1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5 *
6 * Copyright (C) 2014-2020 Renesas Electronics Corporation
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #else
32 #define arm_iommu_create_mapping(...) NULL
33 #define arm_iommu_attach_device(...) -ENODEV
34 #define arm_iommu_release_mapping(...) do {} while (0)
35 #define arm_iommu_detach_device(...) do {} while (0)
36 #endif
37
38 #define IPMMU_CTX_MAX 8U
39 #define IPMMU_CTX_INVALID -1
40
41 #define IPMMU_UTLB_MAX 48U
42
43 struct ipmmu_features {
44 bool use_ns_alias_offset;
45 bool has_cache_leaf_nodes;
46 unsigned int number_of_contexts;
47 unsigned int num_utlbs;
48 bool setup_imbuscr;
49 bool twobit_imttbcr_sl0;
50 bool reserved_context;
51 bool cache_snoop;
52 unsigned int ctx_offset_base;
53 unsigned int ctx_offset_stride;
54 unsigned int utlb_offset_base;
55 };
56
57 struct ipmmu_vmsa_device {
58 struct device *dev;
59 void __iomem *base;
60 struct iommu_device iommu;
61 struct ipmmu_vmsa_device *root;
62 const struct ipmmu_features *features;
63 unsigned int num_ctx;
64 spinlock_t lock; /* Protects ctx and domains[] */
65 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
66 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
67 s8 utlb_ctx[IPMMU_UTLB_MAX];
68
69 struct iommu_group *group;
70 struct dma_iommu_mapping *mapping;
71 };
72
73 struct ipmmu_vmsa_domain {
74 struct ipmmu_vmsa_device *mmu;
75 struct iommu_domain io_domain;
76
77 struct io_pgtable_cfg cfg;
78 struct io_pgtable_ops *iop;
79
80 unsigned int context_id;
81 struct mutex mutex; /* Protects mappings */
82 };
83
to_vmsa_domain(struct iommu_domain * dom)84 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
85 {
86 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
87 }
88
to_ipmmu(struct device * dev)89 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
90 {
91 return dev_iommu_priv_get(dev);
92 }
93
94 #define TLB_LOOP_TIMEOUT 100 /* 100us */
95
96 /* -----------------------------------------------------------------------------
97 * Registers Definition
98 */
99
100 #define IM_NS_ALIAS_OFFSET 0x800
101
102 /* MMU "context" registers */
103 #define IMCTR 0x0000 /* R-Car Gen2/3 */
104 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
105 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
106 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
107
108 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
109 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
110 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
111 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
112 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
113 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
114 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
115
116 #define IMBUSCR 0x000c /* R-Car Gen2 only */
117 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
118 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
119
120 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
121 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
122
123 #define IMSTR 0x0020 /* R-Car Gen2/3 */
124 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
125 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
126 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
127 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
128
129 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
130
131 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
132 #define IMEUAR 0x0034 /* R-Car Gen3 only */
133
134 /* uTLB registers */
135 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
136 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
137 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
138 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
139 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
140 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
141
142 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
143 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
144 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
145
146 /* -----------------------------------------------------------------------------
147 * Root device handling
148 */
149
150 static struct platform_driver ipmmu_driver;
151
ipmmu_is_root(struct ipmmu_vmsa_device * mmu)152 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
153 {
154 return mmu->root == mmu;
155 }
156
__ipmmu_check_device(struct device * dev,void * data)157 static int __ipmmu_check_device(struct device *dev, void *data)
158 {
159 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
160 struct ipmmu_vmsa_device **rootp = data;
161
162 if (ipmmu_is_root(mmu))
163 *rootp = mmu;
164
165 return 0;
166 }
167
ipmmu_find_root(void)168 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
169 {
170 struct ipmmu_vmsa_device *root = NULL;
171
172 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
173 __ipmmu_check_device) == 0 ? root : NULL;
174 }
175
176 /* -----------------------------------------------------------------------------
177 * Read/Write Access
178 */
179
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)180 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
181 {
182 return ioread32(mmu->base + offset);
183 }
184
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)185 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
186 u32 data)
187 {
188 iowrite32(data, mmu->base + offset);
189 }
190
ipmmu_ctx_reg(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg)191 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
192 unsigned int context_id, unsigned int reg)
193 {
194 return mmu->features->ctx_offset_base +
195 context_id * mmu->features->ctx_offset_stride + reg;
196 }
197
ipmmu_ctx_read(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg)198 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
199 unsigned int context_id, unsigned int reg)
200 {
201 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
202 }
203
ipmmu_ctx_write(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg,u32 data)204 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
205 unsigned int context_id, unsigned int reg, u32 data)
206 {
207 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
208 }
209
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain * domain,unsigned int reg)210 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
211 unsigned int reg)
212 {
213 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
214 }
215
ipmmu_ctx_write_root(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)216 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
217 unsigned int reg, u32 data)
218 {
219 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
220 }
221
ipmmu_ctx_write_all(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)222 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
223 unsigned int reg, u32 data)
224 {
225 if (domain->mmu != domain->mmu->root)
226 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
227
228 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
229 }
230
ipmmu_utlb_reg(struct ipmmu_vmsa_device * mmu,unsigned int reg)231 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
232 {
233 return mmu->features->utlb_offset_base + reg;
234 }
235
ipmmu_imuasid_write(struct ipmmu_vmsa_device * mmu,unsigned int utlb,u32 data)236 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
237 unsigned int utlb, u32 data)
238 {
239 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
240 }
241
ipmmu_imuctr_write(struct ipmmu_vmsa_device * mmu,unsigned int utlb,u32 data)242 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
243 unsigned int utlb, u32 data)
244 {
245 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
246 }
247
248 /* -----------------------------------------------------------------------------
249 * TLB and microTLB Management
250 */
251
252 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)253 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
254 {
255 unsigned int count = 0;
256
257 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
258 cpu_relax();
259 if (++count == TLB_LOOP_TIMEOUT) {
260 dev_err_ratelimited(domain->mmu->dev,
261 "TLB sync timed out -- MMU may be deadlocked\n");
262 return;
263 }
264 udelay(1);
265 }
266 }
267
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)268 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
269 {
270 u32 reg;
271
272 reg = ipmmu_ctx_read_root(domain, IMCTR);
273 reg |= IMCTR_FLUSH;
274 ipmmu_ctx_write_all(domain, IMCTR, reg);
275
276 ipmmu_tlb_sync(domain);
277 }
278
279 /*
280 * Enable MMU translation for the microTLB.
281 */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)282 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
283 unsigned int utlb)
284 {
285 struct ipmmu_vmsa_device *mmu = domain->mmu;
286
287 /*
288 * TODO: Reference-count the microTLB as several bus masters can be
289 * connected to the same microTLB.
290 */
291
292 /* TODO: What should we set the ASID to ? */
293 ipmmu_imuasid_write(mmu, utlb, 0);
294 /* TODO: Do we need to flush the microTLB ? */
295 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
296 IMUCTR_FLUSH | IMUCTR_MMUEN);
297 mmu->utlb_ctx[utlb] = domain->context_id;
298 }
299
300 /*
301 * Disable MMU translation for the microTLB.
302 */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)303 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
304 unsigned int utlb)
305 {
306 struct ipmmu_vmsa_device *mmu = domain->mmu;
307
308 ipmmu_imuctr_write(mmu, utlb, 0);
309 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
310 }
311
ipmmu_tlb_flush_all(void * cookie)312 static void ipmmu_tlb_flush_all(void *cookie)
313 {
314 struct ipmmu_vmsa_domain *domain = cookie;
315
316 ipmmu_tlb_invalidate(domain);
317 }
318
ipmmu_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)319 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
320 size_t granule, void *cookie)
321 {
322 ipmmu_tlb_flush_all(cookie);
323 }
324
325 static const struct iommu_flush_ops ipmmu_flush_ops = {
326 .tlb_flush_all = ipmmu_tlb_flush_all,
327 .tlb_flush_walk = ipmmu_tlb_flush,
328 .tlb_flush_leaf = ipmmu_tlb_flush,
329 };
330
331 /* -----------------------------------------------------------------------------
332 * Domain/Context Management
333 */
334
ipmmu_domain_allocate_context(struct ipmmu_vmsa_device * mmu,struct ipmmu_vmsa_domain * domain)335 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
336 struct ipmmu_vmsa_domain *domain)
337 {
338 unsigned long flags;
339 int ret;
340
341 spin_lock_irqsave(&mmu->lock, flags);
342
343 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
344 if (ret != mmu->num_ctx) {
345 mmu->domains[ret] = domain;
346 set_bit(ret, mmu->ctx);
347 } else
348 ret = -EBUSY;
349
350 spin_unlock_irqrestore(&mmu->lock, flags);
351
352 return ret;
353 }
354
ipmmu_domain_free_context(struct ipmmu_vmsa_device * mmu,unsigned int context_id)355 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
356 unsigned int context_id)
357 {
358 unsigned long flags;
359
360 spin_lock_irqsave(&mmu->lock, flags);
361
362 clear_bit(context_id, mmu->ctx);
363 mmu->domains[context_id] = NULL;
364
365 spin_unlock_irqrestore(&mmu->lock, flags);
366 }
367
ipmmu_domain_setup_context(struct ipmmu_vmsa_domain * domain)368 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
369 {
370 u64 ttbr;
371 u32 tmp;
372
373 /* TTBR0 */
374 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
375 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
376 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
377
378 /*
379 * TTBCR
380 * We use long descriptors and allocate the whole 32-bit VA space to
381 * TTBR0.
382 */
383 if (domain->mmu->features->twobit_imttbcr_sl0)
384 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
385 else
386 tmp = IMTTBCR_SL0_LVL_1;
387
388 if (domain->mmu->features->cache_snoop)
389 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
390 IMTTBCR_IRGN0_WB_WA;
391
392 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
393
394 /* MAIR0 */
395 ipmmu_ctx_write_root(domain, IMMAIR0,
396 domain->cfg.arm_lpae_s1_cfg.mair);
397
398 /* IMBUSCR */
399 if (domain->mmu->features->setup_imbuscr)
400 ipmmu_ctx_write_root(domain, IMBUSCR,
401 ipmmu_ctx_read_root(domain, IMBUSCR) &
402 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
403
404 /*
405 * IMSTR
406 * Clear all interrupt flags.
407 */
408 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
409
410 /*
411 * IMCTR
412 * Enable the MMU and interrupt generation. The long-descriptor
413 * translation table format doesn't use TEX remapping. Don't enable AF
414 * software management as we have no use for it. Flush the TLB as
415 * required when modifying the context registers.
416 */
417 ipmmu_ctx_write_all(domain, IMCTR,
418 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
419 }
420
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)421 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
422 {
423 int ret;
424
425 /*
426 * Allocate the page table operations.
427 *
428 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
429 * access, Long-descriptor format" that the NStable bit being set in a
430 * table descriptor will result in the NStable and NS bits of all child
431 * entries being ignored and considered as being set. The IPMMU seems
432 * not to comply with this, as it generates a secure access page fault
433 * if any of the NStable and NS bits isn't set when running in
434 * non-secure mode.
435 */
436 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
437 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
438 domain->cfg.ias = 32;
439 domain->cfg.oas = 40;
440 domain->cfg.tlb = &ipmmu_flush_ops;
441 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
442 domain->io_domain.geometry.force_aperture = true;
443 /*
444 * TODO: Add support for coherent walk through CCI with DVM and remove
445 * cache handling. For now, delegate it to the io-pgtable code.
446 */
447 domain->cfg.coherent_walk = false;
448 domain->cfg.iommu_dev = domain->mmu->root->dev;
449
450 /*
451 * Find an unused context.
452 */
453 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
454 if (ret < 0)
455 return ret;
456
457 domain->context_id = ret;
458
459 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
460 domain);
461 if (!domain->iop) {
462 ipmmu_domain_free_context(domain->mmu->root,
463 domain->context_id);
464 return -EINVAL;
465 }
466
467 ipmmu_domain_setup_context(domain);
468 return 0;
469 }
470
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)471 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
472 {
473 if (!domain->mmu)
474 return;
475
476 /*
477 * Disable the context. Flush the TLB as required when modifying the
478 * context registers.
479 *
480 * TODO: Is TLB flush really needed ?
481 */
482 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
483 ipmmu_tlb_sync(domain);
484 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
485 }
486
487 /* -----------------------------------------------------------------------------
488 * Fault Handling
489 */
490
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)491 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
492 {
493 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
494 struct ipmmu_vmsa_device *mmu = domain->mmu;
495 unsigned long iova;
496 u32 status;
497
498 status = ipmmu_ctx_read_root(domain, IMSTR);
499 if (!(status & err_mask))
500 return IRQ_NONE;
501
502 iova = ipmmu_ctx_read_root(domain, IMELAR);
503 if (IS_ENABLED(CONFIG_64BIT))
504 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
505
506 /*
507 * Clear the error status flags. Unlike traditional interrupt flag
508 * registers that must be cleared by writing 1, this status register
509 * seems to require 0. The error address register must be read before,
510 * otherwise its value will be 0.
511 */
512 ipmmu_ctx_write_root(domain, IMSTR, 0);
513
514 /* Log fatal errors. */
515 if (status & IMSTR_MHIT)
516 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
517 iova);
518 if (status & IMSTR_ABORT)
519 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
520 iova);
521
522 if (!(status & (IMSTR_PF | IMSTR_TF)))
523 return IRQ_NONE;
524
525 /*
526 * Try to handle page faults and translation faults.
527 *
528 * TODO: We need to look up the faulty device based on the I/O VA. Use
529 * the IOMMU device for now.
530 */
531 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
532 return IRQ_HANDLED;
533
534 dev_err_ratelimited(mmu->dev,
535 "Unhandled fault: status 0x%08x iova 0x%lx\n",
536 status, iova);
537
538 return IRQ_HANDLED;
539 }
540
ipmmu_irq(int irq,void * dev)541 static irqreturn_t ipmmu_irq(int irq, void *dev)
542 {
543 struct ipmmu_vmsa_device *mmu = dev;
544 irqreturn_t status = IRQ_NONE;
545 unsigned int i;
546 unsigned long flags;
547
548 spin_lock_irqsave(&mmu->lock, flags);
549
550 /*
551 * Check interrupts for all active contexts.
552 */
553 for (i = 0; i < mmu->num_ctx; i++) {
554 if (!mmu->domains[i])
555 continue;
556 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
557 status = IRQ_HANDLED;
558 }
559
560 spin_unlock_irqrestore(&mmu->lock, flags);
561
562 return status;
563 }
564
565 /* -----------------------------------------------------------------------------
566 * IOMMU Operations
567 */
568
__ipmmu_domain_alloc(unsigned type)569 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
570 {
571 struct ipmmu_vmsa_domain *domain;
572
573 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
574 if (!domain)
575 return NULL;
576
577 mutex_init(&domain->mutex);
578
579 return &domain->io_domain;
580 }
581
ipmmu_domain_alloc(unsigned type)582 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
583 {
584 struct iommu_domain *io_domain = NULL;
585
586 switch (type) {
587 case IOMMU_DOMAIN_UNMANAGED:
588 io_domain = __ipmmu_domain_alloc(type);
589 break;
590
591 case IOMMU_DOMAIN_DMA:
592 io_domain = __ipmmu_domain_alloc(type);
593 if (io_domain && iommu_get_dma_cookie(io_domain)) {
594 kfree(io_domain);
595 io_domain = NULL;
596 }
597 break;
598 }
599
600 return io_domain;
601 }
602
ipmmu_domain_free(struct iommu_domain * io_domain)603 static void ipmmu_domain_free(struct iommu_domain *io_domain)
604 {
605 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
606
607 /*
608 * Free the domain resources. We assume that all devices have already
609 * been detached.
610 */
611 iommu_put_dma_cookie(io_domain);
612 ipmmu_domain_destroy_context(domain);
613 free_io_pgtable_ops(domain->iop);
614 kfree(domain);
615 }
616
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)617 static int ipmmu_attach_device(struct iommu_domain *io_domain,
618 struct device *dev)
619 {
620 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
621 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
622 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
623 unsigned int i;
624 int ret = 0;
625
626 if (!mmu) {
627 dev_err(dev, "Cannot attach to IPMMU\n");
628 return -ENXIO;
629 }
630
631 mutex_lock(&domain->mutex);
632
633 if (!domain->mmu) {
634 /* The domain hasn't been used yet, initialize it. */
635 domain->mmu = mmu;
636 ret = ipmmu_domain_init_context(domain);
637 if (ret < 0) {
638 dev_err(dev, "Unable to initialize IPMMU context\n");
639 domain->mmu = NULL;
640 } else {
641 dev_info(dev, "Using IPMMU context %u\n",
642 domain->context_id);
643 }
644 } else if (domain->mmu != mmu) {
645 /*
646 * Something is wrong, we can't attach two devices using
647 * different IOMMUs to the same domain.
648 */
649 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
650 dev_name(mmu->dev), dev_name(domain->mmu->dev));
651 ret = -EINVAL;
652 } else
653 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
654
655 mutex_unlock(&domain->mutex);
656
657 if (ret < 0)
658 return ret;
659
660 for (i = 0; i < fwspec->num_ids; ++i)
661 ipmmu_utlb_enable(domain, fwspec->ids[i]);
662
663 return 0;
664 }
665
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)666 static void ipmmu_detach_device(struct iommu_domain *io_domain,
667 struct device *dev)
668 {
669 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
670 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
671 unsigned int i;
672
673 for (i = 0; i < fwspec->num_ids; ++i)
674 ipmmu_utlb_disable(domain, fwspec->ids[i]);
675
676 /*
677 * TODO: Optimize by disabling the context when no device is attached.
678 */
679 }
680
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)681 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
682 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
683 {
684 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
685
686 if (!domain)
687 return -ENODEV;
688
689 return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
690 }
691
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)692 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
693 size_t size, struct iommu_iotlb_gather *gather)
694 {
695 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
696
697 return domain->iop->unmap(domain->iop, iova, size, gather);
698 }
699
ipmmu_flush_iotlb_all(struct iommu_domain * io_domain)700 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
701 {
702 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
703
704 if (domain->mmu)
705 ipmmu_tlb_flush_all(domain);
706 }
707
ipmmu_iotlb_sync(struct iommu_domain * io_domain,struct iommu_iotlb_gather * gather)708 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
709 struct iommu_iotlb_gather *gather)
710 {
711 ipmmu_flush_iotlb_all(io_domain);
712 }
713
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)714 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
715 dma_addr_t iova)
716 {
717 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
718
719 /* TODO: Is locking needed ? */
720
721 return domain->iop->iova_to_phys(domain->iop, iova);
722 }
723
ipmmu_init_platform_device(struct device * dev,struct of_phandle_args * args)724 static int ipmmu_init_platform_device(struct device *dev,
725 struct of_phandle_args *args)
726 {
727 struct platform_device *ipmmu_pdev;
728
729 ipmmu_pdev = of_find_device_by_node(args->np);
730 if (!ipmmu_pdev)
731 return -ENODEV;
732
733 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
734
735 return 0;
736 }
737
738 static const struct soc_device_attribute soc_rcar_gen3[] = {
739 { .soc_id = "r8a774a1", },
740 { .soc_id = "r8a774b1", },
741 { .soc_id = "r8a774c0", },
742 { .soc_id = "r8a774e1", },
743 { .soc_id = "r8a7795", },
744 { .soc_id = "r8a77961", },
745 { .soc_id = "r8a7796", },
746 { .soc_id = "r8a77965", },
747 { .soc_id = "r8a77970", },
748 { .soc_id = "r8a77990", },
749 { .soc_id = "r8a77995", },
750 { /* sentinel */ }
751 };
752
753 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
754 { .soc_id = "r8a774b1", },
755 { .soc_id = "r8a774c0", },
756 { .soc_id = "r8a774e1", },
757 { .soc_id = "r8a7795", .revision = "ES3.*" },
758 { .soc_id = "r8a77961", },
759 { .soc_id = "r8a77965", },
760 { .soc_id = "r8a77990", },
761 { .soc_id = "r8a77995", },
762 { /* sentinel */ }
763 };
764
765 static const char * const rcar_gen3_slave_whitelist[] = {
766 };
767
ipmmu_slave_whitelist(struct device * dev)768 static bool ipmmu_slave_whitelist(struct device *dev)
769 {
770 unsigned int i;
771
772 /*
773 * For R-Car Gen3 use a white list to opt-in slave devices.
774 * For Other SoCs, this returns true anyway.
775 */
776 if (!soc_device_match(soc_rcar_gen3))
777 return true;
778
779 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
780 if (!soc_device_match(soc_rcar_gen3_whitelist))
781 return false;
782
783 /* Check whether this slave device can work with the IPMMU */
784 for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
785 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
786 return true;
787 }
788
789 /* Otherwise, do not allow use of IPMMU */
790 return false;
791 }
792
ipmmu_of_xlate(struct device * dev,struct of_phandle_args * spec)793 static int ipmmu_of_xlate(struct device *dev,
794 struct of_phandle_args *spec)
795 {
796 if (!ipmmu_slave_whitelist(dev))
797 return -ENODEV;
798
799 iommu_fwspec_add_ids(dev, spec->args, 1);
800
801 /* Initialize once - xlate() will call multiple times */
802 if (to_ipmmu(dev))
803 return 0;
804
805 return ipmmu_init_platform_device(dev, spec);
806 }
807
ipmmu_init_arm_mapping(struct device * dev)808 static int ipmmu_init_arm_mapping(struct device *dev)
809 {
810 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
811 int ret;
812
813 /*
814 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
815 * VAs. This will allocate a corresponding IOMMU domain.
816 *
817 * TODO:
818 * - Create one mapping per context (TLB).
819 * - Make the mapping size configurable ? We currently use a 2GB mapping
820 * at a 1GB offset to ensure that NULL VAs will fault.
821 */
822 if (!mmu->mapping) {
823 struct dma_iommu_mapping *mapping;
824
825 mapping = arm_iommu_create_mapping(&platform_bus_type,
826 SZ_1G, SZ_2G);
827 if (IS_ERR(mapping)) {
828 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
829 ret = PTR_ERR(mapping);
830 goto error;
831 }
832
833 mmu->mapping = mapping;
834 }
835
836 /* Attach the ARM VA mapping to the device. */
837 ret = arm_iommu_attach_device(dev, mmu->mapping);
838 if (ret < 0) {
839 dev_err(dev, "Failed to attach device to VA mapping\n");
840 goto error;
841 }
842
843 return 0;
844
845 error:
846 if (mmu->mapping)
847 arm_iommu_release_mapping(mmu->mapping);
848
849 return ret;
850 }
851
ipmmu_probe_device(struct device * dev)852 static struct iommu_device *ipmmu_probe_device(struct device *dev)
853 {
854 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
855
856 /*
857 * Only let through devices that have been verified in xlate()
858 */
859 if (!mmu)
860 return ERR_PTR(-ENODEV);
861
862 return &mmu->iommu;
863 }
864
ipmmu_probe_finalize(struct device * dev)865 static void ipmmu_probe_finalize(struct device *dev)
866 {
867 int ret = 0;
868
869 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
870 ret = ipmmu_init_arm_mapping(dev);
871
872 if (ret)
873 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
874 }
875
ipmmu_release_device(struct device * dev)876 static void ipmmu_release_device(struct device *dev)
877 {
878 arm_iommu_detach_device(dev);
879 }
880
ipmmu_find_group(struct device * dev)881 static struct iommu_group *ipmmu_find_group(struct device *dev)
882 {
883 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
884 struct iommu_group *group;
885
886 if (mmu->group)
887 return iommu_group_ref_get(mmu->group);
888
889 group = iommu_group_alloc();
890 if (!IS_ERR(group))
891 mmu->group = group;
892
893 return group;
894 }
895
896 static const struct iommu_ops ipmmu_ops = {
897 .domain_alloc = ipmmu_domain_alloc,
898 .domain_free = ipmmu_domain_free,
899 .attach_dev = ipmmu_attach_device,
900 .detach_dev = ipmmu_detach_device,
901 .map = ipmmu_map,
902 .unmap = ipmmu_unmap,
903 .flush_iotlb_all = ipmmu_flush_iotlb_all,
904 .iotlb_sync = ipmmu_iotlb_sync,
905 .iova_to_phys = ipmmu_iova_to_phys,
906 .probe_device = ipmmu_probe_device,
907 .release_device = ipmmu_release_device,
908 .probe_finalize = ipmmu_probe_finalize,
909 .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
910 ? generic_device_group : ipmmu_find_group,
911 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
912 .of_xlate = ipmmu_of_xlate,
913 };
914
915 /* -----------------------------------------------------------------------------
916 * Probe/remove and init
917 */
918
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)919 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
920 {
921 unsigned int i;
922
923 /* Disable all contexts. */
924 for (i = 0; i < mmu->num_ctx; ++i)
925 ipmmu_ctx_write(mmu, i, IMCTR, 0);
926 }
927
928 static const struct ipmmu_features ipmmu_features_default = {
929 .use_ns_alias_offset = true,
930 .has_cache_leaf_nodes = false,
931 .number_of_contexts = 1, /* software only tested with one context */
932 .num_utlbs = 32,
933 .setup_imbuscr = true,
934 .twobit_imttbcr_sl0 = false,
935 .reserved_context = false,
936 .cache_snoop = true,
937 .ctx_offset_base = 0,
938 .ctx_offset_stride = 0x40,
939 .utlb_offset_base = 0,
940 };
941
942 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
943 .use_ns_alias_offset = false,
944 .has_cache_leaf_nodes = true,
945 .number_of_contexts = 8,
946 .num_utlbs = 48,
947 .setup_imbuscr = false,
948 .twobit_imttbcr_sl0 = true,
949 .reserved_context = true,
950 .cache_snoop = false,
951 .ctx_offset_base = 0,
952 .ctx_offset_stride = 0x40,
953 .utlb_offset_base = 0,
954 };
955
956 static const struct of_device_id ipmmu_of_ids[] = {
957 {
958 .compatible = "renesas,ipmmu-vmsa",
959 .data = &ipmmu_features_default,
960 }, {
961 .compatible = "renesas,ipmmu-r8a774a1",
962 .data = &ipmmu_features_rcar_gen3,
963 }, {
964 .compatible = "renesas,ipmmu-r8a774b1",
965 .data = &ipmmu_features_rcar_gen3,
966 }, {
967 .compatible = "renesas,ipmmu-r8a774c0",
968 .data = &ipmmu_features_rcar_gen3,
969 }, {
970 .compatible = "renesas,ipmmu-r8a774e1",
971 .data = &ipmmu_features_rcar_gen3,
972 }, {
973 .compatible = "renesas,ipmmu-r8a7795",
974 .data = &ipmmu_features_rcar_gen3,
975 }, {
976 .compatible = "renesas,ipmmu-r8a7796",
977 .data = &ipmmu_features_rcar_gen3,
978 }, {
979 .compatible = "renesas,ipmmu-r8a77961",
980 .data = &ipmmu_features_rcar_gen3,
981 }, {
982 .compatible = "renesas,ipmmu-r8a77965",
983 .data = &ipmmu_features_rcar_gen3,
984 }, {
985 .compatible = "renesas,ipmmu-r8a77970",
986 .data = &ipmmu_features_rcar_gen3,
987 }, {
988 .compatible = "renesas,ipmmu-r8a77990",
989 .data = &ipmmu_features_rcar_gen3,
990 }, {
991 .compatible = "renesas,ipmmu-r8a77995",
992 .data = &ipmmu_features_rcar_gen3,
993 }, {
994 /* Terminator */
995 },
996 };
997
ipmmu_probe(struct platform_device * pdev)998 static int ipmmu_probe(struct platform_device *pdev)
999 {
1000 struct ipmmu_vmsa_device *mmu;
1001 struct resource *res;
1002 int irq;
1003 int ret;
1004
1005 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1006 if (!mmu) {
1007 dev_err(&pdev->dev, "cannot allocate device data\n");
1008 return -ENOMEM;
1009 }
1010
1011 mmu->dev = &pdev->dev;
1012 spin_lock_init(&mmu->lock);
1013 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1014 mmu->features = of_device_get_match_data(&pdev->dev);
1015 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1016 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1017 if (ret)
1018 return ret;
1019
1020 /* Map I/O memory and request IRQ. */
1021 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1022 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1023 if (IS_ERR(mmu->base))
1024 return PTR_ERR(mmu->base);
1025
1026 /*
1027 * The IPMMU has two register banks, for secure and non-secure modes.
1028 * The bank mapped at the beginning of the IPMMU address space
1029 * corresponds to the running mode of the CPU. When running in secure
1030 * mode the non-secure register bank is also available at an offset.
1031 *
1032 * Secure mode operation isn't clearly documented and is thus currently
1033 * not implemented in the driver. Furthermore, preliminary tests of
1034 * non-secure operation with the main register bank were not successful.
1035 * Offset the registers base unconditionally to point to the non-secure
1036 * alias space for now.
1037 */
1038 if (mmu->features->use_ns_alias_offset)
1039 mmu->base += IM_NS_ALIAS_OFFSET;
1040
1041 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1042
1043 /*
1044 * Determine if this IPMMU instance is a root device by checking for
1045 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1046 */
1047 if (!mmu->features->has_cache_leaf_nodes ||
1048 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1049 mmu->root = mmu;
1050 else
1051 mmu->root = ipmmu_find_root();
1052
1053 /*
1054 * Wait until the root device has been registered for sure.
1055 */
1056 if (!mmu->root)
1057 return -EPROBE_DEFER;
1058
1059 /* Root devices have mandatory IRQs */
1060 if (ipmmu_is_root(mmu)) {
1061 irq = platform_get_irq(pdev, 0);
1062 if (irq < 0)
1063 return irq;
1064
1065 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1066 dev_name(&pdev->dev), mmu);
1067 if (ret < 0) {
1068 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1069 return ret;
1070 }
1071
1072 ipmmu_device_reset(mmu);
1073
1074 if (mmu->features->reserved_context) {
1075 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1076 set_bit(0, mmu->ctx);
1077 }
1078 }
1079
1080 /*
1081 * Register the IPMMU to the IOMMU subsystem in the following cases:
1082 * - R-Car Gen2 IPMMU (all devices registered)
1083 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1084 */
1085 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1086 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1087 dev_name(&pdev->dev));
1088 if (ret)
1089 return ret;
1090
1091 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1092 iommu_device_set_fwnode(&mmu->iommu,
1093 &pdev->dev.of_node->fwnode);
1094
1095 ret = iommu_device_register(&mmu->iommu);
1096 if (ret)
1097 return ret;
1098
1099 #if defined(CONFIG_IOMMU_DMA)
1100 if (!iommu_present(&platform_bus_type))
1101 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1102 #endif
1103 }
1104
1105 /*
1106 * We can't create the ARM mapping here as it requires the bus to have
1107 * an IOMMU, which only happens when bus_set_iommu() is called in
1108 * ipmmu_init() after the probe function returns.
1109 */
1110
1111 platform_set_drvdata(pdev, mmu);
1112
1113 return 0;
1114 }
1115
ipmmu_remove(struct platform_device * pdev)1116 static int ipmmu_remove(struct platform_device *pdev)
1117 {
1118 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1119
1120 iommu_device_sysfs_remove(&mmu->iommu);
1121 iommu_device_unregister(&mmu->iommu);
1122
1123 arm_iommu_release_mapping(mmu->mapping);
1124
1125 ipmmu_device_reset(mmu);
1126
1127 return 0;
1128 }
1129
1130 #ifdef CONFIG_PM_SLEEP
ipmmu_resume_noirq(struct device * dev)1131 static int ipmmu_resume_noirq(struct device *dev)
1132 {
1133 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1134 unsigned int i;
1135
1136 /* Reset root MMU and restore contexts */
1137 if (ipmmu_is_root(mmu)) {
1138 ipmmu_device_reset(mmu);
1139
1140 for (i = 0; i < mmu->num_ctx; i++) {
1141 if (!mmu->domains[i])
1142 continue;
1143
1144 ipmmu_domain_setup_context(mmu->domains[i]);
1145 }
1146 }
1147
1148 /* Re-enable active micro-TLBs */
1149 for (i = 0; i < mmu->features->num_utlbs; i++) {
1150 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1151 continue;
1152
1153 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1154 }
1155
1156 return 0;
1157 }
1158
1159 static const struct dev_pm_ops ipmmu_pm = {
1160 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1161 };
1162 #define DEV_PM_OPS &ipmmu_pm
1163 #else
1164 #define DEV_PM_OPS NULL
1165 #endif /* CONFIG_PM_SLEEP */
1166
1167 static struct platform_driver ipmmu_driver = {
1168 .driver = {
1169 .name = "ipmmu-vmsa",
1170 .of_match_table = of_match_ptr(ipmmu_of_ids),
1171 .pm = DEV_PM_OPS,
1172 },
1173 .probe = ipmmu_probe,
1174 .remove = ipmmu_remove,
1175 };
1176
ipmmu_init(void)1177 static int __init ipmmu_init(void)
1178 {
1179 struct device_node *np;
1180 static bool setup_done;
1181 int ret;
1182
1183 if (setup_done)
1184 return 0;
1185
1186 np = of_find_matching_node(NULL, ipmmu_of_ids);
1187 if (!np)
1188 return 0;
1189
1190 of_node_put(np);
1191
1192 ret = platform_driver_register(&ipmmu_driver);
1193 if (ret < 0)
1194 return ret;
1195
1196 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1197 if (!iommu_present(&platform_bus_type))
1198 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1199 #endif
1200
1201 setup_done = true;
1202 return 0;
1203 }
1204 subsys_initcall(ipmmu_init);
1205