1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/timer.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/bitops.h>
22 #include <linux/mutex.h>
23 #include <linux/workqueue.h>
24 #include <linux/highmem.h>
25 #include <linux/firmware.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/file.h>
29 #include <linux/list.h>
30 #include <linux/fs.h>
31 #include <linux/async.h>
32 #include <linux/pm.h>
33 #include <linux/suspend.h>
34 #include <linux/syscore_ops.h>
35 #include <linux/reboot.h>
36 #include <linux/security.h>
37 #include <linux/xz.h>
38
39 #include <generated/utsrelease.h>
40
41 #include "../base.h"
42 #include "firmware.h"
43 #include "fallback.h"
44
45 MODULE_AUTHOR("Manuel Estrada Sainz");
46 MODULE_DESCRIPTION("Multi purpose firmware loading support");
47 MODULE_LICENSE("GPL");
48
49 struct firmware_cache {
50 /* firmware_buf instance will be added into the below list */
51 spinlock_t lock;
52 struct list_head head;
53 int state;
54
55 #ifdef CONFIG_FW_CACHE
56 /*
57 * Names of firmware images which have been cached successfully
58 * will be added into the below list so that device uncache
59 * helper can trace which firmware images have been cached
60 * before.
61 */
62 spinlock_t name_lock;
63 struct list_head fw_names;
64
65 struct delayed_work work;
66
67 struct notifier_block pm_notify;
68 #endif
69 };
70
71 struct fw_cache_entry {
72 struct list_head list;
73 const char *name;
74 };
75
76 struct fw_name_devm {
77 unsigned long magic;
78 const char *name;
79 };
80
to_fw_priv(struct kref * ref)81 static inline struct fw_priv *to_fw_priv(struct kref *ref)
82 {
83 return container_of(ref, struct fw_priv, ref);
84 }
85
86 #define FW_LOADER_NO_CACHE 0
87 #define FW_LOADER_START_CACHE 1
88
89 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
90 * guarding for corner cases a global lock should be OK */
91 DEFINE_MUTEX(fw_lock);
92
93 static struct firmware_cache fw_cache;
94
95 /* Builtin firmware support */
96
97 #ifdef CONFIG_FW_LOADER
98
99 extern struct builtin_fw __start_builtin_fw[];
100 extern struct builtin_fw __end_builtin_fw[];
101
fw_copy_to_prealloc_buf(struct firmware * fw,void * buf,size_t size)102 static bool fw_copy_to_prealloc_buf(struct firmware *fw,
103 void *buf, size_t size)
104 {
105 if (!buf)
106 return true;
107 if (size < fw->size)
108 return false;
109 memcpy(buf, fw->data, fw->size);
110 return true;
111 }
112
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)113 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
114 void *buf, size_t size)
115 {
116 struct builtin_fw *b_fw;
117
118 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
119 if (strcmp(name, b_fw->name) == 0) {
120 fw->size = b_fw->size;
121 fw->data = b_fw->data;
122 return fw_copy_to_prealloc_buf(fw, buf, size);
123 }
124 }
125
126 return false;
127 }
128
fw_is_builtin_firmware(const struct firmware * fw)129 static bool fw_is_builtin_firmware(const struct firmware *fw)
130 {
131 struct builtin_fw *b_fw;
132
133 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
134 if (fw->data == b_fw->data)
135 return true;
136
137 return false;
138 }
139
140 #else /* Module case - no builtin firmware support */
141
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)142 static inline bool fw_get_builtin_firmware(struct firmware *fw,
143 const char *name, void *buf,
144 size_t size)
145 {
146 return false;
147 }
148
fw_is_builtin_firmware(const struct firmware * fw)149 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
150 {
151 return false;
152 }
153 #endif
154
fw_state_init(struct fw_priv * fw_priv)155 static void fw_state_init(struct fw_priv *fw_priv)
156 {
157 struct fw_state *fw_st = &fw_priv->fw_st;
158
159 init_completion(&fw_st->completion);
160 fw_st->status = FW_STATUS_UNKNOWN;
161 }
162
fw_state_wait(struct fw_priv * fw_priv)163 static inline int fw_state_wait(struct fw_priv *fw_priv)
164 {
165 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
166 }
167
168 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
169
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)170 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
171 struct firmware_cache *fwc,
172 void *dbuf,
173 size_t size,
174 size_t offset,
175 u32 opt_flags)
176 {
177 struct fw_priv *fw_priv;
178
179 /* For a partial read, the buffer must be preallocated. */
180 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
181 return NULL;
182
183 /* Only partial reads are allowed to use an offset. */
184 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
185 return NULL;
186
187 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
188 if (!fw_priv)
189 return NULL;
190
191 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
192 if (!fw_priv->fw_name) {
193 kfree(fw_priv);
194 return NULL;
195 }
196
197 kref_init(&fw_priv->ref);
198 fw_priv->fwc = fwc;
199 fw_priv->data = dbuf;
200 fw_priv->allocated_size = size;
201 fw_priv->offset = offset;
202 fw_priv->opt_flags = opt_flags;
203 fw_state_init(fw_priv);
204 #ifdef CONFIG_FW_LOADER_USER_HELPER
205 INIT_LIST_HEAD(&fw_priv->pending_list);
206 #endif
207
208 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
209
210 return fw_priv;
211 }
212
__lookup_fw_priv(const char * fw_name)213 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
214 {
215 struct fw_priv *tmp;
216 struct firmware_cache *fwc = &fw_cache;
217
218 list_for_each_entry(tmp, &fwc->head, list)
219 if (!strcmp(tmp->fw_name, fw_name))
220 return tmp;
221 return NULL;
222 }
223
224 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)225 static int alloc_lookup_fw_priv(const char *fw_name,
226 struct firmware_cache *fwc,
227 struct fw_priv **fw_priv,
228 void *dbuf,
229 size_t size,
230 size_t offset,
231 u32 opt_flags)
232 {
233 struct fw_priv *tmp;
234
235 spin_lock(&fwc->lock);
236 /*
237 * Do not merge requests that are marked to be non-cached or
238 * are performing partial reads.
239 */
240 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
241 tmp = __lookup_fw_priv(fw_name);
242 if (tmp) {
243 kref_get(&tmp->ref);
244 spin_unlock(&fwc->lock);
245 *fw_priv = tmp;
246 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
247 return 1;
248 }
249 }
250
251 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
252 if (tmp) {
253 INIT_LIST_HEAD(&tmp->list);
254 if (!(opt_flags & FW_OPT_NOCACHE))
255 list_add(&tmp->list, &fwc->head);
256 }
257 spin_unlock(&fwc->lock);
258
259 *fw_priv = tmp;
260
261 return tmp ? 0 : -ENOMEM;
262 }
263
__free_fw_priv(struct kref * ref)264 static void __free_fw_priv(struct kref *ref)
265 __releases(&fwc->lock)
266 {
267 struct fw_priv *fw_priv = to_fw_priv(ref);
268 struct firmware_cache *fwc = fw_priv->fwc;
269
270 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
271 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
272 (unsigned int)fw_priv->size);
273
274 list_del(&fw_priv->list);
275 spin_unlock(&fwc->lock);
276
277 if (fw_is_paged_buf(fw_priv))
278 fw_free_paged_buf(fw_priv);
279 else if (!fw_priv->allocated_size)
280 vfree(fw_priv->data);
281
282 kfree_const(fw_priv->fw_name);
283 kfree(fw_priv);
284 }
285
free_fw_priv(struct fw_priv * fw_priv)286 static void free_fw_priv(struct fw_priv *fw_priv)
287 {
288 struct firmware_cache *fwc = fw_priv->fwc;
289 spin_lock(&fwc->lock);
290 if (!kref_put(&fw_priv->ref, __free_fw_priv))
291 spin_unlock(&fwc->lock);
292 }
293
294 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)295 bool fw_is_paged_buf(struct fw_priv *fw_priv)
296 {
297 return fw_priv->is_paged_buf;
298 }
299
fw_free_paged_buf(struct fw_priv * fw_priv)300 void fw_free_paged_buf(struct fw_priv *fw_priv)
301 {
302 int i;
303
304 if (!fw_priv->pages)
305 return;
306
307 vunmap(fw_priv->data);
308
309 for (i = 0; i < fw_priv->nr_pages; i++)
310 __free_page(fw_priv->pages[i]);
311 kvfree(fw_priv->pages);
312 fw_priv->pages = NULL;
313 fw_priv->page_array_size = 0;
314 fw_priv->nr_pages = 0;
315 }
316
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)317 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
318 {
319 /* If the array of pages is too small, grow it */
320 if (fw_priv->page_array_size < pages_needed) {
321 int new_array_size = max(pages_needed,
322 fw_priv->page_array_size * 2);
323 struct page **new_pages;
324
325 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
326 GFP_KERNEL);
327 if (!new_pages)
328 return -ENOMEM;
329 memcpy(new_pages, fw_priv->pages,
330 fw_priv->page_array_size * sizeof(void *));
331 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
332 (new_array_size - fw_priv->page_array_size));
333 kvfree(fw_priv->pages);
334 fw_priv->pages = new_pages;
335 fw_priv->page_array_size = new_array_size;
336 }
337
338 while (fw_priv->nr_pages < pages_needed) {
339 fw_priv->pages[fw_priv->nr_pages] =
340 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
341
342 if (!fw_priv->pages[fw_priv->nr_pages])
343 return -ENOMEM;
344 fw_priv->nr_pages++;
345 }
346
347 return 0;
348 }
349
fw_map_paged_buf(struct fw_priv * fw_priv)350 int fw_map_paged_buf(struct fw_priv *fw_priv)
351 {
352 /* one pages buffer should be mapped/unmapped only once */
353 if (!fw_priv->pages)
354 return 0;
355
356 vunmap(fw_priv->data);
357 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
358 PAGE_KERNEL_RO);
359 if (!fw_priv->data)
360 return -ENOMEM;
361
362 return 0;
363 }
364 #endif
365
366 /*
367 * XZ-compressed firmware support
368 */
369 #ifdef CONFIG_FW_LOADER_COMPRESS
370 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)371 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
372 {
373 if (xz_ret != XZ_STREAM_END) {
374 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
375 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
376 }
377 return 0;
378 }
379
380 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)381 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
382 size_t in_size, const void *in_buffer)
383 {
384 struct xz_dec *xz_dec;
385 struct xz_buf xz_buf;
386 enum xz_ret xz_ret;
387
388 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
389 if (!xz_dec)
390 return -ENOMEM;
391
392 xz_buf.in_size = in_size;
393 xz_buf.in = in_buffer;
394 xz_buf.in_pos = 0;
395 xz_buf.out_size = fw_priv->allocated_size;
396 xz_buf.out = fw_priv->data;
397 xz_buf.out_pos = 0;
398
399 xz_ret = xz_dec_run(xz_dec, &xz_buf);
400 xz_dec_end(xz_dec);
401
402 fw_priv->size = xz_buf.out_pos;
403 return fw_decompress_xz_error(dev, xz_ret);
404 }
405
406 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)407 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
408 size_t in_size, const void *in_buffer)
409 {
410 struct xz_dec *xz_dec;
411 struct xz_buf xz_buf;
412 enum xz_ret xz_ret;
413 struct page *page;
414 int err = 0;
415
416 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
417 if (!xz_dec)
418 return -ENOMEM;
419
420 xz_buf.in_size = in_size;
421 xz_buf.in = in_buffer;
422 xz_buf.in_pos = 0;
423
424 fw_priv->is_paged_buf = true;
425 fw_priv->size = 0;
426 do {
427 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
428 err = -ENOMEM;
429 goto out;
430 }
431
432 /* decompress onto the new allocated page */
433 page = fw_priv->pages[fw_priv->nr_pages - 1];
434 xz_buf.out = kmap(page);
435 xz_buf.out_pos = 0;
436 xz_buf.out_size = PAGE_SIZE;
437 xz_ret = xz_dec_run(xz_dec, &xz_buf);
438 kunmap(page);
439 fw_priv->size += xz_buf.out_pos;
440 /* partial decompression means either end or error */
441 if (xz_buf.out_pos != PAGE_SIZE)
442 break;
443 } while (xz_ret == XZ_OK);
444
445 err = fw_decompress_xz_error(dev, xz_ret);
446 if (!err)
447 err = fw_map_paged_buf(fw_priv);
448
449 out:
450 xz_dec_end(xz_dec);
451 return err;
452 }
453
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)454 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
455 size_t in_size, const void *in_buffer)
456 {
457 /* if the buffer is pre-allocated, we can perform in single-shot mode */
458 if (fw_priv->data)
459 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
460 else
461 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
462 }
463 #endif /* CONFIG_FW_LOADER_COMPRESS */
464
465 /* direct firmware loading support */
466 static char fw_path_para[256];
467 static const char * const fw_path[] = {
468 fw_path_para,
469 "/lib/firmware/updates/" UTS_RELEASE,
470 "/lib/firmware/updates",
471 "/lib/firmware/" UTS_RELEASE,
472 "/lib/firmware"
473 };
474
475 /*
476 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
477 * from kernel command line because firmware_class is generally built in
478 * kernel instead of module.
479 */
480 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
481 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
482
483 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))484 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
485 const char *suffix,
486 int (*decompress)(struct device *dev,
487 struct fw_priv *fw_priv,
488 size_t in_size,
489 const void *in_buffer))
490 {
491 size_t size;
492 int i, len;
493 int rc = -ENOENT;
494 char *path;
495 size_t msize = INT_MAX;
496 void *buffer = NULL;
497
498 /* Already populated data member means we're loading into a buffer */
499 if (!decompress && fw_priv->data) {
500 buffer = fw_priv->data;
501 msize = fw_priv->allocated_size;
502 }
503
504 path = __getname();
505 if (!path)
506 return -ENOMEM;
507
508 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
509 size_t file_size = 0;
510 size_t *file_size_ptr = NULL;
511
512 /* skip the unset customized path */
513 if (!fw_path[i][0])
514 continue;
515
516 len = snprintf(path, PATH_MAX, "%s/%s%s",
517 fw_path[i], fw_priv->fw_name, suffix);
518 if (len >= PATH_MAX) {
519 rc = -ENAMETOOLONG;
520 break;
521 }
522
523 fw_priv->size = 0;
524
525 /*
526 * The total file size is only examined when doing a partial
527 * read; the "full read" case needs to fail if the whole
528 * firmware was not completely loaded.
529 */
530 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
531 file_size_ptr = &file_size;
532
533 /* load firmware files from the mount namespace of init */
534 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
535 &buffer, msize,
536 file_size_ptr,
537 READING_FIRMWARE);
538 if (rc < 0) {
539 if (rc != -ENOENT)
540 dev_warn(device, "loading %s failed with error %d\n",
541 path, rc);
542 else
543 dev_dbg(device, "loading %s failed for no such file or directory.\n",
544 path);
545 continue;
546 }
547 size = rc;
548 rc = 0;
549
550 dev_dbg(device, "Loading firmware from %s\n", path);
551 if (decompress) {
552 dev_dbg(device, "f/w decompressing %s\n",
553 fw_priv->fw_name);
554 rc = decompress(device, fw_priv, size, buffer);
555 /* discard the superfluous original content */
556 vfree(buffer);
557 buffer = NULL;
558 if (rc) {
559 fw_free_paged_buf(fw_priv);
560 continue;
561 }
562 } else {
563 dev_dbg(device, "direct-loading %s\n",
564 fw_priv->fw_name);
565 if (!fw_priv->data)
566 fw_priv->data = buffer;
567 fw_priv->size = size;
568 }
569 fw_state_done(fw_priv);
570 break;
571 }
572 __putname(path);
573
574 return rc;
575 }
576
577 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)578 static void firmware_free_data(const struct firmware *fw)
579 {
580 /* Loaded directly? */
581 if (!fw->priv) {
582 vfree(fw->data);
583 return;
584 }
585 free_fw_priv(fw->priv);
586 }
587
588 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)589 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
590 {
591 fw->priv = fw_priv;
592 fw->size = fw_priv->size;
593 fw->data = fw_priv->data;
594
595 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
596 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
597 (unsigned int)fw_priv->size);
598 }
599
600 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)601 static void fw_name_devm_release(struct device *dev, void *res)
602 {
603 struct fw_name_devm *fwn = res;
604
605 if (fwn->magic == (unsigned long)&fw_cache)
606 pr_debug("%s: fw_name-%s devm-%p released\n",
607 __func__, fwn->name, res);
608 kfree_const(fwn->name);
609 }
610
fw_devm_match(struct device * dev,void * res,void * match_data)611 static int fw_devm_match(struct device *dev, void *res,
612 void *match_data)
613 {
614 struct fw_name_devm *fwn = res;
615
616 return (fwn->magic == (unsigned long)&fw_cache) &&
617 !strcmp(fwn->name, match_data);
618 }
619
fw_find_devm_name(struct device * dev,const char * name)620 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
621 const char *name)
622 {
623 struct fw_name_devm *fwn;
624
625 fwn = devres_find(dev, fw_name_devm_release,
626 fw_devm_match, (void *)name);
627 return fwn;
628 }
629
fw_cache_is_setup(struct device * dev,const char * name)630 static bool fw_cache_is_setup(struct device *dev, const char *name)
631 {
632 struct fw_name_devm *fwn;
633
634 fwn = fw_find_devm_name(dev, name);
635 if (fwn)
636 return true;
637
638 return false;
639 }
640
641 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)642 static int fw_add_devm_name(struct device *dev, const char *name)
643 {
644 struct fw_name_devm *fwn;
645
646 if (fw_cache_is_setup(dev, name))
647 return 0;
648
649 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
650 GFP_KERNEL);
651 if (!fwn)
652 return -ENOMEM;
653 fwn->name = kstrdup_const(name, GFP_KERNEL);
654 if (!fwn->name) {
655 devres_free(fwn);
656 return -ENOMEM;
657 }
658
659 fwn->magic = (unsigned long)&fw_cache;
660 devres_add(dev, fwn);
661
662 return 0;
663 }
664 #else
fw_cache_is_setup(struct device * dev,const char * name)665 static bool fw_cache_is_setup(struct device *dev, const char *name)
666 {
667 return false;
668 }
669
fw_add_devm_name(struct device * dev,const char * name)670 static int fw_add_devm_name(struct device *dev, const char *name)
671 {
672 return 0;
673 }
674 #endif
675
assign_fw(struct firmware * fw,struct device * device)676 int assign_fw(struct firmware *fw, struct device *device)
677 {
678 struct fw_priv *fw_priv = fw->priv;
679 int ret;
680
681 mutex_lock(&fw_lock);
682 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
683 mutex_unlock(&fw_lock);
684 return -ENOENT;
685 }
686
687 /*
688 * add firmware name into devres list so that we can auto cache
689 * and uncache firmware for device.
690 *
691 * device may has been deleted already, but the problem
692 * should be fixed in devres or driver core.
693 */
694 /* don't cache firmware handled without uevent */
695 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
696 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
697 ret = fw_add_devm_name(device, fw_priv->fw_name);
698 if (ret) {
699 mutex_unlock(&fw_lock);
700 return ret;
701 }
702 }
703
704 /*
705 * After caching firmware image is started, let it piggyback
706 * on request firmware.
707 */
708 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
709 fw_priv->fwc->state == FW_LOADER_START_CACHE)
710 fw_cache_piggyback_on_request(fw_priv);
711
712 /* pass the pages buffer to driver at the last minute */
713 fw_set_page_data(fw_priv, fw);
714 mutex_unlock(&fw_lock);
715 return 0;
716 }
717
718 /* prepare firmware and firmware_buf structs;
719 * return 0 if a firmware is already assigned, 1 if need to load one,
720 * or a negative error code
721 */
722 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)723 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
724 struct device *device, void *dbuf, size_t size,
725 size_t offset, u32 opt_flags)
726 {
727 struct firmware *firmware;
728 struct fw_priv *fw_priv;
729 int ret;
730
731 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
732 if (!firmware) {
733 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
734 __func__);
735 return -ENOMEM;
736 }
737
738 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
739 dev_dbg(device, "using built-in %s\n", name);
740 return 0; /* assigned */
741 }
742
743 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
744 offset, opt_flags);
745
746 /*
747 * bind with 'priv' now to avoid warning in failure path
748 * of requesting firmware.
749 */
750 firmware->priv = fw_priv;
751
752 if (ret > 0) {
753 ret = fw_state_wait(fw_priv);
754 if (!ret) {
755 fw_set_page_data(fw_priv, firmware);
756 return 0; /* assigned */
757 }
758 }
759
760 if (ret < 0)
761 return ret;
762 return 1; /* need to load */
763 }
764
765 /*
766 * Batched requests need only one wake, we need to do this step last due to the
767 * fallback mechanism. The buf is protected with kref_get(), and it won't be
768 * released until the last user calls release_firmware().
769 *
770 * Failed batched requests are possible as well, in such cases we just share
771 * the struct fw_priv and won't release it until all requests are woken
772 * and have gone through this same path.
773 */
fw_abort_batch_reqs(struct firmware * fw)774 static void fw_abort_batch_reqs(struct firmware *fw)
775 {
776 struct fw_priv *fw_priv;
777
778 /* Loaded directly? */
779 if (!fw || !fw->priv)
780 return;
781
782 fw_priv = fw->priv;
783 mutex_lock(&fw_lock);
784 if (!fw_state_is_aborted(fw_priv))
785 fw_state_aborted(fw_priv);
786 mutex_unlock(&fw_lock);
787 }
788
789 /* called from request_firmware() and request_firmware_work_func() */
790 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)791 _request_firmware(const struct firmware **firmware_p, const char *name,
792 struct device *device, void *buf, size_t size,
793 size_t offset, u32 opt_flags)
794 {
795 struct firmware *fw = NULL;
796 struct cred *kern_cred = NULL;
797 const struct cred *old_cred;
798 bool nondirect = false;
799 int ret;
800
801 if (!firmware_p)
802 return -EINVAL;
803
804 if (!name || name[0] == '\0') {
805 ret = -EINVAL;
806 goto out;
807 }
808
809 ret = _request_firmware_prepare(&fw, name, device, buf, size,
810 offset, opt_flags);
811 if (ret <= 0) /* error or already assigned */
812 goto out;
813
814 /*
815 * We are about to try to access the firmware file. Because we may have been
816 * called by a driver when serving an unrelated request from userland, we use
817 * the kernel credentials to read the file.
818 */
819 kern_cred = prepare_kernel_cred(NULL);
820 if (!kern_cred) {
821 ret = -ENOMEM;
822 goto out;
823 }
824 old_cred = override_creds(kern_cred);
825
826 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
827
828 /* Only full reads can support decompression, platform, and sysfs. */
829 if (!(opt_flags & FW_OPT_PARTIAL))
830 nondirect = true;
831
832 #ifdef CONFIG_FW_LOADER_COMPRESS
833 if (ret == -ENOENT && nondirect)
834 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
835 fw_decompress_xz);
836 #endif
837 if (ret == -ENOENT && nondirect)
838 ret = firmware_fallback_platform(fw->priv);
839
840 if (ret) {
841 if (!(opt_flags & FW_OPT_NO_WARN))
842 dev_warn(device,
843 "Direct firmware load for %s failed with error %d\n",
844 name, ret);
845 if (nondirect)
846 ret = firmware_fallback_sysfs(fw, name, device,
847 opt_flags, ret);
848 } else
849 ret = assign_fw(fw, device);
850
851 revert_creds(old_cred);
852 put_cred(kern_cred);
853
854 out:
855 if (ret < 0) {
856 fw_abort_batch_reqs(fw);
857 release_firmware(fw);
858 fw = NULL;
859 }
860
861 *firmware_p = fw;
862 return ret;
863 }
864
865 /**
866 * request_firmware() - send firmware request and wait for it
867 * @firmware_p: pointer to firmware image
868 * @name: name of firmware file
869 * @device: device for which firmware is being loaded
870 *
871 * @firmware_p will be used to return a firmware image by the name
872 * of @name for device @device.
873 *
874 * Should be called from user context where sleeping is allowed.
875 *
876 * @name will be used as $FIRMWARE in the uevent environment and
877 * should be distinctive enough not to be confused with any other
878 * firmware image for this or any other device.
879 *
880 * Caller must hold the reference count of @device.
881 *
882 * The function can be called safely inside device's suspend and
883 * resume callback.
884 **/
885 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)886 request_firmware(const struct firmware **firmware_p, const char *name,
887 struct device *device)
888 {
889 int ret;
890
891 /* Need to pin this module until return */
892 __module_get(THIS_MODULE);
893 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
894 FW_OPT_UEVENT);
895 module_put(THIS_MODULE);
896 return ret;
897 }
898 EXPORT_SYMBOL(request_firmware);
899
900 /**
901 * firmware_request_nowarn() - request for an optional fw module
902 * @firmware: pointer to firmware image
903 * @name: name of firmware file
904 * @device: device for which firmware is being loaded
905 *
906 * This function is similar in behaviour to request_firmware(), except it
907 * doesn't produce warning messages when the file is not found. The sysfs
908 * fallback mechanism is enabled if direct filesystem lookup fails. However,
909 * failures to find the firmware file with it are still suppressed. It is
910 * therefore up to the driver to check for the return value of this call and to
911 * decide when to inform the users of errors.
912 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)913 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
914 struct device *device)
915 {
916 int ret;
917
918 /* Need to pin this module until return */
919 __module_get(THIS_MODULE);
920 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
921 FW_OPT_UEVENT | FW_OPT_NO_WARN);
922 module_put(THIS_MODULE);
923 return ret;
924 }
925 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
926
927 /**
928 * request_firmware_direct() - load firmware directly without usermode helper
929 * @firmware_p: pointer to firmware image
930 * @name: name of firmware file
931 * @device: device for which firmware is being loaded
932 *
933 * This function works pretty much like request_firmware(), but this doesn't
934 * fall back to usermode helper even if the firmware couldn't be loaded
935 * directly from fs. Hence it's useful for loading optional firmwares, which
936 * aren't always present, without extra long timeouts of udev.
937 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)938 int request_firmware_direct(const struct firmware **firmware_p,
939 const char *name, struct device *device)
940 {
941 int ret;
942
943 __module_get(THIS_MODULE);
944 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
945 FW_OPT_UEVENT | FW_OPT_NO_WARN |
946 FW_OPT_NOFALLBACK_SYSFS);
947 module_put(THIS_MODULE);
948 return ret;
949 }
950 EXPORT_SYMBOL_GPL(request_firmware_direct);
951
952 /**
953 * firmware_request_platform() - request firmware with platform-fw fallback
954 * @firmware: pointer to firmware image
955 * @name: name of firmware file
956 * @device: device for which firmware is being loaded
957 *
958 * This function is similar in behaviour to request_firmware, except that if
959 * direct filesystem lookup fails, it will fallback to looking for a copy of the
960 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
961 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)962 int firmware_request_platform(const struct firmware **firmware,
963 const char *name, struct device *device)
964 {
965 int ret;
966
967 /* Need to pin this module until return */
968 __module_get(THIS_MODULE);
969 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
970 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
971 module_put(THIS_MODULE);
972 return ret;
973 }
974 EXPORT_SYMBOL_GPL(firmware_request_platform);
975
976 /**
977 * firmware_request_cache() - cache firmware for suspend so resume can use it
978 * @name: name of firmware file
979 * @device: device for which firmware should be cached for
980 *
981 * There are some devices with an optimization that enables the device to not
982 * require loading firmware on system reboot. This optimization may still
983 * require the firmware present on resume from suspend. This routine can be
984 * used to ensure the firmware is present on resume from suspend in these
985 * situations. This helper is not compatible with drivers which use
986 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
987 **/
firmware_request_cache(struct device * device,const char * name)988 int firmware_request_cache(struct device *device, const char *name)
989 {
990 int ret;
991
992 mutex_lock(&fw_lock);
993 ret = fw_add_devm_name(device, name);
994 mutex_unlock(&fw_lock);
995
996 return ret;
997 }
998 EXPORT_SYMBOL_GPL(firmware_request_cache);
999
1000 /**
1001 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1002 * @firmware_p: pointer to firmware image
1003 * @name: name of firmware file
1004 * @device: device for which firmware is being loaded and DMA region allocated
1005 * @buf: address of buffer to load firmware into
1006 * @size: size of buffer
1007 *
1008 * This function works pretty much like request_firmware(), but it doesn't
1009 * allocate a buffer to hold the firmware data. Instead, the firmware
1010 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1011 * data member is pointed at @buf.
1012 *
1013 * This function doesn't cache firmware either.
1014 */
1015 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1016 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1017 struct device *device, void *buf, size_t size)
1018 {
1019 int ret;
1020
1021 if (fw_cache_is_setup(device, name))
1022 return -EOPNOTSUPP;
1023
1024 __module_get(THIS_MODULE);
1025 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1026 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1027 module_put(THIS_MODULE);
1028 return ret;
1029 }
1030 EXPORT_SYMBOL(request_firmware_into_buf);
1031
1032 /**
1033 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1034 * @firmware_p: pointer to firmware image
1035 * @name: name of firmware file
1036 * @device: device for which firmware is being loaded and DMA region allocated
1037 * @buf: address of buffer to load firmware into
1038 * @size: size of buffer
1039 * @offset: offset into file to read
1040 *
1041 * This function works pretty much like request_firmware_into_buf except
1042 * it allows a partial read of the file.
1043 */
1044 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1045 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1046 const char *name, struct device *device,
1047 void *buf, size_t size, size_t offset)
1048 {
1049 int ret;
1050
1051 if (fw_cache_is_setup(device, name))
1052 return -EOPNOTSUPP;
1053
1054 __module_get(THIS_MODULE);
1055 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1056 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1057 FW_OPT_PARTIAL);
1058 module_put(THIS_MODULE);
1059 return ret;
1060 }
1061 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1062
1063 /**
1064 * release_firmware() - release the resource associated with a firmware image
1065 * @fw: firmware resource to release
1066 **/
release_firmware(const struct firmware * fw)1067 void release_firmware(const struct firmware *fw)
1068 {
1069 if (fw) {
1070 if (!fw_is_builtin_firmware(fw))
1071 firmware_free_data(fw);
1072 kfree(fw);
1073 }
1074 }
1075 EXPORT_SYMBOL(release_firmware);
1076
1077 /* Async support */
1078 struct firmware_work {
1079 struct work_struct work;
1080 struct module *module;
1081 const char *name;
1082 struct device *device;
1083 void *context;
1084 void (*cont)(const struct firmware *fw, void *context);
1085 u32 opt_flags;
1086 };
1087
request_firmware_work_func(struct work_struct * work)1088 static void request_firmware_work_func(struct work_struct *work)
1089 {
1090 struct firmware_work *fw_work;
1091 const struct firmware *fw;
1092
1093 fw_work = container_of(work, struct firmware_work, work);
1094
1095 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1096 fw_work->opt_flags);
1097 fw_work->cont(fw, fw_work->context);
1098 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1099
1100 module_put(fw_work->module);
1101 kfree_const(fw_work->name);
1102 kfree(fw_work);
1103 }
1104
1105 /**
1106 * request_firmware_nowait() - asynchronous version of request_firmware
1107 * @module: module requesting the firmware
1108 * @uevent: sends uevent to copy the firmware image if this flag
1109 * is non-zero else the firmware copy must be done manually.
1110 * @name: name of firmware file
1111 * @device: device for which firmware is being loaded
1112 * @gfp: allocation flags
1113 * @context: will be passed over to @cont, and
1114 * @fw may be %NULL if firmware request fails.
1115 * @cont: function will be called asynchronously when the firmware
1116 * request is over.
1117 *
1118 * Caller must hold the reference count of @device.
1119 *
1120 * Asynchronous variant of request_firmware() for user contexts:
1121 * - sleep for as small periods as possible since it may
1122 * increase kernel boot time of built-in device drivers
1123 * requesting firmware in their ->probe() methods, if
1124 * @gfp is GFP_KERNEL.
1125 *
1126 * - can't sleep at all if @gfp is GFP_ATOMIC.
1127 **/
1128 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1129 request_firmware_nowait(
1130 struct module *module, bool uevent,
1131 const char *name, struct device *device, gfp_t gfp, void *context,
1132 void (*cont)(const struct firmware *fw, void *context))
1133 {
1134 struct firmware_work *fw_work;
1135
1136 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1137 if (!fw_work)
1138 return -ENOMEM;
1139
1140 fw_work->module = module;
1141 fw_work->name = kstrdup_const(name, gfp);
1142 if (!fw_work->name) {
1143 kfree(fw_work);
1144 return -ENOMEM;
1145 }
1146 fw_work->device = device;
1147 fw_work->context = context;
1148 fw_work->cont = cont;
1149 fw_work->opt_flags = FW_OPT_NOWAIT |
1150 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1151
1152 if (!uevent && fw_cache_is_setup(device, name)) {
1153 kfree_const(fw_work->name);
1154 kfree(fw_work);
1155 return -EOPNOTSUPP;
1156 }
1157
1158 if (!try_module_get(module)) {
1159 kfree_const(fw_work->name);
1160 kfree(fw_work);
1161 return -EFAULT;
1162 }
1163
1164 get_device(fw_work->device);
1165 INIT_WORK(&fw_work->work, request_firmware_work_func);
1166 schedule_work(&fw_work->work);
1167 return 0;
1168 }
1169 EXPORT_SYMBOL(request_firmware_nowait);
1170
1171 #ifdef CONFIG_FW_CACHE
1172 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1173
1174 /**
1175 * cache_firmware() - cache one firmware image in kernel memory space
1176 * @fw_name: the firmware image name
1177 *
1178 * Cache firmware in kernel memory so that drivers can use it when
1179 * system isn't ready for them to request firmware image from userspace.
1180 * Once it returns successfully, driver can use request_firmware or its
1181 * nowait version to get the cached firmware without any interacting
1182 * with userspace
1183 *
1184 * Return 0 if the firmware image has been cached successfully
1185 * Return !0 otherwise
1186 *
1187 */
cache_firmware(const char * fw_name)1188 static int cache_firmware(const char *fw_name)
1189 {
1190 int ret;
1191 const struct firmware *fw;
1192
1193 pr_debug("%s: %s\n", __func__, fw_name);
1194
1195 ret = request_firmware(&fw, fw_name, NULL);
1196 if (!ret)
1197 kfree(fw);
1198
1199 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1200
1201 return ret;
1202 }
1203
lookup_fw_priv(const char * fw_name)1204 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1205 {
1206 struct fw_priv *tmp;
1207 struct firmware_cache *fwc = &fw_cache;
1208
1209 spin_lock(&fwc->lock);
1210 tmp = __lookup_fw_priv(fw_name);
1211 spin_unlock(&fwc->lock);
1212
1213 return tmp;
1214 }
1215
1216 /**
1217 * uncache_firmware() - remove one cached firmware image
1218 * @fw_name: the firmware image name
1219 *
1220 * Uncache one firmware image which has been cached successfully
1221 * before.
1222 *
1223 * Return 0 if the firmware cache has been removed successfully
1224 * Return !0 otherwise
1225 *
1226 */
uncache_firmware(const char * fw_name)1227 static int uncache_firmware(const char *fw_name)
1228 {
1229 struct fw_priv *fw_priv;
1230 struct firmware fw;
1231
1232 pr_debug("%s: %s\n", __func__, fw_name);
1233
1234 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1235 return 0;
1236
1237 fw_priv = lookup_fw_priv(fw_name);
1238 if (fw_priv) {
1239 free_fw_priv(fw_priv);
1240 return 0;
1241 }
1242
1243 return -EINVAL;
1244 }
1245
alloc_fw_cache_entry(const char * name)1246 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1247 {
1248 struct fw_cache_entry *fce;
1249
1250 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1251 if (!fce)
1252 goto exit;
1253
1254 fce->name = kstrdup_const(name, GFP_ATOMIC);
1255 if (!fce->name) {
1256 kfree(fce);
1257 fce = NULL;
1258 goto exit;
1259 }
1260 exit:
1261 return fce;
1262 }
1263
__fw_entry_found(const char * name)1264 static int __fw_entry_found(const char *name)
1265 {
1266 struct firmware_cache *fwc = &fw_cache;
1267 struct fw_cache_entry *fce;
1268
1269 list_for_each_entry(fce, &fwc->fw_names, list) {
1270 if (!strcmp(fce->name, name))
1271 return 1;
1272 }
1273 return 0;
1274 }
1275
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1276 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1277 {
1278 const char *name = fw_priv->fw_name;
1279 struct firmware_cache *fwc = fw_priv->fwc;
1280 struct fw_cache_entry *fce;
1281
1282 spin_lock(&fwc->name_lock);
1283 if (__fw_entry_found(name))
1284 goto found;
1285
1286 fce = alloc_fw_cache_entry(name);
1287 if (fce) {
1288 list_add(&fce->list, &fwc->fw_names);
1289 kref_get(&fw_priv->ref);
1290 pr_debug("%s: fw: %s\n", __func__, name);
1291 }
1292 found:
1293 spin_unlock(&fwc->name_lock);
1294 }
1295
free_fw_cache_entry(struct fw_cache_entry * fce)1296 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1297 {
1298 kfree_const(fce->name);
1299 kfree(fce);
1300 }
1301
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1302 static void __async_dev_cache_fw_image(void *fw_entry,
1303 async_cookie_t cookie)
1304 {
1305 struct fw_cache_entry *fce = fw_entry;
1306 struct firmware_cache *fwc = &fw_cache;
1307 int ret;
1308
1309 ret = cache_firmware(fce->name);
1310 if (ret) {
1311 spin_lock(&fwc->name_lock);
1312 list_del(&fce->list);
1313 spin_unlock(&fwc->name_lock);
1314
1315 free_fw_cache_entry(fce);
1316 }
1317 }
1318
1319 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1320 static void dev_create_fw_entry(struct device *dev, void *res,
1321 void *data)
1322 {
1323 struct fw_name_devm *fwn = res;
1324 const char *fw_name = fwn->name;
1325 struct list_head *head = data;
1326 struct fw_cache_entry *fce;
1327
1328 fce = alloc_fw_cache_entry(fw_name);
1329 if (fce)
1330 list_add(&fce->list, head);
1331 }
1332
devm_name_match(struct device * dev,void * res,void * match_data)1333 static int devm_name_match(struct device *dev, void *res,
1334 void *match_data)
1335 {
1336 struct fw_name_devm *fwn = res;
1337 return (fwn->magic == (unsigned long)match_data);
1338 }
1339
dev_cache_fw_image(struct device * dev,void * data)1340 static void dev_cache_fw_image(struct device *dev, void *data)
1341 {
1342 LIST_HEAD(todo);
1343 struct fw_cache_entry *fce;
1344 struct fw_cache_entry *fce_next;
1345 struct firmware_cache *fwc = &fw_cache;
1346
1347 devres_for_each_res(dev, fw_name_devm_release,
1348 devm_name_match, &fw_cache,
1349 dev_create_fw_entry, &todo);
1350
1351 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1352 list_del(&fce->list);
1353
1354 spin_lock(&fwc->name_lock);
1355 /* only one cache entry for one firmware */
1356 if (!__fw_entry_found(fce->name)) {
1357 list_add(&fce->list, &fwc->fw_names);
1358 } else {
1359 free_fw_cache_entry(fce);
1360 fce = NULL;
1361 }
1362 spin_unlock(&fwc->name_lock);
1363
1364 if (fce)
1365 async_schedule_domain(__async_dev_cache_fw_image,
1366 (void *)fce,
1367 &fw_cache_domain);
1368 }
1369 }
1370
__device_uncache_fw_images(void)1371 static void __device_uncache_fw_images(void)
1372 {
1373 struct firmware_cache *fwc = &fw_cache;
1374 struct fw_cache_entry *fce;
1375
1376 spin_lock(&fwc->name_lock);
1377 while (!list_empty(&fwc->fw_names)) {
1378 fce = list_entry(fwc->fw_names.next,
1379 struct fw_cache_entry, list);
1380 list_del(&fce->list);
1381 spin_unlock(&fwc->name_lock);
1382
1383 uncache_firmware(fce->name);
1384 free_fw_cache_entry(fce);
1385
1386 spin_lock(&fwc->name_lock);
1387 }
1388 spin_unlock(&fwc->name_lock);
1389 }
1390
1391 /**
1392 * device_cache_fw_images() - cache devices' firmware
1393 *
1394 * If one device called request_firmware or its nowait version
1395 * successfully before, the firmware names are recored into the
1396 * device's devres link list, so device_cache_fw_images can call
1397 * cache_firmware() to cache these firmwares for the device,
1398 * then the device driver can load its firmwares easily at
1399 * time when system is not ready to complete loading firmware.
1400 */
device_cache_fw_images(void)1401 static void device_cache_fw_images(void)
1402 {
1403 struct firmware_cache *fwc = &fw_cache;
1404 DEFINE_WAIT(wait);
1405
1406 pr_debug("%s\n", __func__);
1407
1408 /* cancel uncache work */
1409 cancel_delayed_work_sync(&fwc->work);
1410
1411 fw_fallback_set_cache_timeout();
1412
1413 mutex_lock(&fw_lock);
1414 fwc->state = FW_LOADER_START_CACHE;
1415 dpm_for_each_dev(NULL, dev_cache_fw_image);
1416 mutex_unlock(&fw_lock);
1417
1418 /* wait for completion of caching firmware for all devices */
1419 async_synchronize_full_domain(&fw_cache_domain);
1420
1421 fw_fallback_set_default_timeout();
1422 }
1423
1424 /**
1425 * device_uncache_fw_images() - uncache devices' firmware
1426 *
1427 * uncache all firmwares which have been cached successfully
1428 * by device_uncache_fw_images earlier
1429 */
device_uncache_fw_images(void)1430 static void device_uncache_fw_images(void)
1431 {
1432 pr_debug("%s\n", __func__);
1433 __device_uncache_fw_images();
1434 }
1435
device_uncache_fw_images_work(struct work_struct * work)1436 static void device_uncache_fw_images_work(struct work_struct *work)
1437 {
1438 device_uncache_fw_images();
1439 }
1440
1441 /**
1442 * device_uncache_fw_images_delay() - uncache devices firmwares
1443 * @delay: number of milliseconds to delay uncache device firmwares
1444 *
1445 * uncache all devices's firmwares which has been cached successfully
1446 * by device_cache_fw_images after @delay milliseconds.
1447 */
device_uncache_fw_images_delay(unsigned long delay)1448 static void device_uncache_fw_images_delay(unsigned long delay)
1449 {
1450 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1451 msecs_to_jiffies(delay));
1452 }
1453
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1454 static int fw_pm_notify(struct notifier_block *notify_block,
1455 unsigned long mode, void *unused)
1456 {
1457 switch (mode) {
1458 case PM_HIBERNATION_PREPARE:
1459 case PM_SUSPEND_PREPARE:
1460 case PM_RESTORE_PREPARE:
1461 /*
1462 * kill pending fallback requests with a custom fallback
1463 * to avoid stalling suspend.
1464 */
1465 kill_pending_fw_fallback_reqs(true);
1466 device_cache_fw_images();
1467 break;
1468
1469 case PM_POST_SUSPEND:
1470 case PM_POST_HIBERNATION:
1471 case PM_POST_RESTORE:
1472 /*
1473 * In case that system sleep failed and syscore_suspend is
1474 * not called.
1475 */
1476 mutex_lock(&fw_lock);
1477 fw_cache.state = FW_LOADER_NO_CACHE;
1478 mutex_unlock(&fw_lock);
1479
1480 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1481 break;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1488 static int fw_suspend(void)
1489 {
1490 fw_cache.state = FW_LOADER_NO_CACHE;
1491 return 0;
1492 }
1493
1494 static struct syscore_ops fw_syscore_ops = {
1495 .suspend = fw_suspend,
1496 };
1497
register_fw_pm_ops(void)1498 static int __init register_fw_pm_ops(void)
1499 {
1500 int ret;
1501
1502 spin_lock_init(&fw_cache.name_lock);
1503 INIT_LIST_HEAD(&fw_cache.fw_names);
1504
1505 INIT_DELAYED_WORK(&fw_cache.work,
1506 device_uncache_fw_images_work);
1507
1508 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1509 ret = register_pm_notifier(&fw_cache.pm_notify);
1510 if (ret)
1511 return ret;
1512
1513 register_syscore_ops(&fw_syscore_ops);
1514
1515 return ret;
1516 }
1517
unregister_fw_pm_ops(void)1518 static inline void unregister_fw_pm_ops(void)
1519 {
1520 unregister_syscore_ops(&fw_syscore_ops);
1521 unregister_pm_notifier(&fw_cache.pm_notify);
1522 }
1523 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1524 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1525 {
1526 }
register_fw_pm_ops(void)1527 static inline int register_fw_pm_ops(void)
1528 {
1529 return 0;
1530 }
unregister_fw_pm_ops(void)1531 static inline void unregister_fw_pm_ops(void)
1532 {
1533 }
1534 #endif
1535
fw_cache_init(void)1536 static void __init fw_cache_init(void)
1537 {
1538 spin_lock_init(&fw_cache.lock);
1539 INIT_LIST_HEAD(&fw_cache.head);
1540 fw_cache.state = FW_LOADER_NO_CACHE;
1541 }
1542
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1543 static int fw_shutdown_notify(struct notifier_block *unused1,
1544 unsigned long unused2, void *unused3)
1545 {
1546 /*
1547 * Kill all pending fallback requests to avoid both stalling shutdown,
1548 * and avoid a deadlock with the usermode_lock.
1549 */
1550 kill_pending_fw_fallback_reqs(false);
1551
1552 return NOTIFY_DONE;
1553 }
1554
1555 static struct notifier_block fw_shutdown_nb = {
1556 .notifier_call = fw_shutdown_notify,
1557 };
1558
firmware_class_init(void)1559 static int __init firmware_class_init(void)
1560 {
1561 int ret;
1562
1563 /* No need to unfold these on exit */
1564 fw_cache_init();
1565
1566 ret = register_fw_pm_ops();
1567 if (ret)
1568 return ret;
1569
1570 ret = register_reboot_notifier(&fw_shutdown_nb);
1571 if (ret)
1572 goto out;
1573
1574 return register_sysfs_loader();
1575
1576 out:
1577 unregister_fw_pm_ops();
1578 return ret;
1579 }
1580
firmware_class_exit(void)1581 static void __exit firmware_class_exit(void)
1582 {
1583 unregister_fw_pm_ops();
1584 unregister_reboot_notifier(&fw_shutdown_nb);
1585 unregister_sysfs_loader();
1586 }
1587
1588 fs_initcall(firmware_class_init);
1589 module_exit(firmware_class_exit);
1590