• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #define IDM_CTRL_DIRECT_OFFSET       0x00
25 #define CFG_OFFSET                   0x00
26 #define CFG_RESET_SHIFT              31
27 #define CFG_EN_SHIFT                 30
28 #define CFG_SLAVE_ADDR_0_SHIFT       28
29 #define CFG_M_RETRY_CNT_SHIFT        16
30 #define CFG_M_RETRY_CNT_MASK         0x0f
31 
32 #define TIM_CFG_OFFSET               0x04
33 #define TIM_CFG_MODE_400_SHIFT       31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
35 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
38 
39 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
42 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
45 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
48 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
51 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
52 
53 #define M_FIFO_CTRL_OFFSET           0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT        31
55 #define M_FIFO_TX_FLUSH_SHIFT        30
56 #define M_FIFO_RX_CNT_SHIFT          16
57 #define M_FIFO_RX_CNT_MASK           0x7f
58 #define M_FIFO_RX_THLD_SHIFT         8
59 #define M_FIFO_RX_THLD_MASK          0x3f
60 
61 #define S_FIFO_CTRL_OFFSET           0x10
62 #define S_FIFO_RX_FLUSH_SHIFT        31
63 #define S_FIFO_TX_FLUSH_SHIFT        30
64 #define S_FIFO_RX_CNT_SHIFT          16
65 #define S_FIFO_RX_CNT_MASK           0x7f
66 #define S_FIFO_RX_THLD_SHIFT         8
67 #define S_FIFO_RX_THLD_MASK          0x3f
68 
69 #define M_CMD_OFFSET                 0x30
70 #define M_CMD_START_BUSY_SHIFT       31
71 #define M_CMD_STATUS_SHIFT           25
72 #define M_CMD_STATUS_MASK            0x07
73 #define M_CMD_STATUS_SUCCESS         0x0
74 #define M_CMD_STATUS_LOST_ARB        0x1
75 #define M_CMD_STATUS_NACK_ADDR       0x2
76 #define M_CMD_STATUS_NACK_DATA       0x3
77 #define M_CMD_STATUS_TIMEOUT         0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
80 #define M_CMD_PROTOCOL_SHIFT         9
81 #define M_CMD_PROTOCOL_MASK          0xf
82 #define M_CMD_PROTOCOL_QUICK         0x0
83 #define M_CMD_PROTOCOL_BLK_WR        0x7
84 #define M_CMD_PROTOCOL_BLK_RD        0x8
85 #define M_CMD_PROTOCOL_PROCESS       0xa
86 #define M_CMD_PEC_SHIFT              8
87 #define M_CMD_RD_CNT_SHIFT           0
88 #define M_CMD_RD_CNT_MASK            0xff
89 
90 #define S_CMD_OFFSET                 0x34
91 #define S_CMD_START_BUSY_SHIFT       31
92 #define S_CMD_STATUS_SHIFT           23
93 #define S_CMD_STATUS_MASK            0x07
94 #define S_CMD_STATUS_SUCCESS         0x0
95 #define S_CMD_STATUS_TIMEOUT         0x5
96 
97 #define IE_OFFSET                    0x38
98 #define IE_M_RX_FIFO_FULL_SHIFT      31
99 #define IE_M_RX_THLD_SHIFT           30
100 #define IE_M_START_BUSY_SHIFT        28
101 #define IE_M_TX_UNDERRUN_SHIFT       27
102 #define IE_S_RX_FIFO_FULL_SHIFT      26
103 #define IE_S_RX_THLD_SHIFT           25
104 #define IE_S_RX_EVENT_SHIFT          24
105 #define IE_S_START_BUSY_SHIFT        23
106 #define IE_S_TX_UNDERRUN_SHIFT       22
107 #define IE_S_RD_EVENT_SHIFT          21
108 
109 #define IS_OFFSET                    0x3c
110 #define IS_M_RX_FIFO_FULL_SHIFT      31
111 #define IS_M_RX_THLD_SHIFT           30
112 #define IS_M_START_BUSY_SHIFT        28
113 #define IS_M_TX_UNDERRUN_SHIFT       27
114 #define IS_S_RX_FIFO_FULL_SHIFT      26
115 #define IS_S_RX_THLD_SHIFT           25
116 #define IS_S_RX_EVENT_SHIFT          24
117 #define IS_S_START_BUSY_SHIFT        23
118 #define IS_S_TX_UNDERRUN_SHIFT       22
119 #define IS_S_RD_EVENT_SHIFT          21
120 
121 #define M_TX_OFFSET                  0x40
122 #define M_TX_WR_STATUS_SHIFT         31
123 #define M_TX_DATA_SHIFT              0
124 #define M_TX_DATA_MASK               0xff
125 
126 #define M_RX_OFFSET                  0x44
127 #define M_RX_STATUS_SHIFT            30
128 #define M_RX_STATUS_MASK             0x03
129 #define M_RX_PEC_ERR_SHIFT           29
130 #define M_RX_DATA_SHIFT              0
131 #define M_RX_DATA_MASK               0xff
132 
133 #define S_TX_OFFSET                  0x48
134 #define S_TX_WR_STATUS_SHIFT         31
135 #define S_TX_DATA_SHIFT              0
136 #define S_TX_DATA_MASK               0xff
137 
138 #define S_RX_OFFSET                  0x4c
139 #define S_RX_STATUS_SHIFT            30
140 #define S_RX_STATUS_MASK             0x03
141 #define S_RX_PEC_ERR_SHIFT           29
142 #define S_RX_DATA_SHIFT              0
143 #define S_RX_DATA_MASK               0xff
144 
145 #define I2C_TIMEOUT_MSEC             50000
146 #define M_TX_RX_FIFO_SIZE            64
147 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
148 
149 #define M_RX_MAX_READ_LEN            255
150 #define M_RX_FIFO_THLD_VALUE         50
151 
152 #define IE_M_ALL_INTERRUPT_SHIFT     27
153 #define IE_M_ALL_INTERRUPT_MASK      0x1e
154 
155 #define SLAVE_READ_WRITE_BIT_MASK    0x1
156 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
157 #define SLAVE_MAX_SIZE_TRANSACTION   64
158 #define SLAVE_CLOCK_STRETCH_TIME     25
159 
160 #define IE_S_ALL_INTERRUPT_SHIFT     21
161 #define IE_S_ALL_INTERRUPT_MASK      0x3f
162 /*
163  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
164  * running for less time, max slave read per tasklet is set to 10 bytes.
165  */
166 #define MAX_SLAVE_RX_PER_INT         10
167 
168 enum i2c_slave_read_status {
169 	I2C_SLAVE_RX_FIFO_EMPTY = 0,
170 	I2C_SLAVE_RX_START,
171 	I2C_SLAVE_RX_DATA,
172 	I2C_SLAVE_RX_END,
173 };
174 
175 enum bus_speed_index {
176 	I2C_SPD_100K = 0,
177 	I2C_SPD_400K,
178 };
179 
180 enum bcm_iproc_i2c_type {
181 	IPROC_I2C,
182 	IPROC_I2C_NIC
183 };
184 
185 struct bcm_iproc_i2c_dev {
186 	struct device *device;
187 	enum bcm_iproc_i2c_type type;
188 	int irq;
189 
190 	void __iomem *base;
191 	void __iomem *idm_base;
192 
193 	u32 ape_addr_mask;
194 
195 	/* lock for indirect access through IDM */
196 	spinlock_t idm_lock;
197 
198 	struct i2c_adapter adapter;
199 	unsigned int bus_speed;
200 
201 	struct completion done;
202 	int xfer_is_done;
203 
204 	struct i2c_msg *msg;
205 
206 	struct i2c_client *slave;
207 
208 	/* bytes that have been transferred */
209 	unsigned int tx_bytes;
210 	/* bytes that have been read */
211 	unsigned int rx_bytes;
212 	unsigned int thld_bytes;
213 
214 	bool slave_rx_only;
215 	bool rx_start_rcvd;
216 	bool slave_read_complete;
217 	u32 tx_underrun;
218 	u32 slave_int_mask;
219 	struct tasklet_struct slave_rx_tasklet;
220 };
221 
222 /* tasklet to process slave rx data */
223 static void slave_rx_tasklet_fn(unsigned long);
224 
225 /*
226  * Can be expanded in the future if more interrupt status bits are utilized
227  */
228 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
229 		| BIT(IS_M_RX_THLD_SHIFT))
230 
231 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
232 		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
233 		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
234 		| BIT(IS_S_RX_THLD_SHIFT))
235 
236 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
237 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
238 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
239 					 bool enable);
240 
iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev * iproc_i2c,u32 offset)241 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
242 				   u32 offset)
243 {
244 	u32 val;
245 
246 	if (iproc_i2c->idm_base) {
247 		spin_lock(&iproc_i2c->idm_lock);
248 		writel(iproc_i2c->ape_addr_mask,
249 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
250 		val = readl(iproc_i2c->base + offset);
251 		spin_unlock(&iproc_i2c->idm_lock);
252 	} else {
253 		val = readl(iproc_i2c->base + offset);
254 	}
255 
256 	return val;
257 }
258 
iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev * iproc_i2c,u32 offset,u32 val)259 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
260 				    u32 offset, u32 val)
261 {
262 	if (iproc_i2c->idm_base) {
263 		spin_lock(&iproc_i2c->idm_lock);
264 		writel(iproc_i2c->ape_addr_mask,
265 		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
266 		writel(val, iproc_i2c->base + offset);
267 		spin_unlock(&iproc_i2c->idm_lock);
268 	} else {
269 		writel(val, iproc_i2c->base + offset);
270 	}
271 }
272 
bcm_iproc_i2c_slave_init(struct bcm_iproc_i2c_dev * iproc_i2c,bool need_reset)273 static void bcm_iproc_i2c_slave_init(
274 	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
275 {
276 	u32 val;
277 
278 	iproc_i2c->tx_underrun = 0;
279 	if (need_reset) {
280 		/* put controller in reset */
281 		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
282 		val |= BIT(CFG_RESET_SHIFT);
283 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
284 
285 		/* wait 100 usec per spec */
286 		udelay(100);
287 
288 		/* bring controller out of reset */
289 		val &= ~(BIT(CFG_RESET_SHIFT));
290 		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
291 	}
292 
293 	/* flush TX/RX FIFOs */
294 	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
295 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
296 
297 	/* Maximum slave stretch time */
298 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
299 	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
300 	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
301 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
302 
303 	/* Configure the slave address */
304 	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
305 	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
306 	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
307 	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
308 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
309 
310 	/* clear all pending slave interrupts */
311 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
312 
313 	/* Enable interrupt register to indicate a valid byte in receive fifo */
314 	val = BIT(IE_S_RX_EVENT_SHIFT);
315 	/* Enable interrupt register to indicate a Master read transaction */
316 	val |= BIT(IE_S_RD_EVENT_SHIFT);
317 	/* Enable interrupt register for the Slave BUSY command */
318 	val |= BIT(IE_S_START_BUSY_SHIFT);
319 	iproc_i2c->slave_int_mask = val;
320 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
321 }
322 
bcm_iproc_i2c_check_slave_status(struct bcm_iproc_i2c_dev * iproc_i2c)323 static void bcm_iproc_i2c_check_slave_status(
324 	struct bcm_iproc_i2c_dev *iproc_i2c)
325 {
326 	u32 val;
327 
328 	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
329 	/* status is valid only when START_BUSY is cleared after it was set */
330 	if (val & BIT(S_CMD_START_BUSY_SHIFT))
331 		return;
332 
333 	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
334 	if (val == S_CMD_STATUS_TIMEOUT) {
335 		dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
336 
337 		/* re-initialize i2c for recovery */
338 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
339 		bcm_iproc_i2c_slave_init(iproc_i2c, true);
340 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
341 	}
342 }
343 
bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev * iproc_i2c)344 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
345 {
346 	u8 rx_data, rx_status;
347 	u32 rx_bytes = 0;
348 	u32 val;
349 
350 	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
351 		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
352 		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
353 		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
354 
355 		if (rx_status == I2C_SLAVE_RX_START) {
356 			/* Start of SMBUS Master write */
357 			i2c_slave_event(iproc_i2c->slave,
358 					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
359 			iproc_i2c->rx_start_rcvd = true;
360 			iproc_i2c->slave_read_complete = false;
361 		} else if (rx_status == I2C_SLAVE_RX_DATA &&
362 			   iproc_i2c->rx_start_rcvd) {
363 			/* Middle of SMBUS Master write */
364 			i2c_slave_event(iproc_i2c->slave,
365 					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
366 		} else if (rx_status == I2C_SLAVE_RX_END &&
367 			   iproc_i2c->rx_start_rcvd) {
368 			/* End of SMBUS Master write */
369 			if (iproc_i2c->slave_rx_only)
370 				i2c_slave_event(iproc_i2c->slave,
371 						I2C_SLAVE_WRITE_RECEIVED,
372 						&rx_data);
373 
374 			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
375 					&rx_data);
376 		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
377 			iproc_i2c->rx_start_rcvd = false;
378 			iproc_i2c->slave_read_complete = true;
379 			break;
380 		}
381 
382 		rx_bytes++;
383 	}
384 }
385 
slave_rx_tasklet_fn(unsigned long data)386 static void slave_rx_tasklet_fn(unsigned long data)
387 {
388 	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
389 	u32 int_clr;
390 
391 	bcm_iproc_i2c_slave_read(iproc_i2c);
392 
393 	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
394 	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
395 
396 	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
397 		/*
398 		 * In case of single byte master-read request,
399 		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
400 		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
401 		 * from first IS_S_TX_UNDERRUN_SHIFT event.
402 		 *
403 		 * This means don't send any data from slave when
404 		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
405 		 * eeprom or other backend slave driver read pointer twice.
406 		 */
407 		iproc_i2c->tx_underrun = 0;
408 		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
409 
410 		/* clear IS_S_RD_EVENT_SHIFT interrupt */
411 		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
412 	}
413 
414 	/* clear slave interrupt */
415 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
416 	/* enable slave interrupts */
417 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
418 }
419 
bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev * iproc_i2c,u32 status)420 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
421 				    u32 status)
422 {
423 	u32 val;
424 	u8 value;
425 
426 	/*
427 	 * Slave events in case of master-write, master-write-read and,
428 	 * master-read
429 	 *
430 	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
431 	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
432 	 *                    events
433 	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
434 	 *                    events or only IS_S_RD_EVENT_SHIFT
435 	 */
436 	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
437 	    status & BIT(IS_S_RD_EVENT_SHIFT)) {
438 		/* disable slave interrupts */
439 		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
440 		val &= ~iproc_i2c->slave_int_mask;
441 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
442 
443 		if (status & BIT(IS_S_RD_EVENT_SHIFT))
444 			/* Master-write-read request */
445 			iproc_i2c->slave_rx_only = false;
446 		else
447 			/* Master-write request only */
448 			iproc_i2c->slave_rx_only = true;
449 
450 		/* schedule tasklet to read data later */
451 		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
452 
453 		/* clear only IS_S_RX_EVENT_SHIFT interrupt */
454 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
455 				 BIT(IS_S_RX_EVENT_SHIFT));
456 	}
457 
458 	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
459 		iproc_i2c->tx_underrun++;
460 		if (iproc_i2c->tx_underrun == 1)
461 			/* Start of SMBUS for Master Read */
462 			i2c_slave_event(iproc_i2c->slave,
463 					I2C_SLAVE_READ_REQUESTED,
464 					&value);
465 		else
466 			/* Master read other than start */
467 			i2c_slave_event(iproc_i2c->slave,
468 					I2C_SLAVE_READ_PROCESSED,
469 					&value);
470 
471 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
472 		/* start transfer */
473 		val = BIT(S_CMD_START_BUSY_SHIFT);
474 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
475 
476 		/* clear interrupt */
477 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
478 				 BIT(IS_S_TX_UNDERRUN_SHIFT));
479 	}
480 
481 	/* Stop received from master in case of master read transaction */
482 	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
483 		/*
484 		 * Enable interrupt for TX FIFO becomes empty and
485 		 * less than PKT_LENGTH bytes were output on the SMBUS
486 		 */
487 		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
488 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
489 				 iproc_i2c->slave_int_mask);
490 
491 		/* End of SMBUS for Master Read */
492 		val = BIT(S_TX_WR_STATUS_SHIFT);
493 		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
494 
495 		val = BIT(S_CMD_START_BUSY_SHIFT);
496 		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
497 
498 		/* flush TX FIFOs */
499 		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
500 		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
501 		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
502 
503 		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
504 
505 		/* clear interrupt */
506 		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
507 				 BIT(IS_S_START_BUSY_SHIFT));
508 	}
509 
510 	/* check slave transmit status only if slave is transmitting */
511 	if (!iproc_i2c->slave_rx_only)
512 		bcm_iproc_i2c_check_slave_status(iproc_i2c);
513 
514 	return true;
515 }
516 
bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev * iproc_i2c)517 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
518 {
519 	struct i2c_msg *msg = iproc_i2c->msg;
520 	uint32_t val;
521 
522 	/* Read valid data from RX FIFO */
523 	while (iproc_i2c->rx_bytes < msg->len) {
524 		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
525 
526 		/* rx fifo empty */
527 		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
528 			break;
529 
530 		msg->buf[iproc_i2c->rx_bytes] =
531 			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
532 		iproc_i2c->rx_bytes++;
533 	}
534 }
535 
bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev * iproc_i2c)536 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
537 {
538 	struct i2c_msg *msg = iproc_i2c->msg;
539 	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
540 	unsigned int i;
541 	u32 val;
542 
543 	/* can only fill up to the FIFO size */
544 	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
545 	for (i = 0; i < tx_bytes; i++) {
546 		/* start from where we left over */
547 		unsigned int idx = iproc_i2c->tx_bytes + i;
548 
549 		val = msg->buf[idx];
550 
551 		/* mark the last byte */
552 		if (idx == msg->len - 1) {
553 			val |= BIT(M_TX_WR_STATUS_SHIFT);
554 
555 			if (iproc_i2c->irq) {
556 				u32 tmp;
557 
558 				/*
559 				 * Since this is the last byte, we should now
560 				 * disable TX FIFO underrun interrupt
561 				 */
562 				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
563 				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
564 				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
565 						 tmp);
566 			}
567 		}
568 
569 		/* load data into TX FIFO */
570 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
571 	}
572 
573 	/* update number of transferred bytes */
574 	iproc_i2c->tx_bytes += tx_bytes;
575 }
576 
bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev * iproc_i2c)577 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
578 {
579 	struct i2c_msg *msg = iproc_i2c->msg;
580 	u32 bytes_left, val;
581 
582 	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
583 	bytes_left = msg->len - iproc_i2c->rx_bytes;
584 	if (bytes_left == 0) {
585 		if (iproc_i2c->irq) {
586 			/* finished reading all data, disable rx thld event */
587 			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
588 			val &= ~BIT(IS_M_RX_THLD_SHIFT);
589 			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
590 		}
591 	} else if (bytes_left < iproc_i2c->thld_bytes) {
592 		/* set bytes left as threshold */
593 		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
594 		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
595 		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
596 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
597 		iproc_i2c->thld_bytes = bytes_left;
598 	}
599 	/*
600 	 * bytes_left >= iproc_i2c->thld_bytes,
601 	 * hence no need to change the THRESHOLD SET.
602 	 * It will remain as iproc_i2c->thld_bytes itself
603 	 */
604 }
605 
bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev * iproc_i2c,u32 status)606 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
607 					  u32 status)
608 {
609 	/* TX FIFO is empty and we have more data to send */
610 	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
611 		bcm_iproc_i2c_send(iproc_i2c);
612 
613 	/* RX FIFO threshold is reached and data needs to be read out */
614 	if (status & BIT(IS_M_RX_THLD_SHIFT))
615 		bcm_iproc_i2c_read(iproc_i2c);
616 
617 	/* transfer is done */
618 	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
619 		iproc_i2c->xfer_is_done = 1;
620 		if (iproc_i2c->irq)
621 			complete(&iproc_i2c->done);
622 	}
623 }
624 
bcm_iproc_i2c_isr(int irq,void * data)625 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
626 {
627 	struct bcm_iproc_i2c_dev *iproc_i2c = data;
628 	u32 slave_status;
629 	u32 status;
630 	bool ret;
631 
632 	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
633 	/* process only slave interrupt which are enabled */
634 	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
635 		       ISR_MASK_SLAVE;
636 
637 	if (slave_status) {
638 		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
639 		if (ret)
640 			return IRQ_HANDLED;
641 		else
642 			return IRQ_NONE;
643 	}
644 
645 	status &= ISR_MASK;
646 	if (!status)
647 		return IRQ_NONE;
648 
649 	/* process all master based events */
650 	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
651 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
652 
653 	return IRQ_HANDLED;
654 }
655 
bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev * iproc_i2c)656 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
657 {
658 	u32 val;
659 
660 	/* put controller in reset */
661 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
662 	val |= BIT(CFG_RESET_SHIFT);
663 	val &= ~(BIT(CFG_EN_SHIFT));
664 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
665 
666 	/* wait 100 usec per spec */
667 	udelay(100);
668 
669 	/* bring controller out of reset */
670 	val &= ~(BIT(CFG_RESET_SHIFT));
671 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
672 
673 	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
674 	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
675 	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
676 	/* disable all interrupts */
677 	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
678 	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
679 			IE_M_ALL_INTERRUPT_SHIFT);
680 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
681 
682 	/* clear all pending interrupts */
683 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
684 
685 	return 0;
686 }
687 
bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev * iproc_i2c,bool enable)688 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
689 					 bool enable)
690 {
691 	u32 val;
692 
693 	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
694 	if (enable)
695 		val |= BIT(CFG_EN_SHIFT);
696 	else
697 		val &= ~BIT(CFG_EN_SHIFT);
698 	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
699 }
700 
bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev * iproc_i2c,struct i2c_msg * msg)701 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
702 				      struct i2c_msg *msg)
703 {
704 	u32 val;
705 
706 	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
707 	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
708 
709 	switch (val) {
710 	case M_CMD_STATUS_SUCCESS:
711 		return 0;
712 
713 	case M_CMD_STATUS_LOST_ARB:
714 		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
715 		return -EAGAIN;
716 
717 	case M_CMD_STATUS_NACK_ADDR:
718 		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
719 		return -ENXIO;
720 
721 	case M_CMD_STATUS_NACK_DATA:
722 		dev_dbg(iproc_i2c->device, "NAK data\n");
723 		return -ENXIO;
724 
725 	case M_CMD_STATUS_TIMEOUT:
726 		dev_dbg(iproc_i2c->device, "bus timeout\n");
727 		return -ETIMEDOUT;
728 
729 	case M_CMD_STATUS_FIFO_UNDERRUN:
730 		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
731 		return -ENXIO;
732 
733 	case M_CMD_STATUS_RX_FIFO_FULL:
734 		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
735 		return -ETIMEDOUT;
736 
737 	default:
738 		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
739 
740 		/* re-initialize i2c for recovery */
741 		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
742 		bcm_iproc_i2c_init(iproc_i2c);
743 		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
744 
745 		return -EIO;
746 	}
747 }
748 
bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev * iproc_i2c,struct i2c_msg * msg,u32 cmd)749 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
750 				   struct i2c_msg *msg,
751 				   u32 cmd)
752 {
753 	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
754 	u32 val, status;
755 	int ret;
756 
757 	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
758 
759 	if (iproc_i2c->irq) {
760 		time_left = wait_for_completion_timeout(&iproc_i2c->done,
761 							time_left);
762 		/* disable all interrupts */
763 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
764 		/* read it back to flush the write */
765 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
766 		/* make sure the interrupt handler isn't running */
767 		synchronize_irq(iproc_i2c->irq);
768 
769 	} else { /* polling mode */
770 		unsigned long timeout = jiffies + time_left;
771 
772 		do {
773 			status = iproc_i2c_rd_reg(iproc_i2c,
774 						  IS_OFFSET) & ISR_MASK;
775 			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
776 			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
777 
778 			if (time_after(jiffies, timeout)) {
779 				time_left = 0;
780 				break;
781 			}
782 
783 			cpu_relax();
784 			cond_resched();
785 		} while (!iproc_i2c->xfer_is_done);
786 	}
787 
788 	if (!time_left && !iproc_i2c->xfer_is_done) {
789 		dev_err(iproc_i2c->device, "transaction timed out\n");
790 
791 		/* flush both TX/RX FIFOs */
792 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
793 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
794 		return -ETIMEDOUT;
795 	}
796 
797 	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
798 	if (ret) {
799 		/* flush both TX/RX FIFOs */
800 		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
801 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
802 		return ret;
803 	}
804 
805 	return 0;
806 }
807 
808 /*
809  * If 'process_call' is true, then this is a multi-msg transfer that requires
810  * a repeated start between the messages.
811  * More specifically, it must be a write (reg) followed by a read (data).
812  * The i2c quirks are set to enforce this rule.
813  */
bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev * iproc_i2c,struct i2c_msg * msgs,bool process_call)814 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
815 					struct i2c_msg *msgs, bool process_call)
816 {
817 	int i;
818 	u8 addr;
819 	u32 val, tmp, val_intr_en;
820 	unsigned int tx_bytes;
821 	struct i2c_msg *msg = &msgs[0];
822 
823 	/* check if bus is busy */
824 	if (!!(iproc_i2c_rd_reg(iproc_i2c,
825 				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
826 		dev_warn(iproc_i2c->device, "bus is busy\n");
827 		return -EBUSY;
828 	}
829 
830 	iproc_i2c->msg = msg;
831 
832 	/* format and load slave address into the TX FIFO */
833 	addr = i2c_8bit_addr_from_msg(msg);
834 	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
835 
836 	/*
837 	 * For a write transaction, load data into the TX FIFO. Only allow
838 	 * loading up to TX FIFO size - 1 bytes of data since the first byte
839 	 * has been used up by the slave address
840 	 */
841 	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
842 	if (!(msg->flags & I2C_M_RD)) {
843 		for (i = 0; i < tx_bytes; i++) {
844 			val = msg->buf[i];
845 
846 			/* mark the last byte */
847 			if (!process_call && (i == msg->len - 1))
848 				val |= BIT(M_TX_WR_STATUS_SHIFT);
849 
850 			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
851 		}
852 		iproc_i2c->tx_bytes = tx_bytes;
853 	}
854 
855 	/* Process the read message if this is process call */
856 	if (process_call) {
857 		msg++;
858 		iproc_i2c->msg = msg;  /* point to second msg */
859 
860 		/*
861 		 * The last byte to be sent out should be a slave
862 		 * address with read operation
863 		 */
864 		addr = i2c_8bit_addr_from_msg(msg);
865 		/* mark it the last byte out */
866 		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
867 		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
868 	}
869 
870 	/* mark as incomplete before starting the transaction */
871 	if (iproc_i2c->irq)
872 		reinit_completion(&iproc_i2c->done);
873 
874 	iproc_i2c->xfer_is_done = 0;
875 
876 	/*
877 	 * Enable the "start busy" interrupt, which will be triggered after the
878 	 * transaction is done, i.e., the internal start_busy bit, transitions
879 	 * from 1 to 0.
880 	 */
881 	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
882 
883 	/*
884 	 * If TX data size is larger than the TX FIFO, need to enable TX
885 	 * underrun interrupt, which will be triggerred when the TX FIFO is
886 	 * empty. When that happens we can then pump more data into the FIFO
887 	 */
888 	if (!process_call && !(msg->flags & I2C_M_RD) &&
889 	    msg->len > iproc_i2c->tx_bytes)
890 		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
891 
892 	/*
893 	 * Now we can activate the transfer. For a read operation, specify the
894 	 * number of bytes to read
895 	 */
896 	val = BIT(M_CMD_START_BUSY_SHIFT);
897 
898 	if (msg->len == 0) {
899 		/* SMBUS QUICK Command (Read/Write) */
900 		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
901 	} else if (msg->flags & I2C_M_RD) {
902 		u32 protocol;
903 
904 		iproc_i2c->rx_bytes = 0;
905 		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
906 			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
907 		else
908 			iproc_i2c->thld_bytes = msg->len;
909 
910 		/* set threshold value */
911 		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
912 		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
913 		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
914 		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
915 
916 		/* enable the RX threshold interrupt */
917 		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
918 
919 		protocol = process_call ?
920 				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
921 
922 		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
923 		       (msg->len << M_CMD_RD_CNT_SHIFT);
924 	} else {
925 		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
926 	}
927 
928 	if (iproc_i2c->irq)
929 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
930 
931 	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
932 }
933 
bcm_iproc_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg msgs[],int num)934 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
935 			      struct i2c_msg msgs[], int num)
936 {
937 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
938 	bool process_call = false;
939 	int ret;
940 
941 	if (num == 2) {
942 		/* Repeated start, use process call */
943 		process_call = true;
944 		if (msgs[1].flags & I2C_M_NOSTART) {
945 			dev_err(iproc_i2c->device, "Invalid repeated start\n");
946 			return -EOPNOTSUPP;
947 		}
948 	}
949 
950 	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
951 	if (ret) {
952 		dev_dbg(iproc_i2c->device, "xfer failed\n");
953 		return ret;
954 	}
955 
956 	return num;
957 }
958 
bcm_iproc_i2c_functionality(struct i2c_adapter * adap)959 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
960 {
961 	u32 val;
962 
963 	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
964 
965 	if (adap->algo->reg_slave)
966 		val |= I2C_FUNC_SLAVE;
967 
968 	return val;
969 }
970 
971 static struct i2c_algorithm bcm_iproc_algo = {
972 	.master_xfer = bcm_iproc_i2c_xfer,
973 	.functionality = bcm_iproc_i2c_functionality,
974 	.reg_slave = bcm_iproc_i2c_reg_slave,
975 	.unreg_slave = bcm_iproc_i2c_unreg_slave,
976 };
977 
978 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
979 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
980 	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
981 	.max_read_len = M_RX_MAX_READ_LEN,
982 };
983 
bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev * iproc_i2c)984 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
985 {
986 	unsigned int bus_speed;
987 	u32 val;
988 	int ret = of_property_read_u32(iproc_i2c->device->of_node,
989 				       "clock-frequency", &bus_speed);
990 	if (ret < 0) {
991 		dev_info(iproc_i2c->device,
992 			"unable to interpret clock-frequency DT property\n");
993 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
994 	}
995 
996 	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
997 		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
998 			bus_speed);
999 		dev_err(iproc_i2c->device,
1000 			"valid speeds are 100khz and 400khz\n");
1001 		return -EINVAL;
1002 	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1003 		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1004 	} else {
1005 		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1006 	}
1007 
1008 	iproc_i2c->bus_speed = bus_speed;
1009 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1010 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1011 	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1012 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1013 
1014 	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1015 
1016 	return 0;
1017 }
1018 
bcm_iproc_i2c_probe(struct platform_device * pdev)1019 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1020 {
1021 	int irq, ret = 0;
1022 	struct bcm_iproc_i2c_dev *iproc_i2c;
1023 	struct i2c_adapter *adap;
1024 	struct resource *res;
1025 
1026 	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1027 				 GFP_KERNEL);
1028 	if (!iproc_i2c)
1029 		return -ENOMEM;
1030 
1031 	platform_set_drvdata(pdev, iproc_i2c);
1032 	iproc_i2c->device = &pdev->dev;
1033 	iproc_i2c->type =
1034 		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1035 	init_completion(&iproc_i2c->done);
1036 
1037 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1038 	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1039 	if (IS_ERR(iproc_i2c->base))
1040 		return PTR_ERR(iproc_i2c->base);
1041 
1042 	if (iproc_i2c->type == IPROC_I2C_NIC) {
1043 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1044 		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1045 							    res);
1046 		if (IS_ERR(iproc_i2c->idm_base))
1047 			return PTR_ERR(iproc_i2c->idm_base);
1048 
1049 		ret = of_property_read_u32(iproc_i2c->device->of_node,
1050 					   "brcm,ape-hsls-addr-mask",
1051 					   &iproc_i2c->ape_addr_mask);
1052 		if (ret < 0) {
1053 			dev_err(iproc_i2c->device,
1054 				"'brcm,ape-hsls-addr-mask' missing\n");
1055 			return -EINVAL;
1056 		}
1057 
1058 		spin_lock_init(&iproc_i2c->idm_lock);
1059 
1060 		/* no slave support */
1061 		bcm_iproc_algo.reg_slave = NULL;
1062 		bcm_iproc_algo.unreg_slave = NULL;
1063 	}
1064 
1065 	ret = bcm_iproc_i2c_init(iproc_i2c);
1066 	if (ret)
1067 		return ret;
1068 
1069 	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1070 	if (ret)
1071 		return ret;
1072 
1073 	irq = platform_get_irq(pdev, 0);
1074 	if (irq > 0) {
1075 		ret = devm_request_irq(iproc_i2c->device, irq,
1076 				       bcm_iproc_i2c_isr, 0, pdev->name,
1077 				       iproc_i2c);
1078 		if (ret < 0) {
1079 			dev_err(iproc_i2c->device,
1080 				"unable to request irq %i\n", irq);
1081 			return ret;
1082 		}
1083 
1084 		iproc_i2c->irq = irq;
1085 	} else {
1086 		dev_warn(iproc_i2c->device,
1087 			 "no irq resource, falling back to poll mode\n");
1088 	}
1089 
1090 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1091 
1092 	adap = &iproc_i2c->adapter;
1093 	i2c_set_adapdata(adap, iproc_i2c);
1094 	snprintf(adap->name, sizeof(adap->name),
1095 		"Broadcom iProc (%s)",
1096 		of_node_full_name(iproc_i2c->device->of_node));
1097 	adap->algo = &bcm_iproc_algo;
1098 	adap->quirks = &bcm_iproc_i2c_quirks;
1099 	adap->dev.parent = &pdev->dev;
1100 	adap->dev.of_node = pdev->dev.of_node;
1101 
1102 	return i2c_add_adapter(adap);
1103 }
1104 
bcm_iproc_i2c_remove(struct platform_device * pdev)1105 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
1106 {
1107 	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1108 
1109 	if (iproc_i2c->irq) {
1110 		/*
1111 		 * Make sure there's no pending interrupt when we remove the
1112 		 * adapter
1113 		 */
1114 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1115 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1116 		synchronize_irq(iproc_i2c->irq);
1117 	}
1118 
1119 	i2c_del_adapter(&iproc_i2c->adapter);
1120 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1121 
1122 	return 0;
1123 }
1124 
1125 #ifdef CONFIG_PM_SLEEP
1126 
bcm_iproc_i2c_suspend(struct device * dev)1127 static int bcm_iproc_i2c_suspend(struct device *dev)
1128 {
1129 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1130 
1131 	if (iproc_i2c->irq) {
1132 		/*
1133 		 * Make sure there's no pending interrupt when we go into
1134 		 * suspend
1135 		 */
1136 		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1137 		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1138 		synchronize_irq(iproc_i2c->irq);
1139 	}
1140 
1141 	/* now disable the controller */
1142 	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1143 
1144 	return 0;
1145 }
1146 
bcm_iproc_i2c_resume(struct device * dev)1147 static int bcm_iproc_i2c_resume(struct device *dev)
1148 {
1149 	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1150 	int ret;
1151 	u32 val;
1152 
1153 	/*
1154 	 * Power domain could have been shut off completely in system deep
1155 	 * sleep, so re-initialize the block here
1156 	 */
1157 	ret = bcm_iproc_i2c_init(iproc_i2c);
1158 	if (ret)
1159 		return ret;
1160 
1161 	/* configure to the desired bus speed */
1162 	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1163 	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1164 	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1165 	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1166 
1167 	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1168 
1169 	return 0;
1170 }
1171 
1172 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1173 	.suspend_late = &bcm_iproc_i2c_suspend,
1174 	.resume_early = &bcm_iproc_i2c_resume
1175 };
1176 
1177 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1178 #else
1179 #define BCM_IPROC_I2C_PM_OPS NULL
1180 #endif /* CONFIG_PM_SLEEP */
1181 
1182 
bcm_iproc_i2c_reg_slave(struct i2c_client * slave)1183 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1184 {
1185 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1186 
1187 	if (iproc_i2c->slave)
1188 		return -EBUSY;
1189 
1190 	if (slave->flags & I2C_CLIENT_TEN)
1191 		return -EAFNOSUPPORT;
1192 
1193 	iproc_i2c->slave = slave;
1194 
1195 	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1196 		     (unsigned long)iproc_i2c);
1197 
1198 	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1199 	return 0;
1200 }
1201 
bcm_iproc_i2c_unreg_slave(struct i2c_client * slave)1202 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1203 {
1204 	u32 tmp;
1205 	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1206 
1207 	if (!iproc_i2c->slave)
1208 		return -EINVAL;
1209 
1210 	disable_irq(iproc_i2c->irq);
1211 
1212 	/* disable all slave interrupts */
1213 	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1214 	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1215 			IE_S_ALL_INTERRUPT_SHIFT);
1216 	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1217 
1218 	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1219 
1220 	/* Erase the slave address programmed */
1221 	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1222 	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1223 	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1224 
1225 	/* flush TX/RX FIFOs */
1226 	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1227 	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1228 
1229 	/* clear all pending slave interrupts */
1230 	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1231 
1232 	iproc_i2c->slave = NULL;
1233 
1234 	enable_irq(iproc_i2c->irq);
1235 
1236 	return 0;
1237 }
1238 
1239 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1240 	{
1241 		.compatible = "brcm,iproc-i2c",
1242 		.data = (int *)IPROC_I2C,
1243 	}, {
1244 		.compatible = "brcm,iproc-nic-i2c",
1245 		.data = (int *)IPROC_I2C_NIC,
1246 	},
1247 	{ /* sentinel */ }
1248 };
1249 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1250 
1251 static struct platform_driver bcm_iproc_i2c_driver = {
1252 	.driver = {
1253 		.name = "bcm-iproc-i2c",
1254 		.of_match_table = bcm_iproc_i2c_of_match,
1255 		.pm = BCM_IPROC_I2C_PM_OPS,
1256 	},
1257 	.probe = bcm_iproc_i2c_probe,
1258 	.remove = bcm_iproc_i2c_remove,
1259 };
1260 module_platform_driver(bcm_iproc_i2c_driver);
1261 
1262 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1263 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1264 MODULE_LICENSE("GPL v2");
1265