• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/timer.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/bitops.h>
22 #include <linux/mutex.h>
23 #include <linux/workqueue.h>
24 #include <linux/highmem.h>
25 #include <linux/firmware.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/file.h>
29 #include <linux/list.h>
30 #include <linux/fs.h>
31 #include <linux/async.h>
32 #include <linux/pm.h>
33 #include <linux/suspend.h>
34 #include <linux/syscore_ops.h>
35 #include <linux/reboot.h>
36 #include <linux/security.h>
37 #include <linux/xz.h>
38 
39 #include <generated/utsrelease.h>
40 
41 #include "../base.h"
42 #include "firmware.h"
43 #include "fallback.h"
44 
45 MODULE_AUTHOR("Manuel Estrada Sainz");
46 MODULE_DESCRIPTION("Multi purpose firmware loading support");
47 MODULE_LICENSE("GPL");
48 
49 struct firmware_cache {
50 	/* firmware_buf instance will be added into the below list */
51 	spinlock_t lock;
52 	struct list_head head;
53 	int state;
54 
55 #ifdef CONFIG_FW_CACHE
56 	/*
57 	 * Names of firmware images which have been cached successfully
58 	 * will be added into the below list so that device uncache
59 	 * helper can trace which firmware images have been cached
60 	 * before.
61 	 */
62 	spinlock_t name_lock;
63 	struct list_head fw_names;
64 
65 	struct delayed_work work;
66 
67 	struct notifier_block   pm_notify;
68 #endif
69 };
70 
71 struct fw_cache_entry {
72 	struct list_head list;
73 	const char *name;
74 };
75 
76 struct fw_name_devm {
77 	unsigned long magic;
78 	const char *name;
79 };
80 
to_fw_priv(struct kref * ref)81 static inline struct fw_priv *to_fw_priv(struct kref *ref)
82 {
83 	return container_of(ref, struct fw_priv, ref);
84 }
85 
86 #define	FW_LOADER_NO_CACHE	0
87 #define	FW_LOADER_START_CACHE	1
88 
89 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
90  * guarding for corner cases a global lock should be OK */
91 DEFINE_MUTEX(fw_lock);
92 
93 static struct firmware_cache fw_cache;
94 
95 /* Builtin firmware support */
96 
97 #ifdef CONFIG_FW_LOADER
98 
99 extern struct builtin_fw __start_builtin_fw[];
100 extern struct builtin_fw __end_builtin_fw[];
101 
fw_copy_to_prealloc_buf(struct firmware * fw,void * buf,size_t size)102 static bool fw_copy_to_prealloc_buf(struct firmware *fw,
103 				    void *buf, size_t size)
104 {
105 	if (!buf)
106 		return true;
107 	if (size < fw->size)
108 		return false;
109 	memcpy(buf, fw->data, fw->size);
110 	return true;
111 }
112 
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)113 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
114 				    void *buf, size_t size)
115 {
116 	struct builtin_fw *b_fw;
117 
118 	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
119 		if (strcmp(name, b_fw->name) == 0) {
120 			fw->size = b_fw->size;
121 			fw->data = b_fw->data;
122 			return fw_copy_to_prealloc_buf(fw, buf, size);
123 		}
124 	}
125 
126 	return false;
127 }
128 
fw_is_builtin_firmware(const struct firmware * fw)129 static bool fw_is_builtin_firmware(const struct firmware *fw)
130 {
131 	struct builtin_fw *b_fw;
132 
133 	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
134 		if (fw->data == b_fw->data)
135 			return true;
136 
137 	return false;
138 }
139 
140 #else /* Module case - no builtin firmware support */
141 
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)142 static inline bool fw_get_builtin_firmware(struct firmware *fw,
143 					   const char *name, void *buf,
144 					   size_t size)
145 {
146 	return false;
147 }
148 
fw_is_builtin_firmware(const struct firmware * fw)149 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
150 {
151 	return false;
152 }
153 #endif
154 
fw_state_init(struct fw_priv * fw_priv)155 static void fw_state_init(struct fw_priv *fw_priv)
156 {
157 	struct fw_state *fw_st = &fw_priv->fw_st;
158 
159 	init_completion(&fw_st->completion);
160 	fw_st->status = FW_STATUS_UNKNOWN;
161 }
162 
fw_state_wait(struct fw_priv * fw_priv)163 static inline int fw_state_wait(struct fw_priv *fw_priv)
164 {
165 	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
166 }
167 
168 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
169 
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)170 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
171 					  struct firmware_cache *fwc,
172 					  void *dbuf,
173 					  size_t size,
174 					  size_t offset,
175 					  u32 opt_flags)
176 {
177 	struct fw_priv *fw_priv;
178 
179 	/* For a partial read, the buffer must be preallocated. */
180 	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
181 		return NULL;
182 
183 	/* Only partial reads are allowed to use an offset. */
184 	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
185 		return NULL;
186 
187 	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
188 	if (!fw_priv)
189 		return NULL;
190 
191 	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
192 	if (!fw_priv->fw_name) {
193 		kfree(fw_priv);
194 		return NULL;
195 	}
196 
197 	kref_init(&fw_priv->ref);
198 	fw_priv->fwc = fwc;
199 	fw_priv->data = dbuf;
200 	fw_priv->allocated_size = size;
201 	fw_priv->offset = offset;
202 	fw_priv->opt_flags = opt_flags;
203 	fw_state_init(fw_priv);
204 #ifdef CONFIG_FW_LOADER_USER_HELPER
205 	INIT_LIST_HEAD(&fw_priv->pending_list);
206 #endif
207 
208 	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
209 
210 	return fw_priv;
211 }
212 
__lookup_fw_priv(const char * fw_name)213 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
214 {
215 	struct fw_priv *tmp;
216 	struct firmware_cache *fwc = &fw_cache;
217 
218 	list_for_each_entry(tmp, &fwc->head, list)
219 		if (!strcmp(tmp->fw_name, fw_name))
220 			return tmp;
221 	return NULL;
222 }
223 
224 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)225 static int alloc_lookup_fw_priv(const char *fw_name,
226 				struct firmware_cache *fwc,
227 				struct fw_priv **fw_priv,
228 				void *dbuf,
229 				size_t size,
230 				size_t offset,
231 				u32 opt_flags)
232 {
233 	struct fw_priv *tmp;
234 
235 	spin_lock(&fwc->lock);
236 	/*
237 	 * Do not merge requests that are marked to be non-cached or
238 	 * are performing partial reads.
239 	 */
240 	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
241 		tmp = __lookup_fw_priv(fw_name);
242 		if (tmp) {
243 			kref_get(&tmp->ref);
244 			spin_unlock(&fwc->lock);
245 			*fw_priv = tmp;
246 			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
247 			return 1;
248 		}
249 	}
250 
251 	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
252 	if (tmp) {
253 		INIT_LIST_HEAD(&tmp->list);
254 		if (!(opt_flags & FW_OPT_NOCACHE))
255 			list_add(&tmp->list, &fwc->head);
256 	}
257 	spin_unlock(&fwc->lock);
258 
259 	*fw_priv = tmp;
260 
261 	return tmp ? 0 : -ENOMEM;
262 }
263 
__free_fw_priv(struct kref * ref)264 static void __free_fw_priv(struct kref *ref)
265 	__releases(&fwc->lock)
266 {
267 	struct fw_priv *fw_priv = to_fw_priv(ref);
268 	struct firmware_cache *fwc = fw_priv->fwc;
269 
270 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
271 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
272 		 (unsigned int)fw_priv->size);
273 
274 	list_del(&fw_priv->list);
275 	spin_unlock(&fwc->lock);
276 
277 	if (fw_is_paged_buf(fw_priv))
278 		fw_free_paged_buf(fw_priv);
279 	else if (!fw_priv->allocated_size)
280 		vfree(fw_priv->data);
281 
282 	kfree_const(fw_priv->fw_name);
283 	kfree(fw_priv);
284 }
285 
free_fw_priv(struct fw_priv * fw_priv)286 static void free_fw_priv(struct fw_priv *fw_priv)
287 {
288 	struct firmware_cache *fwc = fw_priv->fwc;
289 	spin_lock(&fwc->lock);
290 	if (!kref_put(&fw_priv->ref, __free_fw_priv))
291 		spin_unlock(&fwc->lock);
292 }
293 
294 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)295 bool fw_is_paged_buf(struct fw_priv *fw_priv)
296 {
297 	return fw_priv->is_paged_buf;
298 }
299 
fw_free_paged_buf(struct fw_priv * fw_priv)300 void fw_free_paged_buf(struct fw_priv *fw_priv)
301 {
302 	int i;
303 
304 	if (!fw_priv->pages)
305 		return;
306 
307 	vunmap(fw_priv->data);
308 
309 	for (i = 0; i < fw_priv->nr_pages; i++)
310 		__free_page(fw_priv->pages[i]);
311 	kvfree(fw_priv->pages);
312 	fw_priv->pages = NULL;
313 	fw_priv->page_array_size = 0;
314 	fw_priv->nr_pages = 0;
315 }
316 
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)317 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
318 {
319 	/* If the array of pages is too small, grow it */
320 	if (fw_priv->page_array_size < pages_needed) {
321 		int new_array_size = max(pages_needed,
322 					 fw_priv->page_array_size * 2);
323 		struct page **new_pages;
324 
325 		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
326 					   GFP_KERNEL);
327 		if (!new_pages)
328 			return -ENOMEM;
329 		memcpy(new_pages, fw_priv->pages,
330 		       fw_priv->page_array_size * sizeof(void *));
331 		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
332 		       (new_array_size - fw_priv->page_array_size));
333 		kvfree(fw_priv->pages);
334 		fw_priv->pages = new_pages;
335 		fw_priv->page_array_size = new_array_size;
336 	}
337 
338 	while (fw_priv->nr_pages < pages_needed) {
339 		fw_priv->pages[fw_priv->nr_pages] =
340 			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
341 
342 		if (!fw_priv->pages[fw_priv->nr_pages])
343 			return -ENOMEM;
344 		fw_priv->nr_pages++;
345 	}
346 
347 	return 0;
348 }
349 
fw_map_paged_buf(struct fw_priv * fw_priv)350 int fw_map_paged_buf(struct fw_priv *fw_priv)
351 {
352 	/* one pages buffer should be mapped/unmapped only once */
353 	if (!fw_priv->pages)
354 		return 0;
355 
356 	vunmap(fw_priv->data);
357 	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
358 			     PAGE_KERNEL_RO);
359 	if (!fw_priv->data)
360 		return -ENOMEM;
361 
362 	return 0;
363 }
364 #endif
365 
366 /*
367  * XZ-compressed firmware support
368  */
369 #ifdef CONFIG_FW_LOADER_COMPRESS
370 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)371 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
372 {
373 	if (xz_ret != XZ_STREAM_END) {
374 		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
375 		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
376 	}
377 	return 0;
378 }
379 
380 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)381 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
382 				   size_t in_size, const void *in_buffer)
383 {
384 	struct xz_dec *xz_dec;
385 	struct xz_buf xz_buf;
386 	enum xz_ret xz_ret;
387 
388 	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
389 	if (!xz_dec)
390 		return -ENOMEM;
391 
392 	xz_buf.in_size = in_size;
393 	xz_buf.in = in_buffer;
394 	xz_buf.in_pos = 0;
395 	xz_buf.out_size = fw_priv->allocated_size;
396 	xz_buf.out = fw_priv->data;
397 	xz_buf.out_pos = 0;
398 
399 	xz_ret = xz_dec_run(xz_dec, &xz_buf);
400 	xz_dec_end(xz_dec);
401 
402 	fw_priv->size = xz_buf.out_pos;
403 	return fw_decompress_xz_error(dev, xz_ret);
404 }
405 
406 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)407 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
408 				  size_t in_size, const void *in_buffer)
409 {
410 	struct xz_dec *xz_dec;
411 	struct xz_buf xz_buf;
412 	enum xz_ret xz_ret;
413 	struct page *page;
414 	int err = 0;
415 
416 	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
417 	if (!xz_dec)
418 		return -ENOMEM;
419 
420 	xz_buf.in_size = in_size;
421 	xz_buf.in = in_buffer;
422 	xz_buf.in_pos = 0;
423 
424 	fw_priv->is_paged_buf = true;
425 	fw_priv->size = 0;
426 	do {
427 		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
428 			err = -ENOMEM;
429 			goto out;
430 		}
431 
432 		/* decompress onto the new allocated page */
433 		page = fw_priv->pages[fw_priv->nr_pages - 1];
434 		xz_buf.out = kmap(page);
435 		xz_buf.out_pos = 0;
436 		xz_buf.out_size = PAGE_SIZE;
437 		xz_ret = xz_dec_run(xz_dec, &xz_buf);
438 		kunmap(page);
439 		fw_priv->size += xz_buf.out_pos;
440 		/* partial decompression means either end or error */
441 		if (xz_buf.out_pos != PAGE_SIZE)
442 			break;
443 	} while (xz_ret == XZ_OK);
444 
445 	err = fw_decompress_xz_error(dev, xz_ret);
446 	if (!err)
447 		err = fw_map_paged_buf(fw_priv);
448 
449  out:
450 	xz_dec_end(xz_dec);
451 	return err;
452 }
453 
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)454 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
455 			    size_t in_size, const void *in_buffer)
456 {
457 	/* if the buffer is pre-allocated, we can perform in single-shot mode */
458 	if (fw_priv->data)
459 		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
460 	else
461 		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
462 }
463 #endif /* CONFIG_FW_LOADER_COMPRESS */
464 
465 /* direct firmware loading support */
466 static char fw_path_para[256];
467 static const char * const fw_path[] = {
468 	fw_path_para,
469 	"/lib/firmware/updates/" UTS_RELEASE,
470 	"/lib/firmware/updates",
471 	"/lib/firmware/" UTS_RELEASE,
472 	"/lib/firmware"
473 };
474 
475 /*
476  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
477  * from kernel command line because firmware_class is generally built in
478  * kernel instead of module.
479  */
480 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
481 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
482 
483 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))484 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
485 			   const char *suffix,
486 			   int (*decompress)(struct device *dev,
487 					     struct fw_priv *fw_priv,
488 					     size_t in_size,
489 					     const void *in_buffer))
490 {
491 	size_t size;
492 	int i, len;
493 	int rc = -ENOENT;
494 	char *path;
495 	size_t msize = INT_MAX;
496 	void *buffer = NULL;
497 
498 	/* Already populated data member means we're loading into a buffer */
499 	if (!decompress && fw_priv->data) {
500 		buffer = fw_priv->data;
501 		msize = fw_priv->allocated_size;
502 	}
503 
504 	path = __getname();
505 	if (!path)
506 		return -ENOMEM;
507 
508 	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
509 		size_t file_size = 0;
510 		size_t *file_size_ptr = NULL;
511 
512 		/* skip the unset customized path */
513 		if (!fw_path[i][0])
514 			continue;
515 
516 		len = snprintf(path, PATH_MAX, "%s/%s%s",
517 			       fw_path[i], fw_priv->fw_name, suffix);
518 		if (len >= PATH_MAX) {
519 			rc = -ENAMETOOLONG;
520 			break;
521 		}
522 
523 		fw_priv->size = 0;
524 
525 		/*
526 		 * The total file size is only examined when doing a partial
527 		 * read; the "full read" case needs to fail if the whole
528 		 * firmware was not completely loaded.
529 		 */
530 		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
531 			file_size_ptr = &file_size;
532 
533 		/* load firmware files from the mount namespace of init */
534 		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
535 						       &buffer, msize,
536 						       file_size_ptr,
537 						       READING_FIRMWARE);
538 		if (rc < 0) {
539 			if (rc != -ENOENT)
540 				dev_warn(device, "loading %s failed with error %d\n",
541 					 path, rc);
542 			else
543 				dev_dbg(device, "loading %s failed for no such file or directory.\n",
544 					 path);
545 			continue;
546 		}
547 		size = rc;
548 		rc = 0;
549 
550 		dev_dbg(device, "Loading firmware from %s\n", path);
551 		if (decompress) {
552 			dev_dbg(device, "f/w decompressing %s\n",
553 				fw_priv->fw_name);
554 			rc = decompress(device, fw_priv, size, buffer);
555 			/* discard the superfluous original content */
556 			vfree(buffer);
557 			buffer = NULL;
558 			if (rc) {
559 				fw_free_paged_buf(fw_priv);
560 				continue;
561 			}
562 		} else {
563 			dev_dbg(device, "direct-loading %s\n",
564 				fw_priv->fw_name);
565 			if (!fw_priv->data)
566 				fw_priv->data = buffer;
567 			fw_priv->size = size;
568 		}
569 		fw_state_done(fw_priv);
570 		break;
571 	}
572 	__putname(path);
573 
574 	return rc;
575 }
576 
577 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)578 static void firmware_free_data(const struct firmware *fw)
579 {
580 	/* Loaded directly? */
581 	if (!fw->priv) {
582 		vfree(fw->data);
583 		return;
584 	}
585 	free_fw_priv(fw->priv);
586 }
587 
588 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)589 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
590 {
591 	fw->priv = fw_priv;
592 	fw->size = fw_priv->size;
593 	fw->data = fw_priv->data;
594 
595 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
596 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
597 		 (unsigned int)fw_priv->size);
598 }
599 
600 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)601 static void fw_name_devm_release(struct device *dev, void *res)
602 {
603 	struct fw_name_devm *fwn = res;
604 
605 	if (fwn->magic == (unsigned long)&fw_cache)
606 		pr_debug("%s: fw_name-%s devm-%p released\n",
607 				__func__, fwn->name, res);
608 	kfree_const(fwn->name);
609 }
610 
fw_devm_match(struct device * dev,void * res,void * match_data)611 static int fw_devm_match(struct device *dev, void *res,
612 		void *match_data)
613 {
614 	struct fw_name_devm *fwn = res;
615 
616 	return (fwn->magic == (unsigned long)&fw_cache) &&
617 		!strcmp(fwn->name, match_data);
618 }
619 
fw_find_devm_name(struct device * dev,const char * name)620 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
621 		const char *name)
622 {
623 	struct fw_name_devm *fwn;
624 
625 	fwn = devres_find(dev, fw_name_devm_release,
626 			  fw_devm_match, (void *)name);
627 	return fwn;
628 }
629 
fw_cache_is_setup(struct device * dev,const char * name)630 static bool fw_cache_is_setup(struct device *dev, const char *name)
631 {
632 	struct fw_name_devm *fwn;
633 
634 	fwn = fw_find_devm_name(dev, name);
635 	if (fwn)
636 		return true;
637 
638 	return false;
639 }
640 
641 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)642 static int fw_add_devm_name(struct device *dev, const char *name)
643 {
644 	struct fw_name_devm *fwn;
645 
646 	if (fw_cache_is_setup(dev, name))
647 		return 0;
648 
649 	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
650 			   GFP_KERNEL);
651 	if (!fwn)
652 		return -ENOMEM;
653 	fwn->name = kstrdup_const(name, GFP_KERNEL);
654 	if (!fwn->name) {
655 		devres_free(fwn);
656 		return -ENOMEM;
657 	}
658 
659 	fwn->magic = (unsigned long)&fw_cache;
660 	devres_add(dev, fwn);
661 
662 	return 0;
663 }
664 #else
fw_cache_is_setup(struct device * dev,const char * name)665 static bool fw_cache_is_setup(struct device *dev, const char *name)
666 {
667 	return false;
668 }
669 
fw_add_devm_name(struct device * dev,const char * name)670 static int fw_add_devm_name(struct device *dev, const char *name)
671 {
672 	return 0;
673 }
674 #endif
675 
assign_fw(struct firmware * fw,struct device * device)676 int assign_fw(struct firmware *fw, struct device *device)
677 {
678 	struct fw_priv *fw_priv = fw->priv;
679 	int ret;
680 
681 	mutex_lock(&fw_lock);
682 	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
683 		mutex_unlock(&fw_lock);
684 		return -ENOENT;
685 	}
686 
687 	/*
688 	 * add firmware name into devres list so that we can auto cache
689 	 * and uncache firmware for device.
690 	 *
691 	 * device may has been deleted already, but the problem
692 	 * should be fixed in devres or driver core.
693 	 */
694 	/* don't cache firmware handled without uevent */
695 	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
696 	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
697 		ret = fw_add_devm_name(device, fw_priv->fw_name);
698 		if (ret) {
699 			mutex_unlock(&fw_lock);
700 			return ret;
701 		}
702 	}
703 
704 	/*
705 	 * After caching firmware image is started, let it piggyback
706 	 * on request firmware.
707 	 */
708 	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
709 	    fw_priv->fwc->state == FW_LOADER_START_CACHE)
710 		fw_cache_piggyback_on_request(fw_priv);
711 
712 	/* pass the pages buffer to driver at the last minute */
713 	fw_set_page_data(fw_priv, fw);
714 	mutex_unlock(&fw_lock);
715 	return 0;
716 }
717 
718 /* prepare firmware and firmware_buf structs;
719  * return 0 if a firmware is already assigned, 1 if need to load one,
720  * or a negative error code
721  */
722 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)723 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
724 			  struct device *device, void *dbuf, size_t size,
725 			  size_t offset, u32 opt_flags)
726 {
727 	struct firmware *firmware;
728 	struct fw_priv *fw_priv;
729 	int ret;
730 
731 	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
732 	if (!firmware) {
733 		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
734 			__func__);
735 		return -ENOMEM;
736 	}
737 
738 	if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
739 		dev_dbg(device, "using built-in %s\n", name);
740 		return 0; /* assigned */
741 	}
742 
743 	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
744 				   offset, opt_flags);
745 
746 	/*
747 	 * bind with 'priv' now to avoid warning in failure path
748 	 * of requesting firmware.
749 	 */
750 	firmware->priv = fw_priv;
751 
752 	if (ret > 0) {
753 		ret = fw_state_wait(fw_priv);
754 		if (!ret) {
755 			fw_set_page_data(fw_priv, firmware);
756 			return 0; /* assigned */
757 		}
758 	}
759 
760 	if (ret < 0)
761 		return ret;
762 	return 1; /* need to load */
763 }
764 
765 /*
766  * Batched requests need only one wake, we need to do this step last due to the
767  * fallback mechanism. The buf is protected with kref_get(), and it won't be
768  * released until the last user calls release_firmware().
769  *
770  * Failed batched requests are possible as well, in such cases we just share
771  * the struct fw_priv and won't release it until all requests are woken
772  * and have gone through this same path.
773  */
fw_abort_batch_reqs(struct firmware * fw)774 static void fw_abort_batch_reqs(struct firmware *fw)
775 {
776 	struct fw_priv *fw_priv;
777 
778 	/* Loaded directly? */
779 	if (!fw || !fw->priv)
780 		return;
781 
782 	fw_priv = fw->priv;
783 	mutex_lock(&fw_lock);
784 	if (!fw_state_is_aborted(fw_priv))
785 		fw_state_aborted(fw_priv);
786 	mutex_unlock(&fw_lock);
787 }
788 
789 /* called from request_firmware() and request_firmware_work_func() */
790 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)791 _request_firmware(const struct firmware **firmware_p, const char *name,
792 		  struct device *device, void *buf, size_t size,
793 		  size_t offset, u32 opt_flags)
794 {
795 	struct firmware *fw = NULL;
796 	struct cred *kern_cred = NULL;
797 	const struct cred *old_cred;
798 	bool nondirect = false;
799 	int ret;
800 
801 	if (!firmware_p)
802 		return -EINVAL;
803 
804 	if (!name || name[0] == '\0') {
805 		ret = -EINVAL;
806 		goto out;
807 	}
808 
809 	ret = _request_firmware_prepare(&fw, name, device, buf, size,
810 					offset, opt_flags);
811 	if (ret <= 0) /* error or already assigned */
812 		goto out;
813 
814 	/*
815 	 * We are about to try to access the firmware file. Because we may have been
816 	 * called by a driver when serving an unrelated request from userland, we use
817 	 * the kernel credentials to read the file.
818 	 */
819 	kern_cred = prepare_kernel_cred(NULL);
820 	if (!kern_cred) {
821 		ret = -ENOMEM;
822 		goto out;
823 	}
824 	old_cred = override_creds(kern_cred);
825 
826 	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
827 
828 	/* Only full reads can support decompression, platform, and sysfs. */
829 	if (!(opt_flags & FW_OPT_PARTIAL))
830 		nondirect = true;
831 
832 #ifdef CONFIG_FW_LOADER_COMPRESS
833 	if (ret == -ENOENT && nondirect)
834 		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
835 						 fw_decompress_xz);
836 #endif
837 	if (ret == -ENOENT && nondirect)
838 		ret = firmware_fallback_platform(fw->priv);
839 
840 	if (ret) {
841 		if (!(opt_flags & FW_OPT_NO_WARN))
842 			dev_warn(device,
843 				 "Direct firmware load for %s failed with error %d\n",
844 				 name, ret);
845 		if (nondirect)
846 			ret = firmware_fallback_sysfs(fw, name, device,
847 						      opt_flags, ret);
848 	} else
849 		ret = assign_fw(fw, device);
850 
851 	revert_creds(old_cred);
852 	put_cred(kern_cred);
853 
854  out:
855 	if (ret < 0) {
856 		fw_abort_batch_reqs(fw);
857 		release_firmware(fw);
858 		fw = NULL;
859 	}
860 
861 	*firmware_p = fw;
862 	return ret;
863 }
864 
865 /**
866  * request_firmware() - send firmware request and wait for it
867  * @firmware_p: pointer to firmware image
868  * @name: name of firmware file
869  * @device: device for which firmware is being loaded
870  *
871  *      @firmware_p will be used to return a firmware image by the name
872  *      of @name for device @device.
873  *
874  *      Should be called from user context where sleeping is allowed.
875  *
876  *      @name will be used as $FIRMWARE in the uevent environment and
877  *      should be distinctive enough not to be confused with any other
878  *      firmware image for this or any other device.
879  *
880  *	Caller must hold the reference count of @device.
881  *
882  *	The function can be called safely inside device's suspend and
883  *	resume callback.
884  **/
885 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)886 request_firmware(const struct firmware **firmware_p, const char *name,
887 		 struct device *device)
888 {
889 	int ret;
890 
891 	/* Need to pin this module until return */
892 	__module_get(THIS_MODULE);
893 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
894 				FW_OPT_UEVENT);
895 	module_put(THIS_MODULE);
896 	return ret;
897 }
898 EXPORT_SYMBOL(request_firmware);
899 
900 /**
901  * firmware_request_nowarn() - request for an optional fw module
902  * @firmware: pointer to firmware image
903  * @name: name of firmware file
904  * @device: device for which firmware is being loaded
905  *
906  * This function is similar in behaviour to request_firmware(), except it
907  * doesn't produce warning messages when the file is not found. The sysfs
908  * fallback mechanism is enabled if direct filesystem lookup fails. However,
909  * failures to find the firmware file with it are still suppressed. It is
910  * therefore up to the driver to check for the return value of this call and to
911  * decide when to inform the users of errors.
912  **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)913 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
914 			    struct device *device)
915 {
916 	int ret;
917 
918 	/* Need to pin this module until return */
919 	__module_get(THIS_MODULE);
920 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
921 				FW_OPT_UEVENT | FW_OPT_NO_WARN);
922 	module_put(THIS_MODULE);
923 	return ret;
924 }
925 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
926 
927 /**
928  * request_firmware_direct() - load firmware directly without usermode helper
929  * @firmware_p: pointer to firmware image
930  * @name: name of firmware file
931  * @device: device for which firmware is being loaded
932  *
933  * This function works pretty much like request_firmware(), but this doesn't
934  * fall back to usermode helper even if the firmware couldn't be loaded
935  * directly from fs.  Hence it's useful for loading optional firmwares, which
936  * aren't always present, without extra long timeouts of udev.
937  **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)938 int request_firmware_direct(const struct firmware **firmware_p,
939 			    const char *name, struct device *device)
940 {
941 	int ret;
942 
943 	__module_get(THIS_MODULE);
944 	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
945 				FW_OPT_UEVENT | FW_OPT_NO_WARN |
946 				FW_OPT_NOFALLBACK_SYSFS);
947 	module_put(THIS_MODULE);
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(request_firmware_direct);
951 
952 /**
953  * firmware_request_platform() - request firmware with platform-fw fallback
954  * @firmware: pointer to firmware image
955  * @name: name of firmware file
956  * @device: device for which firmware is being loaded
957  *
958  * This function is similar in behaviour to request_firmware, except that if
959  * direct filesystem lookup fails, it will fallback to looking for a copy of the
960  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
961  **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)962 int firmware_request_platform(const struct firmware **firmware,
963 			      const char *name, struct device *device)
964 {
965 	int ret;
966 
967 	/* Need to pin this module until return */
968 	__module_get(THIS_MODULE);
969 	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
970 				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
971 	module_put(THIS_MODULE);
972 	return ret;
973 }
974 EXPORT_SYMBOL_GPL(firmware_request_platform);
975 
976 /**
977  * firmware_request_cache() - cache firmware for suspend so resume can use it
978  * @name: name of firmware file
979  * @device: device for which firmware should be cached for
980  *
981  * There are some devices with an optimization that enables the device to not
982  * require loading firmware on system reboot. This optimization may still
983  * require the firmware present on resume from suspend. This routine can be
984  * used to ensure the firmware is present on resume from suspend in these
985  * situations. This helper is not compatible with drivers which use
986  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
987  **/
firmware_request_cache(struct device * device,const char * name)988 int firmware_request_cache(struct device *device, const char *name)
989 {
990 	int ret;
991 
992 	mutex_lock(&fw_lock);
993 	ret = fw_add_devm_name(device, name);
994 	mutex_unlock(&fw_lock);
995 
996 	return ret;
997 }
998 EXPORT_SYMBOL_GPL(firmware_request_cache);
999 
1000 /**
1001  * request_firmware_into_buf() - load firmware into a previously allocated buffer
1002  * @firmware_p: pointer to firmware image
1003  * @name: name of firmware file
1004  * @device: device for which firmware is being loaded and DMA region allocated
1005  * @buf: address of buffer to load firmware into
1006  * @size: size of buffer
1007  *
1008  * This function works pretty much like request_firmware(), but it doesn't
1009  * allocate a buffer to hold the firmware data. Instead, the firmware
1010  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1011  * data member is pointed at @buf.
1012  *
1013  * This function doesn't cache firmware either.
1014  */
1015 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1016 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1017 			  struct device *device, void *buf, size_t size)
1018 {
1019 	int ret;
1020 
1021 	if (fw_cache_is_setup(device, name))
1022 		return -EOPNOTSUPP;
1023 
1024 	__module_get(THIS_MODULE);
1025 	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1026 				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1027 	module_put(THIS_MODULE);
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL(request_firmware_into_buf);
1031 
1032 /**
1033  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1034  * @firmware_p: pointer to firmware image
1035  * @name: name of firmware file
1036  * @device: device for which firmware is being loaded and DMA region allocated
1037  * @buf: address of buffer to load firmware into
1038  * @size: size of buffer
1039  * @offset: offset into file to read
1040  *
1041  * This function works pretty much like request_firmware_into_buf except
1042  * it allows a partial read of the file.
1043  */
1044 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1045 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1046 				  const char *name, struct device *device,
1047 				  void *buf, size_t size, size_t offset)
1048 {
1049 	int ret;
1050 
1051 	if (fw_cache_is_setup(device, name))
1052 		return -EOPNOTSUPP;
1053 
1054 	__module_get(THIS_MODULE);
1055 	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1056 				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1057 				FW_OPT_PARTIAL);
1058 	module_put(THIS_MODULE);
1059 	return ret;
1060 }
1061 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1062 
1063 /**
1064  * release_firmware() - release the resource associated with a firmware image
1065  * @fw: firmware resource to release
1066  **/
release_firmware(const struct firmware * fw)1067 void release_firmware(const struct firmware *fw)
1068 {
1069 	if (fw) {
1070 		if (!fw_is_builtin_firmware(fw))
1071 			firmware_free_data(fw);
1072 		kfree(fw);
1073 	}
1074 }
1075 EXPORT_SYMBOL(release_firmware);
1076 
1077 /* Async support */
1078 struct firmware_work {
1079 	struct work_struct work;
1080 	struct module *module;
1081 	const char *name;
1082 	struct device *device;
1083 	void *context;
1084 	void (*cont)(const struct firmware *fw, void *context);
1085 	u32 opt_flags;
1086 };
1087 
request_firmware_work_func(struct work_struct * work)1088 static void request_firmware_work_func(struct work_struct *work)
1089 {
1090 	struct firmware_work *fw_work;
1091 	const struct firmware *fw;
1092 
1093 	fw_work = container_of(work, struct firmware_work, work);
1094 
1095 	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1096 			  fw_work->opt_flags);
1097 	fw_work->cont(fw, fw_work->context);
1098 	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1099 
1100 	module_put(fw_work->module);
1101 	kfree_const(fw_work->name);
1102 	kfree(fw_work);
1103 }
1104 
1105 /**
1106  * request_firmware_nowait() - asynchronous version of request_firmware
1107  * @module: module requesting the firmware
1108  * @uevent: sends uevent to copy the firmware image if this flag
1109  *	is non-zero else the firmware copy must be done manually.
1110  * @name: name of firmware file
1111  * @device: device for which firmware is being loaded
1112  * @gfp: allocation flags
1113  * @context: will be passed over to @cont, and
1114  *	@fw may be %NULL if firmware request fails.
1115  * @cont: function will be called asynchronously when the firmware
1116  *	request is over.
1117  *
1118  *	Caller must hold the reference count of @device.
1119  *
1120  *	Asynchronous variant of request_firmware() for user contexts:
1121  *		- sleep for as small periods as possible since it may
1122  *		  increase kernel boot time of built-in device drivers
1123  *		  requesting firmware in their ->probe() methods, if
1124  *		  @gfp is GFP_KERNEL.
1125  *
1126  *		- can't sleep at all if @gfp is GFP_ATOMIC.
1127  **/
1128 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1129 request_firmware_nowait(
1130 	struct module *module, bool uevent,
1131 	const char *name, struct device *device, gfp_t gfp, void *context,
1132 	void (*cont)(const struct firmware *fw, void *context))
1133 {
1134 	struct firmware_work *fw_work;
1135 
1136 	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1137 	if (!fw_work)
1138 		return -ENOMEM;
1139 
1140 	fw_work->module = module;
1141 	fw_work->name = kstrdup_const(name, gfp);
1142 	if (!fw_work->name) {
1143 		kfree(fw_work);
1144 		return -ENOMEM;
1145 	}
1146 	fw_work->device = device;
1147 	fw_work->context = context;
1148 	fw_work->cont = cont;
1149 	fw_work->opt_flags = FW_OPT_NOWAIT |
1150 		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1151 
1152 	if (!uevent && fw_cache_is_setup(device, name)) {
1153 		kfree_const(fw_work->name);
1154 		kfree(fw_work);
1155 		return -EOPNOTSUPP;
1156 	}
1157 
1158 	if (!try_module_get(module)) {
1159 		kfree_const(fw_work->name);
1160 		kfree(fw_work);
1161 		return -EFAULT;
1162 	}
1163 
1164 	get_device(fw_work->device);
1165 	INIT_WORK(&fw_work->work, request_firmware_work_func);
1166 	schedule_work(&fw_work->work);
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL(request_firmware_nowait);
1170 
1171 #ifdef CONFIG_FW_CACHE
1172 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1173 
1174 /**
1175  * cache_firmware() - cache one firmware image in kernel memory space
1176  * @fw_name: the firmware image name
1177  *
1178  * Cache firmware in kernel memory so that drivers can use it when
1179  * system isn't ready for them to request firmware image from userspace.
1180  * Once it returns successfully, driver can use request_firmware or its
1181  * nowait version to get the cached firmware without any interacting
1182  * with userspace
1183  *
1184  * Return 0 if the firmware image has been cached successfully
1185  * Return !0 otherwise
1186  *
1187  */
cache_firmware(const char * fw_name)1188 static int cache_firmware(const char *fw_name)
1189 {
1190 	int ret;
1191 	const struct firmware *fw;
1192 
1193 	pr_debug("%s: %s\n", __func__, fw_name);
1194 
1195 	ret = request_firmware(&fw, fw_name, NULL);
1196 	if (!ret)
1197 		kfree(fw);
1198 
1199 	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1200 
1201 	return ret;
1202 }
1203 
lookup_fw_priv(const char * fw_name)1204 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1205 {
1206 	struct fw_priv *tmp;
1207 	struct firmware_cache *fwc = &fw_cache;
1208 
1209 	spin_lock(&fwc->lock);
1210 	tmp = __lookup_fw_priv(fw_name);
1211 	spin_unlock(&fwc->lock);
1212 
1213 	return tmp;
1214 }
1215 
1216 /**
1217  * uncache_firmware() - remove one cached firmware image
1218  * @fw_name: the firmware image name
1219  *
1220  * Uncache one firmware image which has been cached successfully
1221  * before.
1222  *
1223  * Return 0 if the firmware cache has been removed successfully
1224  * Return !0 otherwise
1225  *
1226  */
uncache_firmware(const char * fw_name)1227 static int uncache_firmware(const char *fw_name)
1228 {
1229 	struct fw_priv *fw_priv;
1230 	struct firmware fw;
1231 
1232 	pr_debug("%s: %s\n", __func__, fw_name);
1233 
1234 	if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1235 		return 0;
1236 
1237 	fw_priv = lookup_fw_priv(fw_name);
1238 	if (fw_priv) {
1239 		free_fw_priv(fw_priv);
1240 		return 0;
1241 	}
1242 
1243 	return -EINVAL;
1244 }
1245 
alloc_fw_cache_entry(const char * name)1246 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1247 {
1248 	struct fw_cache_entry *fce;
1249 
1250 	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1251 	if (!fce)
1252 		goto exit;
1253 
1254 	fce->name = kstrdup_const(name, GFP_ATOMIC);
1255 	if (!fce->name) {
1256 		kfree(fce);
1257 		fce = NULL;
1258 		goto exit;
1259 	}
1260 exit:
1261 	return fce;
1262 }
1263 
__fw_entry_found(const char * name)1264 static int __fw_entry_found(const char *name)
1265 {
1266 	struct firmware_cache *fwc = &fw_cache;
1267 	struct fw_cache_entry *fce;
1268 
1269 	list_for_each_entry(fce, &fwc->fw_names, list) {
1270 		if (!strcmp(fce->name, name))
1271 			return 1;
1272 	}
1273 	return 0;
1274 }
1275 
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1276 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1277 {
1278 	const char *name = fw_priv->fw_name;
1279 	struct firmware_cache *fwc = fw_priv->fwc;
1280 	struct fw_cache_entry *fce;
1281 
1282 	spin_lock(&fwc->name_lock);
1283 	if (__fw_entry_found(name))
1284 		goto found;
1285 
1286 	fce = alloc_fw_cache_entry(name);
1287 	if (fce) {
1288 		list_add(&fce->list, &fwc->fw_names);
1289 		kref_get(&fw_priv->ref);
1290 		pr_debug("%s: fw: %s\n", __func__, name);
1291 	}
1292 found:
1293 	spin_unlock(&fwc->name_lock);
1294 }
1295 
free_fw_cache_entry(struct fw_cache_entry * fce)1296 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1297 {
1298 	kfree_const(fce->name);
1299 	kfree(fce);
1300 }
1301 
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1302 static void __async_dev_cache_fw_image(void *fw_entry,
1303 				       async_cookie_t cookie)
1304 {
1305 	struct fw_cache_entry *fce = fw_entry;
1306 	struct firmware_cache *fwc = &fw_cache;
1307 	int ret;
1308 
1309 	ret = cache_firmware(fce->name);
1310 	if (ret) {
1311 		spin_lock(&fwc->name_lock);
1312 		list_del(&fce->list);
1313 		spin_unlock(&fwc->name_lock);
1314 
1315 		free_fw_cache_entry(fce);
1316 	}
1317 }
1318 
1319 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1320 static void dev_create_fw_entry(struct device *dev, void *res,
1321 				void *data)
1322 {
1323 	struct fw_name_devm *fwn = res;
1324 	const char *fw_name = fwn->name;
1325 	struct list_head *head = data;
1326 	struct fw_cache_entry *fce;
1327 
1328 	fce = alloc_fw_cache_entry(fw_name);
1329 	if (fce)
1330 		list_add(&fce->list, head);
1331 }
1332 
devm_name_match(struct device * dev,void * res,void * match_data)1333 static int devm_name_match(struct device *dev, void *res,
1334 			   void *match_data)
1335 {
1336 	struct fw_name_devm *fwn = res;
1337 	return (fwn->magic == (unsigned long)match_data);
1338 }
1339 
dev_cache_fw_image(struct device * dev,void * data)1340 static void dev_cache_fw_image(struct device *dev, void *data)
1341 {
1342 	LIST_HEAD(todo);
1343 	struct fw_cache_entry *fce;
1344 	struct fw_cache_entry *fce_next;
1345 	struct firmware_cache *fwc = &fw_cache;
1346 
1347 	devres_for_each_res(dev, fw_name_devm_release,
1348 			    devm_name_match, &fw_cache,
1349 			    dev_create_fw_entry, &todo);
1350 
1351 	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1352 		list_del(&fce->list);
1353 
1354 		spin_lock(&fwc->name_lock);
1355 		/* only one cache entry for one firmware */
1356 		if (!__fw_entry_found(fce->name)) {
1357 			list_add(&fce->list, &fwc->fw_names);
1358 		} else {
1359 			free_fw_cache_entry(fce);
1360 			fce = NULL;
1361 		}
1362 		spin_unlock(&fwc->name_lock);
1363 
1364 		if (fce)
1365 			async_schedule_domain(__async_dev_cache_fw_image,
1366 					      (void *)fce,
1367 					      &fw_cache_domain);
1368 	}
1369 }
1370 
__device_uncache_fw_images(void)1371 static void __device_uncache_fw_images(void)
1372 {
1373 	struct firmware_cache *fwc = &fw_cache;
1374 	struct fw_cache_entry *fce;
1375 
1376 	spin_lock(&fwc->name_lock);
1377 	while (!list_empty(&fwc->fw_names)) {
1378 		fce = list_entry(fwc->fw_names.next,
1379 				struct fw_cache_entry, list);
1380 		list_del(&fce->list);
1381 		spin_unlock(&fwc->name_lock);
1382 
1383 		uncache_firmware(fce->name);
1384 		free_fw_cache_entry(fce);
1385 
1386 		spin_lock(&fwc->name_lock);
1387 	}
1388 	spin_unlock(&fwc->name_lock);
1389 }
1390 
1391 /**
1392  * device_cache_fw_images() - cache devices' firmware
1393  *
1394  * If one device called request_firmware or its nowait version
1395  * successfully before, the firmware names are recored into the
1396  * device's devres link list, so device_cache_fw_images can call
1397  * cache_firmware() to cache these firmwares for the device,
1398  * then the device driver can load its firmwares easily at
1399  * time when system is not ready to complete loading firmware.
1400  */
device_cache_fw_images(void)1401 static void device_cache_fw_images(void)
1402 {
1403 	struct firmware_cache *fwc = &fw_cache;
1404 	DEFINE_WAIT(wait);
1405 
1406 	pr_debug("%s\n", __func__);
1407 
1408 	/* cancel uncache work */
1409 	cancel_delayed_work_sync(&fwc->work);
1410 
1411 	fw_fallback_set_cache_timeout();
1412 
1413 	mutex_lock(&fw_lock);
1414 	fwc->state = FW_LOADER_START_CACHE;
1415 	dpm_for_each_dev(NULL, dev_cache_fw_image);
1416 	mutex_unlock(&fw_lock);
1417 
1418 	/* wait for completion of caching firmware for all devices */
1419 	async_synchronize_full_domain(&fw_cache_domain);
1420 
1421 	fw_fallback_set_default_timeout();
1422 }
1423 
1424 /**
1425  * device_uncache_fw_images() - uncache devices' firmware
1426  *
1427  * uncache all firmwares which have been cached successfully
1428  * by device_uncache_fw_images earlier
1429  */
device_uncache_fw_images(void)1430 static void device_uncache_fw_images(void)
1431 {
1432 	pr_debug("%s\n", __func__);
1433 	__device_uncache_fw_images();
1434 }
1435 
device_uncache_fw_images_work(struct work_struct * work)1436 static void device_uncache_fw_images_work(struct work_struct *work)
1437 {
1438 	device_uncache_fw_images();
1439 }
1440 
1441 /**
1442  * device_uncache_fw_images_delay() - uncache devices firmwares
1443  * @delay: number of milliseconds to delay uncache device firmwares
1444  *
1445  * uncache all devices's firmwares which has been cached successfully
1446  * by device_cache_fw_images after @delay milliseconds.
1447  */
device_uncache_fw_images_delay(unsigned long delay)1448 static void device_uncache_fw_images_delay(unsigned long delay)
1449 {
1450 	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1451 			   msecs_to_jiffies(delay));
1452 }
1453 
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1454 static int fw_pm_notify(struct notifier_block *notify_block,
1455 			unsigned long mode, void *unused)
1456 {
1457 	switch (mode) {
1458 	case PM_HIBERNATION_PREPARE:
1459 	case PM_SUSPEND_PREPARE:
1460 	case PM_RESTORE_PREPARE:
1461 		/*
1462 		 * kill pending fallback requests with a custom fallback
1463 		 * to avoid stalling suspend.
1464 		 */
1465 		kill_pending_fw_fallback_reqs(true);
1466 		device_cache_fw_images();
1467 		break;
1468 
1469 	case PM_POST_SUSPEND:
1470 	case PM_POST_HIBERNATION:
1471 	case PM_POST_RESTORE:
1472 		/*
1473 		 * In case that system sleep failed and syscore_suspend is
1474 		 * not called.
1475 		 */
1476 		mutex_lock(&fw_lock);
1477 		fw_cache.state = FW_LOADER_NO_CACHE;
1478 		mutex_unlock(&fw_lock);
1479 
1480 		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1481 		break;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1488 static int fw_suspend(void)
1489 {
1490 	fw_cache.state = FW_LOADER_NO_CACHE;
1491 	return 0;
1492 }
1493 
1494 static struct syscore_ops fw_syscore_ops = {
1495 	.suspend = fw_suspend,
1496 };
1497 
register_fw_pm_ops(void)1498 static int __init register_fw_pm_ops(void)
1499 {
1500 	int ret;
1501 
1502 	spin_lock_init(&fw_cache.name_lock);
1503 	INIT_LIST_HEAD(&fw_cache.fw_names);
1504 
1505 	INIT_DELAYED_WORK(&fw_cache.work,
1506 			  device_uncache_fw_images_work);
1507 
1508 	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1509 	ret = register_pm_notifier(&fw_cache.pm_notify);
1510 	if (ret)
1511 		return ret;
1512 
1513 	register_syscore_ops(&fw_syscore_ops);
1514 
1515 	return ret;
1516 }
1517 
unregister_fw_pm_ops(void)1518 static inline void unregister_fw_pm_ops(void)
1519 {
1520 	unregister_syscore_ops(&fw_syscore_ops);
1521 	unregister_pm_notifier(&fw_cache.pm_notify);
1522 }
1523 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1524 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1525 {
1526 }
register_fw_pm_ops(void)1527 static inline int register_fw_pm_ops(void)
1528 {
1529 	return 0;
1530 }
unregister_fw_pm_ops(void)1531 static inline void unregister_fw_pm_ops(void)
1532 {
1533 }
1534 #endif
1535 
fw_cache_init(void)1536 static void __init fw_cache_init(void)
1537 {
1538 	spin_lock_init(&fw_cache.lock);
1539 	INIT_LIST_HEAD(&fw_cache.head);
1540 	fw_cache.state = FW_LOADER_NO_CACHE;
1541 }
1542 
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1543 static int fw_shutdown_notify(struct notifier_block *unused1,
1544 			      unsigned long unused2, void *unused3)
1545 {
1546 	/*
1547 	 * Kill all pending fallback requests to avoid both stalling shutdown,
1548 	 * and avoid a deadlock with the usermode_lock.
1549 	 */
1550 	kill_pending_fw_fallback_reqs(false);
1551 
1552 	return NOTIFY_DONE;
1553 }
1554 
1555 static struct notifier_block fw_shutdown_nb = {
1556 	.notifier_call = fw_shutdown_notify,
1557 };
1558 
firmware_class_init(void)1559 static int __init firmware_class_init(void)
1560 {
1561 	int ret;
1562 
1563 	/* No need to unfold these on exit */
1564 	fw_cache_init();
1565 
1566 	ret = register_fw_pm_ops();
1567 	if (ret)
1568 		return ret;
1569 
1570 	ret = register_reboot_notifier(&fw_shutdown_nb);
1571 	if (ret)
1572 		goto out;
1573 
1574 	return register_sysfs_loader();
1575 
1576 out:
1577 	unregister_fw_pm_ops();
1578 	return ret;
1579 }
1580 
firmware_class_exit(void)1581 static void __exit firmware_class_exit(void)
1582 {
1583 	unregister_fw_pm_ops();
1584 	unregister_reboot_notifier(&fw_shutdown_nb);
1585 	unregister_sysfs_loader();
1586 }
1587 
1588 fs_initcall(firmware_class_init);
1589 module_exit(firmware_class_exit);
1590