• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale i.MX23/i.MX28 Data Co-Processor driver
4  *
5  * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6  */
7 
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
18 
19 #include <crypto/aes.h>
20 #include <crypto/sha.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/scatterwalk.h>
24 
25 #define DCP_MAX_CHANS	4
26 #define DCP_BUF_SZ	PAGE_SIZE
27 #define DCP_SHA_PAY_SZ  64
28 
29 #define DCP_ALIGNMENT	64
30 
31 /*
32  * Null hashes to align with hw behavior on imx6sl and ull
33  * these are flipped for consistency with hw output
34  */
35 static const uint8_t sha1_null_hash[] =
36 	"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
37 	"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
38 
39 static const uint8_t sha256_null_hash[] =
40 	"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
41 	"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
42 	"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
43 	"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
44 
45 /* DCP DMA descriptor. */
46 struct dcp_dma_desc {
47 	uint32_t	next_cmd_addr;
48 	uint32_t	control0;
49 	uint32_t	control1;
50 	uint32_t	source;
51 	uint32_t	destination;
52 	uint32_t	size;
53 	uint32_t	payload;
54 	uint32_t	status;
55 };
56 
57 /* Coherent aligned block for bounce buffering. */
58 struct dcp_coherent_block {
59 	uint8_t			aes_in_buf[DCP_BUF_SZ];
60 	uint8_t			aes_out_buf[DCP_BUF_SZ];
61 	uint8_t			sha_in_buf[DCP_BUF_SZ];
62 	uint8_t			sha_out_buf[DCP_SHA_PAY_SZ];
63 
64 	uint8_t			aes_key[2 * AES_KEYSIZE_128];
65 
66 	struct dcp_dma_desc	desc[DCP_MAX_CHANS];
67 };
68 
69 struct dcp {
70 	struct device			*dev;
71 	void __iomem			*base;
72 
73 	uint32_t			caps;
74 
75 	struct dcp_coherent_block	*coh;
76 
77 	struct completion		completion[DCP_MAX_CHANS];
78 	spinlock_t			lock[DCP_MAX_CHANS];
79 	struct task_struct		*thread[DCP_MAX_CHANS];
80 	struct crypto_queue		queue[DCP_MAX_CHANS];
81 	struct clk			*dcp_clk;
82 };
83 
84 enum dcp_chan {
85 	DCP_CHAN_HASH_SHA	= 0,
86 	DCP_CHAN_CRYPTO		= 2,
87 };
88 
89 struct dcp_async_ctx {
90 	/* Common context */
91 	enum dcp_chan	chan;
92 	uint32_t	fill;
93 
94 	/* SHA Hash-specific context */
95 	struct mutex			mutex;
96 	uint32_t			alg;
97 	unsigned int			hot:1;
98 
99 	/* Crypto-specific context */
100 	struct crypto_skcipher		*fallback;
101 	unsigned int			key_len;
102 	uint8_t				key[AES_KEYSIZE_128];
103 };
104 
105 struct dcp_aes_req_ctx {
106 	unsigned int	enc:1;
107 	unsigned int	ecb:1;
108 	struct skcipher_request fallback_req;	// keep at the end
109 };
110 
111 struct dcp_sha_req_ctx {
112 	unsigned int	init:1;
113 	unsigned int	fini:1;
114 };
115 
116 struct dcp_export_state {
117 	struct dcp_sha_req_ctx req_ctx;
118 	struct dcp_async_ctx async_ctx;
119 };
120 
121 /*
122  * There can even be only one instance of the MXS DCP due to the
123  * design of Linux Crypto API.
124  */
125 static struct dcp *global_sdcp;
126 
127 /* DCP register layout. */
128 #define MXS_DCP_CTRL				0x00
129 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES	(1 << 23)
130 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING	(1 << 22)
131 
132 #define MXS_DCP_STAT				0x10
133 #define MXS_DCP_STAT_CLR			0x18
134 #define MXS_DCP_STAT_IRQ_MASK			0xf
135 
136 #define MXS_DCP_CHANNELCTRL			0x20
137 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK	0xff
138 
139 #define MXS_DCP_CAPABILITY1			0x40
140 #define MXS_DCP_CAPABILITY1_SHA256		(4 << 16)
141 #define MXS_DCP_CAPABILITY1_SHA1		(1 << 16)
142 #define MXS_DCP_CAPABILITY1_AES128		(1 << 0)
143 
144 #define MXS_DCP_CONTEXT				0x50
145 
146 #define MXS_DCP_CH_N_CMDPTR(n)			(0x100 + ((n) * 0x40))
147 
148 #define MXS_DCP_CH_N_SEMA(n)			(0x110 + ((n) * 0x40))
149 
150 #define MXS_DCP_CH_N_STAT(n)			(0x120 + ((n) * 0x40))
151 #define MXS_DCP_CH_N_STAT_CLR(n)		(0x128 + ((n) * 0x40))
152 
153 /* DMA descriptor bits. */
154 #define MXS_DCP_CONTROL0_HASH_TERM		(1 << 13)
155 #define MXS_DCP_CONTROL0_HASH_INIT		(1 << 12)
156 #define MXS_DCP_CONTROL0_PAYLOAD_KEY		(1 << 11)
157 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT		(1 << 8)
158 #define MXS_DCP_CONTROL0_CIPHER_INIT		(1 << 9)
159 #define MXS_DCP_CONTROL0_ENABLE_HASH		(1 << 6)
160 #define MXS_DCP_CONTROL0_ENABLE_CIPHER		(1 << 5)
161 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE		(1 << 1)
162 #define MXS_DCP_CONTROL0_INTERRUPT		(1 << 0)
163 
164 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256	(2 << 16)
165 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1	(0 << 16)
166 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC	(1 << 4)
167 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB	(0 << 4)
168 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128	(0 << 0)
169 
mxs_dcp_start_dma(struct dcp_async_ctx * actx)170 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
171 {
172 	int dma_err;
173 	struct dcp *sdcp = global_sdcp;
174 	const int chan = actx->chan;
175 	uint32_t stat;
176 	unsigned long ret;
177 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
178 	dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
179 					      DMA_TO_DEVICE);
180 
181 	dma_err = dma_mapping_error(sdcp->dev, desc_phys);
182 	if (dma_err)
183 		return dma_err;
184 
185 	reinit_completion(&sdcp->completion[chan]);
186 
187 	/* Clear status register. */
188 	writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
189 
190 	/* Load the DMA descriptor. */
191 	writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
192 
193 	/* Increment the semaphore to start the DMA transfer. */
194 	writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
195 
196 	ret = wait_for_completion_timeout(&sdcp->completion[chan],
197 					  msecs_to_jiffies(1000));
198 	if (!ret) {
199 		dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
200 			chan, readl(sdcp->base + MXS_DCP_STAT));
201 		return -ETIMEDOUT;
202 	}
203 
204 	stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
205 	if (stat & 0xff) {
206 		dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
207 			chan, stat);
208 		return -EINVAL;
209 	}
210 
211 	dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
212 
213 	return 0;
214 }
215 
216 /*
217  * Encryption (AES128)
218  */
mxs_dcp_run_aes(struct dcp_async_ctx * actx,struct skcipher_request * req,int init)219 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
220 			   struct skcipher_request *req, int init)
221 {
222 	dma_addr_t key_phys, src_phys, dst_phys;
223 	struct dcp *sdcp = global_sdcp;
224 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
225 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
226 	int ret;
227 
228 	key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
229 				  2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
230 	ret = dma_mapping_error(sdcp->dev, key_phys);
231 	if (ret)
232 		return ret;
233 
234 	src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
235 				  DCP_BUF_SZ, DMA_TO_DEVICE);
236 	ret = dma_mapping_error(sdcp->dev, src_phys);
237 	if (ret)
238 		goto err_src;
239 
240 	dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
241 				  DCP_BUF_SZ, DMA_FROM_DEVICE);
242 	ret = dma_mapping_error(sdcp->dev, dst_phys);
243 	if (ret)
244 		goto err_dst;
245 
246 	if (actx->fill % AES_BLOCK_SIZE) {
247 		dev_err(sdcp->dev, "Invalid block size!\n");
248 		ret = -EINVAL;
249 		goto aes_done_run;
250 	}
251 
252 	/* Fill in the DMA descriptor. */
253 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
254 		    MXS_DCP_CONTROL0_INTERRUPT |
255 		    MXS_DCP_CONTROL0_ENABLE_CIPHER;
256 
257 	/* Payload contains the key. */
258 	desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
259 
260 	if (rctx->enc)
261 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
262 	if (init)
263 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
264 
265 	desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
266 
267 	if (rctx->ecb)
268 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
269 	else
270 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
271 
272 	desc->next_cmd_addr = 0;
273 	desc->source = src_phys;
274 	desc->destination = dst_phys;
275 	desc->size = actx->fill;
276 	desc->payload = key_phys;
277 	desc->status = 0;
278 
279 	ret = mxs_dcp_start_dma(actx);
280 
281 aes_done_run:
282 	dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
283 err_dst:
284 	dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
285 err_src:
286 	dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
287 			 DMA_TO_DEVICE);
288 
289 	return ret;
290 }
291 
mxs_dcp_aes_block_crypt(struct crypto_async_request * arq)292 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
293 {
294 	struct dcp *sdcp = global_sdcp;
295 
296 	struct skcipher_request *req = skcipher_request_cast(arq);
297 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
298 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
299 
300 	struct scatterlist *dst = req->dst;
301 	struct scatterlist *src = req->src;
302 	int dst_nents = sg_nents(dst);
303 
304 	const int out_off = DCP_BUF_SZ;
305 	uint8_t *in_buf = sdcp->coh->aes_in_buf;
306 	uint8_t *out_buf = sdcp->coh->aes_out_buf;
307 
308 	uint32_t dst_off = 0;
309 	uint8_t *src_buf = NULL;
310 	uint32_t last_out_len = 0;
311 
312 	uint8_t *key = sdcp->coh->aes_key;
313 
314 	int ret = 0;
315 	unsigned int i, len, clen, tlen = 0;
316 	int init = 0;
317 	bool limit_hit = false;
318 
319 	actx->fill = 0;
320 
321 	/* Copy the key from the temporary location. */
322 	memcpy(key, actx->key, actx->key_len);
323 
324 	if (!rctx->ecb) {
325 		/* Copy the CBC IV just past the key. */
326 		memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
327 		/* CBC needs the INIT set. */
328 		init = 1;
329 	} else {
330 		memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
331 	}
332 
333 	for_each_sg(req->src, src, sg_nents(req->src), i) {
334 		src_buf = sg_virt(src);
335 		len = sg_dma_len(src);
336 		tlen += len;
337 		limit_hit = tlen > req->cryptlen;
338 
339 		if (limit_hit)
340 			len = req->cryptlen - (tlen - len);
341 
342 		do {
343 			if (actx->fill + len > out_off)
344 				clen = out_off - actx->fill;
345 			else
346 				clen = len;
347 
348 			memcpy(in_buf + actx->fill, src_buf, clen);
349 			len -= clen;
350 			src_buf += clen;
351 			actx->fill += clen;
352 
353 			/*
354 			 * If we filled the buffer or this is the last SG,
355 			 * submit the buffer.
356 			 */
357 			if (actx->fill == out_off || sg_is_last(src) ||
358 			    limit_hit) {
359 				ret = mxs_dcp_run_aes(actx, req, init);
360 				if (ret)
361 					return ret;
362 				init = 0;
363 
364 				sg_pcopy_from_buffer(dst, dst_nents, out_buf,
365 						     actx->fill, dst_off);
366 				dst_off += actx->fill;
367 				last_out_len = actx->fill;
368 				actx->fill = 0;
369 			}
370 		} while (len);
371 
372 		if (limit_hit)
373 			break;
374 	}
375 
376 	/* Copy the IV for CBC for chaining */
377 	if (!rctx->ecb) {
378 		if (rctx->enc)
379 			memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
380 				AES_BLOCK_SIZE);
381 		else
382 			memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
383 				AES_BLOCK_SIZE);
384 	}
385 
386 	return ret;
387 }
388 
dcp_chan_thread_aes(void * data)389 static int dcp_chan_thread_aes(void *data)
390 {
391 	struct dcp *sdcp = global_sdcp;
392 	const int chan = DCP_CHAN_CRYPTO;
393 
394 	struct crypto_async_request *backlog;
395 	struct crypto_async_request *arq;
396 
397 	int ret;
398 
399 	while (!kthread_should_stop()) {
400 		set_current_state(TASK_INTERRUPTIBLE);
401 
402 		spin_lock(&sdcp->lock[chan]);
403 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
404 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
405 		spin_unlock(&sdcp->lock[chan]);
406 
407 		if (!backlog && !arq) {
408 			schedule();
409 			continue;
410 		}
411 
412 		set_current_state(TASK_RUNNING);
413 
414 		if (backlog)
415 			backlog->complete(backlog, -EINPROGRESS);
416 
417 		if (arq) {
418 			ret = mxs_dcp_aes_block_crypt(arq);
419 			arq->complete(arq, ret);
420 		}
421 	}
422 
423 	return 0;
424 }
425 
mxs_dcp_block_fallback(struct skcipher_request * req,int enc)426 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
427 {
428 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
429 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
430 	struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
431 	int ret;
432 
433 	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
434 	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
435 				      req->base.complete, req->base.data);
436 	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
437 				   req->cryptlen, req->iv);
438 
439 	if (enc)
440 		ret = crypto_skcipher_encrypt(&rctx->fallback_req);
441 	else
442 		ret = crypto_skcipher_decrypt(&rctx->fallback_req);
443 
444 	return ret;
445 }
446 
mxs_dcp_aes_enqueue(struct skcipher_request * req,int enc,int ecb)447 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
448 {
449 	struct dcp *sdcp = global_sdcp;
450 	struct crypto_async_request *arq = &req->base;
451 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
452 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
453 	int ret;
454 
455 	if (unlikely(actx->key_len != AES_KEYSIZE_128))
456 		return mxs_dcp_block_fallback(req, enc);
457 
458 	rctx->enc = enc;
459 	rctx->ecb = ecb;
460 	actx->chan = DCP_CHAN_CRYPTO;
461 
462 	spin_lock(&sdcp->lock[actx->chan]);
463 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
464 	spin_unlock(&sdcp->lock[actx->chan]);
465 
466 	wake_up_process(sdcp->thread[actx->chan]);
467 
468 	return ret;
469 }
470 
mxs_dcp_aes_ecb_decrypt(struct skcipher_request * req)471 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
472 {
473 	return mxs_dcp_aes_enqueue(req, 0, 1);
474 }
475 
mxs_dcp_aes_ecb_encrypt(struct skcipher_request * req)476 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
477 {
478 	return mxs_dcp_aes_enqueue(req, 1, 1);
479 }
480 
mxs_dcp_aes_cbc_decrypt(struct skcipher_request * req)481 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
482 {
483 	return mxs_dcp_aes_enqueue(req, 0, 0);
484 }
485 
mxs_dcp_aes_cbc_encrypt(struct skcipher_request * req)486 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
487 {
488 	return mxs_dcp_aes_enqueue(req, 1, 0);
489 }
490 
mxs_dcp_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)491 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
492 			      unsigned int len)
493 {
494 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
495 
496 	/*
497 	 * AES 128 is supposed by the hardware, store key into temporary
498 	 * buffer and exit. We must use the temporary buffer here, since
499 	 * there can still be an operation in progress.
500 	 */
501 	actx->key_len = len;
502 	if (len == AES_KEYSIZE_128) {
503 		memcpy(actx->key, key, len);
504 		return 0;
505 	}
506 
507 	/*
508 	 * If the requested AES key size is not supported by the hardware,
509 	 * but is supported by in-kernel software implementation, we use
510 	 * software fallback.
511 	 */
512 	crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
513 	crypto_skcipher_set_flags(actx->fallback,
514 				  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
515 	return crypto_skcipher_setkey(actx->fallback, key, len);
516 }
517 
mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher * tfm)518 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
519 {
520 	const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
521 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
522 	struct crypto_skcipher *blk;
523 
524 	blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
525 	if (IS_ERR(blk))
526 		return PTR_ERR(blk);
527 
528 	actx->fallback = blk;
529 	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
530 					 crypto_skcipher_reqsize(blk));
531 	return 0;
532 }
533 
mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher * tfm)534 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
535 {
536 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
537 
538 	crypto_free_skcipher(actx->fallback);
539 }
540 
541 /*
542  * Hashing (SHA1/SHA256)
543  */
mxs_dcp_run_sha(struct ahash_request * req)544 static int mxs_dcp_run_sha(struct ahash_request *req)
545 {
546 	struct dcp *sdcp = global_sdcp;
547 	int ret;
548 
549 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
550 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
551 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
552 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
553 
554 	dma_addr_t digest_phys = 0;
555 	dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
556 					     DCP_BUF_SZ, DMA_TO_DEVICE);
557 
558 	ret = dma_mapping_error(sdcp->dev, buf_phys);
559 	if (ret)
560 		return ret;
561 
562 	/* Fill in the DMA descriptor. */
563 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
564 		    MXS_DCP_CONTROL0_INTERRUPT |
565 		    MXS_DCP_CONTROL0_ENABLE_HASH;
566 	if (rctx->init)
567 		desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
568 
569 	desc->control1 = actx->alg;
570 	desc->next_cmd_addr = 0;
571 	desc->source = buf_phys;
572 	desc->destination = 0;
573 	desc->size = actx->fill;
574 	desc->payload = 0;
575 	desc->status = 0;
576 
577 	/*
578 	 * Align driver with hw behavior when generating null hashes
579 	 */
580 	if (rctx->init && rctx->fini && desc->size == 0) {
581 		struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
582 		const uint8_t *sha_buf =
583 			(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
584 			sha1_null_hash : sha256_null_hash;
585 		memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
586 		ret = 0;
587 		goto done_run;
588 	}
589 
590 	/* Set HASH_TERM bit for last transfer block. */
591 	if (rctx->fini) {
592 		digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
593 					     DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
594 		ret = dma_mapping_error(sdcp->dev, digest_phys);
595 		if (ret)
596 			goto done_run;
597 
598 		desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
599 		desc->payload = digest_phys;
600 	}
601 
602 	ret = mxs_dcp_start_dma(actx);
603 
604 	if (rctx->fini)
605 		dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
606 				 DMA_FROM_DEVICE);
607 
608 done_run:
609 	dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
610 
611 	return ret;
612 }
613 
dcp_sha_req_to_buf(struct crypto_async_request * arq)614 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
615 {
616 	struct dcp *sdcp = global_sdcp;
617 
618 	struct ahash_request *req = ahash_request_cast(arq);
619 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
620 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
621 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
622 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
623 
624 	uint8_t *in_buf = sdcp->coh->sha_in_buf;
625 	uint8_t *out_buf = sdcp->coh->sha_out_buf;
626 
627 	struct scatterlist *src;
628 
629 	unsigned int i, len, clen, oft = 0;
630 	int ret;
631 
632 	int fin = rctx->fini;
633 	if (fin)
634 		rctx->fini = 0;
635 
636 	src = req->src;
637 	len = req->nbytes;
638 
639 	while (len) {
640 		if (actx->fill + len > DCP_BUF_SZ)
641 			clen = DCP_BUF_SZ - actx->fill;
642 		else
643 			clen = len;
644 
645 		scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
646 					 0);
647 
648 		len -= clen;
649 		oft += clen;
650 		actx->fill += clen;
651 
652 		/*
653 		 * If we filled the buffer and still have some
654 		 * more data, submit the buffer.
655 		 */
656 		if (len && actx->fill == DCP_BUF_SZ) {
657 			ret = mxs_dcp_run_sha(req);
658 			if (ret)
659 				return ret;
660 			actx->fill = 0;
661 			rctx->init = 0;
662 		}
663 	}
664 
665 	if (fin) {
666 		rctx->fini = 1;
667 
668 		/* Submit whatever is left. */
669 		if (!req->result)
670 			return -EINVAL;
671 
672 		ret = mxs_dcp_run_sha(req);
673 		if (ret)
674 			return ret;
675 
676 		actx->fill = 0;
677 
678 		/* For some reason the result is flipped */
679 		for (i = 0; i < halg->digestsize; i++)
680 			req->result[i] = out_buf[halg->digestsize - i - 1];
681 	}
682 
683 	return 0;
684 }
685 
dcp_chan_thread_sha(void * data)686 static int dcp_chan_thread_sha(void *data)
687 {
688 	struct dcp *sdcp = global_sdcp;
689 	const int chan = DCP_CHAN_HASH_SHA;
690 
691 	struct crypto_async_request *backlog;
692 	struct crypto_async_request *arq;
693 	int ret;
694 
695 	while (!kthread_should_stop()) {
696 		set_current_state(TASK_INTERRUPTIBLE);
697 
698 		spin_lock(&sdcp->lock[chan]);
699 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
700 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
701 		spin_unlock(&sdcp->lock[chan]);
702 
703 		if (!backlog && !arq) {
704 			schedule();
705 			continue;
706 		}
707 
708 		set_current_state(TASK_RUNNING);
709 
710 		if (backlog)
711 			backlog->complete(backlog, -EINPROGRESS);
712 
713 		if (arq) {
714 			ret = dcp_sha_req_to_buf(arq);
715 			arq->complete(arq, ret);
716 		}
717 	}
718 
719 	return 0;
720 }
721 
dcp_sha_init(struct ahash_request * req)722 static int dcp_sha_init(struct ahash_request *req)
723 {
724 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
725 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
726 
727 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
728 
729 	/*
730 	 * Start hashing session. The code below only inits the
731 	 * hashing session context, nothing more.
732 	 */
733 	memset(actx, 0, sizeof(*actx));
734 
735 	if (strcmp(halg->base.cra_name, "sha1") == 0)
736 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
737 	else
738 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
739 
740 	actx->fill = 0;
741 	actx->hot = 0;
742 	actx->chan = DCP_CHAN_HASH_SHA;
743 
744 	mutex_init(&actx->mutex);
745 
746 	return 0;
747 }
748 
dcp_sha_update_fx(struct ahash_request * req,int fini)749 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
750 {
751 	struct dcp *sdcp = global_sdcp;
752 
753 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
754 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
755 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
756 
757 	int ret;
758 
759 	/*
760 	 * Ignore requests that have no data in them and are not
761 	 * the trailing requests in the stream of requests.
762 	 */
763 	if (!req->nbytes && !fini)
764 		return 0;
765 
766 	mutex_lock(&actx->mutex);
767 
768 	rctx->fini = fini;
769 
770 	if (!actx->hot) {
771 		actx->hot = 1;
772 		rctx->init = 1;
773 	}
774 
775 	spin_lock(&sdcp->lock[actx->chan]);
776 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
777 	spin_unlock(&sdcp->lock[actx->chan]);
778 
779 	wake_up_process(sdcp->thread[actx->chan]);
780 	mutex_unlock(&actx->mutex);
781 
782 	return ret;
783 }
784 
dcp_sha_update(struct ahash_request * req)785 static int dcp_sha_update(struct ahash_request *req)
786 {
787 	return dcp_sha_update_fx(req, 0);
788 }
789 
dcp_sha_final(struct ahash_request * req)790 static int dcp_sha_final(struct ahash_request *req)
791 {
792 	ahash_request_set_crypt(req, NULL, req->result, 0);
793 	req->nbytes = 0;
794 	return dcp_sha_update_fx(req, 1);
795 }
796 
dcp_sha_finup(struct ahash_request * req)797 static int dcp_sha_finup(struct ahash_request *req)
798 {
799 	return dcp_sha_update_fx(req, 1);
800 }
801 
dcp_sha_digest(struct ahash_request * req)802 static int dcp_sha_digest(struct ahash_request *req)
803 {
804 	int ret;
805 
806 	ret = dcp_sha_init(req);
807 	if (ret)
808 		return ret;
809 
810 	return dcp_sha_finup(req);
811 }
812 
dcp_sha_import(struct ahash_request * req,const void * in)813 static int dcp_sha_import(struct ahash_request *req, const void *in)
814 {
815 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
816 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
817 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
818 	const struct dcp_export_state *export = in;
819 
820 	memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
821 	memset(actx, 0, sizeof(struct dcp_async_ctx));
822 	memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
823 	memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
824 
825 	return 0;
826 }
827 
dcp_sha_export(struct ahash_request * req,void * out)828 static int dcp_sha_export(struct ahash_request *req, void *out)
829 {
830 	struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
831 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
832 	struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
833 	struct dcp_export_state *export = out;
834 
835 	memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
836 	memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
837 
838 	return 0;
839 }
840 
dcp_sha_cra_init(struct crypto_tfm * tfm)841 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
842 {
843 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
844 				 sizeof(struct dcp_sha_req_ctx));
845 	return 0;
846 }
847 
dcp_sha_cra_exit(struct crypto_tfm * tfm)848 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
849 {
850 }
851 
852 /* AES 128 ECB and AES 128 CBC */
853 static struct skcipher_alg dcp_aes_algs[] = {
854 	{
855 		.base.cra_name		= "ecb(aes)",
856 		.base.cra_driver_name	= "ecb-aes-dcp",
857 		.base.cra_priority	= 400,
858 		.base.cra_alignmask	= 15,
859 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
860 					  CRYPTO_ALG_NEED_FALLBACK,
861 		.base.cra_blocksize	= AES_BLOCK_SIZE,
862 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
863 		.base.cra_module	= THIS_MODULE,
864 
865 		.min_keysize		= AES_MIN_KEY_SIZE,
866 		.max_keysize		= AES_MAX_KEY_SIZE,
867 		.setkey			= mxs_dcp_aes_setkey,
868 		.encrypt		= mxs_dcp_aes_ecb_encrypt,
869 		.decrypt		= mxs_dcp_aes_ecb_decrypt,
870 		.init			= mxs_dcp_aes_fallback_init_tfm,
871 		.exit			= mxs_dcp_aes_fallback_exit_tfm,
872 	}, {
873 		.base.cra_name		= "cbc(aes)",
874 		.base.cra_driver_name	= "cbc-aes-dcp",
875 		.base.cra_priority	= 400,
876 		.base.cra_alignmask	= 15,
877 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
878 					  CRYPTO_ALG_NEED_FALLBACK,
879 		.base.cra_blocksize	= AES_BLOCK_SIZE,
880 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
881 		.base.cra_module	= THIS_MODULE,
882 
883 		.min_keysize		= AES_MIN_KEY_SIZE,
884 		.max_keysize		= AES_MAX_KEY_SIZE,
885 		.setkey			= mxs_dcp_aes_setkey,
886 		.encrypt		= mxs_dcp_aes_cbc_encrypt,
887 		.decrypt		= mxs_dcp_aes_cbc_decrypt,
888 		.ivsize			= AES_BLOCK_SIZE,
889 		.init			= mxs_dcp_aes_fallback_init_tfm,
890 		.exit			= mxs_dcp_aes_fallback_exit_tfm,
891 	},
892 };
893 
894 /* SHA1 */
895 static struct ahash_alg dcp_sha1_alg = {
896 	.init	= dcp_sha_init,
897 	.update	= dcp_sha_update,
898 	.final	= dcp_sha_final,
899 	.finup	= dcp_sha_finup,
900 	.digest	= dcp_sha_digest,
901 	.import = dcp_sha_import,
902 	.export = dcp_sha_export,
903 	.halg	= {
904 		.digestsize	= SHA1_DIGEST_SIZE,
905 		.statesize	= sizeof(struct dcp_export_state),
906 		.base		= {
907 			.cra_name		= "sha1",
908 			.cra_driver_name	= "sha1-dcp",
909 			.cra_priority		= 400,
910 			.cra_alignmask		= 63,
911 			.cra_flags		= CRYPTO_ALG_ASYNC,
912 			.cra_blocksize		= SHA1_BLOCK_SIZE,
913 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
914 			.cra_module		= THIS_MODULE,
915 			.cra_init		= dcp_sha_cra_init,
916 			.cra_exit		= dcp_sha_cra_exit,
917 		},
918 	},
919 };
920 
921 /* SHA256 */
922 static struct ahash_alg dcp_sha256_alg = {
923 	.init	= dcp_sha_init,
924 	.update	= dcp_sha_update,
925 	.final	= dcp_sha_final,
926 	.finup	= dcp_sha_finup,
927 	.digest	= dcp_sha_digest,
928 	.import = dcp_sha_import,
929 	.export = dcp_sha_export,
930 	.halg	= {
931 		.digestsize	= SHA256_DIGEST_SIZE,
932 		.statesize	= sizeof(struct dcp_export_state),
933 		.base		= {
934 			.cra_name		= "sha256",
935 			.cra_driver_name	= "sha256-dcp",
936 			.cra_priority		= 400,
937 			.cra_alignmask		= 63,
938 			.cra_flags		= CRYPTO_ALG_ASYNC,
939 			.cra_blocksize		= SHA256_BLOCK_SIZE,
940 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
941 			.cra_module		= THIS_MODULE,
942 			.cra_init		= dcp_sha_cra_init,
943 			.cra_exit		= dcp_sha_cra_exit,
944 		},
945 	},
946 };
947 
mxs_dcp_irq(int irq,void * context)948 static irqreturn_t mxs_dcp_irq(int irq, void *context)
949 {
950 	struct dcp *sdcp = context;
951 	uint32_t stat;
952 	int i;
953 
954 	stat = readl(sdcp->base + MXS_DCP_STAT);
955 	stat &= MXS_DCP_STAT_IRQ_MASK;
956 	if (!stat)
957 		return IRQ_NONE;
958 
959 	/* Clear the interrupts. */
960 	writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
961 
962 	/* Complete the DMA requests that finished. */
963 	for (i = 0; i < DCP_MAX_CHANS; i++)
964 		if (stat & (1 << i))
965 			complete(&sdcp->completion[i]);
966 
967 	return IRQ_HANDLED;
968 }
969 
mxs_dcp_probe(struct platform_device * pdev)970 static int mxs_dcp_probe(struct platform_device *pdev)
971 {
972 	struct device *dev = &pdev->dev;
973 	struct dcp *sdcp = NULL;
974 	int i, ret;
975 	int dcp_vmi_irq, dcp_irq;
976 
977 	if (global_sdcp) {
978 		dev_err(dev, "Only one DCP instance allowed!\n");
979 		return -ENODEV;
980 	}
981 
982 	dcp_vmi_irq = platform_get_irq(pdev, 0);
983 	if (dcp_vmi_irq < 0)
984 		return dcp_vmi_irq;
985 
986 	dcp_irq = platform_get_irq(pdev, 1);
987 	if (dcp_irq < 0)
988 		return dcp_irq;
989 
990 	sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
991 	if (!sdcp)
992 		return -ENOMEM;
993 
994 	sdcp->dev = dev;
995 	sdcp->base = devm_platform_ioremap_resource(pdev, 0);
996 	if (IS_ERR(sdcp->base))
997 		return PTR_ERR(sdcp->base);
998 
999 
1000 	ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1001 			       "dcp-vmi-irq", sdcp);
1002 	if (ret) {
1003 		dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1004 		return ret;
1005 	}
1006 
1007 	ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1008 			       "dcp-irq", sdcp);
1009 	if (ret) {
1010 		dev_err(dev, "Failed to claim DCP IRQ!\n");
1011 		return ret;
1012 	}
1013 
1014 	/* Allocate coherent helper block. */
1015 	sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1016 				   GFP_KERNEL);
1017 	if (!sdcp->coh)
1018 		return -ENOMEM;
1019 
1020 	/* Re-align the structure so it fits the DCP constraints. */
1021 	sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1022 
1023 	/* DCP clock is optional, only used on some SOCs */
1024 	sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1025 	if (IS_ERR(sdcp->dcp_clk)) {
1026 		if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1027 			return PTR_ERR(sdcp->dcp_clk);
1028 		sdcp->dcp_clk = NULL;
1029 	}
1030 	ret = clk_prepare_enable(sdcp->dcp_clk);
1031 	if (ret)
1032 		return ret;
1033 
1034 	/* Restart the DCP block. */
1035 	ret = stmp_reset_block(sdcp->base);
1036 	if (ret) {
1037 		dev_err(dev, "Failed reset\n");
1038 		goto err_disable_unprepare_clk;
1039 	}
1040 
1041 	/* Initialize control register. */
1042 	writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1043 	       MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1044 	       sdcp->base + MXS_DCP_CTRL);
1045 
1046 	/* Enable all DCP DMA channels. */
1047 	writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1048 	       sdcp->base + MXS_DCP_CHANNELCTRL);
1049 
1050 	/*
1051 	 * We do not enable context switching. Give the context buffer a
1052 	 * pointer to an illegal address so if context switching is
1053 	 * inadvertantly enabled, the DCP will return an error instead of
1054 	 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1055 	 * address will do.
1056 	 */
1057 	writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1058 	for (i = 0; i < DCP_MAX_CHANS; i++)
1059 		writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1060 	writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1061 
1062 	global_sdcp = sdcp;
1063 
1064 	platform_set_drvdata(pdev, sdcp);
1065 
1066 	for (i = 0; i < DCP_MAX_CHANS; i++) {
1067 		spin_lock_init(&sdcp->lock[i]);
1068 		init_completion(&sdcp->completion[i]);
1069 		crypto_init_queue(&sdcp->queue[i], 50);
1070 	}
1071 
1072 	/* Create the SHA and AES handler threads. */
1073 	sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1074 						      NULL, "mxs_dcp_chan/sha");
1075 	if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1076 		dev_err(dev, "Error starting SHA thread!\n");
1077 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1078 		goto err_disable_unprepare_clk;
1079 	}
1080 
1081 	sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1082 						    NULL, "mxs_dcp_chan/aes");
1083 	if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1084 		dev_err(dev, "Error starting SHA thread!\n");
1085 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1086 		goto err_destroy_sha_thread;
1087 	}
1088 
1089 	/* Register the various crypto algorithms. */
1090 	sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1091 
1092 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1093 		ret = crypto_register_skciphers(dcp_aes_algs,
1094 						ARRAY_SIZE(dcp_aes_algs));
1095 		if (ret) {
1096 			/* Failed to register algorithm. */
1097 			dev_err(dev, "Failed to register AES crypto!\n");
1098 			goto err_destroy_aes_thread;
1099 		}
1100 	}
1101 
1102 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1103 		ret = crypto_register_ahash(&dcp_sha1_alg);
1104 		if (ret) {
1105 			dev_err(dev, "Failed to register %s hash!\n",
1106 				dcp_sha1_alg.halg.base.cra_name);
1107 			goto err_unregister_aes;
1108 		}
1109 	}
1110 
1111 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1112 		ret = crypto_register_ahash(&dcp_sha256_alg);
1113 		if (ret) {
1114 			dev_err(dev, "Failed to register %s hash!\n",
1115 				dcp_sha256_alg.halg.base.cra_name);
1116 			goto err_unregister_sha1;
1117 		}
1118 	}
1119 
1120 	return 0;
1121 
1122 err_unregister_sha1:
1123 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1124 		crypto_unregister_ahash(&dcp_sha1_alg);
1125 
1126 err_unregister_aes:
1127 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1128 		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1129 
1130 err_destroy_aes_thread:
1131 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1132 
1133 err_destroy_sha_thread:
1134 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1135 
1136 err_disable_unprepare_clk:
1137 	clk_disable_unprepare(sdcp->dcp_clk);
1138 
1139 	return ret;
1140 }
1141 
mxs_dcp_remove(struct platform_device * pdev)1142 static int mxs_dcp_remove(struct platform_device *pdev)
1143 {
1144 	struct dcp *sdcp = platform_get_drvdata(pdev);
1145 
1146 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1147 		crypto_unregister_ahash(&dcp_sha256_alg);
1148 
1149 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1150 		crypto_unregister_ahash(&dcp_sha1_alg);
1151 
1152 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1153 		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1154 
1155 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1156 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1157 
1158 	clk_disable_unprepare(sdcp->dcp_clk);
1159 
1160 	platform_set_drvdata(pdev, NULL);
1161 
1162 	global_sdcp = NULL;
1163 
1164 	return 0;
1165 }
1166 
1167 static const struct of_device_id mxs_dcp_dt_ids[] = {
1168 	{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1169 	{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1170 	{ /* sentinel */ }
1171 };
1172 
1173 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1174 
1175 static struct platform_driver mxs_dcp_driver = {
1176 	.probe	= mxs_dcp_probe,
1177 	.remove	= mxs_dcp_remove,
1178 	.driver	= {
1179 		.name		= "mxs-dcp",
1180 		.of_match_table	= mxs_dcp_dt_ids,
1181 	},
1182 };
1183 
1184 module_platform_driver(mxs_dcp_driver);
1185 
1186 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1187 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1188 MODULE_LICENSE("GPL");
1189 MODULE_ALIAS("platform:mxs-dcp");
1190