX |
369 EDMA_ERR_LNK_DATA_TX |
370 EDMA_ERR_TRANS_PROTO,
371
372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
373 EDMA_ERR_PRD_PAR |
374 EDMA_ERR_DEV_DCON |
375 EDMA_ERR_DEV_CON |
376 EDMA_ERR_OVERRUN_5 |
377 EDMA_ERR_UNDERRUN_5 |
378 EDMA_ERR_SELF_DIS_5 |
379 EDMA_ERR_CRQB_PAR |
380 EDMA_ERR_CRPB_PAR |
381 EDMA_ERR_INTRL_PAR |
382 EDMA_ERR_IORDY,
383
384 EDMA_REQ_Q_BASE_HI = 0x10,
385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
386
387 EDMA_REQ_Q_OUT_PTR = 0x18,
388 EDMA_REQ_Q_PTR_SHIFT = 5,
389
390 EDMA_RSP_Q_BASE_HI = 0x1c,
391 EDMA_RSP_Q_IN_PTR = 0x20,
392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
393 EDMA_RSP_Q_PTR_SHIFT = 3,
394
395 EDMA_CMD = 0x28, /* EDMA command register */
396 EDMA_EN = (1 << 0), /* enable EDMA */
397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
399
400 EDMA_STATUS = 0x30, /* EDMA engine status */
401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
403
404 EDMA_IORDY_TMOUT = 0x34,
405 EDMA_ARB_CFG = 0x38,
406
407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
409
410 BMDMA_CMD = 0x224, /* bmdma command register */
411 BMDMA_STATUS = 0x228, /* bmdma status register */
412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
414
415 /* Host private flags (hp_flags) */
416 MV_HP_FLAG_MSI = (1 << 0),
417 MV_HP_ERRATA_50XXB0 = (1 << 1),
418 MV_HP_ERRATA_50XXB2 = (1 << 2),
419 MV_HP_ERRATA_60X1B2 = (1 << 3),
420 MV_HP_ERRATA_60X1C0 = (1 << 4),
421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
429
430 /* Port private flags (pp_flags) */
431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
436 };
437
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443
444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
446
447 enum {
448 /* DMA boundary 0xffff is required by the s/g splitting
449 * we need on /length/ in mv_fill-sg().
450 */
451 MV_DMA_BOUNDARY = 0xffffU,
452
453 /* mask of register bits containing lower 32 bits
454 * of EDMA request queue DMA address
455 */
456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
457
458 /* ditto, for response queue */
459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
460 };
461
462 enum chip_type {
463 chip_504x,
464 chip_508x,
465 chip_5080,
466 chip_604x,
467 chip_608x,
468 chip_6042,
469 chip_7042,
470 chip_soc,
471 };
472
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 __le32 sg_addr;
476 __le32 sg_addr_hi;
477 __le16 ctrl_flags;
478 __le16 ata_cmd[11];
479 };
480
481 struct mv_crqb_iie {
482 __le32 addr;
483 __le32 addr_hi;
484 __le32 flags;
485 __le32 len;
486 __le32 ata_cmd[4];
487 };
488
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 __le16 id;
492 __le16 flags;
493 __le32 tmstmp;
494 };
495
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 __le32 addr;
499 __le32 flags_size;
500 __le32 addr_hi;
501 __le32 reserved;
502 };
503
504 /*
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
508 */
509 struct mv_cached_regs {
510 u32 fiscfg;
511 u32 ltmode;
512 u32 haltcond;
513 u32 unknown_rsvd;
514 };
515
516 struct mv_port_priv {
517 struct mv_crqb *crqb;
518 dma_addr_t crqb_dma;
519 struct mv_crpb *crpb;
520 dma_addr_t crpb_dma;
521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
523
524 unsigned int req_idx;
525 unsigned int resp_idx;
526
527 u32 pp_flags;
528 struct mv_cached_regs cached;
529 unsigned int delayed_eh_pmp_map;
530 };
531
532 struct mv_port_signal {
533 u32 amps;
534 u32 pre;
535 };
536
537 struct mv_host_priv {
538 u32 hp_flags;
539 unsigned int board_idx;
540 u32 main_irq_mask;
541 struct mv_port_signal signal[8];
542 const struct mv_hw_ops *ops;
543 int n_ports;
544 void __iomem *base;
545 void __iomem *main_irq_cause_addr;
546 void __iomem *main_irq_mask_addr;
547 u32 irq_cause_offset;
548 u32 irq_mask_offset;
549 u32 unmask_all_irqs;
550
551 /*
552 * Needed on some devices that require their clocks to be enabled.
553 * These are optional: if the platform device does not have any
554 * clocks, they won't be used. Also, if the underlying hardware
555 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 * all the clock operations become no-ops (see clk.h).
557 */
558 struct clk *clk;
559 struct clk **port_clks;
560 /*
561 * Some devices have a SATA PHY which can be enabled/disabled
562 * in order to save power. These are optional: if the platform
563 * devices does not have any phy, they won't be used.
564 */
565 struct phy **port_phys;
566 /*
567 * These consistent DMA memory pools give us guaranteed
568 * alignment for hardware-accessed data structures,
569 * and less memory waste in accomplishing the alignment.
570 */
571 struct dma_pool *crqb_pool;
572 struct dma_pool *crpb_pool;
573 struct dma_pool *sg_tbl_pool;
574 };
575
576 struct mv_hw_ops {
577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 unsigned int port);
579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 void __iomem *mmio);
582 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
583 unsigned int n_hc);
584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 void __iomem *mmio);
609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 void __iomem *mmio);
619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
620 unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 void __iomem *mmio);
626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
627 void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 unsigned long deadline);
643 static int mv_softreset(struct ata_link *link, unsigned int *class,
644 unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 struct mv_port_priv *pp);
648
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8 mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
660 */
661 #ifdef CONFIG_PCI
662 static struct scsi_host_template mv5_sht = {
663 ATA_BASE_SHT(DRV_NAME),
664 .sg_tablesize = MV_MAX_SG_CT / 2,
665 .dma_boundary = MV_DMA_BOUNDARY,
666 };
667 #endif
668 static struct scsi_host_template mv6_sht = {
669 ATA_NCQ_SHT(DRV_NAME),
670 .can_queue = MV_MAX_Q_DEPTH - 1,
671 .sg_tablesize = MV_MAX_SG_CT / 2,
672 .dma_boundary = MV_DMA_BOUNDARY,
673 };
674
675 static struct ata_port_operations mv5_ops = {
676 .inherits = &ata_sff_port_ops,
677
678 .lost_interrupt = ATA_OP_NULL,
679
680 .qc_defer = mv_qc_defer,
681 .qc_prep = mv_qc_prep,
682 .qc_issue = mv_qc_issue,
683
684 .freeze = mv_eh_freeze,
685 .thaw = mv_eh_thaw,
686 .hardreset = mv_hardreset,
687
688 .scr_read = mv5_scr_read,
689 .scr_write = mv5_scr_write,
690
691 .port_start = mv_port_start,
692 .port_stop = mv_port_stop,
693 };
694
695 static struct ata_port_operations mv6_ops = {
696 .inherits = &ata_bmdma_port_ops,
697
698 .lost_interrupt = ATA_OP_NULL,
699
700 .qc_defer = mv_qc_defer,
701 .qc_prep = mv_qc_prep,
702 .qc_issue = mv_qc_issue,
703
704 .dev_config = mv6_dev_config,
705
706 .freeze = mv_eh_freeze,
707 .thaw = mv_eh_thaw,
708 .hardreset = mv_hardreset,
709 .softreset = mv_softreset,
710 .pmp_hardreset = mv_pmp_hardreset,
711 .pmp_softreset = mv_softreset,
712 .error_handler = mv_pmp_error_handler,
713
714 .scr_read = mv_scr_read,
715 .scr_write = mv_scr_write,
716
717 .sff_check_status = mv_sff_check_status,
718 .sff_irq_clear = mv_sff_irq_clear,
719 .check_atapi_dma = mv_check_atapi_dma,
720 .bmdma_setup = mv_bmdma_setup,
721 .bmdma_start = mv_bmdma_start,
722 .bmdma_stop = mv_bmdma_stop,
723 .bmdma_status = mv_bmdma_status,
724
725 .port_start = mv_port_start,
726 .port_stop = mv_port_stop,
727 };
728
729 static struct ata_port_operations mv_iie_ops = {
730 .inherits = &mv6_ops,
731 .dev_config = ATA_OP_NULL,
732 .qc_prep = mv_qc_prep_iie,
733 };
734
735 static const struct ata_port_info mv_port_info[] = {
736 { /* chip_504x */
737 .flags = MV_GEN_I_FLAGS,
738 .pio_mask = ATA_PIO4,
739 .udma_mask = ATA_UDMA6,
740 .port_ops = &mv5_ops,
741 },
742 { /* chip_508x */
743 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
744 .pio_mask = ATA_PIO4,
745 .udma_mask = ATA_UDMA6,
746 .port_ops = &mv5_ops,
747 },
748 { /* chip_5080 */
749 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
750 .pio_mask = ATA_PIO4,
751 .udma_mask = ATA_UDMA6,
752 .port_ops = &mv5_ops,
753 },
754 { /* chip_604x */
755 .flags = MV_GEN_II_FLAGS,
756 .pio_mask = ATA_PIO4,
757 .udma_mask = ATA_UDMA6,
758 .port_ops = &mv6_ops,
759 },
760 { /* chip_608x */
761 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
762 .pio_mask = ATA_PIO4,
763 .udma_mask = ATA_UDMA6,
764 .port_ops = &mv6_ops,
765 },
766 { /* chip_6042 */
767 .flags = MV_GEN_IIE_FLAGS,
768 .pio_mask = ATA_PIO4,
769 .udma_mask = ATA_UDMA6,
770 .port_ops = &mv_iie_ops,
771 },
772 { /* chip_7042 */
773 .flags = MV_GEN_IIE_FLAGS,
774 .pio_mask = ATA_PIO4,
775 .udma_mask = ATA_UDMA6,
776 .port_ops = &mv_iie_ops,
777 },
778 { /* chip_soc */
779 .flags = MV_GEN_IIE_FLAGS,
780 .pio_mask = ATA_PIO4,
781 .udma_mask = ATA_UDMA6,
782 .port_ops = &mv_iie_ops,
783 },
784 };
785
786 static const struct pci_device_id mv_pci_tbl[] = {
787 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
788 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
789 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
790 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
791 /* RocketRAID 1720/174x have different identifiers */
792 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
793 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
794 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
795
796 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
797 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
798 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
799 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
800 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
801
802 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
803
804 /* Adaptec 1430SA */
805 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
806
807 /* Marvell 7042 support */
808 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
809
810 /* Highpoint RocketRAID PCIe series */
811 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
812 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
813
814 { } /* terminate list */
815 };
816
817 static const struct mv_hw_ops mv5xxx_ops = {
818 .phy_errata = mv5_phy_errata,
819 .enable_leds = mv5_enable_leds,
820 .read_preamp = mv5_read_preamp,
821 .reset_hc = mv5_reset_hc,
822 .reset_flash = mv5_reset_flash,
823 .reset_bus = mv5_reset_bus,
824 };
825
826 static const struct mv_hw_ops mv6xxx_ops = {
827 .phy_errata = mv6_phy_errata,
828 .enable_leds = mv6_enable_leds,
829 .read_preamp = mv6_read_preamp,
830 .reset_hc = mv6_reset_hc,
831 .reset_flash = mv6_reset_flash,
832 .reset_bus = mv_reset_pci_bus,
833 };
834
835 static const struct mv_hw_ops mv_soc_ops = {
836 .phy_errata = mv6_phy_errata,
837 .enable_leds = mv_soc_enable_leds,
838 .read_preamp = mv_soc_read_preamp,
839 .reset_hc = mv_soc_reset_hc,
840 .reset_flash = mv_soc_reset_flash,
841 .reset_bus = mv_soc_reset_bus,
842 };
843
844 static const struct mv_hw_ops mv_soc_65n_ops = {
845 .phy_errata = mv_soc_65n_phy_errata,
846 .enable_leds = mv_soc_enable_leds,
847 .reset_hc = mv_soc_reset_hc,
848 .reset_flash = mv_soc_reset_flash,
849 .reset_bus = mv_soc_reset_bus,
850 };
851
852 /*
853 * Functions
854 */
855
writelfl(unsigned long data,void __iomem * addr)856 static inline void writelfl(unsigned long data, void __iomem *addr)
857 {
858 writel(data, addr);
859 (void) readl(addr); /* flush to avoid PCI posted write */
860 }
861
mv_hc_from_port(unsigned int port)862 static inline unsigned int mv_hc_from_port(unsigned int port)
863 {
864 return port >> MV_PORT_HC_SHIFT;
865 }
866
mv_hardport_from_port(unsigned int port)867 static inline unsigned int mv_hardport_from_port(unsigned int port)
868 {
869 return port & MV_PORT_MASK;
870 }
871
872 /*
873 * Consolidate some rather tricky bit shift calculations.
874 * This is hot-path stuff, so not a function.
875 * Simple code, with two return values, so macro rather than inline.
876 *
877 * port is the sole input, in range 0..7.
878 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
879 * hardport is the other output, in range 0..3.
880 *
881 * Note that port and hardport may be the same variable in some cases.
882 */
883 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
884 { \
885 shift = mv_hc_from_port(port) * HC_SHIFT; \
886 hardport = mv_hardport_from_port(port); \
887 shift += hardport * 2; \
888 }
889
mv_hc_base(void __iomem * base,unsigned int hc)890 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
891 {
892 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
893 }
894
mv_hc_base_from_port(void __iomem * base,unsigned int port)895 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
896 unsigned int port)
897 {
898 return mv_hc_base(base, mv_hc_from_port(port));
899 }
900
mv_port_base(void __iomem * base,unsigned int port)901 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
902 {
903 return mv_hc_base_from_port(base, port) +
904 MV_SATAHC_ARBTR_REG_SZ +
905 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
906 }
907
mv5_phy_base(void __iomem * mmio,unsigned int port)908 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
909 {
910 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
911 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
912
913 return hc_mmio + ofs;
914 }
915
mv_host_base(struct ata_host * host)916 static inline void __iomem *mv_host_base(struct ata_host *host)
917 {
918 struct mv_host_priv *hpriv = host->private_data;
919 return hpriv->base;
920 }
921
mv_ap_base(struct ata_port * ap)922 static inline void __iomem *mv_ap_base(struct ata_port *ap)
923 {
924 return mv_port_base(mv_host_base(ap->host), ap->port_no);
925 }
926
mv_get_hc_count(unsigned long port_flags)927 static inline int mv_get_hc_count(unsigned long port_flags)
928 {
929 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
930 }
931
932 /**
933 * mv_save_cached_regs - (re-)initialize cached port registers
934 * @ap: the port whose registers we are caching
935 *
936 * Initialize the local cache of port registers,
937 * so that reading them over and over again can
938 * be avoided on the hotter paths of this driver.
939 * This saves a few microseconds each time we switch
940 * to/from EDMA mode to perform (eg.) a drive cache flush.
941 */
mv_save_cached_regs(struct ata_port * ap)942 static void mv_save_cached_regs(struct ata_port *ap)
943 {
944 void __iomem *port_mmio = mv_ap_base(ap);
945 struct mv_port_priv *pp = ap->private_data;
946
947 pp->cached.fiscfg = readl(port_mmio + FISCFG);
948 pp->cached.ltmode = readl(port_mmio + LTMODE);
949 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
950 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
951 }
952
953 /**
954 * mv_write_cached_reg - write to a cached port register
955 * @addr: hardware address of the register
956 * @old: pointer to cached value of the register
957 * @new: new value for the register
958 *
959 * Write a new value to a cached register,
960 * but only if the value is different from before.
961 */
mv_write_cached_reg(void __iomem * addr,u32 * old,u32 new)962 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
963 {
964 if (new != *old) {
965 unsigned long laddr;
966 *old = new;
967 /*
968 * Workaround for 88SX60x1-B2 FEr SATA#13:
969 * Read-after-write is needed to prevent generating 64-bit
970 * write cycles on the PCI bus for SATA interface registers
971 * at offsets ending in 0x4 or 0xc.
972 *
973 * Looks like a lot of fuss, but it avoids an unnecessary
974 * +1 usec read-after-write delay for unaffected registers.
975 */
976 laddr = (unsigned long)addr & 0xffff;
977 if (laddr >= 0x300 && laddr <= 0x33c) {
978 laddr &= 0x000f;
979 if (laddr == 0x4 || laddr == 0xc) {
980 writelfl(new, addr); /* read after write */
981 return;
982 }
983 }
984 writel(new, addr); /* unaffected by the errata */
985 }
986 }
987
mv_set_edma_ptrs(void __iomem * port_mmio,struct mv_host_priv * hpriv,struct mv_port_priv * pp)988 static void mv_set_edma_ptrs(void __iomem *port_mmio,
989 struct mv_host_priv *hpriv,
990 struct mv_port_priv *pp)
991 {
992 u32 index;
993
994 /*
995 * initialize request queue
996 */
997 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
998 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
999
1000 WARN_ON(pp->crqb_dma & 0x3ff);
1001 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1002 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1003 port_mmio + EDMA_REQ_Q_IN_PTR);
1004 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1005
1006 /*
1007 * initialize response queue
1008 */
1009 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1010 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1011
1012 WARN_ON(pp->crpb_dma & 0xff);
1013 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1014 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1015 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1016 port_mmio + EDMA_RSP_Q_OUT_PTR);
1017 }
1018
mv_write_main_irq_mask(u32 mask,struct mv_host_priv * hpriv)1019 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1020 {
1021 /*
1022 * When writing to the main_irq_mask in hardware,
1023 * we must ensure exclusivity between the interrupt coalescing bits
1024 * and the corresponding individual port DONE_IRQ bits.
1025 *
1026 * Note that this register is really an "IRQ enable" register,
1027 * not an "IRQ mask" register as Marvell's naming might suggest.
1028 */
1029 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1030 mask &= ~DONE_IRQ_0_3;
1031 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1032 mask &= ~DONE_IRQ_4_7;
1033 writelfl(mask, hpriv->main_irq_mask_addr);
1034 }
1035
mv_set_main_irq_mask(struct ata_host * host,u32 disable_bits,u32 enable_bits)1036 static void mv_set_main_irq_mask(struct ata_host *host,
1037 u32 disable_bits, u32 enable_bits)
1038 {
1039 struct mv_host_priv *hpriv = host->private_data;
1040 u32 old_mask, new_mask;
1041
1042 old_mask = hpriv->main_irq_mask;
1043 new_mask = (old_mask & ~disable_bits) | enable_bits;
1044 if (new_mask != old_mask) {
1045 hpriv->main_irq_mask = new_mask;
1046 mv_write_main_irq_mask(new_mask, hpriv);
1047 }
1048 }
1049
mv_enable_port_irqs(struct ata_port * ap,unsigned int port_bits)1050 static void mv_enable_port_irqs(struct ata_port *ap,
1051 unsigned int port_bits)
1052 {
1053 unsigned int shift, hardport, port = ap->port_no;
1054 u32 disable_bits, enable_bits;
1055
1056 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1057
1058 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1059 enable_bits = port_bits << shift;
1060 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1061 }
1062
mv_clear_and_enable_port_irqs(struct ata_port * ap,void __iomem * port_mmio,unsigned int port_irqs)1063 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1064 void __iomem *port_mmio,
1065 unsigned int port_irqs)
1066 {
1067 struct mv_host_priv *hpriv = ap->host->private_data;
1068 int hardport = mv_hardport_from_port(ap->port_no);
1069 void __iomem *hc_mmio = mv_hc_base_from_port(
1070 mv_host_base(ap->host), ap->port_no);
1071 u32 hc_irq_cause;
1072
1073 /* clear EDMA event indicators, if any */
1074 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1075
1076 /* clear pending irq events */
1077 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1078 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1079
1080 /* clear FIS IRQ Cause */
1081 if (IS_GEN_IIE(hpriv))
1082 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1083
1084 mv_enable_port_irqs(ap, port_irqs);
1085 }
1086
mv_set_irq_coalescing(struct ata_host * host,unsigned int count,unsigned int usecs)1087 static void mv_set_irq_coalescing(struct ata_host *host,
1088 unsigned int count, unsigned int usecs)
1089 {
1090 struct mv_host_priv *hpriv = host->private_data;
1091 void __iomem *mmio = hpriv->base, *hc_mmio;
1092 u32 coal_enable = 0;
1093 unsigned long flags;
1094 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1095 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1096 ALL_PORTS_COAL_DONE;
1097
1098 /* Disable IRQ coalescing if either threshold is zero */
1099 if (!usecs || !count) {
1100 clks = count = 0;
1101 } else {
1102 /* Respect maximum limits of the hardware */
1103 clks = usecs * COAL_CLOCKS_PER_USEC;
1104 if (clks > MAX_COAL_TIME_THRESHOLD)
1105 clks = MAX_COAL_TIME_THRESHOLD;
1106 if (count > MAX_COAL_IO_COUNT)
1107 count = MAX_COAL_IO_COUNT;
1108 }
1109
1110 spin_lock_irqsave(&host->lock, flags);
1111 mv_set_main_irq_mask(host, coal_disable, 0);
1112
1113 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1114 /*
1115 * GEN_II/GEN_IIE with dual host controllers:
1116 * one set of global thresholds for the entire chip.
1117 */
1118 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1119 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1120 /* clear leftover coal IRQ bit */
1121 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1122 if (count)
1123 coal_enable = ALL_PORTS_COAL_DONE;
1124 clks = count = 0; /* force clearing of regular regs below */
1125 }
1126
1127 /*
1128 * All chips: independent thresholds for each HC on the chip.
1129 */
1130 hc_mmio = mv_hc_base_from_port(mmio, 0);
1131 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1132 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1133 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1134 if (count)
1135 coal_enable |= PORTS_0_3_COAL_DONE;
1136 if (is_dual_hc) {
1137 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1138 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1139 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1140 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1141 if (count)
1142 coal_enable |= PORTS_4_7_COAL_DONE;
1143 }
1144
1145 mv_set_main_irq_mask(host, 0, coal_enable);
1146 spin_unlock_irqrestore(&host->lock, flags);
1147 }
1148
1149 /**
1150 * mv_start_edma - Enable eDMA engine
1151 * @base: port base address
1152 * @pp: port private data
1153 *
1154 * Verify the local cache of the eDMA state is accurate with a
1155 * WARN_ON.
1156 *
1157 * LOCKING:
1158 * Inherited from caller.
1159 */
mv_start_edma(struct ata_port * ap,void __iomem * port_mmio,struct mv_port_priv * pp,u8 protocol)1160 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1161 struct mv_port_priv *pp, u8 protocol)
1162 {
1163 int want_ncq = (protocol == ATA_PROT_NCQ);
1164
1165 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1166 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1167 if (want_ncq != using_ncq)
1168 mv_stop_edma(ap);
1169 }
1170 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1171 struct mv_host_priv *hpriv = ap->host->private_data;
1172
1173 mv_edma_cfg(ap, want_ncq, 1);
1174
1175 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1176 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1177
1178 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1179 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1180 }
1181 }
1182
mv_wait_for_edma_empty_idle(struct ata_port * ap)1183 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1184 {
1185 void __iomem *port_mmio = mv_ap_base(ap);
1186 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1187 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1188 int i;
1189
1190 /*
1191 * Wait for the EDMA engine to finish transactions in progress.
1192 * No idea what a good "timeout" value might be, but measurements
1193 * indicate that it often requires hundreds of microseconds
1194 * with two drives in-use. So we use the 15msec value above
1195 * as a rough guess at what even more drives might require.
1196 */
1197 for (i = 0; i < timeout; ++i) {
1198 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1199 if ((edma_stat & empty_idle) == empty_idle)
1200 break;
1201 udelay(per_loop);
1202 }
1203 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1204 }
1205
1206 /**
1207 * mv_stop_edma_engine - Disable eDMA engine
1208 * @port_mmio: io base address
1209 *
1210 * LOCKING:
1211 * Inherited from caller.
1212 */
mv_stop_edma_engine(void __iomem * port_mmio)1213 static int mv_stop_edma_engine(void __iomem *port_mmio)
1214 {
1215 int i;
1216
1217 /* Disable eDMA. The disable bit auto clears. */
1218 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1219
1220 /* Wait for the chip to confirm eDMA is off. */
1221 for (i = 10000; i > 0; i--) {
1222 u32 reg = readl(port_mmio + EDMA_CMD);
1223 if (!(reg & EDMA_EN))
1224 return 0;
1225 udelay(10);
1226 }
1227 return -EIO;
1228 }
1229
mv_stop_edma(struct ata_port * ap)1230 static int mv_stop_edma(struct ata_port *ap)
1231 {
1232 void __iomem *port_mmio = mv_ap_base(ap);
1233 struct mv_port_priv *pp = ap->private_data;
1234 int err = 0;
1235
1236 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1237 return 0;
1238 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1239 mv_wait_for_edma_empty_idle(ap);
1240 if (mv_stop_edma_engine(port_mmio)) {
1241 ata_port_err(ap, "Unable to stop eDMA\n");
1242 err = -EIO;
1243 }
1244 mv_edma_cfg(ap, 0, 0);
1245 return err;
1246 }
1247
1248 #ifdef ATA_DEBUG
mv_dump_mem(void __iomem * start,unsigned bytes)1249 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1250 {
1251 int b, w;
1252 for (b = 0; b < bytes; ) {
1253 DPRINTK("%p: ", start + b);
1254 for (w = 0; b < bytes && w < 4; w++) {
1255 printk("%08x ", readl(start + b));
1256 b += sizeof(u32);
1257 }
1258 printk("\n");
1259 }
1260 }
1261 #endif
1262 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
mv_dump_pci_cfg(struct pci_dev * pdev,unsigned bytes)1263 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1264 {
1265 #ifdef ATA_DEBUG
1266 int b, w;
1267 u32 dw;
1268 for (b = 0; b < bytes; ) {
1269 DPRINTK("%02x: ", b);
1270 for (w = 0; b < bytes && w < 4; w++) {
1271 (void) pci_read_config_dword(pdev, b, &dw);
1272 printk("%08x ", dw);
1273 b += sizeof(u32);
1274 }
1275 printk("\n");
1276 }
1277 #endif
1278 }
1279 #endif
mv_dump_all_regs(void __iomem * mmio_base,int port,struct pci_dev * pdev)1280 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1281 struct pci_dev *pdev)
1282 {
1283 #ifdef ATA_DEBUG
1284 void __iomem *hc_base = mv_hc_base(mmio_base,
1285 port >> MV_PORT_HC_SHIFT);
1286 void __iomem *port_base;
1287 int start_port, num_ports, p, start_hc, num_hcs, hc;
1288
1289 if (0 > port) {
1290 start_hc = start_port = 0;
1291 num_ports = 8; /* shld be benign for 4 port devs */
1292 num_hcs = 2;
1293 } else {
1294 start_hc = port >> MV_PORT_HC_SHIFT;
1295 start_port = port;
1296 num_ports = num_hcs = 1;
1297 }
1298 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1299 num_ports > 1 ? num_ports - 1 : start_port);
1300
1301 if (NULL != pdev) {
1302 DPRINTK("PCI config space regs:\n");
1303 mv_dump_pci_cfg(pdev, 0x68);
1304 }
1305 DPRINTK("PCI regs:\n");
1306 mv_dump_mem(mmio_base+0xc00, 0x3c);
1307 mv_dump_mem(mmio_base+0xd00, 0x34);
1308 mv_dump_mem(mmio_base+0xf00, 0x4);
1309 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1310 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1311 hc_base = mv_hc_base(mmio_base, hc);
1312 DPRINTK("HC regs (HC %i):\n", hc);
1313 mv_dump_mem(hc_base, 0x1c);
1314 }
1315 for (p = start_port; p < start_port + num_ports; p++) {
1316 port_base = mv_port_base(mmio_base, p);
1317 DPRINTK("EDMA regs (port %i):\n", p);
1318 mv_dump_mem(port_base, 0x54);
1319 DPRINTK("SATA regs (port %i):\n", p);
1320 mv_dump_mem(port_base+0x300, 0x60);
1321 }
1322 #endif
1323 }
1324
mv_scr_offset(unsigned int sc_reg_in)1325 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1326 {
1327 unsigned int ofs;
1328
1329 switch (sc_reg_in) {
1330 case SCR_STATUS:
1331 case SCR_CONTROL:
1332 case SCR_ERROR:
1333 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1334 break;
1335 case SCR_ACTIVE:
1336 ofs = SATA_ACTIVE; /* active is not with the others */
1337 break;
1338 default:
1339 ofs = 0xffffffffU;
1340 break;
1341 }
1342 return ofs;
1343 }
1344
mv_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)1345 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1346 {
1347 unsigned int ofs = mv_scr_offset(sc_reg_in);
1348
1349 if (ofs != 0xffffffffU) {
1350 *val = readl(mv_ap_base(link->ap) + ofs);
1351 return 0;
1352 } else
1353 return -EINVAL;
1354 }
1355
mv_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)1356 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1357 {
1358 unsigned int ofs = mv_scr_offset(sc_reg_in);
1359
1360 if (ofs != 0xffffffffU) {
1361 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1362 struct mv_host_priv *hpriv = link->ap->host->private_data;
1363 if (sc_reg_in == SCR_CONTROL) {
1364 /*
1365 * Workaround for 88SX60x1 FEr SATA#26:
1366 *
1367 * COMRESETs have to take care not to accidentally
1368 * put the drive to sleep when writing SCR_CONTROL.
1369 * Setting bits 12..15 prevents this problem.
1370 *
1371 * So if we see an outbound COMMRESET, set those bits.
1372 * Ditto for the followup write that clears the reset.
1373 *
1374 * The proprietary driver does this for
1375 * all chip versions, and so do we.
1376 */
1377 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1378 val |= 0xf000;
1379
1380 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1381 void __iomem *lp_phy_addr =
1382 mv_ap_base(link->ap) + LP_PHY_CTL;
1383 /*
1384 * Set PHY speed according to SControl speed.
1385 */
1386 u32 lp_phy_val =
1387 LP_PHY_CTL_PIN_PU_PLL |
1388 LP_PHY_CTL_PIN_PU_RX |
1389 LP_PHY_CTL_PIN_PU_TX;
1390
1391 if ((val & 0xf0) != 0x10)
1392 lp_phy_val |=
1393 LP_PHY_CTL_GEN_TX_3G |
1394 LP_PHY_CTL_GEN_RX_3G;
1395
1396 writelfl(lp_phy_val, lp_phy_addr);
1397 }
1398 }
1399 writelfl(val, addr);
1400 return 0;
1401 } else
1402 return -EINVAL;
1403 }
1404
mv6_dev_config(struct ata_device * adev)1405 static void mv6_dev_config(struct ata_device *adev)
1406 {
1407 /*
1408 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1409 *
1410 * Gen-II does not support NCQ over a port multiplier
1411 * (no FIS-based switching).
1412 */
1413 if (adev->flags & ATA_DFLAG_NCQ) {
1414 if (sata_pmp_attached(adev->link->ap)) {
1415 adev->flags &= ~ATA_DFLAG_NCQ;
1416 ata_dev_info(adev,
1417 "NCQ disabled for command-based switching\n");
1418 }
1419 }
1420 }
1421
mv_qc_defer(struct ata_queued_cmd * qc)1422 static int mv_qc_defer(struct ata_queued_cmd *qc)
1423 {
1424 struct ata_link *link = qc->dev->link;
1425 struct ata_port *ap = link->ap;
1426 struct mv_port_priv *pp = ap->private_data;
1427
1428 /*
1429 * Don't allow new commands if we're in a delayed EH state
1430 * for NCQ and/or FIS-based switching.
1431 */
1432 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1433 return ATA_DEFER_PORT;
1434
1435 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1436 * can run concurrently.
1437 * set excl_link when we want to send a PIO command in DMA mode
1438 * or a non-NCQ command in NCQ mode.
1439 * When we receive a command from that link, and there are no
1440 * outstanding commands, mark a flag to clear excl_link and let
1441 * the command go through.
1442 */
1443 if (unlikely(ap->excl_link)) {
1444 if (link == ap->excl_link) {
1445 if (ap->nr_active_links)
1446 return ATA_DEFER_PORT;
1447 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1448 return 0;
1449 } else
1450 return ATA_DEFER_PORT;
1451 }
1452
1453 /*
1454 * If the port is completely idle, then allow the new qc.
1455 */
1456 if (ap->nr_active_links == 0)
1457 return 0;
1458
1459 /*
1460 * The port is operating in host queuing mode (EDMA) with NCQ
1461 * enabled, allow multiple NCQ commands. EDMA also allows
1462 * queueing multiple DMA commands but libata core currently
1463 * doesn't allow it.
1464 */
1465 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1466 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1467 if (ata_is_ncq(qc->tf.protocol))
1468 return 0;
1469 else {
1470 ap->excl_link = link;
1471 return ATA_DEFER_PORT;
1472 }
1473 }
1474
1475 return ATA_DEFER_PORT;
1476 }
1477
mv_config_fbs(struct ata_port * ap,int want_ncq,int want_fbs)1478 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1479 {
1480 struct mv_port_priv *pp = ap->private_data;
1481 void __iomem *port_mmio;
1482
1483 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1484 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1485 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1486
1487 ltmode = *old_ltmode & ~LTMODE_BIT8;
1488 haltcond = *old_haltcond | EDMA_ERR_DEV;
1489
1490 if (want_fbs) {
1491 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1492 ltmode = *old_ltmode | LTMODE_BIT8;
1493 if (want_ncq)
1494 haltcond &= ~EDMA_ERR_DEV;
1495 else
1496 fiscfg |= FISCFG_WAIT_DEV_ERR;
1497 } else {
1498 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1499 }
1500
1501 port_mmio = mv_ap_base(ap);
1502 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1503 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1504 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1505 }
1506
mv_60x1_errata_sata25(struct ata_port * ap,int want_ncq)1507 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1508 {
1509 struct mv_host_priv *hpriv = ap->host->private_data;
1510 u32 old, new;
1511
1512 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1513 old = readl(hpriv->base + GPIO_PORT_CTL);
1514 if (want_ncq)
1515 new = old | (1 << 22);
1516 else
1517 new = old & ~(1 << 22);
1518 if (new != old)
1519 writel(new, hpriv->base + GPIO_PORT_CTL);
1520 }
1521
1522 /**
1523 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1524 * @ap: Port being initialized
1525 *
1526 * There are two DMA modes on these chips: basic DMA, and EDMA.
1527 *
1528 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1529 * of basic DMA on the GEN_IIE versions of the chips.
1530 *
1531 * This bit survives EDMA resets, and must be set for basic DMA
1532 * to function, and should be cleared when EDMA is active.
1533 */
mv_bmdma_enable_iie(struct ata_port * ap,int enable_bmdma)1534 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1535 {
1536 struct mv_port_priv *pp = ap->private_data;
1537 u32 new, *old = &pp->cached.unknown_rsvd;
1538
1539 if (enable_bmdma)
1540 new = *old | 1;
1541 else
1542 new = *old & ~1;
1543 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1544 }
1545
1546 /*
1547 * SOC chips have an issue whereby the HDD LEDs don't always blink
1548 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1549 * of the SOC takes care of it, generating a steady blink rate when
1550 * any drive on the chip is active.
1551 *
1552 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1553 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1554 *
1555 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1556 * LED operation works then, and provides better (more accurate) feedback.
1557 *
1558 * Note that this code assumes that an SOC never has more than one HC onboard.
1559 */
mv_soc_led_blink_enable(struct ata_port * ap)1560 static void mv_soc_led_blink_enable(struct ata_port *ap)
1561 {
1562 struct ata_host *host = ap->host;
1563 struct mv_host_priv *hpriv = host->private_data;
1564 void __iomem *hc_mmio;
1565 u32 led_ctrl;
1566
1567 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1568 return;
1569 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1570 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1571 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1572 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1573 }
1574
mv_soc_led_blink_disable(struct ata_port * ap)1575 static void mv_soc_led_blink_disable(struct ata_port *ap)
1576 {
1577 struct ata_host *host = ap->host;
1578 struct mv_host_priv *hpriv = host->private_data;
1579 void __iomem *hc_mmio;
1580 u32 led_ctrl;
1581 unsigned int port;
1582
1583 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1584 return;
1585
1586 /* disable led-blink only if no ports are using NCQ */
1587 for (port = 0; port < hpriv->n_ports; port++) {
1588 struct ata_port *this_ap = host->ports[port];
1589 struct mv_port_priv *pp = this_ap->private_data;
1590
1591 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1592 return;
1593 }
1594
1595 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1596 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1597 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1598 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1599 }
1600
mv_edma_cfg(struct ata_port * ap,int want_ncq,int want_edma)1601 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1602 {
1603 u32 cfg;
1604 struct mv_port_priv *pp = ap->private_data;
1605 struct mv_host_priv *hpriv = ap->host->private_data;
1606 void __iomem *port_mmio = mv_ap_base(ap);
1607
1608 /* set up non-NCQ EDMA configuration */
1609 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1610 pp->pp_flags &=
1611 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1612
1613 if (IS_GEN_I(hpriv))
1614 cfg |= (1 << 8); /* enab config burst size mask */
1615
1616 else if (IS_GEN_II(hpriv)) {
1617 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1618 mv_60x1_errata_sata25(ap, want_ncq);
1619
1620 } else if (IS_GEN_IIE(hpriv)) {
1621 int want_fbs = sata_pmp_attached(ap);
1622 /*
1623 * Possible future enhancement:
1624 *
1625 * The chip can use FBS with non-NCQ, if we allow it,
1626 * But first we need to have the error handling in place
1627 * for this mode (datasheet section 7.3.15.4.2.3).
1628 * So disallow non-NCQ FBS for now.
1629 */
1630 want_fbs &= want_ncq;
1631
1632 mv_config_fbs(ap, want_ncq, want_fbs);
1633
1634 if (want_fbs) {
1635 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1636 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1637 }
1638
1639 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1640 if (want_edma) {
1641 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1642 if (!IS_SOC(hpriv))
1643 cfg |= (1 << 18); /* enab early completion */
1644 }
1645 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1646 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1647 mv_bmdma_enable_iie(ap, !want_edma);
1648
1649 if (IS_SOC(hpriv)) {
1650 if (want_ncq)
1651 mv_soc_led_blink_enable(ap);
1652 else
1653 mv_soc_led_blink_disable(ap);
1654 }
1655 }
1656
1657 if (want_ncq) {
1658 cfg |= EDMA_CFG_NCQ;
1659 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1660 }
1661
1662 writelfl(cfg, port_mmio + EDMA_CFG);
1663 }
1664
mv_port_free_dma_mem(struct ata_port * ap)1665 static void mv_port_free_dma_mem(struct ata_port *ap)
1666 {
1667 struct mv_host_priv *hpriv = ap->host->private_data;
1668 struct mv_port_priv *pp = ap->private_data;
1669 int tag;
1670
1671 if (pp->crqb) {
1672 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1673 pp->crqb = NULL;
1674 }
1675 if (pp->crpb) {
1676 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1677 pp->crpb = NULL;
1678 }
1679 /*
1680 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1681 * For later hardware, we have one unique sg_tbl per NCQ tag.
1682 */
1683 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1684 if (pp->sg_tbl[tag]) {
1685 if (tag == 0 || !IS_GEN_I(hpriv))
1686 dma_pool_free(hpriv->sg_tbl_pool,
1687 pp->sg_tbl[tag],
1688 pp->sg_tbl_dma[tag]);
1689 pp->sg_tbl[tag] = NULL;
1690 }
1691 }
1692 }
1693
1694 /**
1695 * mv_port_start - Port specific init/start routine.
1696 * @ap: ATA channel to manipulate
1697 *
1698 * Allocate and point to DMA memory, init port private memory,
1699 * zero indices.
1700 *
1701 * LOCKING:
1702 * Inherited from caller.
1703 */
mv_port_start(struct ata_port * ap)1704 static int mv_port_start(struct ata_port *ap)
1705 {
1706 struct device *dev = ap->host->dev;
1707 struct mv_host_priv *hpriv = ap->host->private_data;
1708 struct mv_port_priv *pp;
1709 unsigned long flags;
1710 int tag;
1711
1712 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1713 if (!pp)
1714 return -ENOMEM;
1715 ap->private_data = pp;
1716
1717 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1718 if (!pp->crqb)
1719 return -ENOMEM;
1720
1721 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1722 if (!pp->crpb)
1723 goto out_port_free_dma_mem;
1724
1725 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1726 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1727 ap->flags |= ATA_FLAG_AN;
1728 /*
1729 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1730 * For later hardware, we need one unique sg_tbl per NCQ tag.
1731 */
1732 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1733 if (tag == 0 || !IS_GEN_I(hpriv)) {
1734 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1735 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1736 if (!pp->sg_tbl[tag])
1737 goto out_port_free_dma_mem;
1738 } else {
1739 pp->sg_tbl[tag] = pp->sg_tbl[0];
1740 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1741 }
1742 }
1743
1744 spin_lock_irqsave(ap->lock, flags);
1745 mv_save_cached_regs(ap);
1746 mv_edma_cfg(ap, 0, 0);
1747 spin_unlock_irqrestore(ap->lock, flags);
1748
1749 return 0;
1750
1751 out_port_free_dma_mem:
1752 mv_port_free_dma_mem(ap);
1753 return -ENOMEM;
1754 }
1755
1756 /**
1757 * mv_port_stop - Port specific cleanup/stop routine.
1758 * @ap: ATA channel to manipulate
1759 *
1760 * Stop DMA, cleanup port memory.
1761 *
1762 * LOCKING:
1763 * This routine uses the host lock to protect the DMA stop.
1764 */
mv_port_stop(struct ata_port * ap)1765 static void mv_port_stop(struct ata_port *ap)
1766 {
1767 unsigned long flags;
1768
1769 spin_lock_irqsave(ap->lock, flags);
1770 mv_stop_edma(ap);
1771 mv_enable_port_irqs(ap, 0);
1772 spin_unlock_irqrestore(ap->lock, flags);
1773 mv_port_free_dma_mem(ap);
1774 }
1775
1776 /**
1777 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1778 * @qc: queued command whose SG list to source from
1779 *
1780 * Populate the SG list and mark the last entry.
1781 *
1782 * LOCKING:
1783 * Inherited from caller.
1784 */
mv_fill_sg(struct ata_queued_cmd * qc)1785 static void mv_fill_sg(struct ata_queued_cmd *qc)
1786 {
1787 struct mv_port_priv *pp = qc->ap->private_data;
1788 struct scatterlist *sg;
1789 struct mv_sg *mv_sg, *last_sg = NULL;
1790 unsigned int si;
1791
1792 mv_sg = pp->sg_tbl[qc->hw_tag];
1793 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1794 dma_addr_t addr = sg_dma_address(sg);
1795 u32 sg_len = sg_dma_len(sg);
1796
1797 while (sg_len) {
1798 u32 offset = addr & 0xffff;
1799 u32 len = sg_len;
1800
1801 if (offset + len > 0x10000)
1802 len = 0x10000 - offset;
1803
1804 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1805 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1806 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1807 mv_sg->reserved = 0;
1808
1809 sg_len -= len;
1810 addr += len;
1811
1812 last_sg = mv_sg;
1813 mv_sg++;
1814 }
1815 }
1816
1817 if (likely(last_sg))
1818 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1819 mb(); /* ensure data structure is visible to the chipset */
1820 }
1821
mv_crqb_pack_cmd(__le16 * cmdw,u8 data,u8 addr,unsigned last)1822 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1823 {
1824 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1825 (last ? CRQB_CMD_LAST : 0);
1826 *cmdw = cpu_to_le16(tmp);
1827 }
1828
1829 /**
1830 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1831 * @ap: Port associated with this ATA transaction.
1832 *
1833 * We need this only for ATAPI bmdma transactions,
1834 * as otherwise we experience spurious interrupts
1835 * after libata-sff handles the bmdma interrupts.
1836 */
mv_sff_irq_clear(struct ata_port * ap)1837 static void mv_sff_irq_clear(struct ata_port *ap)
1838 {
1839 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1840 }
1841
1842 /**
1843 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1844 * @qc: queued command to check for chipset/DMA compatibility.
1845 *
1846 * The bmdma engines cannot handle speculative data sizes
1847 * (bytecount under/over flow). So only allow DMA for
1848 * data transfer commands with known data sizes.
1849 *
1850 * LOCKING:
1851 * Inherited from caller.
1852 */
mv_check_atapi_dma(struct ata_queued_cmd * qc)1853 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1854 {
1855 struct scsi_cmnd *scmd = qc->scsicmd;
1856
1857 if (scmd) {
1858 switch (scmd->cmnd[0]) {
1859 case READ_6:
1860 case READ_10:
1861 case READ_12:
1862 case WRITE_6:
1863 case WRITE_10:
1864 case WRITE_12:
1865 case GPCMD_READ_CD:
1866 case GPCMD_SEND_DVD_STRUCTURE:
1867 case GPCMD_SEND_CUE_SHEET:
1868 return 0; /* DMA is safe */
1869 }
1870 }
1871 return -EOPNOTSUPP; /* use PIO instead */
1872 }
1873
1874 /**
1875 * mv_bmdma_setup - Set up BMDMA transaction
1876 * @qc: queued command to prepare DMA for.
1877 *
1878 * LOCKING:
1879 * Inherited from caller.
1880 */
mv_bmdma_setup(struct ata_queued_cmd * qc)1881 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1882 {
1883 struct ata_port *ap = qc->ap;
1884 void __iomem *port_mmio = mv_ap_base(ap);
1885 struct mv_port_priv *pp = ap->private_data;
1886
1887 mv_fill_sg(qc);
1888
1889 /* clear all DMA cmd bits */
1890 writel(0, port_mmio + BMDMA_CMD);
1891
1892 /* load PRD table addr. */
1893 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1894 port_mmio + BMDMA_PRD_HIGH);
1895 writelfl(pp->sg_tbl_dma[qc->hw_tag],
1896 port_mmio + BMDMA_PRD_LOW);
1897
1898 /* issue r/w command */
1899 ap->ops->sff_exec_command(ap, &qc->tf);
1900 }
1901
1902 /**
1903 * mv_bmdma_start - Start a BMDMA transaction
1904 * @qc: queued command to start DMA on.
1905 *
1906 * LOCKING:
1907 * Inherited from caller.
1908 */
mv_bmdma_start(struct ata_queued_cmd * qc)1909 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1910 {
1911 struct ata_port *ap = qc->ap;
1912 void __iomem *port_mmio = mv_ap_base(ap);
1913 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1914 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1915
1916 /* start host DMA transaction */
1917 writelfl(cmd, port_mmio + BMDMA_CMD);
1918 }
1919
1920 /**
1921 * mv_bmdma_stop - Stop BMDMA transfer
1922 * @qc: queued command to stop DMA on.
1923 *
1924 * Clears the ATA_DMA_START flag in the bmdma control register
1925 *
1926 * LOCKING:
1927 * Inherited from caller.
1928 */
mv_bmdma_stop_ap(struct ata_port * ap)1929 static void mv_bmdma_stop_ap(struct ata_port *ap)
1930 {
1931 void __iomem *port_mmio = mv_ap_base(ap);
1932 u32 cmd;
1933
1934 /* clear start/stop bit */
1935 cmd = readl(port_mmio + BMDMA_CMD);
1936 if (cmd & ATA_DMA_START) {
1937 cmd &= ~ATA_DMA_START;
1938 writelfl(cmd, port_mmio + BMDMA_CMD);
1939
1940 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1941 ata_sff_dma_pause(ap);
1942 }
1943 }
1944
mv_bmdma_stop(struct ata_queued_cmd * qc)1945 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1946 {
1947 mv_bmdma_stop_ap(qc->ap);
1948 }
1949
1950 /**
1951 * mv_bmdma_status - Read BMDMA status
1952 * @ap: port for which to retrieve DMA status.
1953 *
1954 * Read and return equivalent of the sff BMDMA status register.
1955 *
1956 * LOCKING:
1957 * Inherited from caller.
1958 */
mv_bmdma_status(struct ata_port * ap)1959 static u8 mv_bmdma_status(struct ata_port *ap)
1960 {
1961 void __iomem *port_mmio = mv_ap_base(ap);
1962 u32 reg, status;
1963
1964 /*
1965 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1966 * and the ATA_DMA_INTR bit doesn't exist.
1967 */
1968 reg = readl(port_mmio + BMDMA_STATUS);
1969 if (reg & ATA_DMA_ACTIVE)
1970 status = ATA_DMA_ACTIVE;
1971 else if (reg & ATA_DMA_ERR)
1972 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1973 else {
1974 /*
1975 * Just because DMA_ACTIVE is 0 (DMA completed),
1976 * this does _not_ mean the device is "done".
1977 * So we should not yet be signalling ATA_DMA_INTR
1978 * in some cases. Eg. DSM/TRIM, and perhaps others.
1979 */
1980 mv_bmdma_stop_ap(ap);
1981 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1982 status = 0;
1983 else
1984 status = ATA_DMA_INTR;
1985 }
1986 return status;
1987 }
1988
mv_rw_multi_errata_sata24(struct ata_queued_cmd * qc)1989 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1990 {
1991 struct ata_taskfile *tf = &qc->tf;
1992 /*
1993 * Workaround for 88SX60x1 FEr SATA#24.
1994 *
1995 * Chip may corrupt WRITEs if multi_count >= 4kB.
1996 * Note that READs are unaffected.
1997 *
1998 * It's not clear if this errata really means "4K bytes",
1999 * or if it always happens for multi_count > 7
2000 * regardless of device sector_size.
2001 *
2002 * So, for safety, any write with multi_count > 7
2003 * gets converted here into a regular PIO write instead:
2004 */
2005 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2006 if (qc->dev->multi_count > 7) {
2007 switch (tf->command) {
2008 case ATA_CMD_WRITE_MULTI:
2009 tf->command = ATA_CMD_PIO_WRITE;
2010 break;
2011 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2012 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2013 fallthrough;
2014 case ATA_CMD_WRITE_MULTI_EXT:
2015 tf->command = ATA_CMD_PIO_WRITE_EXT;
2016 break;
2017 }
2018 }
2019 }
2020 }
2021
2022 /**
2023 * mv_qc_prep - Host specific command preparation.
2024 * @qc: queued command to prepare
2025 *
2026 * This routine simply redirects to the general purpose routine
2027 * if command is not DMA. Else, it handles prep of the CRQB
2028 * (command request block), does some sanity checking, and calls
2029 * the SG load routine.
2030 *
2031 * LOCKING:
2032 * Inherited from caller.
2033 */
mv_qc_prep(struct ata_queued_cmd * qc)2034 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2035 {
2036 struct ata_port *ap = qc->ap;
2037 struct mv_port_priv *pp = ap->private_data;
2038 __le16 *cw;
2039 struct ata_taskfile *tf = &qc->tf;
2040 u16 flags = 0;
2041 unsigned in_index;
2042
2043 switch (tf->protocol) {
2044 case ATA_PROT_DMA:
2045 if (tf->command == ATA_CMD_DSM)
2046 return AC_ERR_OK;
2047 fallthrough;
2048 case ATA_PROT_NCQ:
2049 break; /* continue below */
2050 case ATA_PROT_PIO:
2051 mv_rw_multi_errata_sata24(qc);
2052 return AC_ERR_OK;
2053 default:
2054 return AC_ERR_OK;
2055 }
2056
2057 /* Fill in command request block
2058 */
2059 if (!(tf->flags & ATA_TFLAG_WRITE))
2060 flags |= CRQB_FLAG_READ;
2061 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2062 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2063 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2064
2065 /* get current queue index from software */
2066 in_index = pp->req_idx;
2067
2068 pp->crqb[in_index].sg_addr =
2069 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2070 pp->crqb[in_index].sg_addr_hi =
2071 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2072 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2073
2074 cw = &pp->crqb[in_index].ata_cmd[0];
2075
2076 /* Sadly, the CRQB cannot accommodate all registers--there are
2077 * only 11 bytes...so we must pick and choose required
2078 * registers based on the command. So, we drop feature and
2079 * hob_feature for [RW] DMA commands, but they are needed for
2080 * NCQ. NCQ will drop hob_nsect, which is not needed there
2081 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2082 */
2083 switch (tf->command) {
2084 case ATA_CMD_READ:
2085 case ATA_CMD_READ_EXT:
2086 case ATA_CMD_WRITE:
2087 case ATA_CMD_WRITE_EXT:
2088 case ATA_CMD_WRITE_FUA_EXT:
2089 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2090 break;
2091 case ATA_CMD_FPDMA_READ:
2092 case ATA_CMD_FPDMA_WRITE:
2093 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2094 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2095 break;
2096 default:
2097 /* The only other commands EDMA supports in non-queued and
2098 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2099 * of which are defined/used by Linux. If we get here, this
2100 * driver needs work.
2101 */
2102 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2103 tf->command);
2104 return AC_ERR_INVALID;
2105 }
2106 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2107 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2108 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2109 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2110 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2111 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2112 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2113 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2114 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2115
2116 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2117 return AC_ERR_OK;
2118 mv_fill_sg(qc);
2119
2120 return AC_ERR_OK;
2121 }
2122
2123 /**
2124 * mv_qc_prep_iie - Host specific command preparation.
2125 * @qc: queued command to prepare
2126 *
2127 * This routine simply redirects to the general purpose routine
2128 * if command is not DMA. Else, it handles prep of the CRQB
2129 * (command request block), does some sanity checking, and calls
2130 * the SG load routine.
2131 *
2132 * LOCKING:
2133 * Inherited from caller.
2134 */
mv_qc_prep_iie(struct ata_queued_cmd * qc)2135 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2136 {
2137 struct ata_port *ap = qc->ap;
2138 struct mv_port_priv *pp = ap->private_data;
2139 struct mv_crqb_iie *crqb;
2140 struct ata_taskfile *tf = &qc->tf;
2141 unsigned in_index;
2142 u32 flags = 0;
2143
2144 if ((tf->protocol != ATA_PROT_DMA) &&
2145 (tf->protocol != ATA_PROT_NCQ))
2146 return AC_ERR_OK;
2147 if (tf->command == ATA_CMD_DSM)
2148 return AC_ERR_OK; /* use bmdma for this */
2149
2150 /* Fill in Gen IIE command request block */
2151 if (!(tf->flags & ATA_TFLAG_WRITE))
2152 flags |= CRQB_FLAG_READ;
2153
2154 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2155 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2156 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2157 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2158
2159 /* get current queue index from software */
2160 in_index = pp->req_idx;
2161
2162 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2163 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2164 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2165 crqb->flags = cpu_to_le32(flags);
2166
2167 crqb->ata_cmd[0] = cpu_to_le32(
2168 (tf->command << 16) |
2169 (tf->feature << 24)
2170 );
2171 crqb->ata_cmd[1] = cpu_to_le32(
2172 (tf->lbal << 0) |
2173 (tf->lbam << 8) |
2174 (tf->lbah << 16) |
2175 (tf->device << 24)
2176 );
2177 crqb->ata_cmd[2] = cpu_to_le32(
2178 (tf->hob_lbal << 0) |
2179 (tf->hob_lbam << 8) |
2180 (tf->hob_lbah << 16) |
2181 (tf->hob_feature << 24)
2182 );
2183 crqb->ata_cmd[3] = cpu_to_le32(
2184 (tf->nsect << 0) |
2185 (tf->hob_nsect << 8)
2186 );
2187
2188 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2189 return AC_ERR_OK;
2190 mv_fill_sg(qc);
2191
2192 return AC_ERR_OK;
2193 }
2194
2195 /**
2196 * mv_sff_check_status - fetch device status, if valid
2197 * @ap: ATA port to fetch status from
2198 *
2199 * When using command issue via mv_qc_issue_fis(),
2200 * the initial ATA_BUSY state does not show up in the
2201 * ATA status (shadow) register. This can confuse libata!
2202 *
2203 * So we have a hook here to fake ATA_BUSY for that situation,
2204 * until the first time a BUSY, DRQ, or ERR bit is seen.
2205 *
2206 * The rest of the time, it simply returns the ATA status register.
2207 */
mv_sff_check_status(struct ata_port * ap)2208 static u8 mv_sff_check_status(struct ata_port *ap)
2209 {
2210 u8 stat = ioread8(ap->ioaddr.status_addr);
2211 struct mv_port_priv *pp = ap->private_data;
2212
2213 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2214 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2215 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2216 else
2217 stat = ATA_BUSY;
2218 }
2219 return stat;
2220 }
2221
2222 /**
2223 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2224 * @fis: fis to be sent
2225 * @nwords: number of 32-bit words in the fis
2226 */
mv_send_fis(struct ata_port * ap,u32 * fis,int nwords)2227 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2228 {
2229 void __iomem *port_mmio = mv_ap_base(ap);
2230 u32 ifctl, old_ifctl, ifstat;
2231 int i, timeout = 200, final_word = nwords - 1;
2232
2233 /* Initiate FIS transmission mode */
2234 old_ifctl = readl(port_mmio + SATA_IFCTL);
2235 ifctl = 0x100 | (old_ifctl & 0xf);
2236 writelfl(ifctl, port_mmio + SATA_IFCTL);
2237
2238 /* Send all words of the FIS except for the final word */
2239 for (i = 0; i < final_word; ++i)
2240 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2241
2242 /* Flag end-of-transmission, and then send the final word */
2243 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2244 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2245
2246 /*
2247 * Wait for FIS transmission to complete.
2248 * This typically takes just a single iteration.
2249 */
2250 do {
2251 ifstat = readl(port_mmio + SATA_IFSTAT);
2252 } while (!(ifstat & 0x1000) && --timeout);
2253
2254 /* Restore original port configuration */
2255 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2256
2257 /* See if it worked */
2258 if ((ifstat & 0x3000) != 0x1000) {
2259 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2260 __func__, ifstat);
2261 return AC_ERR_OTHER;
2262 }
2263 return 0;
2264 }
2265
2266 /**
2267 * mv_qc_issue_fis - Issue a command directly as a FIS
2268 * @qc: queued command to start
2269 *
2270 * Note that the ATA shadow registers are not updated
2271 * after command issue, so the device will appear "READY"
2272 * if polled, even while it is BUSY processing the command.
2273 *
2274 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2275 *
2276 * Note: we don't get updated shadow regs on *completion*
2277 * of non-data commands. So avoid sending them via this function,
2278 * as they will appear to have completed immediately.
2279 *
2280 * GEN_IIE has special registers that we could get the result tf from,
2281 * but earlier chipsets do not. For now, we ignore those registers.
2282 */
mv_qc_issue_fis(struct ata_queued_cmd * qc)2283 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2284 {
2285 struct ata_port *ap = qc->ap;
2286 struct mv_port_priv *pp = ap->private_data;
2287 struct ata_link *link = qc->dev->link;
2288 u32 fis[5];
2289 int err = 0;
2290
2291 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2292 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2293 if (err)
2294 return err;
2295
2296 switch (qc->tf.protocol) {
2297 case ATAPI_PROT_PIO:
2298 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2299 fallthrough;
2300 case ATAPI_PROT_NODATA:
2301 ap->hsm_task_state = HSM_ST_FIRST;
2302 break;
2303 case ATA_PROT_PIO:
2304 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2305 if (qc->tf.flags & ATA_TFLAG_WRITE)
2306 ap->hsm_task_state = HSM_ST_FIRST;
2307 else
2308 ap->hsm_task_state = HSM_ST;
2309 break;
2310 default:
2311 ap->hsm_task_state = HSM_ST_LAST;
2312 break;
2313 }
2314
2315 if (qc->tf.flags & ATA_TFLAG_POLLING)
2316 ata_sff_queue_pio_task(link, 0);
2317 return 0;
2318 }
2319
2320 /**
2321 * mv_qc_issue - Initiate a command to the host
2322 * @qc: queued command to start
2323 *
2324 * This routine simply redirects to the general purpose routine
2325 * if command is not DMA. Else, it sanity checks our local
2326 * caches of the request producer/consumer indices then enables
2327 * DMA and bumps the request producer index.
2328 *
2329 * LOCKING:
2330 * Inherited from caller.
2331 */
mv_qc_issue(struct ata_queued_cmd * qc)2332 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2333 {
2334 static int limit_warnings = 10;
2335 struct ata_port *ap = qc->ap;
2336 void __iomem *port_mmio = mv_ap_base(ap);
2337 struct mv_port_priv *pp = ap->private_data;
2338 u32 in_index;
2339 unsigned int port_irqs;
2340
2341 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2342
2343 switch (qc->tf.protocol) {
2344 case ATA_PROT_DMA:
2345 if (qc->tf.command == ATA_CMD_DSM) {
2346 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2347 return AC_ERR_OTHER;
2348 break; /* use bmdma for this */
2349 }
2350 fallthrough;
2351 case ATA_PROT_NCQ:
2352 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2353 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2354 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2355
2356 /* Write the request in pointer to kick the EDMA to life */
2357 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2358 port_mmio + EDMA_REQ_Q_IN_PTR);
2359 return 0;
2360
2361 case ATA_PROT_PIO:
2362 /*
2363 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2364 *
2365 * Someday, we might implement special polling workarounds
2366 * for these, but it all seems rather unnecessary since we
2367 * normally use only DMA for commands which transfer more
2368 * than a single block of data.
2369 *
2370 * Much of the time, this could just work regardless.
2371 * So for now, just log the incident, and allow the attempt.
2372 */
2373 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2374 --limit_warnings;
2375 ata_link_warn(qc->dev->link, DRV_NAME
2376 ": attempting PIO w/multiple DRQ: "
2377 "this may fail due to h/w errata\n");
2378 }
2379 fallthrough;
2380 case ATA_PROT_NODATA:
2381 case ATAPI_PROT_PIO:
2382 case ATAPI_PROT_NODATA:
2383 if (ap->flags & ATA_FLAG_PIO_POLLING)
2384 qc->tf.flags |= ATA_TFLAG_POLLING;
2385 break;
2386 }
2387
2388 if (qc->tf.flags & ATA_TFLAG_POLLING)
2389 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2390 else
2391 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2392
2393 /*
2394 * We're about to send a non-EDMA capable command to the
2395 * port. Turn off EDMA so there won't be problems accessing
2396 * shadow block, etc registers.
2397 */
2398 mv_stop_edma(ap);
2399 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2400 mv_pmp_select(ap, qc->dev->link->pmp);
2401
2402 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2403 struct mv_host_priv *hpriv = ap->host->private_data;
2404 /*
2405 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2406 *
2407 * After any NCQ error, the READ_LOG_EXT command
2408 * from libata-eh *must* use mv_qc_issue_fis().
2409 * Otherwise it might fail, due to chip errata.
2410 *
2411 * Rather than special-case it, we'll just *always*
2412 * use this method here for READ_LOG_EXT, making for
2413 * easier testing.
2414 */
2415 if (IS_GEN_II(hpriv))
2416 return mv_qc_issue_fis(qc);
2417 }
2418 return ata_bmdma_qc_issue(qc);
2419 }
2420
mv_get_active_qc(struct ata_port * ap)2421 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2422 {
2423 struct mv_port_priv *pp = ap->private_data;
2424 struct ata_queued_cmd *qc;
2425
2426 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2427 return NULL;
2428 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2429 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2430 return qc;
2431 return NULL;
2432 }
2433
mv_pmp_error_handler(struct ata_port * ap)2434 static void mv_pmp_error_handler(struct ata_port *ap)
2435 {
2436 unsigned int pmp, pmp_map;
2437 struct mv_port_priv *pp = ap->private_data;
2438
2439 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2440 /*
2441 * Perform NCQ error analysis on failed PMPs
2442 * before we freeze the port entirely.
2443 *
2444 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2445 */
2446 pmp_map = pp->delayed_eh_pmp_map;
2447 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2448 for (pmp = 0; pmp_map != 0; pmp++) {
2449 unsigned int this_pmp = (1 << pmp);
2450 if (pmp_map & this_pmp) {
2451 struct ata_link *link = &ap->pmp_link[pmp];
2452 pmp_map &= ~this_pmp;
2453 ata_eh_analyze_ncq_error(link);
2454 }
2455 }
2456 ata_port_freeze(ap);
2457 }
2458 sata_pmp_error_handler(ap);
2459 }
2460
mv_get_err_pmp_map(struct ata_port * ap)2461 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2462 {
2463 void __iomem *port_mmio = mv_ap_base(ap);
2464
2465 return readl(port_mmio + SATA_TESTCTL) >> 16;
2466 }
2467
mv_pmp_eh_prep(struct ata_port * ap,unsigned int pmp_map)2468 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2469 {
2470 unsigned int pmp;
2471
2472 /*
2473 * Initialize EH info for PMPs which saw device errors
2474 */
2475 for (pmp = 0; pmp_map != 0; pmp++) {
2476 unsigned int this_pmp = (1 << pmp);
2477 if (pmp_map & this_pmp) {
2478 struct ata_link *link = &ap->pmp_link[pmp];
2479 struct ata_eh_info *ehi = &link->eh_info;
2480
2481 pmp_map &= ~this_pmp;
2482 ata_ehi_clear_desc(ehi);
2483 ata_ehi_push_desc(ehi, "dev err");
2484 ehi->err_mask |= AC_ERR_DEV;
2485 ehi->action |= ATA_EH_RESET;
2486 ata_link_abort(link);
2487 }
2488 }
2489 }
2490
mv_req_q_empty(struct ata_port * ap)2491 static int mv_req_q_empty(struct ata_port *ap)
2492 {
2493 void __iomem *port_mmio = mv_ap_base(ap);
2494 u32 in_ptr, out_ptr;
2495
2496 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2497 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2498 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2499 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2500 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2501 }
2502
mv_handle_fbs_ncq_dev_err(struct ata_port * ap)2503 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2504 {
2505 struct mv_port_priv *pp = ap->private_data;
2506 int failed_links;
2507 unsigned int old_map, new_map;
2508
2509 /*
2510 * Device error during FBS+NCQ operation:
2511 *
2512 * Set a port flag to prevent further I/O being enqueued.
2513 * Leave the EDMA running to drain outstanding commands from this port.
2514 * Perform the post-mortem/EH only when all responses are complete.
2515 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2516 */
2517 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2518 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2519 pp->delayed_eh_pmp_map = 0;
2520 }
2521 old_map = pp->delayed_eh_pmp_map;
2522 new_map = old_map | mv_get_err_pmp_map(ap);
2523
2524 if (old_map != new_map) {
2525 pp->delayed_eh_pmp_map = new_map;
2526 mv_pmp_eh_prep(ap, new_map & ~old_map);
2527 }
2528 failed_links = hweight16(new_map);
2529
2530 ata_port_info(ap,
2531 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2532 __func__, pp->delayed_eh_pmp_map,
2533 ap->qc_active, failed_links,
2534 ap->nr_active_links);
2535
2536 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2537 mv_process_crpb_entries(ap, pp);
2538 mv_stop_edma(ap);
2539 mv_eh_freeze(ap);
2540 ata_port_info(ap, "%s: done\n", __func__);
2541 return 1; /* handled */
2542 }
2543 ata_port_info(ap, "%s: waiting\n", __func__);
2544 return 1; /* handled */
2545 }
2546
mv_handle_fbs_non_ncq_dev_err(struct ata_port * ap)2547 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2548 {
2549 /*
2550 * Possible future enhancement:
2551 *
2552 * FBS+non-NCQ operation is not yet implemented.
2553 * See related notes in mv_edma_cfg().
2554 *
2555 * Device error during FBS+non-NCQ operation:
2556 *
2557 * We need to snapshot the shadow registers for each failed command.
2558 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2559 */
2560 return 0; /* not handled */
2561 }
2562
mv_handle_dev_err(struct ata_port * ap,u32 edma_err_cause)2563 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2564 {
2565 struct mv_port_priv *pp = ap->private_data;
2566
2567 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2568 return 0; /* EDMA was not active: not handled */
2569 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2570 return 0; /* FBS was not active: not handled */
2571
2572 if (!(edma_err_cause & EDMA_ERR_DEV))
2573 return 0; /* non DEV error: not handled */
2574 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2575 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2576 return 0; /* other problems: not handled */
2577
2578 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2579 /*
2580 * EDMA should NOT have self-disabled for this case.
2581 * If it did, then something is wrong elsewhere,
2582 * and we cannot handle it here.
2583 */
2584 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2585 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2586 __func__, edma_err_cause, pp->pp_flags);
2587 return 0; /* not handled */
2588 }
2589 return mv_handle_fbs_ncq_dev_err(ap);
2590 } else {
2591 /*
2592 * EDMA should have self-disabled for this case.
2593 * If it did not, then something is wrong elsewhere,
2594 * and we cannot handle it here.
2595 */
2596 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2597 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2598 __func__, edma_err_cause, pp->pp_flags);
2599 return 0; /* not handled */
2600 }
2601 return mv_handle_fbs_non_ncq_dev_err(ap);
2602 }
2603 return 0; /* not handled */
2604 }
2605
mv_unexpected_intr(struct ata_port * ap,int edma_was_enabled)2606 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2607 {
2608 struct ata_eh_info *ehi = &ap->link.eh_info;
2609 char *when = "idle";
2610
2611 ata_ehi_clear_desc(ehi);
2612 if (edma_was_enabled) {
2613 when = "EDMA enabled";
2614 } else {
2615 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2616 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2617 when = "polling";
2618 }
2619 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2620 ehi->err_mask |= AC_ERR_OTHER;
2621 ehi->action |= ATA_EH_RESET;
2622 ata_port_freeze(ap);
2623 }
2624
2625 /**
2626 * mv_err_intr - Handle error interrupts on the port
2627 * @ap: ATA channel to manipulate
2628 *
2629 * Most cases require a full reset of the chip's state machine,
2630 * which also performs a COMRESET.
2631 * Also, if the port disabled DMA, update our cached copy to match.
2632 *
2633 * LOCKING:
2634 * Inherited from caller.
2635 */
mv_err_intr(struct ata_port * ap)2636 static void mv_err_intr(struct ata_port *ap)
2637 {
2638 void __iomem *port_mmio = mv_ap_base(ap);
2639 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2640 u32 fis_cause = 0;
2641 struct mv_port_priv *pp = ap->private_data;
2642 struct mv_host_priv *hpriv = ap->host->private_data;
2643 unsigned int action = 0, err_mask = 0;
2644 struct ata_eh_info *ehi = &ap->link.eh_info;
2645 struct ata_queued_cmd *qc;
2646 int abort = 0;
2647
2648 /*
2649 * Read and clear the SError and err_cause bits.
2650 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2651 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2652 */
2653 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2654 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2655
2656 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2657 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2658 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2659 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2660 }
2661 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2662
2663 if (edma_err_cause & EDMA_ERR_DEV) {
2664 /*
2665 * Device errors during FIS-based switching operation
2666 * require special handling.
2667 */
2668 if (mv_handle_dev_err(ap, edma_err_cause))
2669 return;
2670 }
2671
2672 qc = mv_get_active_qc(ap);
2673 ata_ehi_clear_desc(ehi);
2674 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2675 edma_err_cause, pp->pp_flags);
2676
2677 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2678 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2679 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2680 u32 ec = edma_err_cause &
2681 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2682 sata_async_notification(ap);
2683 if (!ec)
2684 return; /* Just an AN; no need for the nukes */
2685 ata_ehi_push_desc(ehi, "SDB notify");
2686 }
2687 }
2688 /*
2689 * All generations share these EDMA error cause bits:
2690 */
2691 if (edma_err_cause & EDMA_ERR_DEV) {
2692 err_mask |= AC_ERR_DEV;
2693 action |= ATA_EH_RESET;
2694 ata_ehi_push_desc(ehi, "dev error");
2695 }
2696 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2697 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2698 EDMA_ERR_INTRL_PAR)) {
2699 err_mask |= AC_ERR_ATA_BUS;
2700 action |= ATA_EH_RESET;
2701 ata_ehi_push_desc(ehi, "parity error");
2702 }
2703 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2704 ata_ehi_hotplugged(ehi);
2705 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2706 "dev disconnect" : "dev connect");
2707 action |= ATA_EH_RESET;
2708 }
2709
2710 /*
2711 * Gen-I has a different SELF_DIS bit,
2712 * different FREEZE bits, and no SERR bit:
2713 */
2714 if (IS_GEN_I(hpriv)) {
2715 eh_freeze_mask = EDMA_EH_FREEZE_5;
2716 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2717 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2718 ata_ehi_push_desc(ehi, "EDMA self-disable");
2719 }
2720 } else {
2721 eh_freeze_mask = EDMA_EH_FREEZE;
2722 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2723 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2724 ata_ehi_push_desc(ehi, "EDMA self-disable");
2725 }
2726 if (edma_err_cause & EDMA_ERR_SERR) {
2727 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2728 err_mask |= AC_ERR_ATA_BUS;
2729 action |= ATA_EH_RESET;
2730 }
2731 }
2732
2733 if (!err_mask) {
2734 err_mask = AC_ERR_OTHER;
2735 action |= ATA_EH_RESET;
2736 }
2737
2738 ehi->serror |= serr;
2739 ehi->action |= action;
2740
2741 if (qc)
2742 qc->err_mask |= err_mask;
2743 else
2744 ehi->err_mask |= err_mask;
2745
2746 if (err_mask == AC_ERR_DEV) {
2747 /*
2748 * Cannot do ata_port_freeze() here,
2749 * because it would kill PIO access,
2750 * which is needed for further diagnosis.
2751 */
2752 mv_eh_freeze(ap);
2753 abort = 1;
2754 } else if (edma_err_cause & eh_freeze_mask) {
2755 /*
2756 * Note to self: ata_port_freeze() calls ata_port_abort()
2757 */
2758 ata_port_freeze(ap);
2759 } else {
2760 abort = 1;
2761 }
2762
2763 if (abort) {
2764 if (qc)
2765 ata_link_abort(qc->dev->link);
2766 else
2767 ata_port_abort(ap);
2768 }
2769 }
2770
mv_process_crpb_response(struct ata_port * ap,struct mv_crpb * response,unsigned int tag,int ncq_enabled)2771 static bool mv_process_crpb_response(struct ata_port *ap,
2772 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2773 {
2774 u8 ata_status;
2775 u16 edma_status = le16_to_cpu(response->flags);
2776
2777 /*
2778 * edma_status from a response queue entry:
2779 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2780 * MSB is saved ATA status from command completion.
2781 */
2782 if (!ncq_enabled) {
2783 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2784 if (err_cause) {
2785 /*
2786 * Error will be seen/handled by
2787 * mv_err_intr(). So do nothing at all here.
2788 */
2789 return false;
2790 }
2791 }
2792 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2793 if (!ac_err_mask(ata_status))
2794 return true;
2795 /* else: leave it for mv_err_intr() */
2796 return false;
2797 }
2798
mv_process_crpb_entries(struct ata_port * ap,struct mv_port_priv * pp)2799 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2800 {
2801 void __iomem *port_mmio = mv_ap_base(ap);
2802 struct mv_host_priv *hpriv = ap->host->private_data;
2803 u32 in_index;
2804 bool work_done = false;
2805 u32 done_mask = 0;
2806 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2807
2808 /* Get the hardware queue position index */
2809 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2810 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2811
2812 /* Process new responses from since the last time we looked */
2813 while (in_index != pp->resp_idx) {
2814 unsigned int tag;
2815 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2816
2817 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2818
2819 if (IS_GEN_I(hpriv)) {
2820 /* 50xx: no NCQ, only one command active at a time */
2821 tag = ap->link.active_tag;
2822 } else {
2823 /* Gen II/IIE: get command tag from CRPB entry */
2824 tag = le16_to_cpu(response->id) & 0x1f;
2825 }
2826 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2827 done_mask |= 1 << tag;
2828 work_done = true;
2829 }
2830
2831 if (work_done) {
2832 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2833
2834 /* Update the software queue position index in hardware */
2835 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2836 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2837 port_mmio + EDMA_RSP_Q_OUT_PTR);
2838 }
2839 }
2840
mv_port_intr(struct ata_port * ap,u32 port_cause)2841 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2842 {
2843 struct mv_port_priv *pp;
2844 int edma_was_enabled;
2845
2846 /*
2847 * Grab a snapshot of the EDMA_EN flag setting,
2848 * so that we have a consistent view for this port,
2849 * even if something we call of our routines changes it.
2850 */
2851 pp = ap->private_data;
2852 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2853 /*
2854 * Process completed CRPB response(s) before other events.
2855 */
2856 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2857 mv_process_crpb_entries(ap, pp);
2858 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2859 mv_handle_fbs_ncq_dev_err(ap);
2860 }
2861 /*
2862 * Handle chip-reported errors, or continue on to handle PIO.
2863 */
2864 if (unlikely(port_cause & ERR_IRQ)) {
2865 mv_err_intr(ap);
2866 } else if (!edma_was_enabled) {
2867 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2868 if (qc)
2869 ata_bmdma_port_intr(ap, qc);
2870 else
2871 mv_unexpected_intr(ap, edma_was_enabled);
2872 }
2873 }
2874
2875 /**
2876 * mv_host_intr - Handle all interrupts on the given host controller
2877 * @host: host specific structure
2878 * @main_irq_cause: Main interrupt cause register for the chip.
2879 *
2880 * LOCKING:
2881 * Inherited from caller.
2882 */
mv_host_intr(struct ata_host * host,u32 main_irq_cause)2883 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2884 {
2885 struct mv_host_priv *hpriv = host->private_data;
2886 void __iomem *mmio = hpriv->base, *hc_mmio;
2887 unsigned int handled = 0, port;
2888
2889 /* If asserted, clear the "all ports" IRQ coalescing bit */
2890 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2891 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2892
2893 for (port = 0; port < hpriv->n_ports; port++) {
2894 struct ata_port *ap = host->ports[port];
2895 unsigned int p, shift, hardport, port_cause;
2896
2897 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2898 /*
2899 * Each hc within the host has its own hc_irq_cause register,
2900 * where the interrupting ports bits get ack'd.
2901 */
2902 if (hardport == 0) { /* first port on this hc ? */
2903 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2904 u32 port_mask, ack_irqs;
2905 /*
2906 * Skip this entire hc if nothing pending for any ports
2907 */
2908 if (!hc_cause) {
2909 port += MV_PORTS_PER_HC - 1;
2910 continue;
2911 }
2912 /*
2913 * We don't need/want to read the hc_irq_cause register,
2914 * because doing so hurts performance, and
2915 * main_irq_cause already gives us everything we need.
2916 *
2917 * But we do have to *write* to the hc_irq_cause to ack
2918 * the ports that we are handling this time through.
2919 *
2920 * This requires that we create a bitmap for those
2921 * ports which interrupted us, and use that bitmap
2922 * to ack (only) those ports via hc_irq_cause.
2923 */
2924 ack_irqs = 0;
2925 if (hc_cause & PORTS_0_3_COAL_DONE)
2926 ack_irqs = HC_COAL_IRQ;
2927 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2928 if ((port + p) >= hpriv->n_ports)
2929 break;
2930 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2931 if (hc_cause & port_mask)
2932 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2933 }
2934 hc_mmio = mv_hc_base_from_port(mmio, port);
2935 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2936 handled = 1;
2937 }
2938 /*
2939 * Handle interrupts signalled for this port:
2940 */
2941 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2942 if (port_cause)
2943 mv_port_intr(ap, port_cause);
2944 }
2945 return handled;
2946 }
2947
mv_pci_error(struct ata_host * host,void __iomem * mmio)2948 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2949 {
2950 struct mv_host_priv *hpriv = host->private_data;
2951 struct ata_port *ap;
2952 struct ata_queued_cmd *qc;
2953 struct ata_eh_info *ehi;
2954 unsigned int i, err_mask, printed = 0;
2955 u32 err_cause;
2956
2957 err_cause = readl(mmio + hpriv->irq_cause_offset);
2958
2959 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2960
2961 DPRINTK("All regs @ PCI error\n");
2962 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2963
2964 writelfl(0, mmio + hpriv->irq_cause_offset);
2965
2966 for (i = 0; i < host->n_ports; i++) {
2967 ap = host->ports[i];
2968 if (!ata_link_offline(&ap->link)) {
2969 ehi = &ap->link.eh_info;
2970 ata_ehi_clear_desc(ehi);
2971 if (!printed++)
2972 ata_ehi_push_desc(ehi,
2973 "PCI err cause 0x%08x", err_cause);
2974 err_mask = AC_ERR_HOST_BUS;
2975 ehi->action = ATA_EH_RESET;
2976 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2977 if (qc)
2978 qc->err_mask |= err_mask;
2979 else
2980 ehi->err_mask |= err_mask;
2981
2982 ata_port_freeze(ap);
2983 }
2984 }
2985 return 1; /* handled */
2986 }
2987
2988 /**
2989 * mv_interrupt - Main interrupt event handler
2990 * @irq: unused
2991 * @dev_instance: private data; in this case the host structure
2992 *
2993 * Read the read only register to determine if any host
2994 * controllers have pending interrupts. If so, call lower level
2995 * routine to handle. Also check for PCI errors which are only
2996 * reported here.
2997 *
2998 * LOCKING:
2999 * This routine holds the host lock while processing pending
3000 * interrupts.
3001 */
mv_interrupt(int irq,void * dev_instance)3002 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3003 {
3004 struct ata_host *host = dev_instance;
3005 struct mv_host_priv *hpriv = host->private_data;
3006 unsigned int handled = 0;
3007 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3008 u32 main_irq_cause, pending_irqs;
3009
3010 spin_lock(&host->lock);
3011
3012 /* for MSI: block new interrupts while in here */
3013 if (using_msi)
3014 mv_write_main_irq_mask(0, hpriv);
3015
3016 main_irq_cause = readl(hpriv->main_irq_cause_addr);
3017 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
3018 /*
3019 * Deal with cases where we either have nothing pending, or have read
3020 * a bogus register value which can indicate HW removal or PCI fault.
3021 */
3022 if (pending_irqs && main_irq_cause != 0xffffffffU) {
3023 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3024 handled = mv_pci_error(host, hpriv->base);
3025 else
3026 handled = mv_host_intr(host, pending_irqs);
3027 }
3028
3029 /* for MSI: unmask; interrupt cause bits will retrigger now */
3030 if (using_msi)
3031 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3032
3033 spin_unlock(&host->lock);
3034
3035 return IRQ_RETVAL(handled);
3036 }
3037
mv5_scr_offset(unsigned int sc_reg_in)3038 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3039 {
3040 unsigned int ofs;
3041
3042 switch (sc_reg_in) {
3043 case SCR_STATUS:
3044 case SCR_ERROR:
3045 case SCR_CONTROL:
3046 ofs = sc_reg_in * sizeof(u32);
3047 break;
3048 default:
3049 ofs = 0xffffffffU;
3050 break;
3051 }
3052 return ofs;
3053 }
3054
mv5_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)3055 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3056 {
3057 struct mv_host_priv *hpriv = link->ap->host->private_data;
3058 void __iomem *mmio = hpriv->base;
3059 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3060 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3061
3062 if (ofs != 0xffffffffU) {
3063 *val = readl(addr + ofs);
3064 return 0;
3065 } else
3066 return -EINVAL;
3067 }
3068
mv5_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)3069 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3070 {
3071 struct mv_host_priv *hpriv = link->ap->host->private_data;
3072 void __iomem *mmio = hpriv->base;
3073 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3074 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3075
3076 if (ofs != 0xffffffffU) {
3077 writelfl(val, addr + ofs);
3078 return 0;
3079 } else
3080 return -EINVAL;
3081 }
3082
mv5_reset_bus(struct ata_host * host,void __iomem * mmio)3083 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3084 {
3085 struct pci_dev *pdev = to_pci_dev(host->dev);
3086 int early_5080;
3087
3088 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3089
3090 if (!early_5080) {
3091 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3092 tmp |= (1 << 0);
3093 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3094 }
3095
3096 mv_reset_pci_bus(host, mmio);
3097 }
3098
mv5_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3099 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3100 {
3101 writel(0x0fcfffff, mmio + FLASH_CTL);
3102 }
3103
mv5_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3104 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3105 void __iomem *mmio)
3106 {
3107 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3108 u32 tmp;
3109
3110 tmp = readl(phy_mmio + MV5_PHY_MODE);
3111
3112 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3113 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3114 }
3115
mv5_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3116 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3117 {
3118 u32 tmp;
3119
3120 writel(0, mmio + GPIO_PORT_CTL);
3121
3122 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3123
3124 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3125 tmp |= ~(1 << 0);
3126 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3127 }
3128
mv5_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3129 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3130 unsigned int port)
3131 {
3132 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3133 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3134 u32 tmp;
3135 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3136
3137 if (fix_apm_sq) {
3138 tmp = readl(phy_mmio + MV5_LTMODE);
3139 tmp |= (1 << 19);
3140 writel(tmp, phy_mmio + MV5_LTMODE);
3141
3142 tmp = readl(phy_mmio + MV5_PHY_CTL);
3143 tmp &= ~0x3;
3144 tmp |= 0x1;
3145 writel(tmp, phy_mmio + MV5_PHY_CTL);
3146 }
3147
3148 tmp = readl(phy_mmio + MV5_PHY_MODE);
3149 tmp &= ~mask;
3150 tmp |= hpriv->signal[port].pre;
3151 tmp |= hpriv->signal[port].amps;
3152 writel(tmp, phy_mmio + MV5_PHY_MODE);
3153 }
3154
3155
3156 #undef ZERO
3157 #define ZERO(reg) writel(0, port_mmio + (reg))
mv5_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3158 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3159 unsigned int port)
3160 {
3161 void __iomem *port_mmio = mv_port_base(mmio, port);
3162
3163 mv_reset_channel(hpriv, mmio, port);
3164
3165 ZERO(0x028); /* command */
3166 writel(0x11f, port_mmio + EDMA_CFG);
3167 ZERO(0x004); /* timer */
3168 ZERO(0x008); /* irq err cause */
3169 ZERO(0x00c); /* irq err mask */
3170 ZERO(0x010); /* rq bah */
3171 ZERO(0x014); /* rq inp */
3172 ZERO(0x018); /* rq outp */
3173 ZERO(0x01c); /* respq bah */
3174 ZERO(0x024); /* respq outp */
3175 ZERO(0x020); /* respq inp */
3176 ZERO(0x02c); /* test control */
3177 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3178 }
3179 #undef ZERO
3180
3181 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv5_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int hc)3182 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3183 unsigned int hc)
3184 {
3185 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3186 u32 tmp;
3187
3188 ZERO(0x00c);
3189 ZERO(0x010);
3190 ZERO(0x014);
3191 ZERO(0x018);
3192
3193 tmp = readl(hc_mmio + 0x20);
3194 tmp &= 0x1c1c1c1c;
3195 tmp |= 0x03030303;
3196 writel(tmp, hc_mmio + 0x20);
3197 }
3198 #undef ZERO
3199
mv5_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3200 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3201 unsigned int n_hc)
3202 {
3203 unsigned int hc, port;
3204
3205 for (hc = 0; hc < n_hc; hc++) {
3206 for (port = 0; port < MV_PORTS_PER_HC; port++)
3207 mv5_reset_hc_port(hpriv, mmio,
3208 (hc * MV_PORTS_PER_HC) + port);
3209
3210 mv5_reset_one_hc(hpriv, mmio, hc);
3211 }
3212
3213 return 0;
3214 }
3215
3216 #undef ZERO
3217 #define ZERO(reg) writel(0, mmio + (reg))
mv_reset_pci_bus(struct ata_host * host,void __iomem * mmio)3218 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3219 {
3220 struct mv_host_priv *hpriv = host->private_data;
3221 u32 tmp;
3222
3223 tmp = readl(mmio + MV_PCI_MODE);
3224 tmp &= 0xff00ffff;
3225 writel(tmp, mmio + MV_PCI_MODE);
3226
3227 ZERO(MV_PCI_DISC_TIMER);
3228 ZERO(MV_PCI_MSI_TRIGGER);
3229 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3230 ZERO(MV_PCI_SERR_MASK);
3231 ZERO(hpriv->irq_cause_offset);
3232 ZERO(hpriv->irq_mask_offset);
3233 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3234 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3235 ZERO(MV_PCI_ERR_ATTRIBUTE);
3236 ZERO(MV_PCI_ERR_COMMAND);
3237 }
3238 #undef ZERO
3239
mv6_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3240 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3241 {
3242 u32 tmp;
3243
3244 mv5_reset_flash(hpriv, mmio);
3245
3246 tmp = readl(mmio + GPIO_PORT_CTL);
3247 tmp &= 0x3;
3248 tmp |= (1 << 5) | (1 << 6);
3249 writel(tmp, mmio + GPIO_PORT_CTL);
3250 }
3251
3252 /**
3253 * mv6_reset_hc - Perform the 6xxx global soft reset
3254 * @mmio: base address of the HBA
3255 *
3256 * This routine only applies to 6xxx parts.
3257 *
3258 * LOCKING:
3259 * Inherited from caller.
3260 */
mv6_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3261 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3262 unsigned int n_hc)
3263 {
3264 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3265 int i, rc = 0;
3266 u32 t;
3267
3268 /* Following procedure defined in PCI "main command and status
3269 * register" table.
3270 */
3271 t = readl(reg);
3272 writel(t | STOP_PCI_MASTER, reg);
3273
3274 for (i = 0; i < 1000; i++) {
3275 udelay(1);
3276 t = readl(reg);
3277 if (PCI_MASTER_EMPTY & t)
3278 break;
3279 }
3280 if (!(PCI_MASTER_EMPTY & t)) {
3281 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3282 rc = 1;
3283 goto done;
3284 }
3285
3286 /* set reset */
3287 i = 5;
3288 do {
3289 writel(t | GLOB_SFT_RST, reg);
3290 t = readl(reg);
3291 udelay(1);
3292 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3293
3294 if (!(GLOB_SFT_RST & t)) {
3295 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3296 rc = 1;
3297 goto done;
3298 }
3299
3300 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3301 i = 5;
3302 do {
3303 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3304 t = readl(reg);
3305 udelay(1);
3306 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3307
3308 if (GLOB_SFT_RST & t) {
3309 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3310 rc = 1;
3311 }
3312 done:
3313 return rc;
3314 }
3315
mv6_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3316 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3317 void __iomem *mmio)
3318 {
3319 void __iomem *port_mmio;
3320 u32 tmp;
3321
3322 tmp = readl(mmio + RESET_CFG);
3323 if ((tmp & (1 << 0)) == 0) {
3324 hpriv->signal[idx].amps = 0x7 << 8;
3325 hpriv->signal[idx].pre = 0x1 << 5;
3326 return;
3327 }
3328
3329 port_mmio = mv_port_base(mmio, idx);
3330 tmp = readl(port_mmio + PHY_MODE2);
3331
3332 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3333 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3334 }
3335
mv6_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3336 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3337 {
3338 writel(0x00000060, mmio + GPIO_PORT_CTL);
3339 }
3340
mv6_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3341 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3342 unsigned int port)
3343 {
3344 void __iomem *port_mmio = mv_port_base(mmio, port);
3345
3346 u32 hp_flags = hpriv->hp_flags;
3347 int fix_phy_mode2 =
3348 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349 int fix_phy_mode4 =
3350 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3351 u32 m2, m3;
3352
3353 if (fix_phy_mode2) {
3354 m2 = readl(port_mmio + PHY_MODE2);
3355 m2 &= ~(1 << 16);
3356 m2 |= (1 << 31);
3357 writel(m2, port_mmio + PHY_MODE2);
3358
3359 udelay(200);
3360
3361 m2 = readl(port_mmio + PHY_MODE2);
3362 m2 &= ~((1 << 16) | (1 << 31));
3363 writel(m2, port_mmio + PHY_MODE2);
3364
3365 udelay(200);
3366 }
3367
3368 /*
3369 * Gen-II/IIe PHY_MODE3 errata RM#2:
3370 * Achieves better receiver noise performance than the h/w default:
3371 */
3372 m3 = readl(port_mmio + PHY_MODE3);
3373 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3374
3375 /* Guideline 88F5182 (GL# SATA-S11) */
3376 if (IS_SOC(hpriv))
3377 m3 &= ~0x1c;
3378
3379 if (fix_phy_mode4) {
3380 u32 m4 = readl(port_mmio + PHY_MODE4);
3381 /*
3382 * Enforce reserved-bit restrictions on GenIIe devices only.
3383 * For earlier chipsets, force only the internal config field
3384 * (workaround for errata FEr SATA#10 part 1).
3385 */
3386 if (IS_GEN_IIE(hpriv))
3387 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3388 else
3389 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3390 writel(m4, port_mmio + PHY_MODE4);
3391 }
3392 /*
3393 * Workaround for 60x1-B2 errata SATA#13:
3394 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3395 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3396 * Or ensure we use writelfl() when writing PHY_MODE4.
3397 */
3398 writel(m3, port_mmio + PHY_MODE3);
3399
3400 /* Revert values of pre-emphasis and signal amps to the saved ones */
3401 m2 = readl(port_mmio + PHY_MODE2);
3402
3403 m2 &= ~MV_M2_PREAMP_MASK;
3404 m2 |= hpriv->signal[port].amps;
3405 m2 |= hpriv->signal[port].pre;
3406 m2 &= ~(1 << 16);
3407
3408 /* according to mvSata 3.6.1, some IIE values are fixed */
3409 if (IS_GEN_IIE(hpriv)) {
3410 m2 &= ~0xC30FF01F;
3411 m2 |= 0x0000900F;
3412 }
3413
3414 writel(m2, port_mmio + PHY_MODE2);
3415 }
3416
3417 /* TODO: use the generic LED interface to configure the SATA Presence */
3418 /* & Acitivy LEDs on the board */
mv_soc_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3419 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3420 void __iomem *mmio)
3421 {
3422 return;
3423 }
3424
mv_soc_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3425 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3426 void __iomem *mmio)
3427 {
3428 void __iomem *port_mmio;
3429 u32 tmp;
3430
3431 port_mmio = mv_port_base(mmio, idx);
3432 tmp = readl(port_mmio + PHY_MODE2);
3433
3434 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3435 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3436 }
3437
3438 #undef ZERO
3439 #define ZERO(reg) writel(0, port_mmio + (reg))
mv_soc_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3440 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3441 void __iomem *mmio, unsigned int port)
3442 {
3443 void __iomem *port_mmio = mv_port_base(mmio, port);
3444
3445 mv_reset_channel(hpriv, mmio, port);
3446
3447 ZERO(0x028); /* command */
3448 writel(0x101f, port_mmio + EDMA_CFG);
3449 ZERO(0x004); /* timer */
3450 ZERO(0x008); /* irq err cause */
3451 ZERO(0x00c); /* irq err mask */
3452 ZERO(0x010); /* rq bah */
3453 ZERO(0x014); /* rq inp */
3454 ZERO(0x018); /* rq outp */
3455 ZERO(0x01c); /* respq bah */
3456 ZERO(0x024); /* respq outp */
3457 ZERO(0x020); /* respq inp */
3458 ZERO(0x02c); /* test control */
3459 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3460 }
3461
3462 #undef ZERO
3463
3464 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv_soc_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio)3465 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3466 void __iomem *mmio)
3467 {
3468 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3469
3470 ZERO(0x00c);
3471 ZERO(0x010);
3472 ZERO(0x014);
3473
3474 }
3475
3476 #undef ZERO
3477
mv_soc_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3478 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3479 void __iomem *mmio, unsigned int n_hc)
3480 {
3481 unsigned int port;
3482
3483 for (port = 0; port < hpriv->n_ports; port++)
3484 mv_soc_reset_hc_port(hpriv, mmio, port);
3485
3486 mv_soc_reset_one_hc(hpriv, mmio);
3487
3488 return 0;
3489 }
3490
mv_soc_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3491 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3492 void __iomem *mmio)
3493 {
3494 return;
3495 }
3496
mv_soc_reset_bus(struct ata_host * host,void __iomem * mmio)3497 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3498 {
3499 return;
3500 }
3501
mv_soc_65n_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3502 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3503 void __iomem *mmio, unsigned int port)
3504 {
3505 void __iomem *port_mmio = mv_port_base(mmio, port);
3506 u32 reg;
3507
3508 reg = readl(port_mmio + PHY_MODE3);
3509 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3510 reg |= (0x1 << 27);
3511 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3512 reg |= (0x1 << 29);
3513 writel(reg, port_mmio + PHY_MODE3);
3514
3515 reg = readl(port_mmio + PHY_MODE4);
3516 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3517 reg |= (0x1 << 16);
3518 writel(reg, port_mmio + PHY_MODE4);
3519
3520 reg = readl(port_mmio + PHY_MODE9_GEN2);
3521 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3522 reg |= 0x8;
3523 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3524 writel(reg, port_mmio + PHY_MODE9_GEN2);
3525
3526 reg = readl(port_mmio + PHY_MODE9_GEN1);
3527 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3528 reg |= 0x8;
3529 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3530 writel(reg, port_mmio + PHY_MODE9_GEN1);
3531 }
3532
3533 /**
3534 * soc_is_65 - check if the soc is 65 nano device
3535 *
3536 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3537 * register, this register should contain non-zero value and it exists only
3538 * in the 65 nano devices, when reading it from older devices we get 0.
3539 */
soc_is_65n(struct mv_host_priv * hpriv)3540 static bool soc_is_65n(struct mv_host_priv *hpriv)
3541 {
3542 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3543
3544 if (readl(port0_mmio + PHYCFG_OFS))
3545 return true;
3546 return false;
3547 }
3548
mv_setup_ifcfg(void __iomem * port_mmio,int want_gen2i)3549 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3550 {
3551 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3552
3553 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3554 if (want_gen2i)
3555 ifcfg |= (1 << 7); /* enable gen2i speed */
3556 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3557 }
3558
mv_reset_channel(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port_no)3559 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3560 unsigned int port_no)
3561 {
3562 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3563
3564 /*
3565 * The datasheet warns against setting EDMA_RESET when EDMA is active
3566 * (but doesn't say what the problem might be). So we first try
3567 * to disable the EDMA engine before doing the EDMA_RESET operation.
3568 */
3569 mv_stop_edma_engine(port_mmio);
3570 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3571
3572 if (!IS_GEN_I(hpriv)) {
3573 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3574 mv_setup_ifcfg(port_mmio, 1);
3575 }
3576 /*
3577 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3578 * link, and physical layers. It resets all SATA interface registers
3579 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3580 */
3581 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3582 udelay(25); /* allow reset propagation */
3583 writelfl(0, port_mmio + EDMA_CMD);
3584
3585 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3586
3587 if (IS_GEN_I(hpriv))
3588 usleep_range(500, 1000);
3589 }
3590
mv_pmp_select(struct ata_port * ap,int pmp)3591 static void mv_pmp_select(struct ata_port *ap, int pmp)
3592 {
3593 if (sata_pmp_supported(ap)) {
3594 void __iomem *port_mmio = mv_ap_base(ap);
3595 u32 reg = readl(port_mmio + SATA_IFCTL);
3596 int old = reg & 0xf;
3597
3598 if (old != pmp) {
3599 reg = (reg & ~0xf) | pmp;
3600 writelfl(reg, port_mmio + SATA_IFCTL);
3601 }
3602 }
3603 }
3604
mv_pmp_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3605 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3606 unsigned long deadline)
3607 {
3608 mv_pmp_select(link->ap, sata_srst_pmp(link));
3609 return sata_std_hardreset(link, class, deadline);
3610 }
3611
mv_softreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3612 static int mv_softreset(struct ata_link *link, unsigned int *class,
3613 unsigned long deadline)
3614 {
3615 mv_pmp_select(link->ap, sata_srst_pmp(link));
3616 return ata_sff_softreset(link, class, deadline);
3617 }
3618
mv_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3619 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3620 unsigned long deadline)
3621 {
3622 struct ata_port *ap = link->ap;
3623 struct mv_host_priv *hpriv = ap->host->private_data;
3624 struct mv_port_priv *pp = ap->private_data;
3625 void __iomem *mmio = hpriv->base;
3626 int rc, attempts = 0, extra = 0;
3627 u32 sstatus;
3628 bool online;
3629
3630 mv_reset_channel(hpriv, mmio, ap->port_no);
3631 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3632 pp->pp_flags &=
3633 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3634
3635 /* Workaround for errata FEr SATA#10 (part 2) */
3636 do {
3637 const unsigned long *timing =
3638 sata_ehc_deb_timing(&link->eh_context);
3639
3640 rc = sata_link_hardreset(link, timing, deadline + extra,
3641 &online, NULL);
3642 rc = online ? -EAGAIN : rc;
3643 if (rc)
3644 return rc;
3645 sata_scr_read(link, SCR_STATUS, &sstatus);
3646 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3647 /* Force 1.5gb/s link speed and try again */
3648 mv_setup_ifcfg(mv_ap_base(ap), 0);
3649 if (time_after(jiffies + HZ, deadline))
3650 extra = HZ; /* only extend it once, max */
3651 }
3652 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3653 mv_save_cached_regs(ap);
3654 mv_edma_cfg(ap, 0, 0);
3655
3656 return rc;
3657 }
3658
mv_eh_freeze(struct ata_port * ap)3659 static void mv_eh_freeze(struct ata_port *ap)
3660 {
3661 mv_stop_edma(ap);
3662 mv_enable_port_irqs(ap, 0);
3663 }
3664
mv_eh_thaw(struct ata_port * ap)3665 static void mv_eh_thaw(struct ata_port *ap)
3666 {
3667 struct mv_host_priv *hpriv = ap->host->private_data;
3668 unsigned int port = ap->port_no;
3669 unsigned int hardport = mv_hardport_from_port(port);
3670 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3671 void __iomem *port_mmio = mv_ap_base(ap);
3672 u32 hc_irq_cause;
3673
3674 /* clear EDMA errors on this port */
3675 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3676
3677 /* clear pending irq events */
3678 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3679 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3680
3681 mv_enable_port_irqs(ap, ERR_IRQ);
3682 }
3683
3684 /**
3685 * mv_port_init - Perform some early initialization on a single port.
3686 * @port: libata data structure storing shadow register addresses
3687 * @port_mmio: base address of the port
3688 *
3689 * Initialize shadow register mmio addresses, clear outstanding
3690 * interrupts on the port, and unmask interrupts for the future
3691 * start of the port.
3692 *
3693 * LOCKING:
3694 * Inherited from caller.
3695 */
mv_port_init(struct ata_ioports * port,void __iomem * port_mmio)3696 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3697 {
3698 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3699
3700 /* PIO related setup
3701 */
3702 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3703 port->error_addr =
3704 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3705 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3706 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3707 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3708 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3709 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3710 port->status_addr =
3711 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3712 /* special case: control/altstatus doesn't have ATA_REG_ address */
3713 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3714
3715 /* Clear any currently outstanding port interrupt conditions */
3716 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3717 writelfl(readl(serr), serr);
3718 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3719
3720 /* unmask all non-transient EDMA error interrupts */
3721 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3722
3723 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3724 readl(port_mmio + EDMA_CFG),
3725 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3726 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3727 }
3728
mv_in_pcix_mode(struct ata_host * host)3729 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3730 {
3731 struct mv_host_priv *hpriv = host->private_data;
3732 void __iomem *mmio = hpriv->base;
3733 u32 reg;
3734
3735 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3736 return 0; /* not PCI-X capable */
3737 reg = readl(mmio + MV_PCI_MODE);
3738 if ((reg & MV_PCI_MODE_MASK) == 0)
3739 return 0; /* conventional PCI mode */
3740 return 1; /* chip is in PCI-X mode */
3741 }
3742
mv_pci_cut_through_okay(struct ata_host * host)3743 static int mv_pci_cut_through_okay(struct ata_host *host)
3744 {
3745 struct mv_host_priv *hpriv = host->private_data;
3746 void __iomem *mmio = hpriv->base;
3747 u32 reg;
3748
3749 if (!mv_in_pcix_mode(host)) {
3750 reg = readl(mmio + MV_PCI_COMMAND);
3751 if (reg & MV_PCI_COMMAND_MRDTRIG)
3752 return 0; /* not okay */
3753 }
3754 return 1; /* okay */
3755 }
3756
mv_60x1b2_errata_pci7(struct ata_host * host)3757 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3758 {
3759 struct mv_host_priv *hpriv = host->private_data;
3760 void __iomem *mmio = hpriv->base;
3761
3762 /* workaround for 60x1-B2 errata PCI#7 */
3763 if (mv_in_pcix_mode(host)) {
3764 u32 reg = readl(mmio + MV_PCI_COMMAND);
3765 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3766 }
3767 }
3768
mv_chip_id(struct ata_host * host,unsigned int board_idx)3769 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3770 {
3771 struct pci_dev *pdev = to_pci_dev(host->dev);
3772 struct mv_host_priv *hpriv = host->private_data;
3773 u32 hp_flags = hpriv->hp_flags;
3774
3775 switch (board_idx) {
3776 case chip_5080:
3777 hpriv->ops = &mv5xxx_ops;
3778 hp_flags |= MV_HP_GEN_I;
3779
3780 switch (pdev->revision) {
3781 case 0x1:
3782 hp_flags |= MV_HP_ERRATA_50XXB0;
3783 break;
3784 case 0x3:
3785 hp_flags |= MV_HP_ERRATA_50XXB2;
3786 break;
3787 default:
3788 dev_warn(&pdev->dev,
3789 "Applying 50XXB2 workarounds to unknown rev\n");
3790 hp_flags |= MV_HP_ERRATA_50XXB2;
3791 break;
3792 }
3793 break;
3794
3795 case chip_504x:
3796 case chip_508x:
3797 hpriv->ops = &mv5xxx_ops;
3798 hp_flags |= MV_HP_GEN_I;
3799
3800 switch (pdev->revision) {
3801 case 0x0:
3802 hp_flags |= MV_HP_ERRATA_50XXB0;
3803 break;
3804 case 0x3:
3805 hp_flags |= MV_HP_ERRATA_50XXB2;
3806 break;
3807 default:
3808 dev_warn(&pdev->dev,
3809 "Applying B2 workarounds to unknown rev\n");
3810 hp_flags |= MV_HP_ERRATA_50XXB2;
3811 break;
3812 }
3813 break;
3814
3815 case chip_604x:
3816 case chip_608x:
3817 hpriv->ops = &mv6xxx_ops;
3818 hp_flags |= MV_HP_GEN_II;
3819
3820 switch (pdev->revision) {
3821 case 0x7:
3822 mv_60x1b2_errata_pci7(host);
3823 hp_flags |= MV_HP_ERRATA_60X1B2;
3824 break;
3825 case 0x9:
3826 hp_flags |= MV_HP_ERRATA_60X1C0;
3827 break;
3828 default:
3829 dev_warn(&pdev->dev,
3830 "Applying B2 workarounds to unknown rev\n");
3831 hp_flags |= MV_HP_ERRATA_60X1B2;
3832 break;
3833 }
3834 break;
3835
3836 case chip_7042:
3837 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3838 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3839 (pdev->device == 0x2300 || pdev->device == 0x2310))
3840 {
3841 /*
3842 * Highpoint RocketRAID PCIe 23xx series cards:
3843 *
3844 * Unconfigured drives are treated as "Legacy"
3845 * by the BIOS, and it overwrites sector 8 with
3846 * a "Lgcy" metadata block prior to Linux boot.
3847 *
3848 * Configured drives (RAID or JBOD) leave sector 8
3849 * alone, but instead overwrite a high numbered
3850 * sector for the RAID metadata. This sector can
3851 * be determined exactly, by truncating the physical
3852 * drive capacity to a nice even GB value.
3853 *
3854 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3855 *
3856 * Warn the user, lest they think we're just buggy.
3857 */
3858 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3859 " BIOS CORRUPTS DATA on all attached drives,"
3860 " regardless of if/how they are configured."
3861 " BEWARE!\n");
3862 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3863 " use sectors 8-9 on \"Legacy\" drives,"
3864 " and avoid the final two gigabytes on"
3865 " all RocketRAID BIOS initialized drives.\n");
3866 }
3867 fallthrough;
3868 case chip_6042:
3869 hpriv->ops = &mv6xxx_ops;
3870 hp_flags |= MV_HP_GEN_IIE;
3871 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3872 hp_flags |= MV_HP_CUT_THROUGH;
3873
3874 switch (pdev->revision) {
3875 case 0x2: /* Rev.B0: the first/only public release */
3876 hp_flags |= MV_HP_ERRATA_60X1C0;
3877 break;
3878 default:
3879 dev_warn(&pdev->dev,
3880 "Applying 60X1C0 workarounds to unknown rev\n");
3881 hp_flags |= MV_HP_ERRATA_60X1C0;
3882 break;
3883 }
3884 break;
3885 case chip_soc:
3886 if (soc_is_65n(hpriv))
3887 hpriv->ops = &mv_soc_65n_ops;
3888 else
3889 hpriv->ops = &mv_soc_ops;
3890 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3891 MV_HP_ERRATA_60X1C0;
3892 break;
3893
3894 default:
3895 dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3896 return -EINVAL;
3897 }
3898
3899 hpriv->hp_flags = hp_flags;
3900 if (hp_flags & MV_HP_PCIE) {
3901 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3902 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3903 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3904 } else {
3905 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3906 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3907 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3908 }
3909
3910 return 0;
3911 }
3912
3913 /**
3914 * mv_init_host - Perform some early initialization of the host.
3915 * @host: ATA host to initialize
3916 *
3917 * If possible, do an early global reset of the host. Then do
3918 * our port init and clear/unmask all/relevant host interrupts.
3919 *
3920 * LOCKING:
3921 * Inherited from caller.
3922 */
mv_init_host(struct ata_host * host)3923 static int mv_init_host(struct ata_host *host)
3924 {
3925 int rc = 0, n_hc, port, hc;
3926 struct mv_host_priv *hpriv = host->private_data;
3927 void __iomem *mmio = hpriv->base;
3928
3929 rc = mv_chip_id(host, hpriv->board_idx);
3930 if (rc)
3931 goto done;
3932
3933 if (IS_SOC(hpriv)) {
3934 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3935 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3936 } else {
3937 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3938 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3939 }
3940
3941 /* initialize shadow irq mask with register's value */
3942 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3943
3944 /* global interrupt mask: 0 == mask everything */
3945 mv_set_main_irq_mask(host, ~0, 0);
3946
3947 n_hc = mv_get_hc_count(host->ports[0]->flags);
3948
3949 for (port = 0; port < host->n_ports; port++)
3950 if (hpriv->ops->read_preamp)
3951 hpriv->ops->read_preamp(hpriv, port, mmio);
3952
3953 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3954 if (rc)
3955 goto done;
3956
3957 hpriv->ops->reset_flash(hpriv, mmio);
3958 hpriv->ops->reset_bus(host, mmio);
3959 hpriv->ops->enable_leds(hpriv, mmio);
3960
3961 for (port = 0; port < host->n_ports; port++) {
3962 struct ata_port *ap = host->ports[port];
3963 void __iomem *port_mmio = mv_port_base(mmio, port);
3964
3965 mv_port_init(&ap->ioaddr, port_mmio);
3966 }
3967
3968 for (hc = 0; hc < n_hc; hc++) {
3969 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3970
3971 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3972 "(before clear)=0x%08x\n", hc,
3973 readl(hc_mmio + HC_CFG),
3974 readl(hc_mmio + HC_IRQ_CAUSE));
3975
3976 /* Clear any currently outstanding hc interrupt conditions */
3977 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3978 }
3979
3980 if (!IS_SOC(hpriv)) {
3981 /* Clear any currently outstanding host interrupt conditions */
3982 writelfl(0, mmio + hpriv->irq_cause_offset);
3983
3984 /* and unmask interrupt generation for host regs */
3985 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3986 }
3987
3988 /*
3989 * enable only global host interrupts for now.
3990 * The per-port interrupts get done later as ports are set up.
3991 */
3992 mv_set_main_irq_mask(host, 0, PCI_ERR);
3993 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3994 irq_coalescing_usecs);
3995 done:
3996 return rc;
3997 }
3998
mv_create_dma_pools(struct mv_host_priv * hpriv,struct device * dev)3999 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4000 {
4001 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4002 MV_CRQB_Q_SZ, 0);
4003 if (!hpriv->crqb_pool)
4004 return -ENOMEM;
4005
4006 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4007 MV_CRPB_Q_SZ, 0);
4008 if (!hpriv->crpb_pool)
4009 return -ENOMEM;
4010
4011 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4012 MV_SG_TBL_SZ, 0);
4013 if (!hpriv->sg_tbl_pool)
4014 return -ENOMEM;
4015
4016 return 0;
4017 }
4018
mv_conf_mbus_windows(struct mv_host_priv * hpriv,const struct mbus_dram_target_info * dram)4019 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4020 const struct mbus_dram_target_info *dram)
4021 {
4022 int i;
4023
4024 for (i = 0; i < 4; i++) {
4025 writel(0, hpriv->base + WINDOW_CTRL(i));
4026 writel(0, hpriv->base + WINDOW_BASE(i));
4027 }
4028
4029 for (i = 0; i < dram->num_cs; i++) {
4030 const struct mbus_dram_window *cs = dram->cs + i;
4031
4032 writel(((cs->size - 1) & 0xffff0000) |
4033 (cs->mbus_attr << 8) |
4034 (dram->mbus_dram_target_id << 4) | 1,
4035 hpriv->base + WINDOW_CTRL(i));
4036 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4037 }
4038 }
4039
4040 /**
4041 * mv_platform_probe - handle a positive probe of an soc Marvell
4042 * host
4043 * @pdev: platform device found
4044 *
4045 * LOCKING:
4046 * Inherited from caller.
4047 */
mv_platform_probe(struct platform_device * pdev)4048 static int mv_platform_probe(struct platform_device *pdev)
4049 {
4050 const struct mv_sata_platform_data *mv_platform_data;
4051 const struct mbus_dram_target_info *dram;
4052 const struct ata_port_info *ppi[] =
4053 { &mv_port_info[chip_soc], NULL };
4054 struct ata_host *host;
4055 struct mv_host_priv *hpriv;
4056 struct resource *res;
4057 int n_ports = 0, irq = 0;
4058 int rc;
4059 int port;
4060
4061 ata_print_version_once(&pdev->dev, DRV_VERSION);
4062
4063 /*
4064 * Simple resource validation ..
4065 */
4066 if (unlikely(pdev->num_resources != 2)) {
4067 dev_err(&pdev->dev, "invalid number of resources\n");
4068 return -EINVAL;
4069 }
4070
4071 /*
4072 * Get the register base first
4073 */
4074 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4075 if (res == NULL)
4076 return -EINVAL;
4077
4078 /* allocate host */
4079 if (pdev->dev.of_node) {
4080 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4081 &n_ports);
4082 if (rc) {
4083 dev_err(&pdev->dev,
4084 "error parsing nr-ports property: %d\n", rc);
4085 return rc;
4086 }
4087
4088 if (n_ports <= 0) {
4089 dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4090 n_ports);
4091 return -EINVAL;
4092 }
4093
4094 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4095 } else {
4096 mv_platform_data = dev_get_platdata(&pdev->dev);
4097 n_ports = mv_platform_data->n_ports;
4098 irq = platform_get_irq(pdev, 0);
4099 }
4100 if (irq < 0)
4101 return irq;
4102 if (!irq)
4103 return -EINVAL;
4104
4105 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4106 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4107
4108 if (!host || !hpriv)
4109 return -ENOMEM;
4110 hpriv->port_clks = devm_kcalloc(&pdev->dev,
4111 n_ports, sizeof(struct clk *),
4112 GFP_KERNEL);
4113 if (!hpriv->port_clks)
4114 return -ENOMEM;
4115 hpriv->port_phys = devm_kcalloc(&pdev->dev,
4116 n_ports, sizeof(struct phy *),
4117 GFP_KERNEL);
4118 if (!hpriv->port_phys)
4119 return -ENOMEM;
4120 host->private_data = hpriv;
4121 hpriv->board_idx = chip_soc;
4122
4123 host->iomap = NULL;
4124 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4125 resource_size(res));
4126 if (!hpriv->base)
4127 return -ENOMEM;
4128
4129 hpriv->base -= SATAHC0_REG_BASE;
4130
4131 hpriv->clk = clk_get(&pdev->dev, NULL);
4132 if (IS_ERR(hpriv->clk))
4133 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4134 else
4135 clk_prepare_enable(hpriv->clk);
4136
4137 for (port = 0; port < n_ports; port++) {
4138 char port_number[16];
4139 sprintf(port_number, "%d", port);
4140 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4141 if (!IS_ERR(hpriv->port_clks[port]))
4142 clk_prepare_enable(hpriv->port_clks[port]);
4143
4144 sprintf(port_number, "port%d", port);
4145 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4146 port_number);
4147 if (IS_ERR(hpriv->port_phys[port])) {
4148 rc = PTR_ERR(hpriv->port_phys[port]);
4149 hpriv->port_phys[port] = NULL;
4150 if (rc != -EPROBE_DEFER)
4151 dev_warn(&pdev->dev, "error getting phy %d", rc);
4152
4153 /* Cleanup only the initialized ports */
4154 hpriv->n_ports = port;
4155 goto err;
4156 } else
4157 phy_power_on(hpriv->port_phys[port]);
4158 }
4159
4160 /* All the ports have been initialized */
4161 hpriv->n_ports = n_ports;
4162
4163 /*
4164 * (Re-)program MBUS remapping windows if we are asked to.
4165 */
4166 dram = mv_mbus_dram_info();
4167 if (dram)
4168 mv_conf_mbus_windows(hpriv, dram);
4169
4170 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4171 if (rc)
4172 goto err;
4173
4174 /*
4175 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4176 * updated in the LP_PHY_CTL register.
4177 */
4178 if (pdev->dev.of_node &&
4179 of_device_is_compatible(pdev->dev.of_node,
4180 "marvell,armada-370-sata"))
4181 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4182
4183 /* initialize adapter */
4184 rc = mv_init_host(host);
4185 if (rc)
4186 goto err;
4187
4188 dev_info(&pdev->dev, "slots %u ports %d\n",
4189 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4190
4191 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4192 if (!rc)
4193 return 0;
4194
4195 err:
4196 if (!IS_ERR(hpriv->clk)) {
4197 clk_disable_unprepare(hpriv->clk);
4198 clk_put(hpriv->clk);
4199 }
4200 for (port = 0; port < hpriv->n_ports; port++) {
4201 if (!IS_ERR(hpriv->port_clks[port])) {
4202 clk_disable_unprepare(hpriv->port_clks[port]);
4203 clk_put(hpriv->port_clks[port]);
4204 }
4205 phy_power_off(hpriv->port_phys[port]);
4206 }
4207
4208 return rc;
4209 }
4210
4211 /*
4212 *
4213 * mv_platform_remove - unplug a platform interface
4214 * @pdev: platform device
4215 *
4216 * A platform bus SATA device has been unplugged. Perform the needed
4217 * cleanup. Also called on module unload for any active devices.
4218 */
mv_platform_remove(struct platform_device * pdev)4219 static int mv_platform_remove(struct platform_device *pdev)
4220 {
4221 struct ata_host *host = platform_get_drvdata(pdev);
4222 struct mv_host_priv *hpriv = host->private_data;
4223 int port;
4224 ata_host_detach(host);
4225
4226 if (!IS_ERR(hpriv->clk)) {
4227 clk_disable_unprepare(hpriv->clk);
4228 clk_put(hpriv->clk);
4229 }
4230 for (port = 0; port < host->n_ports; port++) {
4231 if (!IS_ERR(hpriv->port_clks[port])) {
4232 clk_disable_unprepare(hpriv->port_clks[port]);
4233 clk_put(hpriv->port_clks[port]);
4234 }
4235 phy_power_off(hpriv->port_phys[port]);
4236 }
4237 return 0;
4238 }
4239
4240 #ifdef CONFIG_PM_SLEEP
mv_platform_suspend(struct platform_device * pdev,pm_message_t state)4241 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4242 {
4243 struct ata_host *host = platform_get_drvdata(pdev);
4244 if (host)
4245 return ata_host_suspend(host, state);
4246 else
4247 return 0;
4248 }
4249
mv_platform_resume(struct platform_device * pdev)4250 static int mv_platform_resume(struct platform_device *pdev)
4251 {
4252 struct ata_host *host = platform_get_drvdata(pdev);
4253 const struct mbus_dram_target_info *dram;
4254 int ret;
4255
4256 if (host) {
4257 struct mv_host_priv *hpriv = host->private_data;
4258
4259 /*
4260 * (Re-)program MBUS remapping windows if we are asked to.
4261 */
4262 dram = mv_mbus_dram_info();
4263 if (dram)
4264 mv_conf_mbus_windows(hpriv, dram);
4265
4266 /* initialize adapter */
4267 ret = mv_init_host(host);
4268 if (ret) {
4269 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4270 return ret;
4271 }
4272 ata_host_resume(host);
4273 }
4274
4275 return 0;
4276 }
4277 #else
4278 #define mv_platform_suspend NULL
4279 #define mv_platform_resume NULL
4280 #endif
4281
4282 #ifdef CONFIG_OF
4283 static const struct of_device_id mv_sata_dt_ids[] = {
4284 { .compatible = "marvell,armada-370-sata", },
4285 { .compatible = "marvell,orion-sata", },
4286 {},
4287 };
4288 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4289 #endif
4290
4291 static struct platform_driver mv_platform_driver = {
4292 .probe = mv_platform_probe,
4293 .remove = mv_platform_remove,
4294 .suspend = mv_platform_suspend,
4295 .resume = mv_platform_resume,
4296 .driver = {
4297 .name = DRV_NAME,
4298 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4299 },
4300 };
4301
4302
4303 #ifdef CONFIG_PCI
4304 static int mv_pci_init_one(struct pci_dev *pdev,
4305 const struct pci_device_id *ent);
4306 #ifdef CONFIG_PM_SLEEP
4307 static int mv_pci_device_resume(struct pci_dev *pdev);
4308 #endif
4309
4310
4311 static struct pci_driver mv_pci_driver = {
4312 .name = DRV_NAME,
4313 .id_table = mv_pci_tbl,
4314 .probe = mv_pci_init_one,
4315 .remove = ata_pci_remove_one,
4316 #ifdef CONFIG_PM_SLEEP
4317 .suspend = ata_pci_device_suspend,
4318 .resume = mv_pci_device_resume,
4319 #endif
4320
4321 };
4322
4323 /**
4324 * mv_print_info - Dump key info to kernel log for perusal.
4325 * @host: ATA host to print info about
4326 *
4327 * FIXME: complete this.
4328 *
4329 * LOCKING:
4330 * Inherited from caller.
4331 */
mv_print_info(struct ata_host * host)4332 static void mv_print_info(struct ata_host *host)
4333 {
4334 struct pci_dev *pdev = to_pci_dev(host->dev);
4335 struct mv_host_priv *hpriv = host->private_data;
4336 u8 scc;
4337 const char *scc_s, *gen;
4338
4339 /* Use this to determine the HW stepping of the chip so we know
4340 * what errata to workaround
4341 */
4342 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4343 if (scc == 0)
4344 scc_s = "SCSI";
4345 else if (scc == 0x01)
4346 scc_s = "RAID";
4347 else
4348 scc_s = "?";
4349
4350 if (IS_GEN_I(hpriv))
4351 gen = "I";
4352 else if (IS_GEN_II(hpriv))
4353 gen = "II";
4354 else if (IS_GEN_IIE(hpriv))
4355 gen = "IIE";
4356 else
4357 gen = "?";
4358
4359 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4360 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4361 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4362 }
4363
4364 /**
4365 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4366 * @pdev: PCI device found
4367 * @ent: PCI device ID entry for the matched host
4368 *
4369 * LOCKING:
4370 * Inherited from caller.
4371 */
mv_pci_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4372 static int mv_pci_init_one(struct pci_dev *pdev,
4373 const struct pci_device_id *ent)
4374 {
4375 unsigned int board_idx = (unsigned int)ent->driver_data;
4376 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4377 struct ata_host *host;
4378 struct mv_host_priv *hpriv;
4379 int n_ports, port, rc;
4380
4381 ata_print_version_once(&pdev->dev, DRV_VERSION);
4382
4383 /* allocate host */
4384 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4385
4386 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4387 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4388 if (!host || !hpriv)
4389 return -ENOMEM;
4390 host->private_data = hpriv;
4391 hpriv->n_ports = n_ports;
4392 hpriv->board_idx = board_idx;
4393
4394 /* acquire resources */
4395 rc = pcim_enable_device(pdev);
4396 if (rc)
4397 return rc;
4398
4399 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4400 if (rc == -EBUSY)
4401 pcim_pin_device(pdev);
4402 if (rc)
4403 return rc;
4404 host->iomap = pcim_iomap_table(pdev);
4405 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4406
4407 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4408 if (rc) {
4409 dev_err(&pdev->dev, "DMA enable failed\n");
4410 return rc;
4411 }
4412
4413 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4414 if (rc)
4415 return rc;
4416
4417 for (port = 0; port < host->n_ports; port++) {
4418 struct ata_port *ap = host->ports[port];
4419 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4420 unsigned int offset = port_mmio - hpriv->base;
4421
4422 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4423 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4424 }
4425
4426 /* initialize adapter */
4427 rc = mv_init_host(host);
4428 if (rc)
4429 return rc;
4430
4431 /* Enable message-switched interrupts, if requested */
4432 if (msi && pci_enable_msi(pdev) == 0)
4433 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4434
4435 mv_dump_pci_cfg(pdev, 0x68);
4436 mv_print_info(host);
4437
4438 pci_set_master(pdev);
4439 pci_try_set_mwi(pdev);
4440 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4441 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4442 }
4443
4444 #ifdef CONFIG_PM_SLEEP
mv_pci_device_resume(struct pci_dev * pdev)4445 static int mv_pci_device_resume(struct pci_dev *pdev)
4446 {
4447 struct ata_host *host = pci_get_drvdata(pdev);
4448 int rc;
4449
4450 rc = ata_pci_device_do_resume(pdev);
4451 if (rc)
4452 return rc;
4453
4454 /* initialize adapter */
4455 rc = mv_init_host(host);
4456 if (rc)
4457 return rc;
4458
4459 ata_host_resume(host);
4460
4461 return 0;
4462 }
4463 #endif
4464 #endif
4465
mv_init(void)4466 static int __init mv_init(void)
4467 {
4468 int rc = -ENODEV;
4469 #ifdef CONFIG_PCI
4470 rc = pci_register_driver(&mv_pci_driver);
4471 if (rc < 0)
4472 return rc;
4473 #endif
4474 rc = platform_driver_register(&mv_platform_driver);
4475
4476 #ifdef CONFIG_PCI
4477 if (rc < 0)
4478 pci_unregister_driver(&mv_pci_driver);
4479 #endif
4480 return rc;
4481 }
4482
mv_exit(void)4483 static void __exit mv_exit(void)
4484 {
4485 #ifdef CONFIG_PCI
4486 pci_unregister_driver(&mv_pci_driver);
4487 #endif
4488 platform_driver_unregister(&mv_platform_driver);
4489 }
4490
4491 MODULE_AUTHOR("Brett Russ");
4492 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4493 MODULE_LICENSE("GPL v2");
4494 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4495 MODULE_VERSION(DRV_VERSION);
4496 MODULE_ALIAS("platform:" DRV_NAME);
4497
4498 module_init(mv_init);
4499 module_exit(mv_exit);
4500