1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6 802.11 status code portion of this file from ethereal-0.10.6:
7 Copyright 2000, Axis Communications AB
8 Ethereal - Network traffic analyzer
9 By Gerald Combs <gerald@ethereal.com>
10 Copyright 1998 Gerald Combs
11
12
13 Contact Information:
14 Intel Linux Wireless <ilw@linux.intel.com>
15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17 ******************************************************************************/
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24
25
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION IPW2200_VERSION
66
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
99 #endif
100
101 static struct ieee80211_rate ipw2200_rates[] = {
102 { .bitrate = 10 },
103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 { .bitrate = 60 },
107 { .bitrate = 90 },
108 { .bitrate = 120 },
109 { .bitrate = 180 },
110 { .bitrate = 240 },
111 { .bitrate = 360 },
112 { .bitrate = 480 },
113 { .bitrate = 540 }
114 };
115
116 #define ipw2200_a_rates (ipw2200_rates + 4)
117 #define ipw2200_num_a_rates 8
118 #define ipw2200_bg_rates (ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates 12
120
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 (((x) <= 14) ? \
126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 ((x) + 1000) * 5)
128
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 QOS_TX3_CW_MIN_OFDM},
139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 QOS_TX3_CW_MAX_OFDM},
141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 QOS_TX3_CW_MIN_CCK},
150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 QOS_TX3_CW_MAX_CCK},
152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 DEF_TX3_CW_MIN_OFDM},
161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 DEF_TX3_CW_MAX_OFDM},
163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 DEF_TX3_CW_MIN_CCK},
172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 DEF_TX3_CW_MAX_CCK},
174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182 static int from_priority_to_tx_queue[] = {
183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 *qos_param);
193 #endif /* CONFIG_IPW2200_QOS */
194
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203 int len, int sync);
204
205 static void ipw_tx_queue_free(struct ipw_priv *);
206
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)220 static int snprint_line(char *buf, size_t count,
221 const u8 * data, u32 len, u32 ofs)
222 {
223 int out, i, j, l;
224 char c;
225
226 out = scnprintf(buf, count, "%08X", ofs);
227
228 for (l = 0, i = 0; i < 2; i++) {
229 out += scnprintf(buf + out, count - out, " ");
230 for (j = 0; j < 8 && l < len; j++, l++)
231 out += scnprintf(buf + out, count - out, "%02X ",
232 data[(i * 8 + j)]);
233 for (; j < 8; j++)
234 out += scnprintf(buf + out, count - out, " ");
235 }
236
237 out += scnprintf(buf + out, count - out, " ");
238 for (l = 0, i = 0; i < 2; i++) {
239 out += scnprintf(buf + out, count - out, " ");
240 for (j = 0; j < 8 && l < len; j++, l++) {
241 c = data[(i * 8 + j)];
242 if (!isascii(c) || !isprint(c))
243 c = '.';
244
245 out += scnprintf(buf + out, count - out, "%c", c);
246 }
247
248 for (; j < 8; j++)
249 out += scnprintf(buf + out, count - out, " ");
250 }
251
252 return out;
253 }
254
printk_buf(int level,const u8 * data,u32 len)255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 char line[81];
258 u32 ofs = 0;
259 if (!(ipw_debug_level & level))
260 return;
261
262 while (len) {
263 snprint_line(line, sizeof(line), &data[ofs],
264 min(len, 16U), ofs);
265 printk(KERN_DEBUG "%s\n", line);
266 ofs += 16;
267 len -= min(len, 16U);
268 }
269 }
270
snprintk_buf(u8 * output,size_t size,const u8 * data,size_t len)271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 size_t out = size;
274 u32 ofs = 0;
275 int total = 0;
276
277 while (size && len) {
278 out = snprint_line(output, size, &data[ofs],
279 min_t(size_t, len, 16U), ofs);
280
281 ofs += 16;
282 output += out;
283 size -= out;
284 len -= min_t(size_t, len, 16U);
285 total += out;
286 }
287 return total;
288 }
289
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
ipw_write_reg8(struct ipw_priv * a,u32 b,u8 c)300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 __LINE__, (u32) (b), (u32) (c));
304 _ipw_write_reg8(a, b, c);
305 }
306
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
ipw_write_reg16(struct ipw_priv * a,u32 b,u16 c)309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 __LINE__, (u32) (b), (u32) (c));
313 _ipw_write_reg16(a, b, c);
314 }
315
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
ipw_write_reg32(struct ipw_priv * a,u32 b,u32 c)318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 __LINE__, (u32) (b), (u32) (c));
322 _ipw_write_reg32(a, b, c);
323 }
324
325 /* 8-bit direct write (low 4K) */
_ipw_write8(struct ipw_priv * ipw,unsigned long ofs,u8 val)326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 u8 val)
328 {
329 writeb(val, ipw->hw_base + ofs);
330 }
331
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 __LINE__, (u32)(ofs), (u32)(val)); \
336 _ipw_write8(ipw, ofs, val); \
337 } while (0)
338
339 /* 16-bit direct write (low 4K) */
_ipw_write16(struct ipw_priv * ipw,unsigned long ofs,u16 val)340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 u16 val)
342 {
343 writew(val, ipw->hw_base + ofs);
344 }
345
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write16(ipw, ofs, val); \
351 } while (0)
352
353 /* 32-bit direct write (low 4K) */
_ipw_write32(struct ipw_priv * ipw,unsigned long ofs,u32 val)354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 u32 val)
356 {
357 writel(val, ipw->hw_base + ofs);
358 }
359
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write32(ipw, ofs, val); \
365 } while (0)
366
367 /* 8-bit direct read (low 4K) */
_ipw_read8(struct ipw_priv * ipw,unsigned long ofs)368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 return readb(ipw->hw_base + ofs);
371 }
372
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 (u32)(ofs)); \
377 _ipw_read8(ipw, ofs); \
378 })
379
380 /* 16-bit direct read (low 4K) */
_ipw_read16(struct ipw_priv * ipw,unsigned long ofs)381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 return readw(ipw->hw_base + ofs);
384 }
385
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 (u32)(ofs)); \
390 _ipw_read16(ipw, ofs); \
391 })
392
393 /* 32-bit direct read (low 4K) */
_ipw_read32(struct ipw_priv * ipw,unsigned long ofs)394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 return readl(ipw->hw_base + ofs);
397 }
398
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 (u32)(ofs)); \
403 _ipw_read32(ipw, ofs); \
404 })
405
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 __LINE__, (u32)(b), (u32)(d)); \
411 _ipw_read_indirect(a, b, c, d); \
412 })
413
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 __LINE__, (u32)(b), (u32)(d)); \
420 _ipw_write_indirect(a, b, c, d); \
421 } while (0)
422
423 /* 32-bit indirect write (above 4K) */
_ipw_write_reg32(struct ipw_priv * priv,u32 reg,u32 value)424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430
431 /* 8-bit indirect write (above 4K) */
_ipw_write_reg8(struct ipw_priv * priv,u32 reg,u8 value)432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
435 u32 dif_len = reg - aligned_addr;
436
437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441
442 /* 16-bit indirect write (above 4K) */
_ipw_write_reg16(struct ipw_priv * priv,u32 reg,u16 value)443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447
448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452
453 /* 8-bit indirect read (above 4K) */
_ipw_read_reg8(struct ipw_priv * priv,u32 reg)454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 u32 word;
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462
463 /* 32-bit indirect read (above 4K) */
_ipw_read_reg32(struct ipw_priv * priv,u32 reg)464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 u32 value;
467
468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469
470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 return value;
474 }
475
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /* for area above 1st 4K of SRAM/reg space */
_ipw_read_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 int num)
480 {
481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
482 u32 dif_len = addr - aligned_addr;
483 u32 i;
484
485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486
487 if (num <= 0) {
488 return;
489 }
490
491 /* Read the first dword (or portion) byte by byte */
492 if (unlikely(dif_len)) {
493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 /* Start reading at aligned_addr + dif_len */
495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 aligned_addr += 4;
498 }
499
500 /* Read all of the middle dwords as dwords, with auto-increment */
501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504
505 /* Read the last dword (or portion) byte by byte */
506 if (unlikely(num)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 for (i = 0; num > 0; i++, num--)
509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 }
511 }
512
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /* for area above 1st 4K of SRAM/reg space */
_ipw_write_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 int num)
517 {
518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
519 u32 dif_len = addr - aligned_addr;
520 u32 i;
521
522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523
524 if (num <= 0) {
525 return;
526 }
527
528 /* Write the first dword (or portion) byte by byte */
529 if (unlikely(dif_len)) {
530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 /* Start writing at aligned_addr + dif_len */
532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 aligned_addr += 4;
535 }
536
537 /* Write all of the middle dwords as dwords, with auto-increment */
538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541
542 /* Write the last dword (or portion) byte by byte */
543 if (unlikely(num)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 for (i = 0; num > 0; i++, num--, buf++)
546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 }
548 }
549
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /* for 1st 4K of SRAM/regs space */
ipw_write_direct(struct ipw_priv * priv,u32 addr,void * buf,int num)552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 int num)
554 {
555 memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557
558 /* Set bit(s) in low 4K of SRAM/regs */
ipw_set_bit(struct ipw_priv * priv,u32 reg,u32 mask)559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563
564 /* Clear bit(s) in low 4K of SRAM/regs */
ipw_clear_bit(struct ipw_priv * priv,u32 reg,u32 mask)565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569
__ipw_enable_interrupts(struct ipw_priv * priv)570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 if (priv->status & STATUS_INT_ENABLED)
573 return;
574 priv->status |= STATUS_INT_ENABLED;
575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577
__ipw_disable_interrupts(struct ipw_priv * priv)578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 if (!(priv->status & STATUS_INT_ENABLED))
581 return;
582 priv->status &= ~STATUS_INT_ENABLED;
583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585
ipw_enable_interrupts(struct ipw_priv * priv)586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 unsigned long flags;
589
590 spin_lock_irqsave(&priv->irq_lock, flags);
591 __ipw_enable_interrupts(priv);
592 spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594
ipw_disable_interrupts(struct ipw_priv * priv)595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 unsigned long flags;
598
599 spin_lock_irqsave(&priv->irq_lock, flags);
600 __ipw_disable_interrupts(priv);
601 spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603
ipw_error_desc(u32 val)604 static char *ipw_error_desc(u32 val)
605 {
606 switch (val) {
607 case IPW_FW_ERROR_OK:
608 return "ERROR_OK";
609 case IPW_FW_ERROR_FAIL:
610 return "ERROR_FAIL";
611 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 return "MEMORY_UNDERFLOW";
613 case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 return "MEMORY_OVERFLOW";
615 case IPW_FW_ERROR_BAD_PARAM:
616 return "BAD_PARAM";
617 case IPW_FW_ERROR_BAD_CHECKSUM:
618 return "BAD_CHECKSUM";
619 case IPW_FW_ERROR_NMI_INTERRUPT:
620 return "NMI_INTERRUPT";
621 case IPW_FW_ERROR_BAD_DATABASE:
622 return "BAD_DATABASE";
623 case IPW_FW_ERROR_ALLOC_FAIL:
624 return "ALLOC_FAIL";
625 case IPW_FW_ERROR_DMA_UNDERRUN:
626 return "DMA_UNDERRUN";
627 case IPW_FW_ERROR_DMA_STATUS:
628 return "DMA_STATUS";
629 case IPW_FW_ERROR_DINO_ERROR:
630 return "DINO_ERROR";
631 case IPW_FW_ERROR_EEPROM_ERROR:
632 return "EEPROM_ERROR";
633 case IPW_FW_ERROR_SYSASSERT:
634 return "SYSASSERT";
635 case IPW_FW_ERROR_FATAL_ERROR:
636 return "FATAL_ERROR";
637 default:
638 return "UNKNOWN_ERROR";
639 }
640 }
641
ipw_dump_error_log(struct ipw_priv * priv,struct ipw_fw_error * error)642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 struct ipw_fw_error *error)
644 {
645 u32 i;
646
647 if (!error) {
648 IPW_ERROR("Error allocating and capturing error log. "
649 "Nothing to dump.\n");
650 return;
651 }
652
653 IPW_ERROR("Start IPW Error Log Dump:\n");
654 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 error->status, error->config);
656
657 for (i = 0; i < error->elem_len; i++)
658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
659 ipw_error_desc(error->elem[i].desc),
660 error->elem[i].time,
661 error->elem[i].blink1,
662 error->elem[i].blink2,
663 error->elem[i].link1,
664 error->elem[i].link2, error->elem[i].data);
665 for (i = 0; i < error->log_len; i++)
666 IPW_ERROR("%i\t0x%08x\t%i\n",
667 error->log[i].time,
668 error->log[i].data, error->log[i].event);
669 }
670
ipw_is_init(struct ipw_priv * priv)671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675
ipw_get_ordinal(struct ipw_priv * priv,u32 ord,void * val,u32 * len)676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 u32 addr, field_info, field_len, field_count, total_len;
679
680 IPW_DEBUG_ORD("ordinal = %i\n", ord);
681
682 if (!priv || !val || !len) {
683 IPW_DEBUG_ORD("Invalid argument\n");
684 return -EINVAL;
685 }
686
687 /* verify device ordinal tables have been initialized */
688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 return -EINVAL;
691 }
692
693 switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 case IPW_ORD_TABLE_0_MASK:
695 /*
696 * TABLE 0: Direct access to a table of 32 bit values
697 *
698 * This is a very simple table with the data directly
699 * read from the table
700 */
701
702 /* remove the table id from the ordinal */
703 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705 /* boundary check */
706 if (ord > priv->table0_len) {
707 IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 "max (%i)\n", ord, priv->table0_len);
709 return -EINVAL;
710 }
711
712 /* verify we have enough room to store the value */
713 if (*len < sizeof(u32)) {
714 IPW_DEBUG_ORD("ordinal buffer length too small, "
715 "need %zd\n", sizeof(u32));
716 return -EINVAL;
717 }
718
719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 ord, priv->table0_addr + (ord << 2));
721
722 *len = sizeof(u32);
723 ord <<= 2;
724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 break;
726
727 case IPW_ORD_TABLE_1_MASK:
728 /*
729 * TABLE 1: Indirect access to a table of 32 bit values
730 *
731 * This is a fairly large table of u32 values each
732 * representing starting addr for the data (which is
733 * also a u32)
734 */
735
736 /* remove the table id from the ordinal */
737 ord &= IPW_ORD_TABLE_VALUE_MASK;
738
739 /* boundary check */
740 if (ord > priv->table1_len) {
741 IPW_DEBUG_ORD("ordinal value too long\n");
742 return -EINVAL;
743 }
744
745 /* verify we have enough room to store the value */
746 if (*len < sizeof(u32)) {
747 IPW_DEBUG_ORD("ordinal buffer length too small, "
748 "need %zd\n", sizeof(u32));
749 return -EINVAL;
750 }
751
752 *((u32 *) val) =
753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 *len = sizeof(u32);
755 break;
756
757 case IPW_ORD_TABLE_2_MASK:
758 /*
759 * TABLE 2: Indirect access to a table of variable sized values
760 *
761 * This table consist of six values, each containing
762 * - dword containing the starting offset of the data
763 * - dword containing the lengh in the first 16bits
764 * and the count in the second 16bits
765 */
766
767 /* remove the table id from the ordinal */
768 ord &= IPW_ORD_TABLE_VALUE_MASK;
769
770 /* boundary check */
771 if (ord > priv->table2_len) {
772 IPW_DEBUG_ORD("ordinal value too long\n");
773 return -EINVAL;
774 }
775
776 /* get the address of statistic */
777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778
779 /* get the second DW of statistics ;
780 * two 16-bit words - first is length, second is count */
781 field_info =
782 ipw_read_reg32(priv,
783 priv->table2_addr + (ord << 3) +
784 sizeof(u32));
785
786 /* get each entry length */
787 field_len = *((u16 *) & field_info);
788
789 /* get number of entries */
790 field_count = *(((u16 *) & field_info) + 1);
791
792 /* abort if not enough memory */
793 total_len = field_len * field_count;
794 if (total_len > *len) {
795 *len = total_len;
796 return -EINVAL;
797 }
798
799 *len = total_len;
800 if (!total_len)
801 return 0;
802
803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 "field_info = 0x%08x\n",
805 addr, total_len, field_info);
806 ipw_read_indirect(priv, addr, val, total_len);
807 break;
808
809 default:
810 IPW_DEBUG_ORD("Invalid ordinal!\n");
811 return -EINVAL;
812
813 }
814
815 return 0;
816 }
817
ipw_init_ordinals(struct ipw_priv * priv)818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 priv->table0_len = ipw_read32(priv, priv->table0_addr);
822
823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 priv->table0_addr, priv->table0_len);
825
826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828
829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 priv->table1_addr, priv->table1_len);
831
832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 priv->table2_len &= 0x0000ffff; /* use first two bytes */
835
836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 priv->table2_addr, priv->table2_len);
838
839 }
840
ipw_register_toggle(u32 reg)841 static u32 ipw_register_toggle(u32 reg)
842 {
843 reg &= ~IPW_START_STANDBY;
844 if (reg & IPW_GATE_ODMA)
845 reg &= ~IPW_GATE_ODMA;
846 if (reg & IPW_GATE_IDMA)
847 reg &= ~IPW_GATE_IDMA;
848 if (reg & IPW_GATE_ADMA)
849 reg &= ~IPW_GATE_ADMA;
850 return reg;
851 }
852
853 /*
854 * LED behavior:
855 * - On radio ON, turn on any LEDs that require to be on during start
856 * - On initialization, start unassociated blink
857 * - On association, disable unassociated blink
858 * - On disassociation, start unassociated blink
859 * - On radio OFF, turn off any LEDs started during radio on
860 *
861 */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865
ipw_led_link_on(struct ipw_priv * priv)866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 unsigned long flags;
869 u32 led;
870
871 /* If configured to not use LEDs, or nic_type is 1,
872 * then we don't toggle a LINK led */
873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 return;
875
876 spin_lock_irqsave(&priv->lock, flags);
877
878 if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 !(priv->status & STATUS_LED_LINK_ON)) {
880 IPW_DEBUG_LED("Link LED On\n");
881 led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 led |= priv->led_association_on;
883
884 led = ipw_register_toggle(led);
885
886 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 ipw_write_reg32(priv, IPW_EVENT_REG, led);
888
889 priv->status |= STATUS_LED_LINK_ON;
890
891 /* If we aren't associated, schedule turning the LED off */
892 if (!(priv->status & STATUS_ASSOCIATED))
893 schedule_delayed_work(&priv->led_link_off,
894 LD_TIME_LINK_ON);
895 }
896
897 spin_unlock_irqrestore(&priv->lock, flags);
898 }
899
ipw_bg_led_link_on(struct work_struct * work)900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 struct ipw_priv *priv =
903 container_of(work, struct ipw_priv, led_link_on.work);
904 mutex_lock(&priv->mutex);
905 ipw_led_link_on(priv);
906 mutex_unlock(&priv->mutex);
907 }
908
ipw_led_link_off(struct ipw_priv * priv)909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 unsigned long flags;
912 u32 led;
913
914 /* If configured not to use LEDs, or nic type is 1,
915 * then we don't goggle the LINK led. */
916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 return;
918
919 spin_lock_irqsave(&priv->lock, flags);
920
921 if (priv->status & STATUS_LED_LINK_ON) {
922 led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 led &= priv->led_association_off;
924 led = ipw_register_toggle(led);
925
926 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 ipw_write_reg32(priv, IPW_EVENT_REG, led);
928
929 IPW_DEBUG_LED("Link LED Off\n");
930
931 priv->status &= ~STATUS_LED_LINK_ON;
932
933 /* If we aren't associated and the radio is on, schedule
934 * turning the LED on (blink while unassociated) */
935 if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 !(priv->status & STATUS_ASSOCIATED))
937 schedule_delayed_work(&priv->led_link_on,
938 LD_TIME_LINK_OFF);
939
940 }
941
942 spin_unlock_irqrestore(&priv->lock, flags);
943 }
944
ipw_bg_led_link_off(struct work_struct * work)945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 struct ipw_priv *priv =
948 container_of(work, struct ipw_priv, led_link_off.work);
949 mutex_lock(&priv->mutex);
950 ipw_led_link_off(priv);
951 mutex_unlock(&priv->mutex);
952 }
953
__ipw_led_activity_on(struct ipw_priv * priv)954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 u32 led;
957
958 if (priv->config & CFG_NO_LED)
959 return;
960
961 if (priv->status & STATUS_RF_KILL_MASK)
962 return;
963
964 if (!(priv->status & STATUS_LED_ACT_ON)) {
965 led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 led |= priv->led_activity_on;
967
968 led = ipw_register_toggle(led);
969
970 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 ipw_write_reg32(priv, IPW_EVENT_REG, led);
972
973 IPW_DEBUG_LED("Activity LED On\n");
974
975 priv->status |= STATUS_LED_ACT_ON;
976
977 cancel_delayed_work(&priv->led_act_off);
978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 } else {
980 /* Reschedule LED off for full time period */
981 cancel_delayed_work(&priv->led_act_off);
982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 }
984 }
985
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 unsigned long flags;
990 spin_lock_irqsave(&priv->lock, flags);
991 __ipw_led_activity_on(priv);
992 spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif /* 0 */
995
ipw_led_activity_off(struct ipw_priv * priv)996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 unsigned long flags;
999 u32 led;
1000
1001 if (priv->config & CFG_NO_LED)
1002 return;
1003
1004 spin_lock_irqsave(&priv->lock, flags);
1005
1006 if (priv->status & STATUS_LED_ACT_ON) {
1007 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 led &= priv->led_activity_off;
1009
1010 led = ipw_register_toggle(led);
1011
1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014
1015 IPW_DEBUG_LED("Activity LED Off\n");
1016
1017 priv->status &= ~STATUS_LED_ACT_ON;
1018 }
1019
1020 spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022
ipw_bg_led_activity_off(struct work_struct * work)1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 struct ipw_priv *priv =
1026 container_of(work, struct ipw_priv, led_act_off.work);
1027 mutex_lock(&priv->mutex);
1028 ipw_led_activity_off(priv);
1029 mutex_unlock(&priv->mutex);
1030 }
1031
ipw_led_band_on(struct ipw_priv * priv)1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 unsigned long flags;
1035 u32 led;
1036
1037 /* Only nic type 1 supports mode LEDs */
1038 if (priv->config & CFG_NO_LED ||
1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 return;
1041
1042 spin_lock_irqsave(&priv->lock, flags);
1043
1044 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 if (priv->assoc_network->mode == IEEE_A) {
1046 led |= priv->led_ofdm_on;
1047 led &= priv->led_association_off;
1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 } else if (priv->assoc_network->mode == IEEE_G) {
1050 led |= priv->led_ofdm_on;
1051 led |= priv->led_association_on;
1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 } else {
1054 led &= priv->led_ofdm_off;
1055 led |= priv->led_association_on;
1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 }
1058
1059 led = ipw_register_toggle(led);
1060
1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063
1064 spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066
ipw_led_band_off(struct ipw_priv * priv)1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 unsigned long flags;
1070 u32 led;
1071
1072 /* Only nic type 1 supports mode LEDs */
1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 return;
1075
1076 spin_lock_irqsave(&priv->lock, flags);
1077
1078 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 led &= priv->led_ofdm_off;
1080 led &= priv->led_association_off;
1081
1082 led = ipw_register_toggle(led);
1083
1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086
1087 spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089
ipw_led_radio_on(struct ipw_priv * priv)1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 ipw_led_link_on(priv);
1093 }
1094
ipw_led_radio_off(struct ipw_priv * priv)1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 ipw_led_activity_off(priv);
1098 ipw_led_link_off(priv);
1099 }
1100
ipw_led_link_up(struct ipw_priv * priv)1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 /* Set the Link Led on for all nic types */
1104 ipw_led_link_on(priv);
1105 }
1106
ipw_led_link_down(struct ipw_priv * priv)1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 ipw_led_activity_off(priv);
1110 ipw_led_link_off(priv);
1111
1112 if (priv->status & STATUS_RF_KILL_MASK)
1113 ipw_led_radio_off(priv);
1114 }
1115
ipw_led_init(struct ipw_priv * priv)1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119
1120 /* Set the default PINs for the link and activity leds */
1121 priv->led_activity_on = IPW_ACTIVITY_LED;
1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123
1124 priv->led_association_on = IPW_ASSOCIATED_LED;
1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126
1127 /* Set the default PINs for the OFDM leds */
1128 priv->led_ofdm_on = IPW_OFDM_LED;
1129 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130
1131 switch (priv->nic_type) {
1132 case EEPROM_NIC_TYPE_1:
1133 /* In this NIC type, the LEDs are reversed.... */
1134 priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 priv->led_association_on = IPW_ACTIVITY_LED;
1137 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138
1139 if (!(priv->config & CFG_NO_LED))
1140 ipw_led_band_on(priv);
1141
1142 /* And we don't blink link LEDs for this nic, so
1143 * just return here */
1144 return;
1145
1146 case EEPROM_NIC_TYPE_3:
1147 case EEPROM_NIC_TYPE_2:
1148 case EEPROM_NIC_TYPE_4:
1149 case EEPROM_NIC_TYPE_0:
1150 break;
1151
1152 default:
1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 priv->nic_type);
1155 priv->nic_type = EEPROM_NIC_TYPE_0;
1156 break;
1157 }
1158
1159 if (!(priv->config & CFG_NO_LED)) {
1160 if (priv->status & STATUS_ASSOCIATED)
1161 ipw_led_link_on(priv);
1162 else
1163 ipw_led_link_off(priv);
1164 }
1165 }
1166
ipw_led_shutdown(struct ipw_priv * priv)1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 ipw_led_activity_off(priv);
1170 ipw_led_link_off(priv);
1171 ipw_led_band_off(priv);
1172 cancel_delayed_work(&priv->led_link_on);
1173 cancel_delayed_work(&priv->led_link_off);
1174 cancel_delayed_work(&priv->led_act_off);
1175 }
1176
1177 /*
1178 * The following adds a new attribute to the sysfs representation
1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180 * used for controlling the debug level.
1181 *
1182 * See the level definitions in ipw for details.
1183 */
debug_level_show(struct device_driver * d,char * buf)1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188
debug_level_store(struct device_driver * d,const char * buf,size_t count)1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 size_t count)
1191 {
1192 char *p = (char *)buf;
1193 u32 val;
1194
1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 p++;
1197 if (p[0] == 'x' || p[0] == 'X')
1198 p++;
1199 val = simple_strtoul(p, &p, 16);
1200 } else
1201 val = simple_strtoul(p, &p, 10);
1202 if (p == buf)
1203 printk(KERN_INFO DRV_NAME
1204 ": %s is not in hex or decimal form.\n", buf);
1205 else
1206 ipw_debug_level = val;
1207
1208 return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211
ipw_get_event_log_len(struct ipw_priv * priv)1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 /* length = 1st dword in log */
1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217
ipw_capture_event_log(struct ipw_priv * priv,u32 log_len,struct ipw_event * log)1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 u32 log_len, struct ipw_event *log)
1220 {
1221 u32 base;
1222
1223 if (log_len) {
1224 base = ipw_read32(priv, IPW_EVENT_LOG);
1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 (u8 *) log, sizeof(*log) * log_len);
1227 }
1228 }
1229
ipw_alloc_error_log(struct ipw_priv * priv)1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 struct ipw_fw_error *error;
1233 u32 log_len = ipw_get_event_log_len(priv);
1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 u32 elem_len = ipw_read_reg32(priv, base);
1236
1237 error = kmalloc(sizeof(*error) +
1238 sizeof(*error->elem) * elem_len +
1239 sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 if (!error) {
1241 IPW_ERROR("Memory allocation for firmware error log "
1242 "failed.\n");
1243 return NULL;
1244 }
1245 error->jiffies = jiffies;
1246 error->status = priv->status;
1247 error->config = priv->config;
1248 error->elem_len = elem_len;
1249 error->log_len = log_len;
1250 error->elem = (struct ipw_error_elem *)error->payload;
1251 error->log = (struct ipw_event *)(error->elem + elem_len);
1252
1253 ipw_capture_event_log(priv, log_len, error->log);
1254
1255 if (elem_len)
1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 sizeof(*error->elem) * elem_len);
1258
1259 return error;
1260 }
1261
show_event_log(struct device * d,struct device_attribute * attr,char * buf)1262 static ssize_t show_event_log(struct device *d,
1263 struct device_attribute *attr, char *buf)
1264 {
1265 struct ipw_priv *priv = dev_get_drvdata(d);
1266 u32 log_len = ipw_get_event_log_len(priv);
1267 u32 log_size;
1268 struct ipw_event *log;
1269 u32 len = 0, i;
1270
1271 /* not using min() because of its strict type checking */
1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 sizeof(*log) * log_len : PAGE_SIZE;
1274 log = kzalloc(log_size, GFP_KERNEL);
1275 if (!log) {
1276 IPW_ERROR("Unable to allocate memory for log\n");
1277 return 0;
1278 }
1279 log_len = log_size / sizeof(*log);
1280 ipw_capture_event_log(priv, log_len, log);
1281
1282 len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 for (i = 0; i < log_len; i++)
1284 len += scnprintf(buf + len, PAGE_SIZE - len,
1285 "\n%08X%08X%08X",
1286 log[i].time, log[i].event, log[i].data);
1287 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1288 kfree(log);
1289 return len;
1290 }
1291
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293
show_error(struct device * d,struct device_attribute * attr,char * buf)1294 static ssize_t show_error(struct device *d,
1295 struct device_attribute *attr, char *buf)
1296 {
1297 struct ipw_priv *priv = dev_get_drvdata(d);
1298 u32 len = 0, i;
1299 if (!priv->error)
1300 return 0;
1301 len += scnprintf(buf + len, PAGE_SIZE - len,
1302 "%08lX%08X%08X%08X",
1303 priv->error->jiffies,
1304 priv->error->status,
1305 priv->error->config, priv->error->elem_len);
1306 for (i = 0; i < priv->error->elem_len; i++)
1307 len += scnprintf(buf + len, PAGE_SIZE - len,
1308 "\n%08X%08X%08X%08X%08X%08X%08X",
1309 priv->error->elem[i].time,
1310 priv->error->elem[i].desc,
1311 priv->error->elem[i].blink1,
1312 priv->error->elem[i].blink2,
1313 priv->error->elem[i].link1,
1314 priv->error->elem[i].link2,
1315 priv->error->elem[i].data);
1316
1317 len += scnprintf(buf + len, PAGE_SIZE - len,
1318 "\n%08X", priv->error->log_len);
1319 for (i = 0; i < priv->error->log_len; i++)
1320 len += scnprintf(buf + len, PAGE_SIZE - len,
1321 "\n%08X%08X%08X",
1322 priv->error->log[i].time,
1323 priv->error->log[i].event,
1324 priv->error->log[i].data);
1325 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1326 return len;
1327 }
1328
clear_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1329 static ssize_t clear_error(struct device *d,
1330 struct device_attribute *attr,
1331 const char *buf, size_t count)
1332 {
1333 struct ipw_priv *priv = dev_get_drvdata(d);
1334
1335 kfree(priv->error);
1336 priv->error = NULL;
1337 return count;
1338 }
1339
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341
show_cmd_log(struct device * d,struct device_attribute * attr,char * buf)1342 static ssize_t show_cmd_log(struct device *d,
1343 struct device_attribute *attr, char *buf)
1344 {
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 u32 len = 0, i;
1347 if (!priv->cmdlog)
1348 return 0;
1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 i = (i + 1) % priv->cmdlog_len) {
1352 len +=
1353 scnprintf(buf + len, PAGE_SIZE - len,
1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 priv->cmdlog[i].cmd.len);
1357 len +=
1358 snprintk_buf(buf + len, PAGE_SIZE - len,
1359 (u8 *) priv->cmdlog[i].cmd.param,
1360 priv->cmdlog[i].cmd.len);
1361 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1362 }
1363 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1364 return len;
1365 }
1366
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
store_rtap_iface(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1372 static ssize_t store_rtap_iface(struct device *d,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1375 {
1376 struct ipw_priv *priv = dev_get_drvdata(d);
1377 int rc = 0;
1378
1379 if (count < 1)
1380 return -EINVAL;
1381
1382 switch (buf[0]) {
1383 case '0':
1384 if (!rtap_iface)
1385 return count;
1386
1387 if (netif_running(priv->prom_net_dev)) {
1388 IPW_WARNING("Interface is up. Cannot unregister.\n");
1389 return count;
1390 }
1391
1392 ipw_prom_free(priv);
1393 rtap_iface = 0;
1394 break;
1395
1396 case '1':
1397 if (rtap_iface)
1398 return count;
1399
1400 rc = ipw_prom_alloc(priv);
1401 if (!rc)
1402 rtap_iface = 1;
1403 break;
1404
1405 default:
1406 return -EINVAL;
1407 }
1408
1409 if (rc) {
1410 IPW_ERROR("Failed to register promiscuous network "
1411 "device (error %d).\n", rc);
1412 }
1413
1414 return count;
1415 }
1416
show_rtap_iface(struct device * d,struct device_attribute * attr,char * buf)1417 static ssize_t show_rtap_iface(struct device *d,
1418 struct device_attribute *attr,
1419 char *buf)
1420 {
1421 struct ipw_priv *priv = dev_get_drvdata(d);
1422 if (rtap_iface)
1423 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 else {
1425 buf[0] = '-';
1426 buf[1] = '1';
1427 buf[2] = '\0';
1428 return 3;
1429 }
1430 }
1431
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433
store_rtap_filter(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1434 static ssize_t store_rtap_filter(struct device *d,
1435 struct device_attribute *attr,
1436 const char *buf, size_t count)
1437 {
1438 struct ipw_priv *priv = dev_get_drvdata(d);
1439
1440 if (!priv->prom_priv) {
1441 IPW_ERROR("Attempting to set filter without "
1442 "rtap_iface enabled.\n");
1443 return -EPERM;
1444 }
1445
1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447
1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 BIT_ARG16(priv->prom_priv->filter));
1450
1451 return count;
1452 }
1453
show_rtap_filter(struct device * d,struct device_attribute * attr,char * buf)1454 static ssize_t show_rtap_filter(struct device *d,
1455 struct device_attribute *attr,
1456 char *buf)
1457 {
1458 struct ipw_priv *priv = dev_get_drvdata(d);
1459 return sprintf(buf, "0x%04X",
1460 priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 char *buf)
1468 {
1469 struct ipw_priv *priv = dev_get_drvdata(d);
1470 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 const char *buf, size_t count)
1475 {
1476 struct ipw_priv *priv = dev_get_drvdata(d);
1477 struct net_device *dev = priv->net_dev;
1478 char buffer[] = "00000000";
1479 unsigned long len =
1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 unsigned long val;
1482 char *p = buffer;
1483
1484 IPW_DEBUG_INFO("enter\n");
1485
1486 strncpy(buffer, buf, len);
1487 buffer[len] = 0;
1488
1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 p++;
1491 if (p[0] == 'x' || p[0] == 'X')
1492 p++;
1493 val = simple_strtoul(p, &p, 16);
1494 } else
1495 val = simple_strtoul(p, &p, 10);
1496 if (p == buffer) {
1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 } else {
1499 priv->ieee->scan_age = val;
1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 }
1502
1503 IPW_DEBUG_INFO("exit\n");
1504 return len;
1505 }
1506
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508
show_led(struct device * d,struct device_attribute * attr,char * buf)1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 char *buf)
1511 {
1512 struct ipw_priv *priv = dev_get_drvdata(d);
1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515
store_led(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 const char *buf, size_t count)
1518 {
1519 struct ipw_priv *priv = dev_get_drvdata(d);
1520
1521 IPW_DEBUG_INFO("enter\n");
1522
1523 if (count == 0)
1524 return 0;
1525
1526 if (*buf == 0) {
1527 IPW_DEBUG_LED("Disabling LED control.\n");
1528 priv->config |= CFG_NO_LED;
1529 ipw_led_shutdown(priv);
1530 } else {
1531 IPW_DEBUG_LED("Enabling LED control.\n");
1532 priv->config &= ~CFG_NO_LED;
1533 ipw_led_init(priv);
1534 }
1535
1536 IPW_DEBUG_INFO("exit\n");
1537 return count;
1538 }
1539
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541
show_status(struct device * d,struct device_attribute * attr,char * buf)1542 static ssize_t show_status(struct device *d,
1543 struct device_attribute *attr, char *buf)
1544 {
1545 struct ipw_priv *p = dev_get_drvdata(d);
1546 return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550
show_cfg(struct device * d,struct device_attribute * attr,char * buf)1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 char *buf)
1553 {
1554 struct ipw_priv *p = dev_get_drvdata(d);
1555 return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559
show_nic_type(struct device * d,struct device_attribute * attr,char * buf)1560 static ssize_t show_nic_type(struct device *d,
1561 struct device_attribute *attr, char *buf)
1562 {
1563 struct ipw_priv *priv = dev_get_drvdata(d);
1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568
show_ucode_version(struct device * d,struct device_attribute * attr,char * buf)1569 static ssize_t show_ucode_version(struct device *d,
1570 struct device_attribute *attr, char *buf)
1571 {
1572 u32 len = sizeof(u32), tmp = 0;
1573 struct ipw_priv *p = dev_get_drvdata(d);
1574
1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 return 0;
1577
1578 return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582
show_rtc(struct device * d,struct device_attribute * attr,char * buf)1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 char *buf)
1585 {
1586 u32 len = sizeof(u32), tmp = 0;
1587 struct ipw_priv *p = dev_get_drvdata(d);
1588
1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 return 0;
1591
1592 return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596
1597 /*
1598 * Add a device attribute to view/control the delay between eeprom
1599 * operations.
1600 */
show_eeprom_delay(struct device * d,struct device_attribute * attr,char * buf)1601 static ssize_t show_eeprom_delay(struct device *d,
1602 struct device_attribute *attr, char *buf)
1603 {
1604 struct ipw_priv *p = dev_get_drvdata(d);
1605 int n = p->eeprom_delay;
1606 return sprintf(buf, "%i\n", n);
1607 }
store_eeprom_delay(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1608 static ssize_t store_eeprom_delay(struct device *d,
1609 struct device_attribute *attr,
1610 const char *buf, size_t count)
1611 {
1612 struct ipw_priv *p = dev_get_drvdata(d);
1613 sscanf(buf, "%i", &p->eeprom_delay);
1614 return strnlen(buf, count);
1615 }
1616
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618
show_command_event_reg(struct device * d,struct device_attribute * attr,char * buf)1619 static ssize_t show_command_event_reg(struct device *d,
1620 struct device_attribute *attr, char *buf)
1621 {
1622 u32 reg = 0;
1623 struct ipw_priv *p = dev_get_drvdata(d);
1624
1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 return sprintf(buf, "0x%08x\n", reg);
1627 }
store_command_event_reg(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1628 static ssize_t store_command_event_reg(struct device *d,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1631 {
1632 u32 reg;
1633 struct ipw_priv *p = dev_get_drvdata(d);
1634
1635 sscanf(buf, "%x", ®);
1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 return strnlen(buf, count);
1638 }
1639
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 show_command_event_reg, store_command_event_reg);
1642
show_mem_gpio_reg(struct device * d,struct device_attribute * attr,char * buf)1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 struct device_attribute *attr, char *buf)
1645 {
1646 u32 reg = 0;
1647 struct ipw_priv *p = dev_get_drvdata(d);
1648
1649 reg = ipw_read_reg32(p, 0x301100);
1650 return sprintf(buf, "0x%08x\n", reg);
1651 }
store_mem_gpio_reg(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 struct device_attribute *attr,
1654 const char *buf, size_t count)
1655 {
1656 u32 reg;
1657 struct ipw_priv *p = dev_get_drvdata(d);
1658
1659 sscanf(buf, "%x", ®);
1660 ipw_write_reg32(p, 0x301100, reg);
1661 return strnlen(buf, count);
1662 }
1663
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665
show_indirect_dword(struct device * d,struct device_attribute * attr,char * buf)1666 static ssize_t show_indirect_dword(struct device *d,
1667 struct device_attribute *attr, char *buf)
1668 {
1669 u32 reg = 0;
1670 struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672 if (priv->status & STATUS_INDIRECT_DWORD)
1673 reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 else
1675 reg = 0;
1676
1677 return sprintf(buf, "0x%08x\n", reg);
1678 }
store_indirect_dword(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1679 static ssize_t store_indirect_dword(struct device *d,
1680 struct device_attribute *attr,
1681 const char *buf, size_t count)
1682 {
1683 struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685 sscanf(buf, "%x", &priv->indirect_dword);
1686 priv->status |= STATUS_INDIRECT_DWORD;
1687 return strnlen(buf, count);
1688 }
1689
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 show_indirect_dword, store_indirect_dword);
1692
show_indirect_byte(struct device * d,struct device_attribute * attr,char * buf)1693 static ssize_t show_indirect_byte(struct device *d,
1694 struct device_attribute *attr, char *buf)
1695 {
1696 u8 reg = 0;
1697 struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699 if (priv->status & STATUS_INDIRECT_BYTE)
1700 reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 else
1702 reg = 0;
1703
1704 return sprintf(buf, "0x%02x\n", reg);
1705 }
store_indirect_byte(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1706 static ssize_t store_indirect_byte(struct device *d,
1707 struct device_attribute *attr,
1708 const char *buf, size_t count)
1709 {
1710 struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712 sscanf(buf, "%x", &priv->indirect_byte);
1713 priv->status |= STATUS_INDIRECT_BYTE;
1714 return strnlen(buf, count);
1715 }
1716
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 show_indirect_byte, store_indirect_byte);
1719
show_direct_dword(struct device * d,struct device_attribute * attr,char * buf)1720 static ssize_t show_direct_dword(struct device *d,
1721 struct device_attribute *attr, char *buf)
1722 {
1723 u32 reg = 0;
1724 struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726 if (priv->status & STATUS_DIRECT_DWORD)
1727 reg = ipw_read32(priv, priv->direct_dword);
1728 else
1729 reg = 0;
1730
1731 return sprintf(buf, "0x%08x\n", reg);
1732 }
store_direct_dword(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1733 static ssize_t store_direct_dword(struct device *d,
1734 struct device_attribute *attr,
1735 const char *buf, size_t count)
1736 {
1737 struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739 sscanf(buf, "%x", &priv->direct_dword);
1740 priv->status |= STATUS_DIRECT_DWORD;
1741 return strnlen(buf, count);
1742 }
1743
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745
rf_kill_active(struct ipw_priv * priv)1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 priv->status |= STATUS_RF_KILL_HW;
1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 } else {
1752 priv->status &= ~STATUS_RF_KILL_HW;
1753 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754 }
1755
1756 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 char *buf)
1761 {
1762 /* 0 - RF kill not enabled
1763 1 - SW based RF kill active (sysfs)
1764 2 - HW based RF kill active
1765 3 - Both HW and SW baed RF kill active */
1766 struct ipw_priv *priv = dev_get_drvdata(d);
1767 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 (rf_kill_active(priv) ? 0x2 : 0x0);
1769 return sprintf(buf, "%i\n", val);
1770 }
1771
ipw_radio_kill_sw(struct ipw_priv * priv,int disable_radio)1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774 if ((disable_radio ? 1 : 0) ==
1775 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 return 0;
1777
1778 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1779 disable_radio ? "OFF" : "ON");
1780
1781 if (disable_radio) {
1782 priv->status |= STATUS_RF_KILL_SW;
1783
1784 cancel_delayed_work(&priv->request_scan);
1785 cancel_delayed_work(&priv->request_direct_scan);
1786 cancel_delayed_work(&priv->request_passive_scan);
1787 cancel_delayed_work(&priv->scan_event);
1788 schedule_work(&priv->down);
1789 } else {
1790 priv->status &= ~STATUS_RF_KILL_SW;
1791 if (rf_kill_active(priv)) {
1792 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 "disabled by HW switch\n");
1794 /* Make sure the RF_KILL check timer is running */
1795 cancel_delayed_work(&priv->rf_kill);
1796 schedule_delayed_work(&priv->rf_kill,
1797 round_jiffies_relative(2 * HZ));
1798 } else
1799 schedule_work(&priv->up);
1800 }
1801
1802 return 1;
1803 }
1804
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 const char *buf, size_t count)
1807 {
1808 struct ipw_priv *priv = dev_get_drvdata(d);
1809
1810 ipw_radio_kill_sw(priv, buf[0] == '1');
1811
1812 return count;
1813 }
1814
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816
show_speed_scan(struct device * d,struct device_attribute * attr,char * buf)1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 char *buf)
1819 {
1820 struct ipw_priv *priv = dev_get_drvdata(d);
1821 int pos = 0, len = 0;
1822 if (priv->config & CFG_SPEED_SCAN) {
1823 while (priv->speed_scan[pos] != 0)
1824 len += sprintf(&buf[len], "%d ",
1825 priv->speed_scan[pos++]);
1826 return len + sprintf(&buf[len], "\n");
1827 }
1828
1829 return sprintf(buf, "0\n");
1830 }
1831
store_speed_scan(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 const char *buf, size_t count)
1834 {
1835 struct ipw_priv *priv = dev_get_drvdata(d);
1836 int channel, pos = 0;
1837 const char *p = buf;
1838
1839 /* list of space separated channels to scan, optionally ending with 0 */
1840 while ((channel = simple_strtol(p, NULL, 0))) {
1841 if (pos == MAX_SPEED_SCAN - 1) {
1842 priv->speed_scan[pos] = 0;
1843 break;
1844 }
1845
1846 if (libipw_is_valid_channel(priv->ieee, channel))
1847 priv->speed_scan[pos++] = channel;
1848 else
1849 IPW_WARNING("Skipping invalid channel request: %d\n",
1850 channel);
1851 p = strchr(p, ' ');
1852 if (!p)
1853 break;
1854 while (*p == ' ' || *p == '\t')
1855 p++;
1856 }
1857
1858 if (pos == 0)
1859 priv->config &= ~CFG_SPEED_SCAN;
1860 else {
1861 priv->speed_scan_pos = 0;
1862 priv->config |= CFG_SPEED_SCAN;
1863 }
1864
1865 return count;
1866 }
1867
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869
show_net_stats(struct device * d,struct device_attribute * attr,char * buf)1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 char *buf)
1872 {
1873 struct ipw_priv *priv = dev_get_drvdata(d);
1874 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876
store_net_stats(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 const char *buf, size_t count)
1879 {
1880 struct ipw_priv *priv = dev_get_drvdata(d);
1881 if (buf[0] == '1')
1882 priv->config |= CFG_NET_STATS;
1883 else
1884 priv->config &= ~CFG_NET_STATS;
1885
1886 return count;
1887 }
1888
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890
show_channels(struct device * d,struct device_attribute * attr,char * buf)1891 static ssize_t show_channels(struct device *d,
1892 struct device_attribute *attr,
1893 char *buf)
1894 {
1895 struct ipw_priv *priv = dev_get_drvdata(d);
1896 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 int len = 0, i;
1898
1899 len = sprintf(&buf[len],
1900 "Displaying %d channels in 2.4Ghz band "
1901 "(802.11bg):\n", geo->bg_channels);
1902
1903 for (i = 0; i < geo->bg_channels; i++) {
1904 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 geo->bg[i].channel,
1906 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 " (radar spectrum)" : "",
1908 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 ? "" : ", IBSS",
1911 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 "passive only" : "active/passive",
1913 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 "B" : "B/G");
1915 }
1916
1917 len += sprintf(&buf[len],
1918 "Displaying %d channels in 5.2Ghz band "
1919 "(802.11a):\n", geo->a_channels);
1920 for (i = 0; i < geo->a_channels; i++) {
1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 geo->a[i].channel,
1923 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 " (radar spectrum)" : "",
1925 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 ? "" : ", IBSS",
1928 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 "passive only" : "active/passive");
1930 }
1931
1932 return len;
1933 }
1934
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936
notify_wx_assoc_event(struct ipw_priv * priv)1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939 union iwreq_data wrqu;
1940 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 if (priv->status & STATUS_ASSOCIATED)
1942 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 else
1944 eth_zero_addr(wrqu.ap_addr.sa_data);
1945 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947
ipw_irq_tasklet(struct tasklet_struct * t)1948 static void ipw_irq_tasklet(struct tasklet_struct *t)
1949 {
1950 struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1951 u32 inta, inta_mask, handled = 0;
1952 unsigned long flags;
1953
1954 spin_lock_irqsave(&priv->irq_lock, flags);
1955
1956 inta = ipw_read32(priv, IPW_INTA_RW);
1957 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1958
1959 if (inta == 0xFFFFFFFF) {
1960 /* Hardware disappeared */
1961 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1962 /* Only handle the cached INTA values */
1963 inta = 0;
1964 }
1965 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1966
1967 /* Add any cached INTA values that need to be handled */
1968 inta |= priv->isr_inta;
1969
1970 spin_unlock_irqrestore(&priv->irq_lock, flags);
1971
1972 spin_lock_irqsave(&priv->lock, flags);
1973
1974 /* handle all the justifications for the interrupt */
1975 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1976 ipw_rx(priv);
1977 handled |= IPW_INTA_BIT_RX_TRANSFER;
1978 }
1979
1980 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1981 IPW_DEBUG_HC("Command completed.\n");
1982 ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1983 priv->status &= ~STATUS_HCMD_ACTIVE;
1984 wake_up_interruptible(&priv->wait_command_queue);
1985 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1986 }
1987
1988 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1989 IPW_DEBUG_TX("TX_QUEUE_1\n");
1990 ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1991 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1995 IPW_DEBUG_TX("TX_QUEUE_2\n");
1996 ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1997 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1998 }
1999
2000 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2001 IPW_DEBUG_TX("TX_QUEUE_3\n");
2002 ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2003 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2004 }
2005
2006 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2007 IPW_DEBUG_TX("TX_QUEUE_4\n");
2008 ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2009 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2010 }
2011
2012 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2013 IPW_WARNING("STATUS_CHANGE\n");
2014 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2015 }
2016
2017 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2018 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2019 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2020 }
2021
2022 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2023 IPW_WARNING("HOST_CMD_DONE\n");
2024 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2025 }
2026
2027 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2028 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2029 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2030 }
2031
2032 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2033 IPW_WARNING("PHY_OFF_DONE\n");
2034 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2035 }
2036
2037 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2038 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2039 priv->status |= STATUS_RF_KILL_HW;
2040 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2041 wake_up_interruptible(&priv->wait_command_queue);
2042 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2043 cancel_delayed_work(&priv->request_scan);
2044 cancel_delayed_work(&priv->request_direct_scan);
2045 cancel_delayed_work(&priv->request_passive_scan);
2046 cancel_delayed_work(&priv->scan_event);
2047 schedule_work(&priv->link_down);
2048 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2049 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2050 }
2051
2052 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2053 IPW_WARNING("Firmware error detected. Restarting.\n");
2054 if (priv->error) {
2055 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2056 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2057 struct ipw_fw_error *error =
2058 ipw_alloc_error_log(priv);
2059 ipw_dump_error_log(priv, error);
2060 kfree(error);
2061 }
2062 } else {
2063 priv->error = ipw_alloc_error_log(priv);
2064 if (priv->error)
2065 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2066 else
2067 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2068 "log.\n");
2069 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2070 ipw_dump_error_log(priv, priv->error);
2071 }
2072
2073 /* XXX: If hardware encryption is for WPA/WPA2,
2074 * we have to notify the supplicant. */
2075 if (priv->ieee->sec.encrypt) {
2076 priv->status &= ~STATUS_ASSOCIATED;
2077 notify_wx_assoc_event(priv);
2078 }
2079
2080 /* Keep the restart process from trying to send host
2081 * commands by clearing the INIT status bit */
2082 priv->status &= ~STATUS_INIT;
2083
2084 /* Cancel currently queued command. */
2085 priv->status &= ~STATUS_HCMD_ACTIVE;
2086 wake_up_interruptible(&priv->wait_command_queue);
2087
2088 schedule_work(&priv->adapter_restart);
2089 handled |= IPW_INTA_BIT_FATAL_ERROR;
2090 }
2091
2092 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093 IPW_ERROR("Parity error\n");
2094 handled |= IPW_INTA_BIT_PARITY_ERROR;
2095 }
2096
2097 if (handled != inta) {
2098 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2099 }
2100
2101 spin_unlock_irqrestore(&priv->lock, flags);
2102
2103 /* enable all interrupts */
2104 ipw_enable_interrupts(priv);
2105 }
2106
2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
get_cmd_string(u8 cmd)2108 static char *get_cmd_string(u8 cmd)
2109 {
2110 switch (cmd) {
2111 IPW_CMD(HOST_COMPLETE);
2112 IPW_CMD(POWER_DOWN);
2113 IPW_CMD(SYSTEM_CONFIG);
2114 IPW_CMD(MULTICAST_ADDRESS);
2115 IPW_CMD(SSID);
2116 IPW_CMD(ADAPTER_ADDRESS);
2117 IPW_CMD(PORT_TYPE);
2118 IPW_CMD(RTS_THRESHOLD);
2119 IPW_CMD(FRAG_THRESHOLD);
2120 IPW_CMD(POWER_MODE);
2121 IPW_CMD(WEP_KEY);
2122 IPW_CMD(TGI_TX_KEY);
2123 IPW_CMD(SCAN_REQUEST);
2124 IPW_CMD(SCAN_REQUEST_EXT);
2125 IPW_CMD(ASSOCIATE);
2126 IPW_CMD(SUPPORTED_RATES);
2127 IPW_CMD(SCAN_ABORT);
2128 IPW_CMD(TX_FLUSH);
2129 IPW_CMD(QOS_PARAMETERS);
2130 IPW_CMD(DINO_CONFIG);
2131 IPW_CMD(RSN_CAPABILITIES);
2132 IPW_CMD(RX_KEY);
2133 IPW_CMD(CARD_DISABLE);
2134 IPW_CMD(SEED_NUMBER);
2135 IPW_CMD(TX_POWER);
2136 IPW_CMD(COUNTRY_INFO);
2137 IPW_CMD(AIRONET_INFO);
2138 IPW_CMD(AP_TX_POWER);
2139 IPW_CMD(CCKM_INFO);
2140 IPW_CMD(CCX_VER_INFO);
2141 IPW_CMD(SET_CALIBRATION);
2142 IPW_CMD(SENSITIVITY_CALIB);
2143 IPW_CMD(RETRY_LIMIT);
2144 IPW_CMD(IPW_PRE_POWER_DOWN);
2145 IPW_CMD(VAP_BEACON_TEMPLATE);
2146 IPW_CMD(VAP_DTIM_PERIOD);
2147 IPW_CMD(EXT_SUPPORTED_RATES);
2148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149 IPW_CMD(VAP_QUIET_INTERVALS);
2150 IPW_CMD(VAP_CHANNEL_SWITCH);
2151 IPW_CMD(VAP_MANDATORY_CHANNELS);
2152 IPW_CMD(VAP_CELL_PWR_LIMIT);
2153 IPW_CMD(VAP_CF_PARAM_SET);
2154 IPW_CMD(VAP_SET_BEACONING_STATE);
2155 IPW_CMD(MEASUREMENT);
2156 IPW_CMD(POWER_CAPABILITY);
2157 IPW_CMD(SUPPORTED_CHANNELS);
2158 IPW_CMD(TPC_REPORT);
2159 IPW_CMD(WME_INFO);
2160 IPW_CMD(PRODUCTION_COMMAND);
2161 default:
2162 return "UNKNOWN";
2163 }
2164 }
2165
2166 #define HOST_COMPLETE_TIMEOUT HZ
2167
__ipw_send_cmd(struct ipw_priv * priv,struct host_cmd * cmd)2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2169 {
2170 int rc = 0;
2171 unsigned long flags;
2172 unsigned long now, end;
2173
2174 spin_lock_irqsave(&priv->lock, flags);
2175 if (priv->status & STATUS_HCMD_ACTIVE) {
2176 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2177 get_cmd_string(cmd->cmd));
2178 spin_unlock_irqrestore(&priv->lock, flags);
2179 return -EAGAIN;
2180 }
2181
2182 priv->status |= STATUS_HCMD_ACTIVE;
2183
2184 if (priv->cmdlog) {
2185 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2186 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2187 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2188 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2189 cmd->len);
2190 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2191 }
2192
2193 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2194 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2195 priv->status);
2196
2197 #ifndef DEBUG_CMD_WEP_KEY
2198 if (cmd->cmd == IPW_CMD_WEP_KEY)
2199 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2200 else
2201 #endif
2202 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203
2204 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2205 if (rc) {
2206 priv->status &= ~STATUS_HCMD_ACTIVE;
2207 IPW_ERROR("Failed to send %s: Reason %d\n",
2208 get_cmd_string(cmd->cmd), rc);
2209 spin_unlock_irqrestore(&priv->lock, flags);
2210 goto exit;
2211 }
2212 spin_unlock_irqrestore(&priv->lock, flags);
2213
2214 now = jiffies;
2215 end = now + HOST_COMPLETE_TIMEOUT;
2216 again:
2217 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2218 !(priv->
2219 status & STATUS_HCMD_ACTIVE),
2220 end - now);
2221 if (rc < 0) {
2222 now = jiffies;
2223 if (time_before(now, end))
2224 goto again;
2225 rc = 0;
2226 }
2227
2228 if (rc == 0) {
2229 spin_lock_irqsave(&priv->lock, flags);
2230 if (priv->status & STATUS_HCMD_ACTIVE) {
2231 IPW_ERROR("Failed to send %s: Command timed out.\n",
2232 get_cmd_string(cmd->cmd));
2233 priv->status &= ~STATUS_HCMD_ACTIVE;
2234 spin_unlock_irqrestore(&priv->lock, flags);
2235 rc = -EIO;
2236 goto exit;
2237 }
2238 spin_unlock_irqrestore(&priv->lock, flags);
2239 } else
2240 rc = 0;
2241
2242 if (priv->status & STATUS_RF_KILL_HW) {
2243 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244 get_cmd_string(cmd->cmd));
2245 rc = -EIO;
2246 goto exit;
2247 }
2248
2249 exit:
2250 if (priv->cmdlog) {
2251 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252 priv->cmdlog_pos %= priv->cmdlog_len;
2253 }
2254 return rc;
2255 }
2256
ipw_send_cmd_simple(struct ipw_priv * priv,u8 command)2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258 {
2259 struct host_cmd cmd = {
2260 .cmd = command,
2261 };
2262
2263 return __ipw_send_cmd(priv, &cmd);
2264 }
2265
ipw_send_cmd_pdu(struct ipw_priv * priv,u8 command,u8 len,void * data)2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267 void *data)
2268 {
2269 struct host_cmd cmd = {
2270 .cmd = command,
2271 .len = len,
2272 .param = data,
2273 };
2274
2275 return __ipw_send_cmd(priv, &cmd);
2276 }
2277
ipw_send_host_complete(struct ipw_priv * priv)2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2279 {
2280 if (!priv) {
2281 IPW_ERROR("Invalid args\n");
2282 return -1;
2283 }
2284
2285 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286 }
2287
ipw_send_system_config(struct ipw_priv * priv)2288 static int ipw_send_system_config(struct ipw_priv *priv)
2289 {
2290 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291 sizeof(priv->sys_config),
2292 &priv->sys_config);
2293 }
2294
ipw_send_ssid(struct ipw_priv * priv,u8 * ssid,int len)2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296 {
2297 if (!priv || !ssid) {
2298 IPW_ERROR("Invalid args\n");
2299 return -1;
2300 }
2301
2302 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303 ssid);
2304 }
2305
ipw_send_adapter_address(struct ipw_priv * priv,u8 * mac)2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307 {
2308 if (!priv || !mac) {
2309 IPW_ERROR("Invalid args\n");
2310 return -1;
2311 }
2312
2313 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314 priv->net_dev->name, mac);
2315
2316 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317 }
2318
ipw_adapter_restart(void * adapter)2319 static void ipw_adapter_restart(void *adapter)
2320 {
2321 struct ipw_priv *priv = adapter;
2322
2323 if (priv->status & STATUS_RF_KILL_MASK)
2324 return;
2325
2326 ipw_down(priv);
2327
2328 if (priv->assoc_network &&
2329 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2330 ipw_remove_current_network(priv);
2331
2332 if (ipw_up(priv)) {
2333 IPW_ERROR("Failed to up device\n");
2334 return;
2335 }
2336 }
2337
ipw_bg_adapter_restart(struct work_struct * work)2338 static void ipw_bg_adapter_restart(struct work_struct *work)
2339 {
2340 struct ipw_priv *priv =
2341 container_of(work, struct ipw_priv, adapter_restart);
2342 mutex_lock(&priv->mutex);
2343 ipw_adapter_restart(priv);
2344 mutex_unlock(&priv->mutex);
2345 }
2346
2347 static void ipw_abort_scan(struct ipw_priv *priv);
2348
2349 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2350
ipw_scan_check(void * data)2351 static void ipw_scan_check(void *data)
2352 {
2353 struct ipw_priv *priv = data;
2354
2355 if (priv->status & STATUS_SCAN_ABORTING) {
2356 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2357 "adapter after (%dms).\n",
2358 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2359 schedule_work(&priv->adapter_restart);
2360 } else if (priv->status & STATUS_SCANNING) {
2361 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2362 "after (%dms).\n",
2363 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364 ipw_abort_scan(priv);
2365 schedule_delayed_work(&priv->scan_check, HZ);
2366 }
2367 }
2368
ipw_bg_scan_check(struct work_struct * work)2369 static void ipw_bg_scan_check(struct work_struct *work)
2370 {
2371 struct ipw_priv *priv =
2372 container_of(work, struct ipw_priv, scan_check.work);
2373 mutex_lock(&priv->mutex);
2374 ipw_scan_check(priv);
2375 mutex_unlock(&priv->mutex);
2376 }
2377
ipw_send_scan_request_ext(struct ipw_priv * priv,struct ipw_scan_request_ext * request)2378 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2379 struct ipw_scan_request_ext *request)
2380 {
2381 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2382 sizeof(*request), request);
2383 }
2384
ipw_send_scan_abort(struct ipw_priv * priv)2385 static int ipw_send_scan_abort(struct ipw_priv *priv)
2386 {
2387 if (!priv) {
2388 IPW_ERROR("Invalid args\n");
2389 return -1;
2390 }
2391
2392 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2393 }
2394
ipw_set_sensitivity(struct ipw_priv * priv,u16 sens)2395 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2396 {
2397 struct ipw_sensitivity_calib calib = {
2398 .beacon_rssi_raw = cpu_to_le16(sens),
2399 };
2400
2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2402 &calib);
2403 }
2404
ipw_send_associate(struct ipw_priv * priv,struct ipw_associate * associate)2405 static int ipw_send_associate(struct ipw_priv *priv,
2406 struct ipw_associate *associate)
2407 {
2408 if (!priv || !associate) {
2409 IPW_ERROR("Invalid args\n");
2410 return -1;
2411 }
2412
2413 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2414 associate);
2415 }
2416
ipw_send_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)2417 static int ipw_send_supported_rates(struct ipw_priv *priv,
2418 struct ipw_supported_rates *rates)
2419 {
2420 if (!priv || !rates) {
2421 IPW_ERROR("Invalid args\n");
2422 return -1;
2423 }
2424
2425 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2426 rates);
2427 }
2428
ipw_set_random_seed(struct ipw_priv * priv)2429 static int ipw_set_random_seed(struct ipw_priv *priv)
2430 {
2431 u32 val;
2432
2433 if (!priv) {
2434 IPW_ERROR("Invalid args\n");
2435 return -1;
2436 }
2437
2438 get_random_bytes(&val, sizeof(val));
2439
2440 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2441 }
2442
ipw_send_card_disable(struct ipw_priv * priv,u32 phy_off)2443 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2444 {
2445 __le32 v = cpu_to_le32(phy_off);
2446 if (!priv) {
2447 IPW_ERROR("Invalid args\n");
2448 return -1;
2449 }
2450
2451 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2452 }
2453
ipw_send_tx_power(struct ipw_priv * priv,struct ipw_tx_power * power)2454 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2455 {
2456 if (!priv || !power) {
2457 IPW_ERROR("Invalid args\n");
2458 return -1;
2459 }
2460
2461 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2462 }
2463
ipw_set_tx_power(struct ipw_priv * priv)2464 static int ipw_set_tx_power(struct ipw_priv *priv)
2465 {
2466 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2467 struct ipw_tx_power tx_power;
2468 s8 max_power;
2469 int i;
2470
2471 memset(&tx_power, 0, sizeof(tx_power));
2472
2473 /* configure device for 'G' band */
2474 tx_power.ieee_mode = IPW_G_MODE;
2475 tx_power.num_channels = geo->bg_channels;
2476 for (i = 0; i < geo->bg_channels; i++) {
2477 max_power = geo->bg[i].max_power;
2478 tx_power.channels_tx_power[i].channel_number =
2479 geo->bg[i].channel;
2480 tx_power.channels_tx_power[i].tx_power = max_power ?
2481 min(max_power, priv->tx_power) : priv->tx_power;
2482 }
2483 if (ipw_send_tx_power(priv, &tx_power))
2484 return -EIO;
2485
2486 /* configure device to also handle 'B' band */
2487 tx_power.ieee_mode = IPW_B_MODE;
2488 if (ipw_send_tx_power(priv, &tx_power))
2489 return -EIO;
2490
2491 /* configure device to also handle 'A' band */
2492 if (priv->ieee->abg_true) {
2493 tx_power.ieee_mode = IPW_A_MODE;
2494 tx_power.num_channels = geo->a_channels;
2495 for (i = 0; i < tx_power.num_channels; i++) {
2496 max_power = geo->a[i].max_power;
2497 tx_power.channels_tx_power[i].channel_number =
2498 geo->a[i].channel;
2499 tx_power.channels_tx_power[i].tx_power = max_power ?
2500 min(max_power, priv->tx_power) : priv->tx_power;
2501 }
2502 if (ipw_send_tx_power(priv, &tx_power))
2503 return -EIO;
2504 }
2505 return 0;
2506 }
2507
ipw_send_rts_threshold(struct ipw_priv * priv,u16 rts)2508 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2509 {
2510 struct ipw_rts_threshold rts_threshold = {
2511 .rts_threshold = cpu_to_le16(rts),
2512 };
2513
2514 if (!priv) {
2515 IPW_ERROR("Invalid args\n");
2516 return -1;
2517 }
2518
2519 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2520 sizeof(rts_threshold), &rts_threshold);
2521 }
2522
ipw_send_frag_threshold(struct ipw_priv * priv,u16 frag)2523 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2524 {
2525 struct ipw_frag_threshold frag_threshold = {
2526 .frag_threshold = cpu_to_le16(frag),
2527 };
2528
2529 if (!priv) {
2530 IPW_ERROR("Invalid args\n");
2531 return -1;
2532 }
2533
2534 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2535 sizeof(frag_threshold), &frag_threshold);
2536 }
2537
ipw_send_power_mode(struct ipw_priv * priv,u32 mode)2538 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2539 {
2540 __le32 param;
2541
2542 if (!priv) {
2543 IPW_ERROR("Invalid args\n");
2544 return -1;
2545 }
2546
2547 /* If on battery, set to 3, if AC set to CAM, else user
2548 * level */
2549 switch (mode) {
2550 case IPW_POWER_BATTERY:
2551 param = cpu_to_le32(IPW_POWER_INDEX_3);
2552 break;
2553 case IPW_POWER_AC:
2554 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2555 break;
2556 default:
2557 param = cpu_to_le32(mode);
2558 break;
2559 }
2560
2561 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2562 ¶m);
2563 }
2564
ipw_send_retry_limit(struct ipw_priv * priv,u8 slimit,u8 llimit)2565 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2566 {
2567 struct ipw_retry_limit retry_limit = {
2568 .short_retry_limit = slimit,
2569 .long_retry_limit = llimit
2570 };
2571
2572 if (!priv) {
2573 IPW_ERROR("Invalid args\n");
2574 return -1;
2575 }
2576
2577 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2578 &retry_limit);
2579 }
2580
2581 /*
2582 * The IPW device contains a Microwire compatible EEPROM that stores
2583 * various data like the MAC address. Usually the firmware has exclusive
2584 * access to the eeprom, but during device initialization (before the
2585 * device driver has sent the HostComplete command to the firmware) the
2586 * device driver has read access to the EEPROM by way of indirect addressing
2587 * through a couple of memory mapped registers.
2588 *
2589 * The following is a simplified implementation for pulling data out of the
2590 * the eeprom, along with some helper functions to find information in
2591 * the per device private data's copy of the eeprom.
2592 *
2593 * NOTE: To better understand how these functions work (i.e what is a chip
2594 * select and why do have to keep driving the eeprom clock?), read
2595 * just about any data sheet for a Microwire compatible EEPROM.
2596 */
2597
2598 /* write a 32 bit value into the indirect accessor register */
eeprom_write_reg(struct ipw_priv * p,u32 data)2599 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2600 {
2601 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2602
2603 /* the eeprom requires some time to complete the operation */
2604 udelay(p->eeprom_delay);
2605 }
2606
2607 /* perform a chip select operation */
eeprom_cs(struct ipw_priv * priv)2608 static void eeprom_cs(struct ipw_priv *priv)
2609 {
2610 eeprom_write_reg(priv, 0);
2611 eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 }
2615
2616 /* perform a chip select operation */
eeprom_disable_cs(struct ipw_priv * priv)2617 static void eeprom_disable_cs(struct ipw_priv *priv)
2618 {
2619 eeprom_write_reg(priv, EEPROM_BIT_CS);
2620 eeprom_write_reg(priv, 0);
2621 eeprom_write_reg(priv, EEPROM_BIT_SK);
2622 }
2623
2624 /* push a single bit down to the eeprom */
eeprom_write_bit(struct ipw_priv * p,u8 bit)2625 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2626 {
2627 int d = (bit ? EEPROM_BIT_DI : 0);
2628 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2629 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2630 }
2631
2632 /* push an opcode followed by an address down to the eeprom */
eeprom_op(struct ipw_priv * priv,u8 op,u8 addr)2633 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2634 {
2635 int i;
2636
2637 eeprom_cs(priv);
2638 eeprom_write_bit(priv, 1);
2639 eeprom_write_bit(priv, op & 2);
2640 eeprom_write_bit(priv, op & 1);
2641 for (i = 7; i >= 0; i--) {
2642 eeprom_write_bit(priv, addr & (1 << i));
2643 }
2644 }
2645
2646 /* pull 16 bits off the eeprom, one bit at a time */
eeprom_read_u16(struct ipw_priv * priv,u8 addr)2647 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2648 {
2649 int i;
2650 u16 r = 0;
2651
2652 /* Send READ Opcode */
2653 eeprom_op(priv, EEPROM_CMD_READ, addr);
2654
2655 /* Send dummy bit */
2656 eeprom_write_reg(priv, EEPROM_BIT_CS);
2657
2658 /* Read the byte off the eeprom one bit at a time */
2659 for (i = 0; i < 16; i++) {
2660 u32 data = 0;
2661 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2662 eeprom_write_reg(priv, EEPROM_BIT_CS);
2663 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2664 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2665 }
2666
2667 /* Send another dummy bit */
2668 eeprom_write_reg(priv, 0);
2669 eeprom_disable_cs(priv);
2670
2671 return r;
2672 }
2673
2674 /* helper function for pulling the mac address out of the private */
2675 /* data's copy of the eeprom data */
eeprom_parse_mac(struct ipw_priv * priv,u8 * mac)2676 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2677 {
2678 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2679 }
2680
ipw_read_eeprom(struct ipw_priv * priv)2681 static void ipw_read_eeprom(struct ipw_priv *priv)
2682 {
2683 int i;
2684 __le16 *eeprom = (__le16 *) priv->eeprom;
2685
2686 IPW_DEBUG_TRACE(">>\n");
2687
2688 /* read entire contents of eeprom into private buffer */
2689 for (i = 0; i < 128; i++)
2690 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2691
2692 IPW_DEBUG_TRACE("<<\n");
2693 }
2694
2695 /*
2696 * Either the device driver (i.e. the host) or the firmware can
2697 * load eeprom data into the designated region in SRAM. If neither
2698 * happens then the FW will shutdown with a fatal error.
2699 *
2700 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2701 * bit needs region of shared SRAM needs to be non-zero.
2702 */
ipw_eeprom_init_sram(struct ipw_priv * priv)2703 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2704 {
2705 int i;
2706
2707 IPW_DEBUG_TRACE(">>\n");
2708
2709 /*
2710 If the data looks correct, then copy it to our private
2711 copy. Otherwise let the firmware know to perform the operation
2712 on its own.
2713 */
2714 if (priv->eeprom[EEPROM_VERSION] != 0) {
2715 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2716
2717 /* write the eeprom data to sram */
2718 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2719 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2720
2721 /* Do not load eeprom data on fatal error or suspend */
2722 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2723 } else {
2724 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2725
2726 /* Load eeprom data on fatal error or suspend */
2727 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2728 }
2729
2730 IPW_DEBUG_TRACE("<<\n");
2731 }
2732
ipw_zero_memory(struct ipw_priv * priv,u32 start,u32 count)2733 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734 {
2735 count >>= 2;
2736 if (!count)
2737 return;
2738 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2739 while (count--)
2740 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2741 }
2742
ipw_fw_dma_reset_command_blocks(struct ipw_priv * priv)2743 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2744 {
2745 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2746 CB_NUMBER_OF_ELEMENTS_SMALL *
2747 sizeof(struct command_block));
2748 }
2749
ipw_fw_dma_enable(struct ipw_priv * priv)2750 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2751 { /* start dma engine but no transfers yet */
2752
2753 IPW_DEBUG_FW(">> :\n");
2754
2755 /* Start the dma */
2756 ipw_fw_dma_reset_command_blocks(priv);
2757
2758 /* Write CB base address */
2759 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2760
2761 IPW_DEBUG_FW("<< :\n");
2762 return 0;
2763 }
2764
ipw_fw_dma_abort(struct ipw_priv * priv)2765 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2766 {
2767 u32 control = 0;
2768
2769 IPW_DEBUG_FW(">> :\n");
2770
2771 /* set the Stop and Abort bit */
2772 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2773 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2774 priv->sram_desc.last_cb_index = 0;
2775
2776 IPW_DEBUG_FW("<<\n");
2777 }
2778
ipw_fw_dma_write_command_block(struct ipw_priv * priv,int index,struct command_block * cb)2779 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2780 struct command_block *cb)
2781 {
2782 u32 address =
2783 IPW_SHARED_SRAM_DMA_CONTROL +
2784 (sizeof(struct command_block) * index);
2785 IPW_DEBUG_FW(">> :\n");
2786
2787 ipw_write_indirect(priv, address, (u8 *) cb,
2788 (int)sizeof(struct command_block));
2789
2790 IPW_DEBUG_FW("<< :\n");
2791 return 0;
2792
2793 }
2794
ipw_fw_dma_kick(struct ipw_priv * priv)2795 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796 {
2797 u32 control = 0;
2798 u32 index = 0;
2799
2800 IPW_DEBUG_FW(">> :\n");
2801
2802 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2803 ipw_fw_dma_write_command_block(priv, index,
2804 &priv->sram_desc.cb_list[index]);
2805
2806 /* Enable the DMA in the CSR register */
2807 ipw_clear_bit(priv, IPW_RESET_REG,
2808 IPW_RESET_REG_MASTER_DISABLED |
2809 IPW_RESET_REG_STOP_MASTER);
2810
2811 /* Set the Start bit. */
2812 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2813 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2814
2815 IPW_DEBUG_FW("<< :\n");
2816 return 0;
2817 }
2818
ipw_fw_dma_dump_command_block(struct ipw_priv * priv)2819 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2820 {
2821 u32 address;
2822 u32 register_value = 0;
2823 u32 cb_fields_address = 0;
2824
2825 IPW_DEBUG_FW(">> :\n");
2826 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2827 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2828
2829 /* Read the DMA Controlor register */
2830 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2831 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2832
2833 /* Print the CB values */
2834 cb_fields_address = address;
2835 register_value = ipw_read_reg32(priv, cb_fields_address);
2836 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2837
2838 cb_fields_address += sizeof(u32);
2839 register_value = ipw_read_reg32(priv, cb_fields_address);
2840 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2841
2842 cb_fields_address += sizeof(u32);
2843 register_value = ipw_read_reg32(priv, cb_fields_address);
2844 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2845 register_value);
2846
2847 cb_fields_address += sizeof(u32);
2848 register_value = ipw_read_reg32(priv, cb_fields_address);
2849 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2850
2851 IPW_DEBUG_FW(">> :\n");
2852 }
2853
ipw_fw_dma_command_block_index(struct ipw_priv * priv)2854 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2855 {
2856 u32 current_cb_address = 0;
2857 u32 current_cb_index = 0;
2858
2859 IPW_DEBUG_FW("<< :\n");
2860 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2861
2862 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2863 sizeof(struct command_block);
2864
2865 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2866 current_cb_index, current_cb_address);
2867
2868 IPW_DEBUG_FW(">> :\n");
2869 return current_cb_index;
2870
2871 }
2872
ipw_fw_dma_add_command_block(struct ipw_priv * priv,u32 src_address,u32 dest_address,u32 length,int interrupt_enabled,int is_last)2873 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2874 u32 src_address,
2875 u32 dest_address,
2876 u32 length,
2877 int interrupt_enabled, int is_last)
2878 {
2879
2880 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2881 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2882 CB_DEST_SIZE_LONG;
2883 struct command_block *cb;
2884 u32 last_cb_element = 0;
2885
2886 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2887 src_address, dest_address, length);
2888
2889 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2890 return -1;
2891
2892 last_cb_element = priv->sram_desc.last_cb_index;
2893 cb = &priv->sram_desc.cb_list[last_cb_element];
2894 priv->sram_desc.last_cb_index++;
2895
2896 /* Calculate the new CB control word */
2897 if (interrupt_enabled)
2898 control |= CB_INT_ENABLED;
2899
2900 if (is_last)
2901 control |= CB_LAST_VALID;
2902
2903 control |= length;
2904
2905 /* Calculate the CB Element's checksum value */
2906 cb->status = control ^ src_address ^ dest_address;
2907
2908 /* Copy the Source and Destination addresses */
2909 cb->dest_addr = dest_address;
2910 cb->source_addr = src_address;
2911
2912 /* Copy the Control Word last */
2913 cb->control = control;
2914
2915 return 0;
2916 }
2917
ipw_fw_dma_add_buffer(struct ipw_priv * priv,dma_addr_t * src_address,int nr,u32 dest_address,u32 len)2918 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2919 int nr, u32 dest_address, u32 len)
2920 {
2921 int ret, i;
2922 u32 size;
2923
2924 IPW_DEBUG_FW(">>\n");
2925 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2926 nr, dest_address, len);
2927
2928 for (i = 0; i < nr; i++) {
2929 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2930 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2931 dest_address +
2932 i * CB_MAX_LENGTH, size,
2933 0, 0);
2934 if (ret) {
2935 IPW_DEBUG_FW_INFO(": Failed\n");
2936 return -1;
2937 } else
2938 IPW_DEBUG_FW_INFO(": Added new cb\n");
2939 }
2940
2941 IPW_DEBUG_FW("<<\n");
2942 return 0;
2943 }
2944
ipw_fw_dma_wait(struct ipw_priv * priv)2945 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2946 {
2947 u32 current_index = 0, previous_index;
2948 u32 watchdog = 0;
2949
2950 IPW_DEBUG_FW(">> :\n");
2951
2952 current_index = ipw_fw_dma_command_block_index(priv);
2953 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2954 (int)priv->sram_desc.last_cb_index);
2955
2956 while (current_index < priv->sram_desc.last_cb_index) {
2957 udelay(50);
2958 previous_index = current_index;
2959 current_index = ipw_fw_dma_command_block_index(priv);
2960
2961 if (previous_index < current_index) {
2962 watchdog = 0;
2963 continue;
2964 }
2965 if (++watchdog > 400) {
2966 IPW_DEBUG_FW_INFO("Timeout\n");
2967 ipw_fw_dma_dump_command_block(priv);
2968 ipw_fw_dma_abort(priv);
2969 return -1;
2970 }
2971 }
2972
2973 ipw_fw_dma_abort(priv);
2974
2975 /*Disable the DMA in the CSR register */
2976 ipw_set_bit(priv, IPW_RESET_REG,
2977 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2978
2979 IPW_DEBUG_FW("<< dmaWaitSync\n");
2980 return 0;
2981 }
2982
ipw_remove_current_network(struct ipw_priv * priv)2983 static void ipw_remove_current_network(struct ipw_priv *priv)
2984 {
2985 struct list_head *element, *safe;
2986 struct libipw_network *network = NULL;
2987 unsigned long flags;
2988
2989 spin_lock_irqsave(&priv->ieee->lock, flags);
2990 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2991 network = list_entry(element, struct libipw_network, list);
2992 if (ether_addr_equal(network->bssid, priv->bssid)) {
2993 list_del(element);
2994 list_add_tail(&network->list,
2995 &priv->ieee->network_free_list);
2996 }
2997 }
2998 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2999 }
3000
3001 /*
3002 * Check that card is still alive.
3003 * Reads debug register from domain0.
3004 * If card is present, pre-defined value should
3005 * be found there.
3006 *
3007 * @param priv
3008 * @return 1 if card is present, 0 otherwise
3009 */
ipw_alive(struct ipw_priv * priv)3010 static inline int ipw_alive(struct ipw_priv *priv)
3011 {
3012 return ipw_read32(priv, 0x90) == 0xd55555d5;
3013 }
3014
3015 /* timeout in msec, attempted in 10-msec quanta */
ipw_poll_bit(struct ipw_priv * priv,u32 addr,u32 mask,int timeout)3016 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3017 int timeout)
3018 {
3019 int i = 0;
3020
3021 do {
3022 if ((ipw_read32(priv, addr) & mask) == mask)
3023 return i;
3024 mdelay(10);
3025 i += 10;
3026 } while (i < timeout);
3027
3028 return -ETIME;
3029 }
3030
3031 /* These functions load the firmware and micro code for the operation of
3032 * the ipw hardware. It assumes the buffer has all the bits for the
3033 * image and the caller is handling the memory allocation and clean up.
3034 */
3035
ipw_stop_master(struct ipw_priv * priv)3036 static int ipw_stop_master(struct ipw_priv *priv)
3037 {
3038 int rc;
3039
3040 IPW_DEBUG_TRACE(">>\n");
3041 /* stop master. typical delay - 0 */
3042 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3043
3044 /* timeout is in msec, polled in 10-msec quanta */
3045 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3046 IPW_RESET_REG_MASTER_DISABLED, 100);
3047 if (rc < 0) {
3048 IPW_ERROR("wait for stop master failed after 100ms\n");
3049 return -1;
3050 }
3051
3052 IPW_DEBUG_INFO("stop master %dms\n", rc);
3053
3054 return rc;
3055 }
3056
ipw_arc_release(struct ipw_priv * priv)3057 static void ipw_arc_release(struct ipw_priv *priv)
3058 {
3059 IPW_DEBUG_TRACE(">>\n");
3060 mdelay(5);
3061
3062 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3063
3064 /* no one knows timing, for safety add some delay */
3065 mdelay(5);
3066 }
3067
3068 struct fw_chunk {
3069 __le32 address;
3070 __le32 length;
3071 };
3072
ipw_load_ucode(struct ipw_priv * priv,u8 * data,size_t len)3073 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3074 {
3075 int rc = 0, i, addr;
3076 u8 cr = 0;
3077 __le16 *image;
3078
3079 image = (__le16 *) data;
3080
3081 IPW_DEBUG_TRACE(">>\n");
3082
3083 rc = ipw_stop_master(priv);
3084
3085 if (rc < 0)
3086 return rc;
3087
3088 for (addr = IPW_SHARED_LOWER_BOUND;
3089 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3090 ipw_write32(priv, addr, 0);
3091 }
3092
3093 /* no ucode (yet) */
3094 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3095 /* destroy DMA queues */
3096 /* reset sequence */
3097
3098 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3099 ipw_arc_release(priv);
3100 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3101 mdelay(1);
3102
3103 /* reset PHY */
3104 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3105 mdelay(1);
3106
3107 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3108 mdelay(1);
3109
3110 /* enable ucode store */
3111 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3112 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3113 mdelay(1);
3114
3115 /* write ucode */
3116 /*
3117 * @bug
3118 * Do NOT set indirect address register once and then
3119 * store data to indirect data register in the loop.
3120 * It seems very reasonable, but in this case DINO do not
3121 * accept ucode. It is essential to set address each time.
3122 */
3123 /* load new ipw uCode */
3124 for (i = 0; i < len / 2; i++)
3125 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3126 le16_to_cpu(image[i]));
3127
3128 /* enable DINO */
3129 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3130 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3131
3132 /* this is where the igx / win driver deveates from the VAP driver. */
3133
3134 /* wait for alive response */
3135 for (i = 0; i < 100; i++) {
3136 /* poll for incoming data */
3137 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3138 if (cr & DINO_RXFIFO_DATA)
3139 break;
3140 mdelay(1);
3141 }
3142
3143 if (cr & DINO_RXFIFO_DATA) {
3144 /* alive_command_responce size is NOT multiple of 4 */
3145 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3146
3147 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3148 response_buffer[i] =
3149 cpu_to_le32(ipw_read_reg32(priv,
3150 IPW_BASEBAND_RX_FIFO_READ));
3151 memcpy(&priv->dino_alive, response_buffer,
3152 sizeof(priv->dino_alive));
3153 if (priv->dino_alive.alive_command == 1
3154 && priv->dino_alive.ucode_valid == 1) {
3155 rc = 0;
3156 IPW_DEBUG_INFO
3157 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3158 "of %02d/%02d/%02d %02d:%02d\n",
3159 priv->dino_alive.software_revision,
3160 priv->dino_alive.software_revision,
3161 priv->dino_alive.device_identifier,
3162 priv->dino_alive.device_identifier,
3163 priv->dino_alive.time_stamp[0],
3164 priv->dino_alive.time_stamp[1],
3165 priv->dino_alive.time_stamp[2],
3166 priv->dino_alive.time_stamp[3],
3167 priv->dino_alive.time_stamp[4]);
3168 } else {
3169 IPW_DEBUG_INFO("Microcode is not alive\n");
3170 rc = -EINVAL;
3171 }
3172 } else {
3173 IPW_DEBUG_INFO("No alive response from DINO\n");
3174 rc = -ETIME;
3175 }
3176
3177 /* disable DINO, otherwise for some reason
3178 firmware have problem getting alive resp. */
3179 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180
3181 return rc;
3182 }
3183
ipw_load_firmware(struct ipw_priv * priv,u8 * data,size_t len)3184 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3185 {
3186 int ret = -1;
3187 int offset = 0;
3188 struct fw_chunk *chunk;
3189 int total_nr = 0;
3190 int i;
3191 struct dma_pool *pool;
3192 void **virts;
3193 dma_addr_t *phys;
3194
3195 IPW_DEBUG_TRACE("<< :\n");
3196
3197 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3198 GFP_KERNEL);
3199 if (!virts)
3200 return -ENOMEM;
3201
3202 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3203 GFP_KERNEL);
3204 if (!phys) {
3205 kfree(virts);
3206 return -ENOMEM;
3207 }
3208 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3209 0);
3210 if (!pool) {
3211 IPW_ERROR("dma_pool_create failed\n");
3212 kfree(phys);
3213 kfree(virts);
3214 return -ENOMEM;
3215 }
3216
3217 /* Start the Dma */
3218 ret = ipw_fw_dma_enable(priv);
3219
3220 /* the DMA is already ready this would be a bug. */
3221 BUG_ON(priv->sram_desc.last_cb_index > 0);
3222
3223 do {
3224 u32 chunk_len;
3225 u8 *start;
3226 int size;
3227 int nr = 0;
3228
3229 chunk = (struct fw_chunk *)(data + offset);
3230 offset += sizeof(struct fw_chunk);
3231 chunk_len = le32_to_cpu(chunk->length);
3232 start = data + offset;
3233
3234 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3235 for (i = 0; i < nr; i++) {
3236 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3237 &phys[total_nr]);
3238 if (!virts[total_nr]) {
3239 ret = -ENOMEM;
3240 goto out;
3241 }
3242 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3243 CB_MAX_LENGTH);
3244 memcpy(virts[total_nr], start, size);
3245 start += size;
3246 total_nr++;
3247 /* We don't support fw chunk larger than 64*8K */
3248 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3249 }
3250
3251 /* build DMA packet and queue up for sending */
3252 /* dma to chunk->address, the chunk->length bytes from data +
3253 * offeset*/
3254 /* Dma loading */
3255 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3256 nr, le32_to_cpu(chunk->address),
3257 chunk_len);
3258 if (ret) {
3259 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3260 goto out;
3261 }
3262
3263 offset += chunk_len;
3264 } while (offset < len);
3265
3266 /* Run the DMA and wait for the answer */
3267 ret = ipw_fw_dma_kick(priv);
3268 if (ret) {
3269 IPW_ERROR("dmaKick Failed\n");
3270 goto out;
3271 }
3272
3273 ret = ipw_fw_dma_wait(priv);
3274 if (ret) {
3275 IPW_ERROR("dmaWaitSync Failed\n");
3276 goto out;
3277 }
3278 out:
3279 for (i = 0; i < total_nr; i++)
3280 dma_pool_free(pool, virts[i], phys[i]);
3281
3282 dma_pool_destroy(pool);
3283 kfree(phys);
3284 kfree(virts);
3285
3286 return ret;
3287 }
3288
3289 /* stop nic */
ipw_stop_nic(struct ipw_priv * priv)3290 static int ipw_stop_nic(struct ipw_priv *priv)
3291 {
3292 int rc = 0;
3293
3294 /* stop */
3295 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3296
3297 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3298 IPW_RESET_REG_MASTER_DISABLED, 500);
3299 if (rc < 0) {
3300 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3301 return rc;
3302 }
3303
3304 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3305
3306 return rc;
3307 }
3308
ipw_start_nic(struct ipw_priv * priv)3309 static void ipw_start_nic(struct ipw_priv *priv)
3310 {
3311 IPW_DEBUG_TRACE(">>\n");
3312
3313 /* prvHwStartNic release ARC */
3314 ipw_clear_bit(priv, IPW_RESET_REG,
3315 IPW_RESET_REG_MASTER_DISABLED |
3316 IPW_RESET_REG_STOP_MASTER |
3317 CBD_RESET_REG_PRINCETON_RESET);
3318
3319 /* enable power management */
3320 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3321 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3322
3323 IPW_DEBUG_TRACE("<<\n");
3324 }
3325
ipw_init_nic(struct ipw_priv * priv)3326 static int ipw_init_nic(struct ipw_priv *priv)
3327 {
3328 int rc;
3329
3330 IPW_DEBUG_TRACE(">>\n");
3331 /* reset */
3332 /*prvHwInitNic */
3333 /* set "initialization complete" bit to move adapter to D0 state */
3334 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3335
3336 /* low-level PLL activation */
3337 ipw_write32(priv, IPW_READ_INT_REGISTER,
3338 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3339
3340 /* wait for clock stabilization */
3341 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3342 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3343 if (rc < 0)
3344 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3345
3346 /* assert SW reset */
3347 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3348
3349 udelay(10);
3350
3351 /* set "initialization complete" bit to move adapter to D0 state */
3352 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3353
3354 IPW_DEBUG_TRACE(">>\n");
3355 return 0;
3356 }
3357
3358 /* Call this function from process context, it will sleep in request_firmware.
3359 * Probe is an ok place to call this from.
3360 */
ipw_reset_nic(struct ipw_priv * priv)3361 static int ipw_reset_nic(struct ipw_priv *priv)
3362 {
3363 int rc = 0;
3364 unsigned long flags;
3365
3366 IPW_DEBUG_TRACE(">>\n");
3367
3368 rc = ipw_init_nic(priv);
3369
3370 spin_lock_irqsave(&priv->lock, flags);
3371 /* Clear the 'host command active' bit... */
3372 priv->status &= ~STATUS_HCMD_ACTIVE;
3373 wake_up_interruptible(&priv->wait_command_queue);
3374 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3375 wake_up_interruptible(&priv->wait_state);
3376 spin_unlock_irqrestore(&priv->lock, flags);
3377
3378 IPW_DEBUG_TRACE("<<\n");
3379 return rc;
3380 }
3381
3382
3383 struct ipw_fw {
3384 __le32 ver;
3385 __le32 boot_size;
3386 __le32 ucode_size;
3387 __le32 fw_size;
3388 u8 data[];
3389 };
3390
ipw_get_fw(struct ipw_priv * priv,const struct firmware ** raw,const char * name)3391 static int ipw_get_fw(struct ipw_priv *priv,
3392 const struct firmware **raw, const char *name)
3393 {
3394 struct ipw_fw *fw;
3395 int rc;
3396
3397 /* ask firmware_class module to get the boot firmware off disk */
3398 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3399 if (rc < 0) {
3400 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3401 return rc;
3402 }
3403
3404 if ((*raw)->size < sizeof(*fw)) {
3405 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3406 return -EINVAL;
3407 }
3408
3409 fw = (void *)(*raw)->data;
3410
3411 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3412 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3413 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3414 name, (*raw)->size);
3415 return -EINVAL;
3416 }
3417
3418 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3419 name,
3420 le32_to_cpu(fw->ver) >> 16,
3421 le32_to_cpu(fw->ver) & 0xff,
3422 (*raw)->size - sizeof(*fw));
3423 return 0;
3424 }
3425
3426 #define IPW_RX_BUF_SIZE (3000)
3427
ipw_rx_queue_reset(struct ipw_priv * priv,struct ipw_rx_queue * rxq)3428 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3429 struct ipw_rx_queue *rxq)
3430 {
3431 unsigned long flags;
3432 int i;
3433
3434 spin_lock_irqsave(&rxq->lock, flags);
3435
3436 INIT_LIST_HEAD(&rxq->rx_free);
3437 INIT_LIST_HEAD(&rxq->rx_used);
3438
3439 /* Fill the rx_used queue with _all_ of the Rx buffers */
3440 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3441 /* In the reset function, these buffers may have been allocated
3442 * to an SKB, so we need to unmap and free potential storage */
3443 if (rxq->pool[i].skb != NULL) {
3444 dma_unmap_single(&priv->pci_dev->dev,
3445 rxq->pool[i].dma_addr,
3446 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3447 dev_kfree_skb_irq(rxq->pool[i].skb);
3448 rxq->pool[i].skb = NULL;
3449 }
3450 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451 }
3452
3453 /* Set us so that we have processed and used all buffers, but have
3454 * not restocked the Rx queue with fresh buffers */
3455 rxq->read = rxq->write = 0;
3456 rxq->free_count = 0;
3457 spin_unlock_irqrestore(&rxq->lock, flags);
3458 }
3459
3460 #ifdef CONFIG_PM
3461 static int fw_loaded = 0;
3462 static const struct firmware *raw = NULL;
3463
free_firmware(void)3464 static void free_firmware(void)
3465 {
3466 if (fw_loaded) {
3467 release_firmware(raw);
3468 raw = NULL;
3469 fw_loaded = 0;
3470 }
3471 }
3472 #else
3473 #define free_firmware() do {} while (0)
3474 #endif
3475
ipw_load(struct ipw_priv * priv)3476 static int ipw_load(struct ipw_priv *priv)
3477 {
3478 #ifndef CONFIG_PM
3479 const struct firmware *raw = NULL;
3480 #endif
3481 struct ipw_fw *fw;
3482 u8 *boot_img, *ucode_img, *fw_img;
3483 u8 *name = NULL;
3484 int rc = 0, retries = 3;
3485
3486 switch (priv->ieee->iw_mode) {
3487 case IW_MODE_ADHOC:
3488 name = "ipw2200-ibss.fw";
3489 break;
3490 #ifdef CONFIG_IPW2200_MONITOR
3491 case IW_MODE_MONITOR:
3492 name = "ipw2200-sniffer.fw";
3493 break;
3494 #endif
3495 case IW_MODE_INFRA:
3496 name = "ipw2200-bss.fw";
3497 break;
3498 }
3499
3500 if (!name) {
3501 rc = -EINVAL;
3502 goto error;
3503 }
3504
3505 #ifdef CONFIG_PM
3506 if (!fw_loaded) {
3507 #endif
3508 rc = ipw_get_fw(priv, &raw, name);
3509 if (rc < 0)
3510 goto error;
3511 #ifdef CONFIG_PM
3512 }
3513 #endif
3514
3515 fw = (void *)raw->data;
3516 boot_img = &fw->data[0];
3517 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519 le32_to_cpu(fw->ucode_size)];
3520
3521 if (!priv->rxq)
3522 priv->rxq = ipw_rx_queue_alloc(priv);
3523 else
3524 ipw_rx_queue_reset(priv, priv->rxq);
3525 if (!priv->rxq) {
3526 IPW_ERROR("Unable to initialize Rx queue\n");
3527 rc = -ENOMEM;
3528 goto error;
3529 }
3530
3531 retry:
3532 /* Ensure interrupts are disabled */
3533 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534 priv->status &= ~STATUS_INT_ENABLED;
3535
3536 /* ack pending interrupts */
3537 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538
3539 ipw_stop_nic(priv);
3540
3541 rc = ipw_reset_nic(priv);
3542 if (rc < 0) {
3543 IPW_ERROR("Unable to reset NIC\n");
3544 goto error;
3545 }
3546
3547 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549
3550 /* DMA the initial boot firmware into the device */
3551 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552 if (rc < 0) {
3553 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554 goto error;
3555 }
3556
3557 /* kick start the device */
3558 ipw_start_nic(priv);
3559
3560 /* wait for the device to finish its initial startup sequence */
3561 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563 if (rc < 0) {
3564 IPW_ERROR("device failed to boot initial fw image\n");
3565 goto error;
3566 }
3567 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568
3569 /* ack fw init done interrupt */
3570 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571
3572 /* DMA the ucode into the device */
3573 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574 if (rc < 0) {
3575 IPW_ERROR("Unable to load ucode: %d\n", rc);
3576 goto error;
3577 }
3578
3579 /* stop nic */
3580 ipw_stop_nic(priv);
3581
3582 /* DMA bss firmware into the device */
3583 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584 if (rc < 0) {
3585 IPW_ERROR("Unable to load firmware: %d\n", rc);
3586 goto error;
3587 }
3588 #ifdef CONFIG_PM
3589 fw_loaded = 1;
3590 #endif
3591
3592 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593
3594 rc = ipw_queue_reset(priv);
3595 if (rc < 0) {
3596 IPW_ERROR("Unable to initialize queues\n");
3597 goto error;
3598 }
3599
3600 /* Ensure interrupts are disabled */
3601 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602 /* ack pending interrupts */
3603 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604
3605 /* kick start the device */
3606 ipw_start_nic(priv);
3607
3608 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609 if (retries > 0) {
3610 IPW_WARNING("Parity error. Retrying init.\n");
3611 retries--;
3612 goto retry;
3613 }
3614
3615 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616 rc = -EIO;
3617 goto error;
3618 }
3619
3620 /* wait for the device */
3621 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623 if (rc < 0) {
3624 IPW_ERROR("device failed to start within 500ms\n");
3625 goto error;
3626 }
3627 IPW_DEBUG_INFO("device response after %dms\n", rc);
3628
3629 /* ack fw init done interrupt */
3630 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631
3632 /* read eeprom data */
3633 priv->eeprom_delay = 1;
3634 ipw_read_eeprom(priv);
3635 /* initialize the eeprom region of sram */
3636 ipw_eeprom_init_sram(priv);
3637
3638 /* enable interrupts */
3639 ipw_enable_interrupts(priv);
3640
3641 /* Ensure our queue has valid packets */
3642 ipw_rx_queue_replenish(priv);
3643
3644 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645
3646 /* ack pending interrupts */
3647 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648
3649 #ifndef CONFIG_PM
3650 release_firmware(raw);
3651 #endif
3652 return 0;
3653
3654 error:
3655 if (priv->rxq) {
3656 ipw_rx_queue_free(priv, priv->rxq);
3657 priv->rxq = NULL;
3658 }
3659 ipw_tx_queue_free(priv);
3660 release_firmware(raw);
3661 #ifdef CONFIG_PM
3662 fw_loaded = 0;
3663 raw = NULL;
3664 #endif
3665
3666 return rc;
3667 }
3668
3669 /*
3670 * DMA services
3671 *
3672 * Theory of operation
3673 *
3674 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675 * 2 empty entries always kept in the buffer to protect from overflow.
3676 *
3677 * For Tx queue, there are low mark and high mark limits. If, after queuing
3678 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680 * Tx queue resumed.
3681 *
3682 * The IPW operates with six queues, one receive queue in the device's
3683 * sram, one transmit queue for sending commands to the device firmware,
3684 * and four transmit queues for data.
3685 *
3686 * The four transmit queues allow for performing quality of service (qos)
3687 * transmissions as per the 802.11 protocol. Currently Linux does not
3688 * provide a mechanism to the user for utilizing prioritized queues, so
3689 * we only utilize the first data transmit queue (queue1).
3690 */
3691
3692 /*
3693 * Driver allocates buffers of this size for Rx
3694 */
3695
3696 /*
3697 * ipw_rx_queue_space - Return number of free slots available in queue.
3698 */
ipw_rx_queue_space(const struct ipw_rx_queue * q)3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700 {
3701 int s = q->read - q->write;
3702 if (s <= 0)
3703 s += RX_QUEUE_SIZE;
3704 /* keep some buffer to not confuse full and empty queue */
3705 s -= 2;
3706 if (s < 0)
3707 s = 0;
3708 return s;
3709 }
3710
ipw_tx_queue_space(const struct clx2_queue * q)3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712 {
3713 int s = q->last_used - q->first_empty;
3714 if (s <= 0)
3715 s += q->n_bd;
3716 s -= 2; /* keep some reserve to not confuse empty and full situations */
3717 if (s < 0)
3718 s = 0;
3719 return s;
3720 }
3721
ipw_queue_inc_wrap(int index,int n_bd)3722 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723 {
3724 return (++index == n_bd) ? 0 : index;
3725 }
3726
3727 /*
3728 * Initialize common DMA queue structure
3729 *
3730 * @param q queue to init
3731 * @param count Number of BD's to allocate. Should be power of 2
3732 * @param read_register Address for 'read' register
3733 * (not offset within BAR, full address)
3734 * @param write_register Address for 'write' register
3735 * (not offset within BAR, full address)
3736 * @param base_register Address for 'base' register
3737 * (not offset within BAR, full address)
3738 * @param size Address for 'size' register
3739 * (not offset within BAR, full address)
3740 */
ipw_queue_init(struct ipw_priv * priv,struct clx2_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742 int count, u32 read, u32 write, u32 base, u32 size)
3743 {
3744 q->n_bd = count;
3745
3746 q->low_mark = q->n_bd / 4;
3747 if (q->low_mark < 4)
3748 q->low_mark = 4;
3749
3750 q->high_mark = q->n_bd / 8;
3751 if (q->high_mark < 2)
3752 q->high_mark = 2;
3753
3754 q->first_empty = q->last_used = 0;
3755 q->reg_r = read;
3756 q->reg_w = write;
3757
3758 ipw_write32(priv, base, q->dma_addr);
3759 ipw_write32(priv, size, count);
3760 ipw_write32(priv, read, 0);
3761 ipw_write32(priv, write, 0);
3762
3763 _ipw_read32(priv, 0x90);
3764 }
3765
ipw_queue_tx_init(struct ipw_priv * priv,struct clx2_tx_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3766 static int ipw_queue_tx_init(struct ipw_priv *priv,
3767 struct clx2_tx_queue *q,
3768 int count, u32 read, u32 write, u32 base, u32 size)
3769 {
3770 struct pci_dev *dev = priv->pci_dev;
3771
3772 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773 if (!q->txb)
3774 return -ENOMEM;
3775
3776 q->bd =
3777 dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3778 &q->q.dma_addr, GFP_KERNEL);
3779 if (!q->bd) {
3780 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3781 sizeof(q->bd[0]) * count);
3782 kfree(q->txb);
3783 q->txb = NULL;
3784 return -ENOMEM;
3785 }
3786
3787 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788 return 0;
3789 }
3790
3791 /*
3792 * Free one TFD, those at index [txq->q.last_used].
3793 * Do NOT advance any indexes
3794 *
3795 * @param dev
3796 * @param txq
3797 */
ipw_queue_tx_free_tfd(struct ipw_priv * priv,struct clx2_tx_queue * txq)3798 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3799 struct clx2_tx_queue *txq)
3800 {
3801 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3802 struct pci_dev *dev = priv->pci_dev;
3803 int i;
3804
3805 /* classify bd */
3806 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3807 /* nothing to cleanup after for host commands */
3808 return;
3809
3810 /* sanity check */
3811 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3812 IPW_ERROR("Too many chunks: %i\n",
3813 le32_to_cpu(bd->u.data.num_chunks));
3814 /* @todo issue fatal error, it is quite serious situation */
3815 return;
3816 }
3817
3818 /* unmap chunks if any */
3819 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3820 dma_unmap_single(&dev->dev,
3821 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822 le16_to_cpu(bd->u.data.chunk_len[i]),
3823 DMA_TO_DEVICE);
3824 if (txq->txb[txq->q.last_used]) {
3825 libipw_txb_free(txq->txb[txq->q.last_used]);
3826 txq->txb[txq->q.last_used] = NULL;
3827 }
3828 }
3829 }
3830
3831 /*
3832 * Deallocate DMA queue.
3833 *
3834 * Empty queue by removing and destroying all BD's.
3835 * Free all buffers.
3836 *
3837 * @param dev
3838 * @param q
3839 */
ipw_queue_tx_free(struct ipw_priv * priv,struct clx2_tx_queue * txq)3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841 {
3842 struct clx2_queue *q = &txq->q;
3843 struct pci_dev *dev = priv->pci_dev;
3844
3845 if (q->n_bd == 0)
3846 return;
3847
3848 /* first, empty all BD's */
3849 for (; q->first_empty != q->last_used;
3850 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851 ipw_queue_tx_free_tfd(priv, txq);
3852 }
3853
3854 /* free buffers belonging to queue itself */
3855 dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856 q->dma_addr);
3857 kfree(txq->txb);
3858
3859 /* 0 fill whole structure */
3860 memset(txq, 0, sizeof(*txq));
3861 }
3862
3863 /*
3864 * Destroy all DMA queues and structures
3865 *
3866 * @param priv
3867 */
ipw_tx_queue_free(struct ipw_priv * priv)3868 static void ipw_tx_queue_free(struct ipw_priv *priv)
3869 {
3870 /* Tx CMD queue */
3871 ipw_queue_tx_free(priv, &priv->txq_cmd);
3872
3873 /* Tx queues */
3874 ipw_queue_tx_free(priv, &priv->txq[0]);
3875 ipw_queue_tx_free(priv, &priv->txq[1]);
3876 ipw_queue_tx_free(priv, &priv->txq[2]);
3877 ipw_queue_tx_free(priv, &priv->txq[3]);
3878 }
3879
ipw_create_bssid(struct ipw_priv * priv,u8 * bssid)3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881 {
3882 /* First 3 bytes are manufacturer */
3883 bssid[0] = priv->mac_addr[0];
3884 bssid[1] = priv->mac_addr[1];
3885 bssid[2] = priv->mac_addr[2];
3886
3887 /* Last bytes are random */
3888 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889
3890 bssid[0] &= 0xfe; /* clear multicast bit */
3891 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3892 }
3893
ipw_add_station(struct ipw_priv * priv,u8 * bssid)3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895 {
3896 struct ipw_station_entry entry;
3897 int i;
3898
3899 for (i = 0; i < priv->num_stations; i++) {
3900 if (ether_addr_equal(priv->stations[i], bssid)) {
3901 /* Another node is active in network */
3902 priv->missed_adhoc_beacons = 0;
3903 if (!(priv->config & CFG_STATIC_CHANNEL))
3904 /* when other nodes drop out, we drop out */
3905 priv->config &= ~CFG_ADHOC_PERSIST;
3906
3907 return i;
3908 }
3909 }
3910
3911 if (i == MAX_STATIONS)
3912 return IPW_INVALID_STATION;
3913
3914 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915
3916 entry.reserved = 0;
3917 entry.support_mode = 0;
3918 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919 memcpy(priv->stations[i], bssid, ETH_ALEN);
3920 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921 &entry, sizeof(entry));
3922 priv->num_stations++;
3923
3924 return i;
3925 }
3926
ipw_find_station(struct ipw_priv * priv,u8 * bssid)3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928 {
3929 int i;
3930
3931 for (i = 0; i < priv->num_stations; i++)
3932 if (ether_addr_equal(priv->stations[i], bssid))
3933 return i;
3934
3935 return IPW_INVALID_STATION;
3936 }
3937
ipw_send_disassociate(struct ipw_priv * priv,int quiet)3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939 {
3940 int err;
3941
3942 if (priv->status & STATUS_ASSOCIATING) {
3943 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944 schedule_work(&priv->disassociate);
3945 return;
3946 }
3947
3948 if (!(priv->status & STATUS_ASSOCIATED)) {
3949 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950 return;
3951 }
3952
3953 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954 "on channel %d.\n",
3955 priv->assoc_request.bssid,
3956 priv->assoc_request.channel);
3957
3958 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959 priv->status |= STATUS_DISASSOCIATING;
3960
3961 if (quiet)
3962 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963 else
3964 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965
3966 err = ipw_send_associate(priv, &priv->assoc_request);
3967 if (err) {
3968 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969 "failed.\n");
3970 return;
3971 }
3972
3973 }
3974
ipw_disassociate(void * data)3975 static int ipw_disassociate(void *data)
3976 {
3977 struct ipw_priv *priv = data;
3978 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979 return 0;
3980 ipw_send_disassociate(data, 0);
3981 netif_carrier_off(priv->net_dev);
3982 return 1;
3983 }
3984
ipw_bg_disassociate(struct work_struct * work)3985 static void ipw_bg_disassociate(struct work_struct *work)
3986 {
3987 struct ipw_priv *priv =
3988 container_of(work, struct ipw_priv, disassociate);
3989 mutex_lock(&priv->mutex);
3990 ipw_disassociate(priv);
3991 mutex_unlock(&priv->mutex);
3992 }
3993
ipw_system_config(struct work_struct * work)3994 static void ipw_system_config(struct work_struct *work)
3995 {
3996 struct ipw_priv *priv =
3997 container_of(work, struct ipw_priv, system_config);
3998
3999 #ifdef CONFIG_IPW2200_PROMISCUOUS
4000 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001 priv->sys_config.accept_all_data_frames = 1;
4002 priv->sys_config.accept_non_directed_frames = 1;
4003 priv->sys_config.accept_all_mgmt_bcpr = 1;
4004 priv->sys_config.accept_all_mgmt_frames = 1;
4005 }
4006 #endif
4007
4008 ipw_send_system_config(priv);
4009 }
4010
4011 struct ipw_status_code {
4012 u16 status;
4013 const char *reason;
4014 };
4015
4016 static const struct ipw_status_code ipw_status_codes[] = {
4017 {0x00, "Successful"},
4018 {0x01, "Unspecified failure"},
4019 {0x0A, "Cannot support all requested capabilities in the "
4020 "Capability information field"},
4021 {0x0B, "Reassociation denied due to inability to confirm that "
4022 "association exists"},
4023 {0x0C, "Association denied due to reason outside the scope of this "
4024 "standard"},
4025 {0x0D,
4026 "Responding station does not support the specified authentication "
4027 "algorithm"},
4028 {0x0E,
4029 "Received an Authentication frame with authentication sequence "
4030 "transaction sequence number out of expected sequence"},
4031 {0x0F, "Authentication rejected because of challenge failure"},
4032 {0x10, "Authentication rejected due to timeout waiting for next "
4033 "frame in sequence"},
4034 {0x11, "Association denied because AP is unable to handle additional "
4035 "associated stations"},
4036 {0x12,
4037 "Association denied due to requesting station not supporting all "
4038 "of the datarates in the BSSBasicServiceSet Parameter"},
4039 {0x13,
4040 "Association denied due to requesting station not supporting "
4041 "short preamble operation"},
4042 {0x14,
4043 "Association denied due to requesting station not supporting "
4044 "PBCC encoding"},
4045 {0x15,
4046 "Association denied due to requesting station not supporting "
4047 "channel agility"},
4048 {0x19,
4049 "Association denied due to requesting station not supporting "
4050 "short slot operation"},
4051 {0x1A,
4052 "Association denied due to requesting station not supporting "
4053 "DSSS-OFDM operation"},
4054 {0x28, "Invalid Information Element"},
4055 {0x29, "Group Cipher is not valid"},
4056 {0x2A, "Pairwise Cipher is not valid"},
4057 {0x2B, "AKMP is not valid"},
4058 {0x2C, "Unsupported RSN IE version"},
4059 {0x2D, "Invalid RSN IE Capabilities"},
4060 {0x2E, "Cipher suite is rejected per security policy"},
4061 };
4062
ipw_get_status_code(u16 status)4063 static const char *ipw_get_status_code(u16 status)
4064 {
4065 int i;
4066 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067 if (ipw_status_codes[i].status == (status & 0xff))
4068 return ipw_status_codes[i].reason;
4069 return "Unknown status value.";
4070 }
4071
average_init(struct average * avg)4072 static inline void average_init(struct average *avg)
4073 {
4074 memset(avg, 0, sizeof(*avg));
4075 }
4076
4077 #define DEPTH_RSSI 8
4078 #define DEPTH_NOISE 16
exponential_average(s16 prev_avg,s16 val,u8 depth)4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080 {
4081 return ((depth-1)*prev_avg + val)/depth;
4082 }
4083
average_add(struct average * avg,s16 val)4084 static void average_add(struct average *avg, s16 val)
4085 {
4086 avg->sum -= avg->entries[avg->pos];
4087 avg->sum += val;
4088 avg->entries[avg->pos++] = val;
4089 if (unlikely(avg->pos == AVG_ENTRIES)) {
4090 avg->init = 1;
4091 avg->pos = 0;
4092 }
4093 }
4094
average_value(struct average * avg)4095 static s16 average_value(struct average *avg)
4096 {
4097 if (!unlikely(avg->init)) {
4098 if (avg->pos)
4099 return avg->sum / avg->pos;
4100 return 0;
4101 }
4102
4103 return avg->sum / AVG_ENTRIES;
4104 }
4105
ipw_reset_stats(struct ipw_priv * priv)4106 static void ipw_reset_stats(struct ipw_priv *priv)
4107 {
4108 u32 len = sizeof(u32);
4109
4110 priv->quality = 0;
4111
4112 average_init(&priv->average_missed_beacons);
4113 priv->exp_avg_rssi = -60;
4114 priv->exp_avg_noise = -85 + 0x100;
4115
4116 priv->last_rate = 0;
4117 priv->last_missed_beacons = 0;
4118 priv->last_rx_packets = 0;
4119 priv->last_tx_packets = 0;
4120 priv->last_tx_failures = 0;
4121
4122 /* Firmware managed, reset only when NIC is restarted, so we have to
4123 * normalize on the current value */
4124 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125 &priv->last_rx_err, &len);
4126 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127 &priv->last_tx_failures, &len);
4128
4129 /* Driver managed, reset with each association */
4130 priv->missed_adhoc_beacons = 0;
4131 priv->missed_beacons = 0;
4132 priv->tx_packets = 0;
4133 priv->rx_packets = 0;
4134
4135 }
4136
ipw_get_max_rate(struct ipw_priv * priv)4137 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138 {
4139 u32 i = 0x80000000;
4140 u32 mask = priv->rates_mask;
4141 /* If currently associated in B mode, restrict the maximum
4142 * rate match to B rates */
4143 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144 mask &= LIBIPW_CCK_RATES_MASK;
4145
4146 /* TODO: Verify that the rate is supported by the current rates
4147 * list. */
4148
4149 while (i && !(mask & i))
4150 i >>= 1;
4151 switch (i) {
4152 case LIBIPW_CCK_RATE_1MB_MASK:
4153 return 1000000;
4154 case LIBIPW_CCK_RATE_2MB_MASK:
4155 return 2000000;
4156 case LIBIPW_CCK_RATE_5MB_MASK:
4157 return 5500000;
4158 case LIBIPW_OFDM_RATE_6MB_MASK:
4159 return 6000000;
4160 case LIBIPW_OFDM_RATE_9MB_MASK:
4161 return 9000000;
4162 case LIBIPW_CCK_RATE_11MB_MASK:
4163 return 11000000;
4164 case LIBIPW_OFDM_RATE_12MB_MASK:
4165 return 12000000;
4166 case LIBIPW_OFDM_RATE_18MB_MASK:
4167 return 18000000;
4168 case LIBIPW_OFDM_RATE_24MB_MASK:
4169 return 24000000;
4170 case LIBIPW_OFDM_RATE_36MB_MASK:
4171 return 36000000;
4172 case LIBIPW_OFDM_RATE_48MB_MASK:
4173 return 48000000;
4174 case LIBIPW_OFDM_RATE_54MB_MASK:
4175 return 54000000;
4176 }
4177
4178 if (priv->ieee->mode == IEEE_B)
4179 return 11000000;
4180 else
4181 return 54000000;
4182 }
4183
ipw_get_current_rate(struct ipw_priv * priv)4184 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185 {
4186 u32 rate, len = sizeof(rate);
4187 int err;
4188
4189 if (!(priv->status & STATUS_ASSOCIATED))
4190 return 0;
4191
4192 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194 &len);
4195 if (err) {
4196 IPW_DEBUG_INFO("failed querying ordinals.\n");
4197 return 0;
4198 }
4199 } else
4200 return ipw_get_max_rate(priv);
4201
4202 switch (rate) {
4203 case IPW_TX_RATE_1MB:
4204 return 1000000;
4205 case IPW_TX_RATE_2MB:
4206 return 2000000;
4207 case IPW_TX_RATE_5MB:
4208 return 5500000;
4209 case IPW_TX_RATE_6MB:
4210 return 6000000;
4211 case IPW_TX_RATE_9MB:
4212 return 9000000;
4213 case IPW_TX_RATE_11MB:
4214 return 11000000;
4215 case IPW_TX_RATE_12MB:
4216 return 12000000;
4217 case IPW_TX_RATE_18MB:
4218 return 18000000;
4219 case IPW_TX_RATE_24MB:
4220 return 24000000;
4221 case IPW_TX_RATE_36MB:
4222 return 36000000;
4223 case IPW_TX_RATE_48MB:
4224 return 48000000;
4225 case IPW_TX_RATE_54MB:
4226 return 54000000;
4227 }
4228
4229 return 0;
4230 }
4231
4232 #define IPW_STATS_INTERVAL (2 * HZ)
ipw_gather_stats(struct ipw_priv * priv)4233 static void ipw_gather_stats(struct ipw_priv *priv)
4234 {
4235 u32 rx_err, rx_err_delta, rx_packets_delta;
4236 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237 u32 missed_beacons_percent, missed_beacons_delta;
4238 u32 quality = 0;
4239 u32 len = sizeof(u32);
4240 s16 rssi;
4241 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242 rate_quality;
4243 u32 max_rate;
4244
4245 if (!(priv->status & STATUS_ASSOCIATED)) {
4246 priv->quality = 0;
4247 return;
4248 }
4249
4250 /* Update the statistics */
4251 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252 &priv->missed_beacons, &len);
4253 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254 priv->last_missed_beacons = priv->missed_beacons;
4255 if (priv->assoc_request.beacon_interval) {
4256 missed_beacons_percent = missed_beacons_delta *
4257 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258 (IPW_STATS_INTERVAL * 10);
4259 } else {
4260 missed_beacons_percent = 0;
4261 }
4262 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263
4264 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265 rx_err_delta = rx_err - priv->last_rx_err;
4266 priv->last_rx_err = rx_err;
4267
4268 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269 tx_failures_delta = tx_failures - priv->last_tx_failures;
4270 priv->last_tx_failures = tx_failures;
4271
4272 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273 priv->last_rx_packets = priv->rx_packets;
4274
4275 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276 priv->last_tx_packets = priv->tx_packets;
4277
4278 /* Calculate quality based on the following:
4279 *
4280 * Missed beacon: 100% = 0, 0% = 70% missed
4281 * Rate: 60% = 1Mbs, 100% = Max
4282 * Rx and Tx errors represent a straight % of total Rx/Tx
4283 * RSSI: 100% = > -50, 0% = < -80
4284 * Rx errors: 100% = 0, 0% = 50% missed
4285 *
4286 * The lowest computed quality is used.
4287 *
4288 */
4289 #define BEACON_THRESHOLD 5
4290 beacon_quality = 100 - missed_beacons_percent;
4291 if (beacon_quality < BEACON_THRESHOLD)
4292 beacon_quality = 0;
4293 else
4294 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295 (100 - BEACON_THRESHOLD);
4296 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297 beacon_quality, missed_beacons_percent);
4298
4299 priv->last_rate = ipw_get_current_rate(priv);
4300 max_rate = ipw_get_max_rate(priv);
4301 rate_quality = priv->last_rate * 40 / max_rate + 60;
4302 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303 rate_quality, priv->last_rate / 1000000);
4304
4305 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306 rx_quality = 100 - (rx_err_delta * 100) /
4307 (rx_packets_delta + rx_err_delta);
4308 else
4309 rx_quality = 100;
4310 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4311 rx_quality, rx_err_delta, rx_packets_delta);
4312
4313 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314 tx_quality = 100 - (tx_failures_delta * 100) /
4315 (tx_packets_delta + tx_failures_delta);
4316 else
4317 tx_quality = 100;
4318 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4319 tx_quality, tx_failures_delta, tx_packets_delta);
4320
4321 rssi = priv->exp_avg_rssi;
4322 signal_quality =
4323 (100 *
4324 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326 (priv->ieee->perfect_rssi - rssi) *
4327 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328 62 * (priv->ieee->perfect_rssi - rssi))) /
4329 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331 if (signal_quality > 100)
4332 signal_quality = 100;
4333 else if (signal_quality < 1)
4334 signal_quality = 0;
4335
4336 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337 signal_quality, rssi);
4338
4339 quality = min(rx_quality, signal_quality);
4340 quality = min(tx_quality, quality);
4341 quality = min(rate_quality, quality);
4342 quality = min(beacon_quality, quality);
4343 if (quality == beacon_quality)
4344 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345 quality);
4346 if (quality == rate_quality)
4347 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348 quality);
4349 if (quality == tx_quality)
4350 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351 quality);
4352 if (quality == rx_quality)
4353 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354 quality);
4355 if (quality == signal_quality)
4356 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357 quality);
4358
4359 priv->quality = quality;
4360
4361 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362 }
4363
ipw_bg_gather_stats(struct work_struct * work)4364 static void ipw_bg_gather_stats(struct work_struct *work)
4365 {
4366 struct ipw_priv *priv =
4367 container_of(work, struct ipw_priv, gather_stats.work);
4368 mutex_lock(&priv->mutex);
4369 ipw_gather_stats(priv);
4370 mutex_unlock(&priv->mutex);
4371 }
4372
4373 /* Missed beacon behavior:
4374 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376 * Above disassociate threshold, give up and stop scanning.
4377 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
ipw_handle_missed_beacon(struct ipw_priv * priv,int missed_count)4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379 int missed_count)
4380 {
4381 priv->notif_missed_beacons = missed_count;
4382
4383 if (missed_count > priv->disassociate_threshold &&
4384 priv->status & STATUS_ASSOCIATED) {
4385 /* If associated and we've hit the missed
4386 * beacon threshold, disassociate, turn
4387 * off roaming, and abort any active scans */
4388 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389 IPW_DL_STATE | IPW_DL_ASSOC,
4390 "Missed beacon: %d - disassociate\n", missed_count);
4391 priv->status &= ~STATUS_ROAMING;
4392 if (priv->status & STATUS_SCANNING) {
4393 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394 IPW_DL_STATE,
4395 "Aborting scan with missed beacon.\n");
4396 schedule_work(&priv->abort_scan);
4397 }
4398
4399 schedule_work(&priv->disassociate);
4400 return;
4401 }
4402
4403 if (priv->status & STATUS_ROAMING) {
4404 /* If we are currently roaming, then just
4405 * print a debug statement... */
4406 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407 "Missed beacon: %d - roam in progress\n",
4408 missed_count);
4409 return;
4410 }
4411
4412 if (roaming &&
4413 (missed_count > priv->roaming_threshold &&
4414 missed_count <= priv->disassociate_threshold)) {
4415 /* If we are not already roaming, set the ROAM
4416 * bit in the status and kick off a scan.
4417 * This can happen several times before we reach
4418 * disassociate_threshold. */
4419 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420 "Missed beacon: %d - initiate "
4421 "roaming\n", missed_count);
4422 if (!(priv->status & STATUS_ROAMING)) {
4423 priv->status |= STATUS_ROAMING;
4424 if (!(priv->status & STATUS_SCANNING))
4425 schedule_delayed_work(&priv->request_scan, 0);
4426 }
4427 return;
4428 }
4429
4430 if (priv->status & STATUS_SCANNING &&
4431 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432 /* Stop scan to keep fw from getting
4433 * stuck (only if we aren't roaming --
4434 * otherwise we'll never scan more than 2 or 3
4435 * channels..) */
4436 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437 "Aborting scan with missed beacon.\n");
4438 schedule_work(&priv->abort_scan);
4439 }
4440
4441 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442 }
4443
ipw_scan_event(struct work_struct * work)4444 static void ipw_scan_event(struct work_struct *work)
4445 {
4446 union iwreq_data wrqu;
4447
4448 struct ipw_priv *priv =
4449 container_of(work, struct ipw_priv, scan_event.work);
4450
4451 wrqu.data.length = 0;
4452 wrqu.data.flags = 0;
4453 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454 }
4455
handle_scan_event(struct ipw_priv * priv)4456 static void handle_scan_event(struct ipw_priv *priv)
4457 {
4458 /* Only userspace-requested scan completion events go out immediately */
4459 if (!priv->user_requested_scan) {
4460 schedule_delayed_work(&priv->scan_event,
4461 round_jiffies_relative(msecs_to_jiffies(4000)));
4462 } else {
4463 priv->user_requested_scan = 0;
4464 mod_delayed_work(system_wq, &priv->scan_event, 0);
4465 }
4466 }
4467
4468 /*
4469 * Handle host notification packet.
4470 * Called from interrupt routine
4471 */
ipw_rx_notification(struct ipw_priv * priv,struct ipw_rx_notification * notif)4472 static void ipw_rx_notification(struct ipw_priv *priv,
4473 struct ipw_rx_notification *notif)
4474 {
4475 u16 size = le16_to_cpu(notif->size);
4476
4477 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478
4479 switch (notif->subtype) {
4480 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481 struct notif_association *assoc = ¬if->u.assoc;
4482
4483 switch (assoc->state) {
4484 case CMAS_ASSOCIATED:{
4485 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486 IPW_DL_ASSOC,
4487 "associated: '%*pE' %pM\n",
4488 priv->essid_len, priv->essid,
4489 priv->bssid);
4490
4491 switch (priv->ieee->iw_mode) {
4492 case IW_MODE_INFRA:
4493 memcpy(priv->ieee->bssid,
4494 priv->bssid, ETH_ALEN);
4495 break;
4496
4497 case IW_MODE_ADHOC:
4498 memcpy(priv->ieee->bssid,
4499 priv->bssid, ETH_ALEN);
4500
4501 /* clear out the station table */
4502 priv->num_stations = 0;
4503
4504 IPW_DEBUG_ASSOC
4505 ("queueing adhoc check\n");
4506 schedule_delayed_work(
4507 &priv->adhoc_check,
4508 le16_to_cpu(priv->
4509 assoc_request.
4510 beacon_interval));
4511 break;
4512 }
4513
4514 priv->status &= ~STATUS_ASSOCIATING;
4515 priv->status |= STATUS_ASSOCIATED;
4516 schedule_work(&priv->system_config);
4517
4518 #ifdef CONFIG_IPW2200_QOS
4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521 if ((priv->status & STATUS_AUTH) &&
4522 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4523 == IEEE80211_STYPE_ASSOC_RESP)) {
4524 if ((sizeof
4525 (struct
4526 libipw_assoc_response)
4527 <= size)
4528 && (size <= 2314)) {
4529 struct
4530 libipw_rx_stats
4531 stats = {
4532 .len = size - 1,
4533 };
4534
4535 IPW_DEBUG_QOS
4536 ("QoS Associate "
4537 "size %d\n", size);
4538 libipw_rx_mgt(priv->
4539 ieee,
4540 (struct
4541 libipw_hdr_4addr
4542 *)
4543 ¬if->u.raw, &stats);
4544 }
4545 }
4546 #endif
4547
4548 schedule_work(&priv->link_up);
4549
4550 break;
4551 }
4552
4553 case CMAS_AUTHENTICATED:{
4554 if (priv->
4555 status & (STATUS_ASSOCIATED |
4556 STATUS_AUTH)) {
4557 struct notif_authenticate *auth
4558 = ¬if->u.auth;
4559 IPW_DEBUG(IPW_DL_NOTIF |
4560 IPW_DL_STATE |
4561 IPW_DL_ASSOC,
4562 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563 priv->essid_len,
4564 priv->essid,
4565 priv->bssid,
4566 le16_to_cpu(auth->status),
4567 ipw_get_status_code
4568 (le16_to_cpu
4569 (auth->status)));
4570
4571 priv->status &=
4572 ~(STATUS_ASSOCIATING |
4573 STATUS_AUTH |
4574 STATUS_ASSOCIATED);
4575
4576 schedule_work(&priv->link_down);
4577 break;
4578 }
4579
4580 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581 IPW_DL_ASSOC,
4582 "authenticated: '%*pE' %pM\n",
4583 priv->essid_len, priv->essid,
4584 priv->bssid);
4585 break;
4586 }
4587
4588 case CMAS_INIT:{
4589 if (priv->status & STATUS_AUTH) {
4590 struct
4591 libipw_assoc_response
4592 *resp;
4593 resp =
4594 (struct
4595 libipw_assoc_response
4596 *)¬if->u.raw;
4597 IPW_DEBUG(IPW_DL_NOTIF |
4598 IPW_DL_STATE |
4599 IPW_DL_ASSOC,
4600 "association failed (0x%04X): %s\n",
4601 le16_to_cpu(resp->status),
4602 ipw_get_status_code
4603 (le16_to_cpu
4604 (resp->status)));
4605 }
4606
4607 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608 IPW_DL_ASSOC,
4609 "disassociated: '%*pE' %pM\n",
4610 priv->essid_len, priv->essid,
4611 priv->bssid);
4612
4613 priv->status &=
4614 ~(STATUS_DISASSOCIATING |
4615 STATUS_ASSOCIATING |
4616 STATUS_ASSOCIATED | STATUS_AUTH);
4617 if (priv->assoc_network
4618 && (priv->assoc_network->
4619 capability &
4620 WLAN_CAPABILITY_IBSS))
4621 ipw_remove_current_network
4622 (priv);
4623
4624 schedule_work(&priv->link_down);
4625
4626 break;
4627 }
4628
4629 case CMAS_RX_ASSOC_RESP:
4630 break;
4631
4632 default:
4633 IPW_ERROR("assoc: unknown (%d)\n",
4634 assoc->state);
4635 break;
4636 }
4637
4638 break;
4639 }
4640
4641 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642 struct notif_authenticate *auth = ¬if->u.auth;
4643 switch (auth->state) {
4644 case CMAS_AUTHENTICATED:
4645 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646 "authenticated: '%*pE' %pM\n",
4647 priv->essid_len, priv->essid,
4648 priv->bssid);
4649 priv->status |= STATUS_AUTH;
4650 break;
4651
4652 case CMAS_INIT:
4653 if (priv->status & STATUS_AUTH) {
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC,
4656 "authentication failed (0x%04X): %s\n",
4657 le16_to_cpu(auth->status),
4658 ipw_get_status_code(le16_to_cpu
4659 (auth->
4660 status)));
4661 }
4662 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 IPW_DL_ASSOC,
4664 "deauthenticated: '%*pE' %pM\n",
4665 priv->essid_len, priv->essid,
4666 priv->bssid);
4667
4668 priv->status &= ~(STATUS_ASSOCIATING |
4669 STATUS_AUTH |
4670 STATUS_ASSOCIATED);
4671
4672 schedule_work(&priv->link_down);
4673 break;
4674
4675 case CMAS_TX_AUTH_SEQ_1:
4676 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678 break;
4679 case CMAS_RX_AUTH_SEQ_2:
4680 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682 break;
4683 case CMAS_AUTH_SEQ_1_PASS:
4684 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686 break;
4687 case CMAS_AUTH_SEQ_1_FAIL:
4688 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690 break;
4691 case CMAS_TX_AUTH_SEQ_3:
4692 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694 break;
4695 case CMAS_RX_AUTH_SEQ_4:
4696 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698 break;
4699 case CMAS_AUTH_SEQ_2_PASS:
4700 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702 break;
4703 case CMAS_AUTH_SEQ_2_FAIL:
4704 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706 break;
4707 case CMAS_TX_ASSOC:
4708 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709 IPW_DL_ASSOC, "TX_ASSOC\n");
4710 break;
4711 case CMAS_RX_ASSOC_RESP:
4712 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714
4715 break;
4716 case CMAS_ASSOCIATED:
4717 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 IPW_DL_ASSOC, "ASSOCIATED\n");
4719 break;
4720 default:
4721 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722 auth->state);
4723 break;
4724 }
4725 break;
4726 }
4727
4728 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729 struct notif_channel_result *x =
4730 ¬if->u.channel_result;
4731
4732 if (size == sizeof(*x)) {
4733 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734 x->channel_num);
4735 } else {
4736 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737 "(should be %zd)\n",
4738 size, sizeof(*x));
4739 }
4740 break;
4741 }
4742
4743 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744 struct notif_scan_complete *x = ¬if->u.scan_complete;
4745 if (size == sizeof(*x)) {
4746 IPW_DEBUG_SCAN
4747 ("Scan completed: type %d, %d channels, "
4748 "%d status\n", x->scan_type,
4749 x->num_channels, x->status);
4750 } else {
4751 IPW_ERROR("Scan completed of wrong size %d "
4752 "(should be %zd)\n",
4753 size, sizeof(*x));
4754 }
4755
4756 priv->status &=
4757 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758
4759 wake_up_interruptible(&priv->wait_state);
4760 cancel_delayed_work(&priv->scan_check);
4761
4762 if (priv->status & STATUS_EXIT_PENDING)
4763 break;
4764
4765 priv->ieee->scans++;
4766
4767 #ifdef CONFIG_IPW2200_MONITOR
4768 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769 priv->status |= STATUS_SCAN_FORCED;
4770 schedule_delayed_work(&priv->request_scan, 0);
4771 break;
4772 }
4773 priv->status &= ~STATUS_SCAN_FORCED;
4774 #endif /* CONFIG_IPW2200_MONITOR */
4775
4776 /* Do queued direct scans first */
4777 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778 schedule_delayed_work(&priv->request_direct_scan, 0);
4779
4780 if (!(priv->status & (STATUS_ASSOCIATED |
4781 STATUS_ASSOCIATING |
4782 STATUS_ROAMING |
4783 STATUS_DISASSOCIATING)))
4784 schedule_work(&priv->associate);
4785 else if (priv->status & STATUS_ROAMING) {
4786 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787 /* If a scan completed and we are in roam mode, then
4788 * the scan that completed was the one requested as a
4789 * result of entering roam... so, schedule the
4790 * roam work */
4791 schedule_work(&priv->roam);
4792 else
4793 /* Don't schedule if we aborted the scan */
4794 priv->status &= ~STATUS_ROAMING;
4795 } else if (priv->status & STATUS_SCAN_PENDING)
4796 schedule_delayed_work(&priv->request_scan, 0);
4797 else if (priv->config & CFG_BACKGROUND_SCAN
4798 && priv->status & STATUS_ASSOCIATED)
4799 schedule_delayed_work(&priv->request_scan,
4800 round_jiffies_relative(HZ));
4801
4802 /* Send an empty event to user space.
4803 * We don't send the received data on the event because
4804 * it would require us to do complex transcoding, and
4805 * we want to minimise the work done in the irq handler
4806 * Use a request to extract the data.
4807 * Also, we generate this even for any scan, regardless
4808 * on how the scan was initiated. User space can just
4809 * sync on periodic scan to get fresh data...
4810 * Jean II */
4811 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812 handle_scan_event(priv);
4813 break;
4814 }
4815
4816 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817 struct notif_frag_length *x = ¬if->u.frag_len;
4818
4819 if (size == sizeof(*x))
4820 IPW_ERROR("Frag length: %d\n",
4821 le16_to_cpu(x->frag_length));
4822 else
4823 IPW_ERROR("Frag length of wrong size %d "
4824 "(should be %zd)\n",
4825 size, sizeof(*x));
4826 break;
4827 }
4828
4829 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830 struct notif_link_deterioration *x =
4831 ¬if->u.link_deterioration;
4832
4833 if (size == sizeof(*x)) {
4834 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835 "link deterioration: type %d, cnt %d\n",
4836 x->silence_notification_type,
4837 x->silence_count);
4838 memcpy(&priv->last_link_deterioration, x,
4839 sizeof(*x));
4840 } else {
4841 IPW_ERROR("Link Deterioration of wrong size %d "
4842 "(should be %zd)\n",
4843 size, sizeof(*x));
4844 }
4845 break;
4846 }
4847
4848 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849 IPW_ERROR("Dino config\n");
4850 if (priv->hcmd
4851 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853
4854 break;
4855 }
4856
4857 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858 struct notif_beacon_state *x = ¬if->u.beacon_state;
4859 if (size != sizeof(*x)) {
4860 IPW_ERROR
4861 ("Beacon state of wrong size %d (should "
4862 "be %zd)\n", size, sizeof(*x));
4863 break;
4864 }
4865
4866 if (le32_to_cpu(x->state) ==
4867 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868 ipw_handle_missed_beacon(priv,
4869 le32_to_cpu(x->
4870 number));
4871
4872 break;
4873 }
4874
4875 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4877 if (size == sizeof(*x)) {
4878 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879 "0x%02x station %d\n",
4880 x->key_state, x->security_type,
4881 x->station_index);
4882 break;
4883 }
4884
4885 IPW_ERROR
4886 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887 size, sizeof(*x));
4888 break;
4889 }
4890
4891 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892 struct notif_calibration *x = ¬if->u.calibration;
4893
4894 if (size == sizeof(*x)) {
4895 memcpy(&priv->calib, x, sizeof(*x));
4896 IPW_DEBUG_INFO("TODO: Calibration\n");
4897 break;
4898 }
4899
4900 IPW_ERROR
4901 ("Calibration of wrong size %d (should be %zd)\n",
4902 size, sizeof(*x));
4903 break;
4904 }
4905
4906 case HOST_NOTIFICATION_NOISE_STATS:{
4907 if (size == sizeof(u32)) {
4908 priv->exp_avg_noise =
4909 exponential_average(priv->exp_avg_noise,
4910 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911 DEPTH_NOISE);
4912 break;
4913 }
4914
4915 IPW_ERROR
4916 ("Noise stat is wrong size %d (should be %zd)\n",
4917 size, sizeof(u32));
4918 break;
4919 }
4920
4921 default:
4922 IPW_DEBUG_NOTIF("Unknown notification: "
4923 "subtype=%d,flags=0x%2x,size=%d\n",
4924 notif->subtype, notif->flags, size);
4925 }
4926 }
4927
4928 /*
4929 * Destroys all DMA structures and initialise them again
4930 *
4931 * @param priv
4932 * @return error code
4933 */
ipw_queue_reset(struct ipw_priv * priv)4934 static int ipw_queue_reset(struct ipw_priv *priv)
4935 {
4936 int rc = 0;
4937 /* @todo customize queue sizes */
4938 int nTx = 64, nTxCmd = 8;
4939 ipw_tx_queue_free(priv);
4940 /* Tx CMD queue */
4941 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942 IPW_TX_CMD_QUEUE_READ_INDEX,
4943 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944 IPW_TX_CMD_QUEUE_BD_BASE,
4945 IPW_TX_CMD_QUEUE_BD_SIZE);
4946 if (rc) {
4947 IPW_ERROR("Tx Cmd queue init failed\n");
4948 goto error;
4949 }
4950 /* Tx queue(s) */
4951 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952 IPW_TX_QUEUE_0_READ_INDEX,
4953 IPW_TX_QUEUE_0_WRITE_INDEX,
4954 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955 if (rc) {
4956 IPW_ERROR("Tx 0 queue init failed\n");
4957 goto error;
4958 }
4959 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960 IPW_TX_QUEUE_1_READ_INDEX,
4961 IPW_TX_QUEUE_1_WRITE_INDEX,
4962 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963 if (rc) {
4964 IPW_ERROR("Tx 1 queue init failed\n");
4965 goto error;
4966 }
4967 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968 IPW_TX_QUEUE_2_READ_INDEX,
4969 IPW_TX_QUEUE_2_WRITE_INDEX,
4970 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971 if (rc) {
4972 IPW_ERROR("Tx 2 queue init failed\n");
4973 goto error;
4974 }
4975 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976 IPW_TX_QUEUE_3_READ_INDEX,
4977 IPW_TX_QUEUE_3_WRITE_INDEX,
4978 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979 if (rc) {
4980 IPW_ERROR("Tx 3 queue init failed\n");
4981 goto error;
4982 }
4983 /* statistics */
4984 priv->rx_bufs_min = 0;
4985 priv->rx_pend_max = 0;
4986 return rc;
4987
4988 error:
4989 ipw_tx_queue_free(priv);
4990 return rc;
4991 }
4992
4993 /*
4994 * Reclaim Tx queue entries no more used by NIC.
4995 *
4996 * When FW advances 'R' index, all entries between old and
4997 * new 'R' index need to be reclaimed. As result, some free space
4998 * forms. If there is enough free space (> low mark), wake Tx queue.
4999 *
5000 * @note Need to protect against garbage in 'R' index
5001 * @param priv
5002 * @param txq
5003 * @param qindex
5004 * @return Number of used entries remains in the queue
5005 */
ipw_queue_tx_reclaim(struct ipw_priv * priv,struct clx2_tx_queue * txq,int qindex)5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007 struct clx2_tx_queue *txq, int qindex)
5008 {
5009 u32 hw_tail;
5010 int used;
5011 struct clx2_queue *q = &txq->q;
5012
5013 hw_tail = ipw_read32(priv, q->reg_r);
5014 if (hw_tail >= q->n_bd) {
5015 IPW_ERROR
5016 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017 hw_tail, q->n_bd);
5018 goto done;
5019 }
5020 for (; q->last_used != hw_tail;
5021 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022 ipw_queue_tx_free_tfd(priv, txq);
5023 priv->tx_packets++;
5024 }
5025 done:
5026 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027 (qindex >= 0))
5028 netif_wake_queue(priv->net_dev);
5029 used = q->first_empty - q->last_used;
5030 if (used < 0)
5031 used += q->n_bd;
5032
5033 return used;
5034 }
5035
ipw_queue_tx_hcmd(struct ipw_priv * priv,int hcmd,void * buf,int len,int sync)5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037 int len, int sync)
5038 {
5039 struct clx2_tx_queue *txq = &priv->txq_cmd;
5040 struct clx2_queue *q = &txq->q;
5041 struct tfd_frame *tfd;
5042
5043 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044 IPW_ERROR("No space for Tx\n");
5045 return -EBUSY;
5046 }
5047
5048 tfd = &txq->bd[q->first_empty];
5049 txq->txb[q->first_empty] = NULL;
5050
5051 memset(tfd, 0, sizeof(*tfd));
5052 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054 priv->hcmd_seq++;
5055 tfd->u.cmd.index = hcmd;
5056 tfd->u.cmd.length = len;
5057 memcpy(tfd->u.cmd.payload, buf, len);
5058 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059 ipw_write32(priv, q->reg_w, q->first_empty);
5060 _ipw_read32(priv, 0x90);
5061
5062 return 0;
5063 }
5064
5065 /*
5066 * Rx theory of operation
5067 *
5068 * The host allocates 32 DMA target addresses and passes the host address
5069 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070 * 0 to 31
5071 *
5072 * Rx Queue Indexes
5073 * The host/firmware share two index registers for managing the Rx buffers.
5074 *
5075 * The READ index maps to the first position that the firmware may be writing
5076 * to -- the driver can read up to (but not including) this position and get
5077 * good data.
5078 * The READ index is managed by the firmware once the card is enabled.
5079 *
5080 * The WRITE index maps to the last position the driver has read from -- the
5081 * position preceding WRITE is the last slot the firmware can place a packet.
5082 *
5083 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084 * WRITE = READ.
5085 *
5086 * During initialization the host sets up the READ queue position to the first
5087 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088 *
5089 * When the firmware places a packet in a buffer it will advance the READ index
5090 * and fire the RX interrupt. The driver can then query the READ index and
5091 * process as many packets as possible, moving the WRITE index forward as it
5092 * resets the Rx queue buffers with new memory.
5093 *
5094 * The management in the driver is as follows:
5095 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5096 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097 * to replensish the ipw->rxq->rx_free.
5098 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5100 * 'processed' and 'read' driver indexes as well)
5101 * + A received packet is processed and handed to the kernel network stack,
5102 * detached from the ipw->rxq. The driver 'processed' index is updated.
5103 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5106 * were enough free buffers and RX_STALLED is set it is cleared.
5107 *
5108 *
5109 * Driver sequence:
5110 *
5111 * ipw_rx_queue_alloc() Allocates rx_free
5112 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5113 * ipw_rx_queue_restock
5114 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5115 * queue, updates firmware pointers, and updates
5116 * the WRITE index. If insufficient rx_free buffers
5117 * are available, schedules ipw_rx_queue_replenish
5118 *
5119 * -- enable interrupts --
5120 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5121 * READ INDEX, detaching the SKB from the pool.
5122 * Moves the packet buffer from queue to rx_used.
5123 * Calls ipw_rx_queue_restock to refill any empty
5124 * slots.
5125 * ...
5126 *
5127 */
5128
5129 /*
5130 * If there are slots in the RX queue that need to be restocked,
5131 * and we have free pre-allocated buffers, fill the ranks as much
5132 * as we can pulling from rx_free.
5133 *
5134 * This moves the 'write' index forward to catch up with 'processed', and
5135 * also updates the memory address in the firmware to reference the new
5136 * target buffer.
5137 */
ipw_rx_queue_restock(struct ipw_priv * priv)5138 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139 {
5140 struct ipw_rx_queue *rxq = priv->rxq;
5141 struct list_head *element;
5142 struct ipw_rx_mem_buffer *rxb;
5143 unsigned long flags;
5144 int write;
5145
5146 spin_lock_irqsave(&rxq->lock, flags);
5147 write = rxq->write;
5148 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149 element = rxq->rx_free.next;
5150 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151 list_del(element);
5152
5153 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154 rxb->dma_addr);
5155 rxq->queue[rxq->write] = rxb;
5156 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157 rxq->free_count--;
5158 }
5159 spin_unlock_irqrestore(&rxq->lock, flags);
5160
5161 /* If the pre-allocated buffer pool is dropping low, schedule to
5162 * refill it */
5163 if (rxq->free_count <= RX_LOW_WATERMARK)
5164 schedule_work(&priv->rx_replenish);
5165
5166 /* If we've added more space for the firmware to place data, tell it */
5167 if (write != rxq->write)
5168 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169 }
5170
5171 /*
5172 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173 * Also restock the Rx queue via ipw_rx_queue_restock.
5174 *
5175 * This is called as a scheduled work item (except for during initialization)
5176 */
ipw_rx_queue_replenish(void * data)5177 static void ipw_rx_queue_replenish(void *data)
5178 {
5179 struct ipw_priv *priv = data;
5180 struct ipw_rx_queue *rxq = priv->rxq;
5181 struct list_head *element;
5182 struct ipw_rx_mem_buffer *rxb;
5183 unsigned long flags;
5184
5185 spin_lock_irqsave(&rxq->lock, flags);
5186 while (!list_empty(&rxq->rx_used)) {
5187 element = rxq->rx_used.next;
5188 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190 if (!rxb->skb) {
5191 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192 priv->net_dev->name);
5193 /* We don't reschedule replenish work here -- we will
5194 * call the restock method and if it still needs
5195 * more buffers it will schedule replenish */
5196 break;
5197 }
5198 list_del(element);
5199
5200 rxb->dma_addr =
5201 dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5202 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5203
5204 list_add_tail(&rxb->list, &rxq->rx_free);
5205 rxq->free_count++;
5206 }
5207 spin_unlock_irqrestore(&rxq->lock, flags);
5208
5209 ipw_rx_queue_restock(priv);
5210 }
5211
ipw_bg_rx_queue_replenish(struct work_struct * work)5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213 {
5214 struct ipw_priv *priv =
5215 container_of(work, struct ipw_priv, rx_replenish);
5216 mutex_lock(&priv->mutex);
5217 ipw_rx_queue_replenish(priv);
5218 mutex_unlock(&priv->mutex);
5219 }
5220
5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223 * This free routine walks the list of POOL entries and if SKB is set to
5224 * non NULL it is unmapped and freed
5225 */
ipw_rx_queue_free(struct ipw_priv * priv,struct ipw_rx_queue * rxq)5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227 {
5228 int i;
5229
5230 if (!rxq)
5231 return;
5232
5233 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234 if (rxq->pool[i].skb != NULL) {
5235 dma_unmap_single(&priv->pci_dev->dev,
5236 rxq->pool[i].dma_addr,
5237 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5238 dev_kfree_skb(rxq->pool[i].skb);
5239 }
5240 }
5241
5242 kfree(rxq);
5243 }
5244
ipw_rx_queue_alloc(struct ipw_priv * priv)5245 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5246 {
5247 struct ipw_rx_queue *rxq;
5248 int i;
5249
5250 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5251 if (unlikely(!rxq)) {
5252 IPW_ERROR("memory allocation failed\n");
5253 return NULL;
5254 }
5255 spin_lock_init(&rxq->lock);
5256 INIT_LIST_HEAD(&rxq->rx_free);
5257 INIT_LIST_HEAD(&rxq->rx_used);
5258
5259 /* Fill the rx_used queue with _all_ of the Rx buffers */
5260 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5261 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5262
5263 /* Set us so that we have processed and used all buffers, but have
5264 * not restocked the Rx queue with fresh buffers */
5265 rxq->read = rxq->write = 0;
5266 rxq->free_count = 0;
5267
5268 return rxq;
5269 }
5270
ipw_is_rate_in_mask(struct ipw_priv * priv,int ieee_mode,u8 rate)5271 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5272 {
5273 rate &= ~LIBIPW_BASIC_RATE_MASK;
5274 if (ieee_mode == IEEE_A) {
5275 switch (rate) {
5276 case LIBIPW_OFDM_RATE_6MB:
5277 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5278 1 : 0;
5279 case LIBIPW_OFDM_RATE_9MB:
5280 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5281 1 : 0;
5282 case LIBIPW_OFDM_RATE_12MB:
5283 return priv->
5284 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5285 case LIBIPW_OFDM_RATE_18MB:
5286 return priv->
5287 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5288 case LIBIPW_OFDM_RATE_24MB:
5289 return priv->
5290 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5291 case LIBIPW_OFDM_RATE_36MB:
5292 return priv->
5293 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5294 case LIBIPW_OFDM_RATE_48MB:
5295 return priv->
5296 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5297 case LIBIPW_OFDM_RATE_54MB:
5298 return priv->
5299 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5300 default:
5301 return 0;
5302 }
5303 }
5304
5305 /* B and G mixed */
5306 switch (rate) {
5307 case LIBIPW_CCK_RATE_1MB:
5308 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5309 case LIBIPW_CCK_RATE_2MB:
5310 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5311 case LIBIPW_CCK_RATE_5MB:
5312 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5313 case LIBIPW_CCK_RATE_11MB:
5314 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5315 }
5316
5317 /* If we are limited to B modulations, bail at this point */
5318 if (ieee_mode == IEEE_B)
5319 return 0;
5320
5321 /* G */
5322 switch (rate) {
5323 case LIBIPW_OFDM_RATE_6MB:
5324 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5325 case LIBIPW_OFDM_RATE_9MB:
5326 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5327 case LIBIPW_OFDM_RATE_12MB:
5328 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5329 case LIBIPW_OFDM_RATE_18MB:
5330 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5331 case LIBIPW_OFDM_RATE_24MB:
5332 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5333 case LIBIPW_OFDM_RATE_36MB:
5334 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5335 case LIBIPW_OFDM_RATE_48MB:
5336 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337 case LIBIPW_OFDM_RATE_54MB:
5338 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5339 }
5340
5341 return 0;
5342 }
5343
ipw_compatible_rates(struct ipw_priv * priv,const struct libipw_network * network,struct ipw_supported_rates * rates)5344 static int ipw_compatible_rates(struct ipw_priv *priv,
5345 const struct libipw_network *network,
5346 struct ipw_supported_rates *rates)
5347 {
5348 int num_rates, i;
5349
5350 memset(rates, 0, sizeof(*rates));
5351 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5352 rates->num_rates = 0;
5353 for (i = 0; i < num_rates; i++) {
5354 if (!ipw_is_rate_in_mask(priv, network->mode,
5355 network->rates[i])) {
5356
5357 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5358 IPW_DEBUG_SCAN("Adding masked mandatory "
5359 "rate %02X\n",
5360 network->rates[i]);
5361 rates->supported_rates[rates->num_rates++] =
5362 network->rates[i];
5363 continue;
5364 }
5365
5366 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5367 network->rates[i], priv->rates_mask);
5368 continue;
5369 }
5370
5371 rates->supported_rates[rates->num_rates++] = network->rates[i];
5372 }
5373
5374 num_rates = min(network->rates_ex_len,
5375 (u8) (IPW_MAX_RATES - num_rates));
5376 for (i = 0; i < num_rates; i++) {
5377 if (!ipw_is_rate_in_mask(priv, network->mode,
5378 network->rates_ex[i])) {
5379 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5380 IPW_DEBUG_SCAN("Adding masked mandatory "
5381 "rate %02X\n",
5382 network->rates_ex[i]);
5383 rates->supported_rates[rates->num_rates++] =
5384 network->rates[i];
5385 continue;
5386 }
5387
5388 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5389 network->rates_ex[i], priv->rates_mask);
5390 continue;
5391 }
5392
5393 rates->supported_rates[rates->num_rates++] =
5394 network->rates_ex[i];
5395 }
5396
5397 return 1;
5398 }
5399
ipw_copy_rates(struct ipw_supported_rates * dest,const struct ipw_supported_rates * src)5400 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5401 const struct ipw_supported_rates *src)
5402 {
5403 u8 i;
5404 for (i = 0; i < src->num_rates; i++)
5405 dest->supported_rates[i] = src->supported_rates[i];
5406 dest->num_rates = src->num_rates;
5407 }
5408
5409 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5410 * mask should ever be used -- right now all callers to add the scan rates are
5411 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
ipw_add_cck_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5412 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5413 u8 modulation, u32 rate_mask)
5414 {
5415 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5416 LIBIPW_BASIC_RATE_MASK : 0;
5417
5418 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5419 rates->supported_rates[rates->num_rates++] =
5420 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5421
5422 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5423 rates->supported_rates[rates->num_rates++] =
5424 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5425
5426 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5427 rates->supported_rates[rates->num_rates++] = basic_mask |
5428 LIBIPW_CCK_RATE_5MB;
5429
5430 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5431 rates->supported_rates[rates->num_rates++] = basic_mask |
5432 LIBIPW_CCK_RATE_11MB;
5433 }
5434
ipw_add_ofdm_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5435 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5436 u8 modulation, u32 rate_mask)
5437 {
5438 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439 LIBIPW_BASIC_RATE_MASK : 0;
5440
5441 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5442 rates->supported_rates[rates->num_rates++] = basic_mask |
5443 LIBIPW_OFDM_RATE_6MB;
5444
5445 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5446 rates->supported_rates[rates->num_rates++] =
5447 LIBIPW_OFDM_RATE_9MB;
5448
5449 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5450 rates->supported_rates[rates->num_rates++] = basic_mask |
5451 LIBIPW_OFDM_RATE_12MB;
5452
5453 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5454 rates->supported_rates[rates->num_rates++] =
5455 LIBIPW_OFDM_RATE_18MB;
5456
5457 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5458 rates->supported_rates[rates->num_rates++] = basic_mask |
5459 LIBIPW_OFDM_RATE_24MB;
5460
5461 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5462 rates->supported_rates[rates->num_rates++] =
5463 LIBIPW_OFDM_RATE_36MB;
5464
5465 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5466 rates->supported_rates[rates->num_rates++] =
5467 LIBIPW_OFDM_RATE_48MB;
5468
5469 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5470 rates->supported_rates[rates->num_rates++] =
5471 LIBIPW_OFDM_RATE_54MB;
5472 }
5473
5474 struct ipw_network_match {
5475 struct libipw_network *network;
5476 struct ipw_supported_rates rates;
5477 };
5478
ipw_find_adhoc_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5479 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5480 struct ipw_network_match *match,
5481 struct libipw_network *network,
5482 int roaming)
5483 {
5484 struct ipw_supported_rates rates;
5485
5486 /* Verify that this network's capability is compatible with the
5487 * current mode (AdHoc or Infrastructure) */
5488 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5489 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5490 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5491 network->ssid_len, network->ssid,
5492 network->bssid);
5493 return 0;
5494 }
5495
5496 if (unlikely(roaming)) {
5497 /* If we are roaming, then ensure check if this is a valid
5498 * network to try and roam to */
5499 if ((network->ssid_len != match->network->ssid_len) ||
5500 memcmp(network->ssid, match->network->ssid,
5501 network->ssid_len)) {
5502 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5503 network->ssid_len, network->ssid,
5504 network->bssid);
5505 return 0;
5506 }
5507 } else {
5508 /* If an ESSID has been configured then compare the broadcast
5509 * ESSID to ours */
5510 if ((priv->config & CFG_STATIC_ESSID) &&
5511 ((network->ssid_len != priv->essid_len) ||
5512 memcmp(network->ssid, priv->essid,
5513 min(network->ssid_len, priv->essid_len)))) {
5514 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5515 network->ssid_len, network->ssid,
5516 network->bssid, priv->essid_len,
5517 priv->essid);
5518 return 0;
5519 }
5520 }
5521
5522 /* If the old network rate is better than this one, don't bother
5523 * testing everything else. */
5524
5525 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5526 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5527 match->network->ssid_len, match->network->ssid);
5528 return 0;
5529 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5530 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5531 match->network->ssid_len, match->network->ssid);
5532 return 0;
5533 }
5534
5535 /* Now go through and see if the requested network is valid... */
5536 if (priv->ieee->scan_age != 0 &&
5537 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5538 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5539 network->ssid_len, network->ssid,
5540 network->bssid,
5541 jiffies_to_msecs(jiffies -
5542 network->last_scanned));
5543 return 0;
5544 }
5545
5546 if ((priv->config & CFG_STATIC_CHANNEL) &&
5547 (network->channel != priv->channel)) {
5548 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5549 network->ssid_len, network->ssid,
5550 network->bssid,
5551 network->channel, priv->channel);
5552 return 0;
5553 }
5554
5555 /* Verify privacy compatibility */
5556 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5557 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5558 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5559 network->ssid_len, network->ssid,
5560 network->bssid,
5561 priv->
5562 capability & CAP_PRIVACY_ON ? "on" : "off",
5563 network->
5564 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5565 "off");
5566 return 0;
5567 }
5568
5569 if (ether_addr_equal(network->bssid, priv->bssid)) {
5570 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5571 network->ssid_len, network->ssid,
5572 network->bssid, priv->bssid);
5573 return 0;
5574 }
5575
5576 /* Filter out any incompatible freq / mode combinations */
5577 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5578 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5579 network->ssid_len, network->ssid,
5580 network->bssid);
5581 return 0;
5582 }
5583
5584 /* Ensure that the rates supported by the driver are compatible with
5585 * this AP, including verification of basic rates (mandatory) */
5586 if (!ipw_compatible_rates(priv, network, &rates)) {
5587 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5588 network->ssid_len, network->ssid,
5589 network->bssid);
5590 return 0;
5591 }
5592
5593 if (rates.num_rates == 0) {
5594 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5595 network->ssid_len, network->ssid,
5596 network->bssid);
5597 return 0;
5598 }
5599
5600 /* TODO: Perform any further minimal comparititive tests. We do not
5601 * want to put too much policy logic here; intelligent scan selection
5602 * should occur within a generic IEEE 802.11 user space tool. */
5603
5604 /* Set up 'new' AP to this network */
5605 ipw_copy_rates(&match->rates, &rates);
5606 match->network = network;
5607 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5608 network->ssid_len, network->ssid, network->bssid);
5609
5610 return 1;
5611 }
5612
ipw_merge_adhoc_network(struct work_struct * work)5613 static void ipw_merge_adhoc_network(struct work_struct *work)
5614 {
5615 struct ipw_priv *priv =
5616 container_of(work, struct ipw_priv, merge_networks);
5617 struct libipw_network *network = NULL;
5618 struct ipw_network_match match = {
5619 .network = priv->assoc_network
5620 };
5621
5622 if ((priv->status & STATUS_ASSOCIATED) &&
5623 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624 /* First pass through ROAM process -- look for a better
5625 * network */
5626 unsigned long flags;
5627
5628 spin_lock_irqsave(&priv->ieee->lock, flags);
5629 list_for_each_entry(network, &priv->ieee->network_list, list) {
5630 if (network != priv->assoc_network)
5631 ipw_find_adhoc_network(priv, &match, network,
5632 1);
5633 }
5634 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5635
5636 if (match.network == priv->assoc_network) {
5637 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5638 "merge to.\n");
5639 return;
5640 }
5641
5642 mutex_lock(&priv->mutex);
5643 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5644 IPW_DEBUG_MERGE("remove network %*pE\n",
5645 priv->essid_len, priv->essid);
5646 ipw_remove_current_network(priv);
5647 }
5648
5649 ipw_disassociate(priv);
5650 priv->assoc_network = match.network;
5651 mutex_unlock(&priv->mutex);
5652 return;
5653 }
5654 }
5655
ipw_best_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5656 static int ipw_best_network(struct ipw_priv *priv,
5657 struct ipw_network_match *match,
5658 struct libipw_network *network, int roaming)
5659 {
5660 struct ipw_supported_rates rates;
5661
5662 /* Verify that this network's capability is compatible with the
5663 * current mode (AdHoc or Infrastructure) */
5664 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5665 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5666 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5667 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5668 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5669 network->ssid_len, network->ssid,
5670 network->bssid);
5671 return 0;
5672 }
5673
5674 if (unlikely(roaming)) {
5675 /* If we are roaming, then ensure check if this is a valid
5676 * network to try and roam to */
5677 if ((network->ssid_len != match->network->ssid_len) ||
5678 memcmp(network->ssid, match->network->ssid,
5679 network->ssid_len)) {
5680 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5681 network->ssid_len, network->ssid,
5682 network->bssid);
5683 return 0;
5684 }
5685 } else {
5686 /* If an ESSID has been configured then compare the broadcast
5687 * ESSID to ours */
5688 if ((priv->config & CFG_STATIC_ESSID) &&
5689 ((network->ssid_len != priv->essid_len) ||
5690 memcmp(network->ssid, priv->essid,
5691 min(network->ssid_len, priv->essid_len)))) {
5692 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5693 network->ssid_len, network->ssid,
5694 network->bssid, priv->essid_len,
5695 priv->essid);
5696 return 0;
5697 }
5698 }
5699
5700 /* If the old network rate is better than this one, don't bother
5701 * testing everything else. */
5702 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5704 network->ssid_len, network->ssid,
5705 network->bssid, match->network->ssid_len,
5706 match->network->ssid, match->network->bssid);
5707 return 0;
5708 }
5709
5710 /* If this network has already had an association attempt within the
5711 * last 3 seconds, do not try and associate again... */
5712 if (network->last_associate &&
5713 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5714 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5715 network->ssid_len, network->ssid,
5716 network->bssid,
5717 jiffies_to_msecs(jiffies -
5718 network->last_associate));
5719 return 0;
5720 }
5721
5722 /* Now go through and see if the requested network is valid... */
5723 if (priv->ieee->scan_age != 0 &&
5724 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5725 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5726 network->ssid_len, network->ssid,
5727 network->bssid,
5728 jiffies_to_msecs(jiffies -
5729 network->last_scanned));
5730 return 0;
5731 }
5732
5733 if ((priv->config & CFG_STATIC_CHANNEL) &&
5734 (network->channel != priv->channel)) {
5735 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5736 network->ssid_len, network->ssid,
5737 network->bssid,
5738 network->channel, priv->channel);
5739 return 0;
5740 }
5741
5742 /* Verify privacy compatibility */
5743 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5744 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5745 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5746 network->ssid_len, network->ssid,
5747 network->bssid,
5748 priv->capability & CAP_PRIVACY_ON ? "on" :
5749 "off",
5750 network->capability &
5751 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5752 return 0;
5753 }
5754
5755 if ((priv->config & CFG_STATIC_BSSID) &&
5756 !ether_addr_equal(network->bssid, priv->bssid)) {
5757 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5758 network->ssid_len, network->ssid,
5759 network->bssid, priv->bssid);
5760 return 0;
5761 }
5762
5763 /* Filter out any incompatible freq / mode combinations */
5764 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5765 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5766 network->ssid_len, network->ssid,
5767 network->bssid);
5768 return 0;
5769 }
5770
5771 /* Filter out invalid channel in current GEO */
5772 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5773 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5774 network->ssid_len, network->ssid,
5775 network->bssid);
5776 return 0;
5777 }
5778
5779 /* Ensure that the rates supported by the driver are compatible with
5780 * this AP, including verification of basic rates (mandatory) */
5781 if (!ipw_compatible_rates(priv, network, &rates)) {
5782 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5783 network->ssid_len, network->ssid,
5784 network->bssid);
5785 return 0;
5786 }
5787
5788 if (rates.num_rates == 0) {
5789 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5790 network->ssid_len, network->ssid,
5791 network->bssid);
5792 return 0;
5793 }
5794
5795 /* TODO: Perform any further minimal comparititive tests. We do not
5796 * want to put too much policy logic here; intelligent scan selection
5797 * should occur within a generic IEEE 802.11 user space tool. */
5798
5799 /* Set up 'new' AP to this network */
5800 ipw_copy_rates(&match->rates, &rates);
5801 match->network = network;
5802
5803 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5804 network->ssid_len, network->ssid, network->bssid);
5805
5806 return 1;
5807 }
5808
ipw_adhoc_create(struct ipw_priv * priv,struct libipw_network * network)5809 static void ipw_adhoc_create(struct ipw_priv *priv,
5810 struct libipw_network *network)
5811 {
5812 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5813 int i;
5814
5815 /*
5816 * For the purposes of scanning, we can set our wireless mode
5817 * to trigger scans across combinations of bands, but when it
5818 * comes to creating a new ad-hoc network, we have tell the FW
5819 * exactly which band to use.
5820 *
5821 * We also have the possibility of an invalid channel for the
5822 * chossen band. Attempting to create a new ad-hoc network
5823 * with an invalid channel for wireless mode will trigger a
5824 * FW fatal error.
5825 *
5826 */
5827 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5828 case LIBIPW_52GHZ_BAND:
5829 network->mode = IEEE_A;
5830 i = libipw_channel_to_index(priv->ieee, priv->channel);
5831 BUG_ON(i == -1);
5832 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5833 IPW_WARNING("Overriding invalid channel\n");
5834 priv->channel = geo->a[0].channel;
5835 }
5836 break;
5837
5838 case LIBIPW_24GHZ_BAND:
5839 if (priv->ieee->mode & IEEE_G)
5840 network->mode = IEEE_G;
5841 else
5842 network->mode = IEEE_B;
5843 i = libipw_channel_to_index(priv->ieee, priv->channel);
5844 BUG_ON(i == -1);
5845 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5846 IPW_WARNING("Overriding invalid channel\n");
5847 priv->channel = geo->bg[0].channel;
5848 }
5849 break;
5850
5851 default:
5852 IPW_WARNING("Overriding invalid channel\n");
5853 if (priv->ieee->mode & IEEE_A) {
5854 network->mode = IEEE_A;
5855 priv->channel = geo->a[0].channel;
5856 } else if (priv->ieee->mode & IEEE_G) {
5857 network->mode = IEEE_G;
5858 priv->channel = geo->bg[0].channel;
5859 } else {
5860 network->mode = IEEE_B;
5861 priv->channel = geo->bg[0].channel;
5862 }
5863 break;
5864 }
5865
5866 network->channel = priv->channel;
5867 priv->config |= CFG_ADHOC_PERSIST;
5868 ipw_create_bssid(priv, network->bssid);
5869 network->ssid_len = priv->essid_len;
5870 memcpy(network->ssid, priv->essid, priv->essid_len);
5871 memset(&network->stats, 0, sizeof(network->stats));
5872 network->capability = WLAN_CAPABILITY_IBSS;
5873 if (!(priv->config & CFG_PREAMBLE_LONG))
5874 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5875 if (priv->capability & CAP_PRIVACY_ON)
5876 network->capability |= WLAN_CAPABILITY_PRIVACY;
5877 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5878 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5879 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5880 memcpy(network->rates_ex,
5881 &priv->rates.supported_rates[network->rates_len],
5882 network->rates_ex_len);
5883 network->last_scanned = 0;
5884 network->flags = 0;
5885 network->last_associate = 0;
5886 network->time_stamp[0] = 0;
5887 network->time_stamp[1] = 0;
5888 network->beacon_interval = 100; /* Default */
5889 network->listen_interval = 10; /* Default */
5890 network->atim_window = 0; /* Default */
5891 network->wpa_ie_len = 0;
5892 network->rsn_ie_len = 0;
5893 }
5894
ipw_send_tgi_tx_key(struct ipw_priv * priv,int type,int index)5895 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5896 {
5897 struct ipw_tgi_tx_key key;
5898
5899 if (!(priv->ieee->sec.flags & (1 << index)))
5900 return;
5901
5902 key.key_id = index;
5903 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5904 key.security_type = type;
5905 key.station_index = 0; /* always 0 for BSS */
5906 key.flags = 0;
5907 /* 0 for new key; previous value of counter (after fatal error) */
5908 key.tx_counter[0] = cpu_to_le32(0);
5909 key.tx_counter[1] = cpu_to_le32(0);
5910
5911 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5912 }
5913
ipw_send_wep_keys(struct ipw_priv * priv,int type)5914 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5915 {
5916 struct ipw_wep_key key;
5917 int i;
5918
5919 key.cmd_id = DINO_CMD_WEP_KEY;
5920 key.seq_num = 0;
5921
5922 /* Note: AES keys cannot be set for multiple times.
5923 * Only set it at the first time. */
5924 for (i = 0; i < 4; i++) {
5925 key.key_index = i | type;
5926 if (!(priv->ieee->sec.flags & (1 << i))) {
5927 key.key_size = 0;
5928 continue;
5929 }
5930
5931 key.key_size = priv->ieee->sec.key_sizes[i];
5932 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5933
5934 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5935 }
5936 }
5937
ipw_set_hw_decrypt_unicast(struct ipw_priv * priv,int level)5938 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5939 {
5940 if (priv->ieee->host_encrypt)
5941 return;
5942
5943 switch (level) {
5944 case SEC_LEVEL_3:
5945 priv->sys_config.disable_unicast_decryption = 0;
5946 priv->ieee->host_decrypt = 0;
5947 break;
5948 case SEC_LEVEL_2:
5949 priv->sys_config.disable_unicast_decryption = 1;
5950 priv->ieee->host_decrypt = 1;
5951 break;
5952 case SEC_LEVEL_1:
5953 priv->sys_config.disable_unicast_decryption = 0;
5954 priv->ieee->host_decrypt = 0;
5955 break;
5956 case SEC_LEVEL_0:
5957 priv->sys_config.disable_unicast_decryption = 1;
5958 break;
5959 default:
5960 break;
5961 }
5962 }
5963
ipw_set_hw_decrypt_multicast(struct ipw_priv * priv,int level)5964 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5965 {
5966 if (priv->ieee->host_encrypt)
5967 return;
5968
5969 switch (level) {
5970 case SEC_LEVEL_3:
5971 priv->sys_config.disable_multicast_decryption = 0;
5972 break;
5973 case SEC_LEVEL_2:
5974 priv->sys_config.disable_multicast_decryption = 1;
5975 break;
5976 case SEC_LEVEL_1:
5977 priv->sys_config.disable_multicast_decryption = 0;
5978 break;
5979 case SEC_LEVEL_0:
5980 priv->sys_config.disable_multicast_decryption = 1;
5981 break;
5982 default:
5983 break;
5984 }
5985 }
5986
ipw_set_hwcrypto_keys(struct ipw_priv * priv)5987 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5988 {
5989 switch (priv->ieee->sec.level) {
5990 case SEC_LEVEL_3:
5991 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5992 ipw_send_tgi_tx_key(priv,
5993 DCT_FLAG_EXT_SECURITY_CCM,
5994 priv->ieee->sec.active_key);
5995
5996 if (!priv->ieee->host_mc_decrypt)
5997 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5998 break;
5999 case SEC_LEVEL_2:
6000 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6001 ipw_send_tgi_tx_key(priv,
6002 DCT_FLAG_EXT_SECURITY_TKIP,
6003 priv->ieee->sec.active_key);
6004 break;
6005 case SEC_LEVEL_1:
6006 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6007 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6008 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6009 break;
6010 case SEC_LEVEL_0:
6011 default:
6012 break;
6013 }
6014 }
6015
ipw_adhoc_check(void * data)6016 static void ipw_adhoc_check(void *data)
6017 {
6018 struct ipw_priv *priv = data;
6019
6020 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6021 !(priv->config & CFG_ADHOC_PERSIST)) {
6022 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6023 IPW_DL_STATE | IPW_DL_ASSOC,
6024 "Missed beacon: %d - disassociate\n",
6025 priv->missed_adhoc_beacons);
6026 ipw_remove_current_network(priv);
6027 ipw_disassociate(priv);
6028 return;
6029 }
6030
6031 schedule_delayed_work(&priv->adhoc_check,
6032 le16_to_cpu(priv->assoc_request.beacon_interval));
6033 }
6034
ipw_bg_adhoc_check(struct work_struct * work)6035 static void ipw_bg_adhoc_check(struct work_struct *work)
6036 {
6037 struct ipw_priv *priv =
6038 container_of(work, struct ipw_priv, adhoc_check.work);
6039 mutex_lock(&priv->mutex);
6040 ipw_adhoc_check(priv);
6041 mutex_unlock(&priv->mutex);
6042 }
6043
ipw_debug_config(struct ipw_priv * priv)6044 static void ipw_debug_config(struct ipw_priv *priv)
6045 {
6046 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6047 "[CFG 0x%08X]\n", priv->config);
6048 if (priv->config & CFG_STATIC_CHANNEL)
6049 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6050 else
6051 IPW_DEBUG_INFO("Channel unlocked.\n");
6052 if (priv->config & CFG_STATIC_ESSID)
6053 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6054 priv->essid_len, priv->essid);
6055 else
6056 IPW_DEBUG_INFO("ESSID unlocked.\n");
6057 if (priv->config & CFG_STATIC_BSSID)
6058 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6059 else
6060 IPW_DEBUG_INFO("BSSID unlocked.\n");
6061 if (priv->capability & CAP_PRIVACY_ON)
6062 IPW_DEBUG_INFO("PRIVACY on\n");
6063 else
6064 IPW_DEBUG_INFO("PRIVACY off\n");
6065 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6066 }
6067
ipw_set_fixed_rate(struct ipw_priv * priv,int mode)6068 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6069 {
6070 /* TODO: Verify that this works... */
6071 struct ipw_fixed_rate fr;
6072 u32 reg;
6073 u16 mask = 0;
6074 u16 new_tx_rates = priv->rates_mask;
6075
6076 /* Identify 'current FW band' and match it with the fixed
6077 * Tx rates */
6078
6079 switch (priv->ieee->freq_band) {
6080 case LIBIPW_52GHZ_BAND: /* A only */
6081 /* IEEE_A */
6082 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6083 /* Invalid fixed rate mask */
6084 IPW_DEBUG_WX
6085 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6086 new_tx_rates = 0;
6087 break;
6088 }
6089
6090 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6091 break;
6092
6093 default: /* 2.4Ghz or Mixed */
6094 /* IEEE_B */
6095 if (mode == IEEE_B) {
6096 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6097 /* Invalid fixed rate mask */
6098 IPW_DEBUG_WX
6099 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6100 new_tx_rates = 0;
6101 }
6102 break;
6103 }
6104
6105 /* IEEE_G */
6106 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6107 LIBIPW_OFDM_RATES_MASK)) {
6108 /* Invalid fixed rate mask */
6109 IPW_DEBUG_WX
6110 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6111 new_tx_rates = 0;
6112 break;
6113 }
6114
6115 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6116 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6117 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6118 }
6119
6120 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6121 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6122 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6123 }
6124
6125 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6126 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6127 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6128 }
6129
6130 new_tx_rates |= mask;
6131 break;
6132 }
6133
6134 fr.tx_rates = cpu_to_le16(new_tx_rates);
6135
6136 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6137 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6138 }
6139
ipw_abort_scan(struct ipw_priv * priv)6140 static void ipw_abort_scan(struct ipw_priv *priv)
6141 {
6142 int err;
6143
6144 if (priv->status & STATUS_SCAN_ABORTING) {
6145 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6146 return;
6147 }
6148 priv->status |= STATUS_SCAN_ABORTING;
6149
6150 err = ipw_send_scan_abort(priv);
6151 if (err)
6152 IPW_DEBUG_HC("Request to abort scan failed.\n");
6153 }
6154
ipw_add_scan_channels(struct ipw_priv * priv,struct ipw_scan_request_ext * scan,int scan_type)6155 static void ipw_add_scan_channels(struct ipw_priv *priv,
6156 struct ipw_scan_request_ext *scan,
6157 int scan_type)
6158 {
6159 int channel_index = 0;
6160 const struct libipw_geo *geo;
6161 int i;
6162
6163 geo = libipw_get_geo(priv->ieee);
6164
6165 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6166 int start = channel_index;
6167 for (i = 0; i < geo->a_channels; i++) {
6168 if ((priv->status & STATUS_ASSOCIATED) &&
6169 geo->a[i].channel == priv->channel)
6170 continue;
6171 channel_index++;
6172 scan->channels_list[channel_index] = geo->a[i].channel;
6173 ipw_set_scan_type(scan, channel_index,
6174 geo->a[i].
6175 flags & LIBIPW_CH_PASSIVE_ONLY ?
6176 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6177 scan_type);
6178 }
6179
6180 if (start != channel_index) {
6181 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6182 (channel_index - start);
6183 channel_index++;
6184 }
6185 }
6186
6187 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6188 int start = channel_index;
6189 if (priv->config & CFG_SPEED_SCAN) {
6190 int index;
6191 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6192 /* nop out the list */
6193 [0] = 0
6194 };
6195
6196 u8 channel;
6197 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6198 channel =
6199 priv->speed_scan[priv->speed_scan_pos];
6200 if (channel == 0) {
6201 priv->speed_scan_pos = 0;
6202 channel = priv->speed_scan[0];
6203 }
6204 if ((priv->status & STATUS_ASSOCIATED) &&
6205 channel == priv->channel) {
6206 priv->speed_scan_pos++;
6207 continue;
6208 }
6209
6210 /* If this channel has already been
6211 * added in scan, break from loop
6212 * and this will be the first channel
6213 * in the next scan.
6214 */
6215 if (channels[channel - 1] != 0)
6216 break;
6217
6218 channels[channel - 1] = 1;
6219 priv->speed_scan_pos++;
6220 channel_index++;
6221 scan->channels_list[channel_index] = channel;
6222 index =
6223 libipw_channel_to_index(priv->ieee, channel);
6224 ipw_set_scan_type(scan, channel_index,
6225 geo->bg[index].
6226 flags &
6227 LIBIPW_CH_PASSIVE_ONLY ?
6228 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6229 : scan_type);
6230 }
6231 } else {
6232 for (i = 0; i < geo->bg_channels; i++) {
6233 if ((priv->status & STATUS_ASSOCIATED) &&
6234 geo->bg[i].channel == priv->channel)
6235 continue;
6236 channel_index++;
6237 scan->channels_list[channel_index] =
6238 geo->bg[i].channel;
6239 ipw_set_scan_type(scan, channel_index,
6240 geo->bg[i].
6241 flags &
6242 LIBIPW_CH_PASSIVE_ONLY ?
6243 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6244 : scan_type);
6245 }
6246 }
6247
6248 if (start != channel_index) {
6249 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6250 (channel_index - start);
6251 }
6252 }
6253 }
6254
ipw_passive_dwell_time(struct ipw_priv * priv)6255 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6256 {
6257 /* staying on passive channels longer than the DTIM interval during a
6258 * scan, while associated, causes the firmware to cancel the scan
6259 * without notification. Hence, don't stay on passive channels longer
6260 * than the beacon interval.
6261 */
6262 if (priv->status & STATUS_ASSOCIATED
6263 && priv->assoc_network->beacon_interval > 10)
6264 return priv->assoc_network->beacon_interval - 10;
6265 else
6266 return 120;
6267 }
6268
ipw_request_scan_helper(struct ipw_priv * priv,int type,int direct)6269 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6270 {
6271 struct ipw_scan_request_ext scan;
6272 int err = 0, scan_type;
6273
6274 if (!(priv->status & STATUS_INIT) ||
6275 (priv->status & STATUS_EXIT_PENDING))
6276 return 0;
6277
6278 mutex_lock(&priv->mutex);
6279
6280 if (direct && (priv->direct_scan_ssid_len == 0)) {
6281 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6282 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6283 goto done;
6284 }
6285
6286 if (priv->status & STATUS_SCANNING) {
6287 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6288 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6289 STATUS_SCAN_PENDING;
6290 goto done;
6291 }
6292
6293 if (!(priv->status & STATUS_SCAN_FORCED) &&
6294 priv->status & STATUS_SCAN_ABORTING) {
6295 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6296 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6297 STATUS_SCAN_PENDING;
6298 goto done;
6299 }
6300
6301 if (priv->status & STATUS_RF_KILL_MASK) {
6302 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6303 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6304 STATUS_SCAN_PENDING;
6305 goto done;
6306 }
6307
6308 memset(&scan, 0, sizeof(scan));
6309 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6310
6311 if (type == IW_SCAN_TYPE_PASSIVE) {
6312 IPW_DEBUG_WX("use passive scanning\n");
6313 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6314 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6315 cpu_to_le16(ipw_passive_dwell_time(priv));
6316 ipw_add_scan_channels(priv, &scan, scan_type);
6317 goto send_request;
6318 }
6319
6320 /* Use active scan by default. */
6321 if (priv->config & CFG_SPEED_SCAN)
6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323 cpu_to_le16(30);
6324 else
6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6326 cpu_to_le16(20);
6327
6328 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6329 cpu_to_le16(20);
6330
6331 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6332 cpu_to_le16(ipw_passive_dwell_time(priv));
6333 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6334
6335 #ifdef CONFIG_IPW2200_MONITOR
6336 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6337 u8 channel;
6338 u8 band = 0;
6339
6340 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6341 case LIBIPW_52GHZ_BAND:
6342 band = (u8) (IPW_A_MODE << 6) | 1;
6343 channel = priv->channel;
6344 break;
6345
6346 case LIBIPW_24GHZ_BAND:
6347 band = (u8) (IPW_B_MODE << 6) | 1;
6348 channel = priv->channel;
6349 break;
6350
6351 default:
6352 band = (u8) (IPW_B_MODE << 6) | 1;
6353 channel = 9;
6354 break;
6355 }
6356
6357 scan.channels_list[0] = band;
6358 scan.channels_list[1] = channel;
6359 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6360
6361 /* NOTE: The card will sit on this channel for this time
6362 * period. Scan aborts are timing sensitive and frequently
6363 * result in firmware restarts. As such, it is best to
6364 * set a small dwell_time here and just keep re-issuing
6365 * scans. Otherwise fast channel hopping will not actually
6366 * hop channels.
6367 *
6368 * TODO: Move SPEED SCAN support to all modes and bands */
6369 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6370 cpu_to_le16(2000);
6371 } else {
6372 #endif /* CONFIG_IPW2200_MONITOR */
6373 /* Honor direct scans first, otherwise if we are roaming make
6374 * this a direct scan for the current network. Finally,
6375 * ensure that every other scan is a fast channel hop scan */
6376 if (direct) {
6377 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6378 priv->direct_scan_ssid_len);
6379 if (err) {
6380 IPW_DEBUG_HC("Attempt to send SSID command "
6381 "failed\n");
6382 goto done;
6383 }
6384
6385 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6386 } else if ((priv->status & STATUS_ROAMING)
6387 || (!(priv->status & STATUS_ASSOCIATED)
6388 && (priv->config & CFG_STATIC_ESSID)
6389 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6390 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6391 if (err) {
6392 IPW_DEBUG_HC("Attempt to send SSID command "
6393 "failed.\n");
6394 goto done;
6395 }
6396
6397 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6398 } else
6399 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6400
6401 ipw_add_scan_channels(priv, &scan, scan_type);
6402 #ifdef CONFIG_IPW2200_MONITOR
6403 }
6404 #endif
6405
6406 send_request:
6407 err = ipw_send_scan_request_ext(priv, &scan);
6408 if (err) {
6409 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6410 goto done;
6411 }
6412
6413 priv->status |= STATUS_SCANNING;
6414 if (direct) {
6415 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6416 priv->direct_scan_ssid_len = 0;
6417 } else
6418 priv->status &= ~STATUS_SCAN_PENDING;
6419
6420 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6421 done:
6422 mutex_unlock(&priv->mutex);
6423 return err;
6424 }
6425
ipw_request_passive_scan(struct work_struct * work)6426 static void ipw_request_passive_scan(struct work_struct *work)
6427 {
6428 struct ipw_priv *priv =
6429 container_of(work, struct ipw_priv, request_passive_scan.work);
6430 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6431 }
6432
ipw_request_scan(struct work_struct * work)6433 static void ipw_request_scan(struct work_struct *work)
6434 {
6435 struct ipw_priv *priv =
6436 container_of(work, struct ipw_priv, request_scan.work);
6437 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6438 }
6439
ipw_request_direct_scan(struct work_struct * work)6440 static void ipw_request_direct_scan(struct work_struct *work)
6441 {
6442 struct ipw_priv *priv =
6443 container_of(work, struct ipw_priv, request_direct_scan.work);
6444 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6445 }
6446
ipw_bg_abort_scan(struct work_struct * work)6447 static void ipw_bg_abort_scan(struct work_struct *work)
6448 {
6449 struct ipw_priv *priv =
6450 container_of(work, struct ipw_priv, abort_scan);
6451 mutex_lock(&priv->mutex);
6452 ipw_abort_scan(priv);
6453 mutex_unlock(&priv->mutex);
6454 }
6455
ipw_wpa_enable(struct ipw_priv * priv,int value)6456 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6457 {
6458 /* This is called when wpa_supplicant loads and closes the driver
6459 * interface. */
6460 priv->ieee->wpa_enabled = value;
6461 return 0;
6462 }
6463
ipw_wpa_set_auth_algs(struct ipw_priv * priv,int value)6464 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6465 {
6466 struct libipw_device *ieee = priv->ieee;
6467 struct libipw_security sec = {
6468 .flags = SEC_AUTH_MODE,
6469 };
6470 int ret = 0;
6471
6472 if (value & IW_AUTH_ALG_SHARED_KEY) {
6473 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6474 ieee->open_wep = 0;
6475 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6476 sec.auth_mode = WLAN_AUTH_OPEN;
6477 ieee->open_wep = 1;
6478 } else if (value & IW_AUTH_ALG_LEAP) {
6479 sec.auth_mode = WLAN_AUTH_LEAP;
6480 ieee->open_wep = 1;
6481 } else
6482 return -EINVAL;
6483
6484 if (ieee->set_security)
6485 ieee->set_security(ieee->dev, &sec);
6486 else
6487 ret = -EOPNOTSUPP;
6488
6489 return ret;
6490 }
6491
ipw_wpa_assoc_frame(struct ipw_priv * priv,char * wpa_ie,int wpa_ie_len)6492 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6493 int wpa_ie_len)
6494 {
6495 /* make sure WPA is enabled */
6496 ipw_wpa_enable(priv, 1);
6497 }
6498
ipw_set_rsn_capa(struct ipw_priv * priv,char * capabilities,int length)6499 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6500 char *capabilities, int length)
6501 {
6502 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6503
6504 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6505 capabilities);
6506 }
6507
6508 /*
6509 * WE-18 support
6510 */
6511
6512 /* SIOCSIWGENIE */
ipw_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6513 static int ipw_wx_set_genie(struct net_device *dev,
6514 struct iw_request_info *info,
6515 union iwreq_data *wrqu, char *extra)
6516 {
6517 struct ipw_priv *priv = libipw_priv(dev);
6518 struct libipw_device *ieee = priv->ieee;
6519 u8 *buf;
6520 int err = 0;
6521
6522 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6523 (wrqu->data.length && extra == NULL))
6524 return -EINVAL;
6525
6526 if (wrqu->data.length) {
6527 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6528 if (buf == NULL) {
6529 err = -ENOMEM;
6530 goto out;
6531 }
6532
6533 kfree(ieee->wpa_ie);
6534 ieee->wpa_ie = buf;
6535 ieee->wpa_ie_len = wrqu->data.length;
6536 } else {
6537 kfree(ieee->wpa_ie);
6538 ieee->wpa_ie = NULL;
6539 ieee->wpa_ie_len = 0;
6540 }
6541
6542 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6543 out:
6544 return err;
6545 }
6546
6547 /* SIOCGIWGENIE */
ipw_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6548 static int ipw_wx_get_genie(struct net_device *dev,
6549 struct iw_request_info *info,
6550 union iwreq_data *wrqu, char *extra)
6551 {
6552 struct ipw_priv *priv = libipw_priv(dev);
6553 struct libipw_device *ieee = priv->ieee;
6554 int err = 0;
6555
6556 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6557 wrqu->data.length = 0;
6558 goto out;
6559 }
6560
6561 if (wrqu->data.length < ieee->wpa_ie_len) {
6562 err = -E2BIG;
6563 goto out;
6564 }
6565
6566 wrqu->data.length = ieee->wpa_ie_len;
6567 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6568
6569 out:
6570 return err;
6571 }
6572
wext_cipher2level(int cipher)6573 static int wext_cipher2level(int cipher)
6574 {
6575 switch (cipher) {
6576 case IW_AUTH_CIPHER_NONE:
6577 return SEC_LEVEL_0;
6578 case IW_AUTH_CIPHER_WEP40:
6579 case IW_AUTH_CIPHER_WEP104:
6580 return SEC_LEVEL_1;
6581 case IW_AUTH_CIPHER_TKIP:
6582 return SEC_LEVEL_2;
6583 case IW_AUTH_CIPHER_CCMP:
6584 return SEC_LEVEL_3;
6585 default:
6586 return -1;
6587 }
6588 }
6589
6590 /* SIOCSIWAUTH */
ipw_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6591 static int ipw_wx_set_auth(struct net_device *dev,
6592 struct iw_request_info *info,
6593 union iwreq_data *wrqu, char *extra)
6594 {
6595 struct ipw_priv *priv = libipw_priv(dev);
6596 struct libipw_device *ieee = priv->ieee;
6597 struct iw_param *param = &wrqu->param;
6598 struct lib80211_crypt_data *crypt;
6599 unsigned long flags;
6600 int ret = 0;
6601
6602 switch (param->flags & IW_AUTH_INDEX) {
6603 case IW_AUTH_WPA_VERSION:
6604 break;
6605 case IW_AUTH_CIPHER_PAIRWISE:
6606 ipw_set_hw_decrypt_unicast(priv,
6607 wext_cipher2level(param->value));
6608 break;
6609 case IW_AUTH_CIPHER_GROUP:
6610 ipw_set_hw_decrypt_multicast(priv,
6611 wext_cipher2level(param->value));
6612 break;
6613 case IW_AUTH_KEY_MGMT:
6614 /*
6615 * ipw2200 does not use these parameters
6616 */
6617 break;
6618
6619 case IW_AUTH_TKIP_COUNTERMEASURES:
6620 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6621 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6622 break;
6623
6624 flags = crypt->ops->get_flags(crypt->priv);
6625
6626 if (param->value)
6627 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628 else
6629 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6630
6631 crypt->ops->set_flags(flags, crypt->priv);
6632
6633 break;
6634
6635 case IW_AUTH_DROP_UNENCRYPTED:{
6636 /* HACK:
6637 *
6638 * wpa_supplicant calls set_wpa_enabled when the driver
6639 * is loaded and unloaded, regardless of if WPA is being
6640 * used. No other calls are made which can be used to
6641 * determine if encryption will be used or not prior to
6642 * association being expected. If encryption is not being
6643 * used, drop_unencrypted is set to false, else true -- we
6644 * can use this to determine if the CAP_PRIVACY_ON bit should
6645 * be set.
6646 */
6647 struct libipw_security sec = {
6648 .flags = SEC_ENABLED,
6649 .enabled = param->value,
6650 };
6651 priv->ieee->drop_unencrypted = param->value;
6652 /* We only change SEC_LEVEL for open mode. Others
6653 * are set by ipw_wpa_set_encryption.
6654 */
6655 if (!param->value) {
6656 sec.flags |= SEC_LEVEL;
6657 sec.level = SEC_LEVEL_0;
6658 } else {
6659 sec.flags |= SEC_LEVEL;
6660 sec.level = SEC_LEVEL_1;
6661 }
6662 if (priv->ieee->set_security)
6663 priv->ieee->set_security(priv->ieee->dev, &sec);
6664 break;
6665 }
6666
6667 case IW_AUTH_80211_AUTH_ALG:
6668 ret = ipw_wpa_set_auth_algs(priv, param->value);
6669 break;
6670
6671 case IW_AUTH_WPA_ENABLED:
6672 ret = ipw_wpa_enable(priv, param->value);
6673 ipw_disassociate(priv);
6674 break;
6675
6676 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6677 ieee->ieee802_1x = param->value;
6678 break;
6679
6680 case IW_AUTH_PRIVACY_INVOKED:
6681 ieee->privacy_invoked = param->value;
6682 break;
6683
6684 default:
6685 return -EOPNOTSUPP;
6686 }
6687 return ret;
6688 }
6689
6690 /* SIOCGIWAUTH */
ipw_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6691 static int ipw_wx_get_auth(struct net_device *dev,
6692 struct iw_request_info *info,
6693 union iwreq_data *wrqu, char *extra)
6694 {
6695 struct ipw_priv *priv = libipw_priv(dev);
6696 struct libipw_device *ieee = priv->ieee;
6697 struct lib80211_crypt_data *crypt;
6698 struct iw_param *param = &wrqu->param;
6699
6700 switch (param->flags & IW_AUTH_INDEX) {
6701 case IW_AUTH_WPA_VERSION:
6702 case IW_AUTH_CIPHER_PAIRWISE:
6703 case IW_AUTH_CIPHER_GROUP:
6704 case IW_AUTH_KEY_MGMT:
6705 /*
6706 * wpa_supplicant will control these internally
6707 */
6708 return -EOPNOTSUPP;
6709
6710 case IW_AUTH_TKIP_COUNTERMEASURES:
6711 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6712 if (!crypt || !crypt->ops->get_flags)
6713 break;
6714
6715 param->value = (crypt->ops->get_flags(crypt->priv) &
6716 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6717
6718 break;
6719
6720 case IW_AUTH_DROP_UNENCRYPTED:
6721 param->value = ieee->drop_unencrypted;
6722 break;
6723
6724 case IW_AUTH_80211_AUTH_ALG:
6725 param->value = ieee->sec.auth_mode;
6726 break;
6727
6728 case IW_AUTH_WPA_ENABLED:
6729 param->value = ieee->wpa_enabled;
6730 break;
6731
6732 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6733 param->value = ieee->ieee802_1x;
6734 break;
6735
6736 case IW_AUTH_ROAMING_CONTROL:
6737 case IW_AUTH_PRIVACY_INVOKED:
6738 param->value = ieee->privacy_invoked;
6739 break;
6740
6741 default:
6742 return -EOPNOTSUPP;
6743 }
6744 return 0;
6745 }
6746
6747 /* SIOCSIWENCODEEXT */
ipw_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6748 static int ipw_wx_set_encodeext(struct net_device *dev,
6749 struct iw_request_info *info,
6750 union iwreq_data *wrqu, char *extra)
6751 {
6752 struct ipw_priv *priv = libipw_priv(dev);
6753 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6754
6755 if (hwcrypto) {
6756 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6757 /* IPW HW can't build TKIP MIC,
6758 host decryption still needed */
6759 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6760 priv->ieee->host_mc_decrypt = 1;
6761 else {
6762 priv->ieee->host_encrypt = 0;
6763 priv->ieee->host_encrypt_msdu = 1;
6764 priv->ieee->host_decrypt = 1;
6765 }
6766 } else {
6767 priv->ieee->host_encrypt = 0;
6768 priv->ieee->host_encrypt_msdu = 0;
6769 priv->ieee->host_decrypt = 0;
6770 priv->ieee->host_mc_decrypt = 0;
6771 }
6772 }
6773
6774 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6775 }
6776
6777 /* SIOCGIWENCODEEXT */
ipw_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6778 static int ipw_wx_get_encodeext(struct net_device *dev,
6779 struct iw_request_info *info,
6780 union iwreq_data *wrqu, char *extra)
6781 {
6782 struct ipw_priv *priv = libipw_priv(dev);
6783 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6784 }
6785
6786 /* SIOCSIWMLME */
ipw_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6787 static int ipw_wx_set_mlme(struct net_device *dev,
6788 struct iw_request_info *info,
6789 union iwreq_data *wrqu, char *extra)
6790 {
6791 struct ipw_priv *priv = libipw_priv(dev);
6792 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6793
6794 switch (mlme->cmd) {
6795 case IW_MLME_DEAUTH:
6796 /* silently ignore */
6797 break;
6798
6799 case IW_MLME_DISASSOC:
6800 ipw_disassociate(priv);
6801 break;
6802
6803 default:
6804 return -EOPNOTSUPP;
6805 }
6806 return 0;
6807 }
6808
6809 #ifdef CONFIG_IPW2200_QOS
6810
6811 /* QoS */
6812 /*
6813 * get the modulation type of the current network or
6814 * the card current mode
6815 */
ipw_qos_current_mode(struct ipw_priv * priv)6816 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6817 {
6818 u8 mode = 0;
6819
6820 if (priv->status & STATUS_ASSOCIATED) {
6821 unsigned long flags;
6822
6823 spin_lock_irqsave(&priv->ieee->lock, flags);
6824 mode = priv->assoc_network->mode;
6825 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6826 } else {
6827 mode = priv->ieee->mode;
6828 }
6829 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6830 return mode;
6831 }
6832
6833 /*
6834 * Handle management frame beacon and probe response
6835 */
ipw_qos_handle_probe_response(struct ipw_priv * priv,int active_network,struct libipw_network * network)6836 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6837 int active_network,
6838 struct libipw_network *network)
6839 {
6840 u32 size = sizeof(struct libipw_qos_parameters);
6841
6842 if (network->capability & WLAN_CAPABILITY_IBSS)
6843 network->qos_data.active = network->qos_data.supported;
6844
6845 if (network->flags & NETWORK_HAS_QOS_MASK) {
6846 if (active_network &&
6847 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6848 network->qos_data.active = network->qos_data.supported;
6849
6850 if ((network->qos_data.active == 1) && (active_network == 1) &&
6851 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6852 (network->qos_data.old_param_count !=
6853 network->qos_data.param_count)) {
6854 network->qos_data.old_param_count =
6855 network->qos_data.param_count;
6856 schedule_work(&priv->qos_activate);
6857 IPW_DEBUG_QOS("QoS parameters change call "
6858 "qos_activate\n");
6859 }
6860 } else {
6861 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6862 memcpy(&network->qos_data.parameters,
6863 &def_parameters_CCK, size);
6864 else
6865 memcpy(&network->qos_data.parameters,
6866 &def_parameters_OFDM, size);
6867
6868 if ((network->qos_data.active == 1) && (active_network == 1)) {
6869 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6870 schedule_work(&priv->qos_activate);
6871 }
6872
6873 network->qos_data.active = 0;
6874 network->qos_data.supported = 0;
6875 }
6876 if ((priv->status & STATUS_ASSOCIATED) &&
6877 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6878 if (!ether_addr_equal(network->bssid, priv->bssid))
6879 if (network->capability & WLAN_CAPABILITY_IBSS)
6880 if ((network->ssid_len ==
6881 priv->assoc_network->ssid_len) &&
6882 !memcmp(network->ssid,
6883 priv->assoc_network->ssid,
6884 network->ssid_len)) {
6885 schedule_work(&priv->merge_networks);
6886 }
6887 }
6888
6889 return 0;
6890 }
6891
6892 /*
6893 * This function set up the firmware to support QoS. It sends
6894 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6895 */
ipw_qos_activate(struct ipw_priv * priv,struct libipw_qos_data * qos_network_data)6896 static int ipw_qos_activate(struct ipw_priv *priv,
6897 struct libipw_qos_data *qos_network_data)
6898 {
6899 int err;
6900 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6901 struct libipw_qos_parameters *active_one = NULL;
6902 u32 size = sizeof(struct libipw_qos_parameters);
6903 u32 burst_duration;
6904 int i;
6905 u8 type;
6906
6907 type = ipw_qos_current_mode(priv);
6908
6909 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6910 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6911 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6912 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6913
6914 if (qos_network_data == NULL) {
6915 if (type == IEEE_B) {
6916 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6917 active_one = &def_parameters_CCK;
6918 } else
6919 active_one = &def_parameters_OFDM;
6920
6921 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6922 burst_duration = ipw_qos_get_burst_duration(priv);
6923 for (i = 0; i < QOS_QUEUE_NUM; i++)
6924 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6925 cpu_to_le16(burst_duration);
6926 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6927 if (type == IEEE_B) {
6928 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6929 type);
6930 if (priv->qos_data.qos_enable == 0)
6931 active_one = &def_parameters_CCK;
6932 else
6933 active_one = priv->qos_data.def_qos_parm_CCK;
6934 } else {
6935 if (priv->qos_data.qos_enable == 0)
6936 active_one = &def_parameters_OFDM;
6937 else
6938 active_one = priv->qos_data.def_qos_parm_OFDM;
6939 }
6940 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941 } else {
6942 unsigned long flags;
6943 int active;
6944
6945 spin_lock_irqsave(&priv->ieee->lock, flags);
6946 active_one = &(qos_network_data->parameters);
6947 qos_network_data->old_param_count =
6948 qos_network_data->param_count;
6949 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6950 active = qos_network_data->supported;
6951 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6952
6953 if (active == 0) {
6954 burst_duration = ipw_qos_get_burst_duration(priv);
6955 for (i = 0; i < QOS_QUEUE_NUM; i++)
6956 qos_parameters[QOS_PARAM_SET_ACTIVE].
6957 tx_op_limit[i] = cpu_to_le16(burst_duration);
6958 }
6959 }
6960
6961 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6962 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6963 if (err)
6964 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6965
6966 return err;
6967 }
6968
6969 /*
6970 * send IPW_CMD_WME_INFO to the firmware
6971 */
ipw_qos_set_info_element(struct ipw_priv * priv)6972 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6973 {
6974 int ret = 0;
6975 struct libipw_qos_information_element qos_info;
6976
6977 if (priv == NULL)
6978 return -1;
6979
6980 qos_info.elementID = QOS_ELEMENT_ID;
6981 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6982
6983 qos_info.version = QOS_VERSION_1;
6984 qos_info.ac_info = 0;
6985
6986 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6987 qos_info.qui_type = QOS_OUI_TYPE;
6988 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6989
6990 ret = ipw_send_qos_info_command(priv, &qos_info);
6991 if (ret != 0) {
6992 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6993 }
6994 return ret;
6995 }
6996
6997 /*
6998 * Set the QoS parameter with the association request structure
6999 */
ipw_qos_association(struct ipw_priv * priv,struct libipw_network * network)7000 static int ipw_qos_association(struct ipw_priv *priv,
7001 struct libipw_network *network)
7002 {
7003 int err = 0;
7004 struct libipw_qos_data *qos_data = NULL;
7005 struct libipw_qos_data ibss_data = {
7006 .supported = 1,
7007 .active = 1,
7008 };
7009
7010 switch (priv->ieee->iw_mode) {
7011 case IW_MODE_ADHOC:
7012 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7013
7014 qos_data = &ibss_data;
7015 break;
7016
7017 case IW_MODE_INFRA:
7018 qos_data = &network->qos_data;
7019 break;
7020
7021 default:
7022 BUG();
7023 break;
7024 }
7025
7026 err = ipw_qos_activate(priv, qos_data);
7027 if (err) {
7028 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7029 return err;
7030 }
7031
7032 if (priv->qos_data.qos_enable && qos_data->supported) {
7033 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7034 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7035 return ipw_qos_set_info_element(priv);
7036 }
7037
7038 return 0;
7039 }
7040
7041 /*
7042 * handling the beaconing responses. if we get different QoS setting
7043 * off the network from the associated setting, adjust the QoS
7044 * setting
7045 */
ipw_qos_association_resp(struct ipw_priv * priv,struct libipw_network * network)7046 static void ipw_qos_association_resp(struct ipw_priv *priv,
7047 struct libipw_network *network)
7048 {
7049 unsigned long flags;
7050 u32 size = sizeof(struct libipw_qos_parameters);
7051 int set_qos_param = 0;
7052
7053 if ((priv == NULL) || (network == NULL) ||
7054 (priv->assoc_network == NULL))
7055 return;
7056
7057 if (!(priv->status & STATUS_ASSOCIATED))
7058 return;
7059
7060 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061 return;
7062
7063 spin_lock_irqsave(&priv->ieee->lock, flags);
7064 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066 sizeof(struct libipw_qos_data));
7067 priv->assoc_network->qos_data.active = 1;
7068 if ((network->qos_data.old_param_count !=
7069 network->qos_data.param_count)) {
7070 set_qos_param = 1;
7071 network->qos_data.old_param_count =
7072 network->qos_data.param_count;
7073 }
7074
7075 } else {
7076 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077 memcpy(&priv->assoc_network->qos_data.parameters,
7078 &def_parameters_CCK, size);
7079 else
7080 memcpy(&priv->assoc_network->qos_data.parameters,
7081 &def_parameters_OFDM, size);
7082 priv->assoc_network->qos_data.active = 0;
7083 priv->assoc_network->qos_data.supported = 0;
7084 set_qos_param = 1;
7085 }
7086
7087 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7088
7089 if (set_qos_param == 1)
7090 schedule_work(&priv->qos_activate);
7091 }
7092
ipw_qos_get_burst_duration(struct ipw_priv * priv)7093 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7094 {
7095 u32 ret = 0;
7096
7097 if (!priv)
7098 return 0;
7099
7100 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7101 ret = priv->qos_data.burst_duration_CCK;
7102 else
7103 ret = priv->qos_data.burst_duration_OFDM;
7104
7105 return ret;
7106 }
7107
7108 /*
7109 * Initialize the setting of QoS global
7110 */
ipw_qos_init(struct ipw_priv * priv,int enable,int burst_enable,u32 burst_duration_CCK,u32 burst_duration_OFDM)7111 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7112 int burst_enable, u32 burst_duration_CCK,
7113 u32 burst_duration_OFDM)
7114 {
7115 priv->qos_data.qos_enable = enable;
7116
7117 if (priv->qos_data.qos_enable) {
7118 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7119 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7120 IPW_DEBUG_QOS("QoS is enabled\n");
7121 } else {
7122 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7123 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7124 IPW_DEBUG_QOS("QoS is not enabled\n");
7125 }
7126
7127 priv->qos_data.burst_enable = burst_enable;
7128
7129 if (burst_enable) {
7130 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7131 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7132 } else {
7133 priv->qos_data.burst_duration_CCK = 0;
7134 priv->qos_data.burst_duration_OFDM = 0;
7135 }
7136 }
7137
7138 /*
7139 * map the packet priority to the right TX Queue
7140 */
ipw_get_tx_queue_number(struct ipw_priv * priv,u16 priority)7141 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7142 {
7143 if (priority > 7 || !priv->qos_data.qos_enable)
7144 priority = 0;
7145
7146 return from_priority_to_tx_queue[priority] - 1;
7147 }
7148
ipw_is_qos_active(struct net_device * dev,struct sk_buff * skb)7149 static int ipw_is_qos_active(struct net_device *dev,
7150 struct sk_buff *skb)
7151 {
7152 struct ipw_priv *priv = libipw_priv(dev);
7153 struct libipw_qos_data *qos_data = NULL;
7154 int active, supported;
7155 u8 *daddr = skb->data + ETH_ALEN;
7156 int unicast = !is_multicast_ether_addr(daddr);
7157
7158 if (!(priv->status & STATUS_ASSOCIATED))
7159 return 0;
7160
7161 qos_data = &priv->assoc_network->qos_data;
7162
7163 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7164 if (unicast == 0)
7165 qos_data->active = 0;
7166 else
7167 qos_data->active = qos_data->supported;
7168 }
7169 active = qos_data->active;
7170 supported = qos_data->supported;
7171 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7172 "unicast %d\n",
7173 priv->qos_data.qos_enable, active, supported, unicast);
7174 if (active && priv->qos_data.qos_enable)
7175 return 1;
7176
7177 return 0;
7178
7179 }
7180 /*
7181 * add QoS parameter to the TX command
7182 */
ipw_qos_set_tx_queue_command(struct ipw_priv * priv,u16 priority,struct tfd_data * tfd)7183 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7184 u16 priority,
7185 struct tfd_data *tfd)
7186 {
7187 int tx_queue_id = 0;
7188
7189
7190 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7191 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7192
7193 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7194 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7195 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7196 }
7197 return 0;
7198 }
7199
7200 /*
7201 * background support to run QoS activate functionality
7202 */
ipw_bg_qos_activate(struct work_struct * work)7203 static void ipw_bg_qos_activate(struct work_struct *work)
7204 {
7205 struct ipw_priv *priv =
7206 container_of(work, struct ipw_priv, qos_activate);
7207
7208 mutex_lock(&priv->mutex);
7209
7210 if (priv->status & STATUS_ASSOCIATED)
7211 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7212
7213 mutex_unlock(&priv->mutex);
7214 }
7215
ipw_handle_probe_response(struct net_device * dev,struct libipw_probe_response * resp,struct libipw_network * network)7216 static int ipw_handle_probe_response(struct net_device *dev,
7217 struct libipw_probe_response *resp,
7218 struct libipw_network *network)
7219 {
7220 struct ipw_priv *priv = libipw_priv(dev);
7221 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7222 (network == priv->assoc_network));
7223
7224 ipw_qos_handle_probe_response(priv, active_network, network);
7225
7226 return 0;
7227 }
7228
ipw_handle_beacon(struct net_device * dev,struct libipw_beacon * resp,struct libipw_network * network)7229 static int ipw_handle_beacon(struct net_device *dev,
7230 struct libipw_beacon *resp,
7231 struct libipw_network *network)
7232 {
7233 struct ipw_priv *priv = libipw_priv(dev);
7234 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7235 (network == priv->assoc_network));
7236
7237 ipw_qos_handle_probe_response(priv, active_network, network);
7238
7239 return 0;
7240 }
7241
ipw_handle_assoc_response(struct net_device * dev,struct libipw_assoc_response * resp,struct libipw_network * network)7242 static int ipw_handle_assoc_response(struct net_device *dev,
7243 struct libipw_assoc_response *resp,
7244 struct libipw_network *network)
7245 {
7246 struct ipw_priv *priv = libipw_priv(dev);
7247 ipw_qos_association_resp(priv, network);
7248 return 0;
7249 }
7250
ipw_send_qos_params_command(struct ipw_priv * priv,struct libipw_qos_parameters * qos_param)7251 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7252 *qos_param)
7253 {
7254 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7255 sizeof(*qos_param) * 3, qos_param);
7256 }
7257
ipw_send_qos_info_command(struct ipw_priv * priv,struct libipw_qos_information_element * qos_param)7258 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7259 *qos_param)
7260 {
7261 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7262 qos_param);
7263 }
7264
7265 #endif /* CONFIG_IPW2200_QOS */
7266
ipw_associate_network(struct ipw_priv * priv,struct libipw_network * network,struct ipw_supported_rates * rates,int roaming)7267 static int ipw_associate_network(struct ipw_priv *priv,
7268 struct libipw_network *network,
7269 struct ipw_supported_rates *rates, int roaming)
7270 {
7271 int err;
7272
7273 if (priv->config & CFG_FIXED_RATE)
7274 ipw_set_fixed_rate(priv, network->mode);
7275
7276 if (!(priv->config & CFG_STATIC_ESSID)) {
7277 priv->essid_len = min(network->ssid_len,
7278 (u8) IW_ESSID_MAX_SIZE);
7279 memcpy(priv->essid, network->ssid, priv->essid_len);
7280 }
7281
7282 network->last_associate = jiffies;
7283
7284 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285 priv->assoc_request.channel = network->channel;
7286 priv->assoc_request.auth_key = 0;
7287
7288 if ((priv->capability & CAP_PRIVACY_ON) &&
7289 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7292
7293 if (priv->ieee->sec.level == SEC_LEVEL_1)
7294 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7295
7296 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7297 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298 priv->assoc_request.auth_type = AUTH_LEAP;
7299 else
7300 priv->assoc_request.auth_type = AUTH_OPEN;
7301
7302 if (priv->ieee->wpa_ie_len) {
7303 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7304 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305 priv->ieee->wpa_ie_len);
7306 }
7307
7308 /*
7309 * It is valid for our ieee device to support multiple modes, but
7310 * when it comes to associating to a given network we have to choose
7311 * just one mode.
7312 */
7313 if (network->mode & priv->ieee->mode & IEEE_A)
7314 priv->assoc_request.ieee_mode = IPW_A_MODE;
7315 else if (network->mode & priv->ieee->mode & IEEE_G)
7316 priv->assoc_request.ieee_mode = IPW_G_MODE;
7317 else if (network->mode & priv->ieee->mode & IEEE_B)
7318 priv->assoc_request.ieee_mode = IPW_B_MODE;
7319
7320 priv->assoc_request.capability = cpu_to_le16(network->capability);
7321 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322 && !(priv->config & CFG_PREAMBLE_LONG)) {
7323 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324 } else {
7325 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7326
7327 /* Clear the short preamble if we won't be supporting it */
7328 priv->assoc_request.capability &=
7329 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7330 }
7331
7332 /* Clear capability bits that aren't used in Ad Hoc */
7333 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334 priv->assoc_request.capability &=
7335 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7336
7337 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7338 roaming ? "Rea" : "A",
7339 priv->essid_len, priv->essid,
7340 network->channel,
7341 ipw_modes[priv->assoc_request.ieee_mode],
7342 rates->num_rates,
7343 (priv->assoc_request.preamble_length ==
7344 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7345 network->capability &
7346 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7347 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7348 priv->capability & CAP_PRIVACY_ON ?
7349 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7350 "(open)") : "",
7351 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7352 priv->capability & CAP_PRIVACY_ON ?
7353 '1' + priv->ieee->sec.active_key : '.',
7354 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7355
7356 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7357 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7358 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7359 priv->assoc_request.assoc_type = HC_IBSS_START;
7360 priv->assoc_request.assoc_tsf_msw = 0;
7361 priv->assoc_request.assoc_tsf_lsw = 0;
7362 } else {
7363 if (unlikely(roaming))
7364 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7365 else
7366 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7367 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7368 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7369 }
7370
7371 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7372
7373 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7374 eth_broadcast_addr(priv->assoc_request.dest);
7375 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7376 } else {
7377 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7378 priv->assoc_request.atim_window = 0;
7379 }
7380
7381 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7382
7383 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7384 if (err) {
7385 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7386 return err;
7387 }
7388
7389 rates->ieee_mode = priv->assoc_request.ieee_mode;
7390 rates->purpose = IPW_RATE_CONNECT;
7391 ipw_send_supported_rates(priv, rates);
7392
7393 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7394 priv->sys_config.dot11g_auto_detection = 1;
7395 else
7396 priv->sys_config.dot11g_auto_detection = 0;
7397
7398 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7399 priv->sys_config.answer_broadcast_ssid_probe = 1;
7400 else
7401 priv->sys_config.answer_broadcast_ssid_probe = 0;
7402
7403 err = ipw_send_system_config(priv);
7404 if (err) {
7405 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7406 return err;
7407 }
7408
7409 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7410 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7411 if (err) {
7412 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7413 return err;
7414 }
7415
7416 /*
7417 * If preemption is enabled, it is possible for the association
7418 * to complete before we return from ipw_send_associate. Therefore
7419 * we have to be sure and update our priviate data first.
7420 */
7421 priv->channel = network->channel;
7422 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7423 priv->status |= STATUS_ASSOCIATING;
7424 priv->status &= ~STATUS_SECURITY_UPDATED;
7425
7426 priv->assoc_network = network;
7427
7428 #ifdef CONFIG_IPW2200_QOS
7429 ipw_qos_association(priv, network);
7430 #endif
7431
7432 err = ipw_send_associate(priv, &priv->assoc_request);
7433 if (err) {
7434 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7435 return err;
7436 }
7437
7438 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7439 priv->essid_len, priv->essid, priv->bssid);
7440
7441 return 0;
7442 }
7443
ipw_roam(void * data)7444 static void ipw_roam(void *data)
7445 {
7446 struct ipw_priv *priv = data;
7447 struct libipw_network *network = NULL;
7448 struct ipw_network_match match = {
7449 .network = priv->assoc_network
7450 };
7451
7452 /* The roaming process is as follows:
7453 *
7454 * 1. Missed beacon threshold triggers the roaming process by
7455 * setting the status ROAM bit and requesting a scan.
7456 * 2. When the scan completes, it schedules the ROAM work
7457 * 3. The ROAM work looks at all of the known networks for one that
7458 * is a better network than the currently associated. If none
7459 * found, the ROAM process is over (ROAM bit cleared)
7460 * 4. If a better network is found, a disassociation request is
7461 * sent.
7462 * 5. When the disassociation completes, the roam work is again
7463 * scheduled. The second time through, the driver is no longer
7464 * associated, and the newly selected network is sent an
7465 * association request.
7466 * 6. At this point ,the roaming process is complete and the ROAM
7467 * status bit is cleared.
7468 */
7469
7470 /* If we are no longer associated, and the roaming bit is no longer
7471 * set, then we are not actively roaming, so just return */
7472 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7473 return;
7474
7475 if (priv->status & STATUS_ASSOCIATED) {
7476 /* First pass through ROAM process -- look for a better
7477 * network */
7478 unsigned long flags;
7479 u8 rssi = priv->assoc_network->stats.rssi;
7480 priv->assoc_network->stats.rssi = -128;
7481 spin_lock_irqsave(&priv->ieee->lock, flags);
7482 list_for_each_entry(network, &priv->ieee->network_list, list) {
7483 if (network != priv->assoc_network)
7484 ipw_best_network(priv, &match, network, 1);
7485 }
7486 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7487 priv->assoc_network->stats.rssi = rssi;
7488
7489 if (match.network == priv->assoc_network) {
7490 IPW_DEBUG_ASSOC("No better APs in this network to "
7491 "roam to.\n");
7492 priv->status &= ~STATUS_ROAMING;
7493 ipw_debug_config(priv);
7494 return;
7495 }
7496
7497 ipw_send_disassociate(priv, 1);
7498 priv->assoc_network = match.network;
7499
7500 return;
7501 }
7502
7503 /* Second pass through ROAM process -- request association */
7504 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7505 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7506 priv->status &= ~STATUS_ROAMING;
7507 }
7508
ipw_bg_roam(struct work_struct * work)7509 static void ipw_bg_roam(struct work_struct *work)
7510 {
7511 struct ipw_priv *priv =
7512 container_of(work, struct ipw_priv, roam);
7513 mutex_lock(&priv->mutex);
7514 ipw_roam(priv);
7515 mutex_unlock(&priv->mutex);
7516 }
7517
ipw_associate(void * data)7518 static int ipw_associate(void *data)
7519 {
7520 struct ipw_priv *priv = data;
7521
7522 struct libipw_network *network = NULL;
7523 struct ipw_network_match match = {
7524 .network = NULL
7525 };
7526 struct ipw_supported_rates *rates;
7527 struct list_head *element;
7528 unsigned long flags;
7529
7530 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7531 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7532 return 0;
7533 }
7534
7535 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7536 IPW_DEBUG_ASSOC("Not attempting association (already in "
7537 "progress)\n");
7538 return 0;
7539 }
7540
7541 if (priv->status & STATUS_DISASSOCIATING) {
7542 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7543 schedule_work(&priv->associate);
7544 return 0;
7545 }
7546
7547 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7548 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7549 "initialized)\n");
7550 return 0;
7551 }
7552
7553 if (!(priv->config & CFG_ASSOCIATE) &&
7554 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7555 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7556 return 0;
7557 }
7558
7559 /* Protect our use of the network_list */
7560 spin_lock_irqsave(&priv->ieee->lock, flags);
7561 list_for_each_entry(network, &priv->ieee->network_list, list)
7562 ipw_best_network(priv, &match, network, 0);
7563
7564 network = match.network;
7565 rates = &match.rates;
7566
7567 if (network == NULL &&
7568 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7569 priv->config & CFG_ADHOC_CREATE &&
7570 priv->config & CFG_STATIC_ESSID &&
7571 priv->config & CFG_STATIC_CHANNEL) {
7572 /* Use oldest network if the free list is empty */
7573 if (list_empty(&priv->ieee->network_free_list)) {
7574 struct libipw_network *oldest = NULL;
7575 struct libipw_network *target;
7576
7577 list_for_each_entry(target, &priv->ieee->network_list, list) {
7578 if ((oldest == NULL) ||
7579 (target->last_scanned < oldest->last_scanned))
7580 oldest = target;
7581 }
7582
7583 /* If there are no more slots, expire the oldest */
7584 list_del(&oldest->list);
7585 target = oldest;
7586 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7587 target->ssid_len, target->ssid,
7588 target->bssid);
7589 list_add_tail(&target->list,
7590 &priv->ieee->network_free_list);
7591 }
7592
7593 element = priv->ieee->network_free_list.next;
7594 network = list_entry(element, struct libipw_network, list);
7595 ipw_adhoc_create(priv, network);
7596 rates = &priv->rates;
7597 list_del(element);
7598 list_add_tail(&network->list, &priv->ieee->network_list);
7599 }
7600 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7601
7602 /* If we reached the end of the list, then we don't have any valid
7603 * matching APs */
7604 if (!network) {
7605 ipw_debug_config(priv);
7606
7607 if (!(priv->status & STATUS_SCANNING)) {
7608 if (!(priv->config & CFG_SPEED_SCAN))
7609 schedule_delayed_work(&priv->request_scan,
7610 SCAN_INTERVAL);
7611 else
7612 schedule_delayed_work(&priv->request_scan, 0);
7613 }
7614
7615 return 0;
7616 }
7617
7618 ipw_associate_network(priv, network, rates, 0);
7619
7620 return 1;
7621 }
7622
ipw_bg_associate(struct work_struct * work)7623 static void ipw_bg_associate(struct work_struct *work)
7624 {
7625 struct ipw_priv *priv =
7626 container_of(work, struct ipw_priv, associate);
7627 mutex_lock(&priv->mutex);
7628 ipw_associate(priv);
7629 mutex_unlock(&priv->mutex);
7630 }
7631
ipw_rebuild_decrypted_skb(struct ipw_priv * priv,struct sk_buff * skb)7632 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7633 struct sk_buff *skb)
7634 {
7635 struct ieee80211_hdr *hdr;
7636 u16 fc;
7637
7638 hdr = (struct ieee80211_hdr *)skb->data;
7639 fc = le16_to_cpu(hdr->frame_control);
7640 if (!(fc & IEEE80211_FCTL_PROTECTED))
7641 return;
7642
7643 fc &= ~IEEE80211_FCTL_PROTECTED;
7644 hdr->frame_control = cpu_to_le16(fc);
7645 switch (priv->ieee->sec.level) {
7646 case SEC_LEVEL_3:
7647 /* Remove CCMP HDR */
7648 memmove(skb->data + LIBIPW_3ADDR_LEN,
7649 skb->data + LIBIPW_3ADDR_LEN + 8,
7650 skb->len - LIBIPW_3ADDR_LEN - 8);
7651 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7652 break;
7653 case SEC_LEVEL_2:
7654 break;
7655 case SEC_LEVEL_1:
7656 /* Remove IV */
7657 memmove(skb->data + LIBIPW_3ADDR_LEN,
7658 skb->data + LIBIPW_3ADDR_LEN + 4,
7659 skb->len - LIBIPW_3ADDR_LEN - 4);
7660 skb_trim(skb, skb->len - 8); /* IV + ICV */
7661 break;
7662 case SEC_LEVEL_0:
7663 break;
7664 default:
7665 printk(KERN_ERR "Unknown security level %d\n",
7666 priv->ieee->sec.level);
7667 break;
7668 }
7669 }
7670
ipw_handle_data_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7671 static void ipw_handle_data_packet(struct ipw_priv *priv,
7672 struct ipw_rx_mem_buffer *rxb,
7673 struct libipw_rx_stats *stats)
7674 {
7675 struct net_device *dev = priv->net_dev;
7676 struct libipw_hdr_4addr *hdr;
7677 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7678
7679 /* We received data from the HW, so stop the watchdog */
7680 netif_trans_update(dev);
7681
7682 /* We only process data packets if the
7683 * interface is open */
7684 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7685 skb_tailroom(rxb->skb))) {
7686 dev->stats.rx_errors++;
7687 priv->wstats.discard.misc++;
7688 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7689 return;
7690 } else if (unlikely(!netif_running(priv->net_dev))) {
7691 dev->stats.rx_dropped++;
7692 priv->wstats.discard.misc++;
7693 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7694 return;
7695 }
7696
7697 /* Advance skb->data to the start of the actual payload */
7698 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7699
7700 /* Set the size of the skb to the size of the frame */
7701 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7702
7703 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7704
7705 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7706 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7707 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7708 (is_multicast_ether_addr(hdr->addr1) ?
7709 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7710 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7711
7712 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7713 dev->stats.rx_errors++;
7714 else { /* libipw_rx succeeded, so it now owns the SKB */
7715 rxb->skb = NULL;
7716 __ipw_led_activity_on(priv);
7717 }
7718 }
7719
7720 #ifdef CONFIG_IPW2200_RADIOTAP
ipw_handle_data_packet_monitor(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7721 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7722 struct ipw_rx_mem_buffer *rxb,
7723 struct libipw_rx_stats *stats)
7724 {
7725 struct net_device *dev = priv->net_dev;
7726 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7727 struct ipw_rx_frame *frame = &pkt->u.frame;
7728
7729 /* initial pull of some data */
7730 u16 received_channel = frame->received_channel;
7731 u8 antennaAndPhy = frame->antennaAndPhy;
7732 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7733 u16 pktrate = frame->rate;
7734
7735 /* Magic struct that slots into the radiotap header -- no reason
7736 * to build this manually element by element, we can write it much
7737 * more efficiently than we can parse it. ORDER MATTERS HERE */
7738 struct ipw_rt_hdr *ipw_rt;
7739
7740 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7741
7742 /* We received data from the HW, so stop the watchdog */
7743 netif_trans_update(dev);
7744
7745 /* We only process data packets if the
7746 * interface is open */
7747 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7748 skb_tailroom(rxb->skb))) {
7749 dev->stats.rx_errors++;
7750 priv->wstats.discard.misc++;
7751 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7752 return;
7753 } else if (unlikely(!netif_running(priv->net_dev))) {
7754 dev->stats.rx_dropped++;
7755 priv->wstats.discard.misc++;
7756 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7757 return;
7758 }
7759
7760 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7761 * that now */
7762 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7763 /* FIXME: Should alloc bigger skb instead */
7764 dev->stats.rx_dropped++;
7765 priv->wstats.discard.misc++;
7766 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7767 return;
7768 }
7769
7770 /* copy the frame itself */
7771 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7772 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7773
7774 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7775
7776 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7777 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7778 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7779
7780 /* Big bitfield of all the fields we provide in radiotap */
7781 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7782 (1 << IEEE80211_RADIOTAP_TSFT) |
7783 (1 << IEEE80211_RADIOTAP_FLAGS) |
7784 (1 << IEEE80211_RADIOTAP_RATE) |
7785 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7786 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7787 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7788 (1 << IEEE80211_RADIOTAP_ANTENNA));
7789
7790 /* Zero the flags, we'll add to them as we go */
7791 ipw_rt->rt_flags = 0;
7792 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7793 frame->parent_tsf[2] << 16 |
7794 frame->parent_tsf[1] << 8 |
7795 frame->parent_tsf[0]);
7796
7797 /* Convert signal to DBM */
7798 ipw_rt->rt_dbmsignal = antsignal;
7799 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7800
7801 /* Convert the channel data and set the flags */
7802 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7803 if (received_channel > 14) { /* 802.11a */
7804 ipw_rt->rt_chbitmask =
7805 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7806 } else if (antennaAndPhy & 32) { /* 802.11b */
7807 ipw_rt->rt_chbitmask =
7808 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7809 } else { /* 802.11g */
7810 ipw_rt->rt_chbitmask =
7811 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7812 }
7813
7814 /* set the rate in multiples of 500k/s */
7815 switch (pktrate) {
7816 case IPW_TX_RATE_1MB:
7817 ipw_rt->rt_rate = 2;
7818 break;
7819 case IPW_TX_RATE_2MB:
7820 ipw_rt->rt_rate = 4;
7821 break;
7822 case IPW_TX_RATE_5MB:
7823 ipw_rt->rt_rate = 10;
7824 break;
7825 case IPW_TX_RATE_6MB:
7826 ipw_rt->rt_rate = 12;
7827 break;
7828 case IPW_TX_RATE_9MB:
7829 ipw_rt->rt_rate = 18;
7830 break;
7831 case IPW_TX_RATE_11MB:
7832 ipw_rt->rt_rate = 22;
7833 break;
7834 case IPW_TX_RATE_12MB:
7835 ipw_rt->rt_rate = 24;
7836 break;
7837 case IPW_TX_RATE_18MB:
7838 ipw_rt->rt_rate = 36;
7839 break;
7840 case IPW_TX_RATE_24MB:
7841 ipw_rt->rt_rate = 48;
7842 break;
7843 case IPW_TX_RATE_36MB:
7844 ipw_rt->rt_rate = 72;
7845 break;
7846 case IPW_TX_RATE_48MB:
7847 ipw_rt->rt_rate = 96;
7848 break;
7849 case IPW_TX_RATE_54MB:
7850 ipw_rt->rt_rate = 108;
7851 break;
7852 default:
7853 ipw_rt->rt_rate = 0;
7854 break;
7855 }
7856
7857 /* antenna number */
7858 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7859
7860 /* set the preamble flag if we have it */
7861 if ((antennaAndPhy & 64))
7862 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7863
7864 /* Set the size of the skb to the size of the frame */
7865 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7866
7867 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7868
7869 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7870 dev->stats.rx_errors++;
7871 else { /* libipw_rx succeeded, so it now owns the SKB */
7872 rxb->skb = NULL;
7873 /* no LED during capture */
7874 }
7875 }
7876 #endif
7877
7878 #ifdef CONFIG_IPW2200_PROMISCUOUS
7879 #define libipw_is_probe_response(fc) \
7880 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7881 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7882
7883 #define libipw_is_management(fc) \
7884 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7885
7886 #define libipw_is_control(fc) \
7887 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7888
7889 #define libipw_is_data(fc) \
7890 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7891
7892 #define libipw_is_assoc_request(fc) \
7893 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7894
7895 #define libipw_is_reassoc_request(fc) \
7896 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7897
ipw_handle_promiscuous_rx(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7898 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7899 struct ipw_rx_mem_buffer *rxb,
7900 struct libipw_rx_stats *stats)
7901 {
7902 struct net_device *dev = priv->prom_net_dev;
7903 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7904 struct ipw_rx_frame *frame = &pkt->u.frame;
7905 struct ipw_rt_hdr *ipw_rt;
7906
7907 /* First cache any information we need before we overwrite
7908 * the information provided in the skb from the hardware */
7909 struct ieee80211_hdr *hdr;
7910 u16 channel = frame->received_channel;
7911 u8 phy_flags = frame->antennaAndPhy;
7912 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7913 s8 noise = (s8) le16_to_cpu(frame->noise);
7914 u8 rate = frame->rate;
7915 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7916 struct sk_buff *skb;
7917 int hdr_only = 0;
7918 u16 filter = priv->prom_priv->filter;
7919
7920 /* If the filter is set to not include Rx frames then return */
7921 if (filter & IPW_PROM_NO_RX)
7922 return;
7923
7924 /* We received data from the HW, so stop the watchdog */
7925 netif_trans_update(dev);
7926
7927 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7928 dev->stats.rx_errors++;
7929 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7930 return;
7931 }
7932
7933 /* We only process data packets if the interface is open */
7934 if (unlikely(!netif_running(dev))) {
7935 dev->stats.rx_dropped++;
7936 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7937 return;
7938 }
7939
7940 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7941 * that now */
7942 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7943 /* FIXME: Should alloc bigger skb instead */
7944 dev->stats.rx_dropped++;
7945 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7946 return;
7947 }
7948
7949 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7950 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7951 if (filter & IPW_PROM_NO_MGMT)
7952 return;
7953 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7954 hdr_only = 1;
7955 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7956 if (filter & IPW_PROM_NO_CTL)
7957 return;
7958 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7959 hdr_only = 1;
7960 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7961 if (filter & IPW_PROM_NO_DATA)
7962 return;
7963 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7964 hdr_only = 1;
7965 }
7966
7967 /* Copy the SKB since this is for the promiscuous side */
7968 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7969 if (skb == NULL) {
7970 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7971 return;
7972 }
7973
7974 /* copy the frame data to write after where the radiotap header goes */
7975 ipw_rt = (void *)skb->data;
7976
7977 if (hdr_only)
7978 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7979
7980 memcpy(ipw_rt->payload, hdr, len);
7981
7982 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7983 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7984 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7985
7986 /* Set the size of the skb to the size of the frame */
7987 skb_put(skb, sizeof(*ipw_rt) + len);
7988
7989 /* Big bitfield of all the fields we provide in radiotap */
7990 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7991 (1 << IEEE80211_RADIOTAP_TSFT) |
7992 (1 << IEEE80211_RADIOTAP_FLAGS) |
7993 (1 << IEEE80211_RADIOTAP_RATE) |
7994 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7995 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7996 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7997 (1 << IEEE80211_RADIOTAP_ANTENNA));
7998
7999 /* Zero the flags, we'll add to them as we go */
8000 ipw_rt->rt_flags = 0;
8001 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8002 frame->parent_tsf[2] << 16 |
8003 frame->parent_tsf[1] << 8 |
8004 frame->parent_tsf[0]);
8005
8006 /* Convert to DBM */
8007 ipw_rt->rt_dbmsignal = signal;
8008 ipw_rt->rt_dbmnoise = noise;
8009
8010 /* Convert the channel data and set the flags */
8011 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8012 if (channel > 14) { /* 802.11a */
8013 ipw_rt->rt_chbitmask =
8014 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8015 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8016 ipw_rt->rt_chbitmask =
8017 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8018 } else { /* 802.11g */
8019 ipw_rt->rt_chbitmask =
8020 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8021 }
8022
8023 /* set the rate in multiples of 500k/s */
8024 switch (rate) {
8025 case IPW_TX_RATE_1MB:
8026 ipw_rt->rt_rate = 2;
8027 break;
8028 case IPW_TX_RATE_2MB:
8029 ipw_rt->rt_rate = 4;
8030 break;
8031 case IPW_TX_RATE_5MB:
8032 ipw_rt->rt_rate = 10;
8033 break;
8034 case IPW_TX_RATE_6MB:
8035 ipw_rt->rt_rate = 12;
8036 break;
8037 case IPW_TX_RATE_9MB:
8038 ipw_rt->rt_rate = 18;
8039 break;
8040 case IPW_TX_RATE_11MB:
8041 ipw_rt->rt_rate = 22;
8042 break;
8043 case IPW_TX_RATE_12MB:
8044 ipw_rt->rt_rate = 24;
8045 break;
8046 case IPW_TX_RATE_18MB:
8047 ipw_rt->rt_rate = 36;
8048 break;
8049 case IPW_TX_RATE_24MB:
8050 ipw_rt->rt_rate = 48;
8051 break;
8052 case IPW_TX_RATE_36MB:
8053 ipw_rt->rt_rate = 72;
8054 break;
8055 case IPW_TX_RATE_48MB:
8056 ipw_rt->rt_rate = 96;
8057 break;
8058 case IPW_TX_RATE_54MB:
8059 ipw_rt->rt_rate = 108;
8060 break;
8061 default:
8062 ipw_rt->rt_rate = 0;
8063 break;
8064 }
8065
8066 /* antenna number */
8067 ipw_rt->rt_antenna = (phy_flags & 3);
8068
8069 /* set the preamble flag if we have it */
8070 if (phy_flags & (1 << 6))
8071 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8072
8073 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8074
8075 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8076 dev->stats.rx_errors++;
8077 dev_kfree_skb_any(skb);
8078 }
8079 }
8080 #endif
8081
is_network_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8082 static int is_network_packet(struct ipw_priv *priv,
8083 struct libipw_hdr_4addr *header)
8084 {
8085 /* Filter incoming packets to determine if they are targeted toward
8086 * this network, discarding packets coming from ourselves */
8087 switch (priv->ieee->iw_mode) {
8088 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8089 /* packets from our adapter are dropped (echo) */
8090 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8091 return 0;
8092
8093 /* {broad,multi}cast packets to our BSSID go through */
8094 if (is_multicast_ether_addr(header->addr1))
8095 return ether_addr_equal(header->addr3, priv->bssid);
8096
8097 /* packets to our adapter go through */
8098 return ether_addr_equal(header->addr1,
8099 priv->net_dev->dev_addr);
8100
8101 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8102 /* packets from our adapter are dropped (echo) */
8103 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8104 return 0;
8105
8106 /* {broad,multi}cast packets to our BSS go through */
8107 if (is_multicast_ether_addr(header->addr1))
8108 return ether_addr_equal(header->addr2, priv->bssid);
8109
8110 /* packets to our adapter go through */
8111 return ether_addr_equal(header->addr1,
8112 priv->net_dev->dev_addr);
8113 }
8114
8115 return 1;
8116 }
8117
8118 #define IPW_PACKET_RETRY_TIME HZ
8119
is_duplicate_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8120 static int is_duplicate_packet(struct ipw_priv *priv,
8121 struct libipw_hdr_4addr *header)
8122 {
8123 u16 sc = le16_to_cpu(header->seq_ctl);
8124 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8125 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8126 u16 *last_seq, *last_frag;
8127 unsigned long *last_time;
8128
8129 switch (priv->ieee->iw_mode) {
8130 case IW_MODE_ADHOC:
8131 {
8132 struct list_head *p;
8133 struct ipw_ibss_seq *entry = NULL;
8134 u8 *mac = header->addr2;
8135 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8136
8137 list_for_each(p, &priv->ibss_mac_hash[index]) {
8138 entry =
8139 list_entry(p, struct ipw_ibss_seq, list);
8140 if (ether_addr_equal(entry->mac, mac))
8141 break;
8142 }
8143 if (p == &priv->ibss_mac_hash[index]) {
8144 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8145 if (!entry) {
8146 IPW_ERROR
8147 ("Cannot malloc new mac entry\n");
8148 return 0;
8149 }
8150 memcpy(entry->mac, mac, ETH_ALEN);
8151 entry->seq_num = seq;
8152 entry->frag_num = frag;
8153 entry->packet_time = jiffies;
8154 list_add(&entry->list,
8155 &priv->ibss_mac_hash[index]);
8156 return 0;
8157 }
8158 last_seq = &entry->seq_num;
8159 last_frag = &entry->frag_num;
8160 last_time = &entry->packet_time;
8161 break;
8162 }
8163 case IW_MODE_INFRA:
8164 last_seq = &priv->last_seq_num;
8165 last_frag = &priv->last_frag_num;
8166 last_time = &priv->last_packet_time;
8167 break;
8168 default:
8169 return 0;
8170 }
8171 if ((*last_seq == seq) &&
8172 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8173 if (*last_frag == frag)
8174 goto drop;
8175 if (*last_frag + 1 != frag)
8176 /* out-of-order fragment */
8177 goto drop;
8178 } else
8179 *last_seq = seq;
8180
8181 *last_frag = frag;
8182 *last_time = jiffies;
8183 return 0;
8184
8185 drop:
8186 /* Comment this line now since we observed the card receives
8187 * duplicate packets but the FCTL_RETRY bit is not set in the
8188 * IBSS mode with fragmentation enabled.
8189 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8190 return 1;
8191 }
8192
ipw_handle_mgmt_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)8193 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8194 struct ipw_rx_mem_buffer *rxb,
8195 struct libipw_rx_stats *stats)
8196 {
8197 struct sk_buff *skb = rxb->skb;
8198 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8199 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8200 (skb->data + IPW_RX_FRAME_SIZE);
8201
8202 libipw_rx_mgt(priv->ieee, header, stats);
8203
8204 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8205 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8206 IEEE80211_STYPE_PROBE_RESP) ||
8207 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208 IEEE80211_STYPE_BEACON))) {
8209 if (ether_addr_equal(header->addr3, priv->bssid))
8210 ipw_add_station(priv, header->addr2);
8211 }
8212
8213 if (priv->config & CFG_NET_STATS) {
8214 IPW_DEBUG_HC("sending stat packet\n");
8215
8216 /* Set the size of the skb to the size of the full
8217 * ipw header and 802.11 frame */
8218 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8219 IPW_RX_FRAME_SIZE);
8220
8221 /* Advance past the ipw packet header to the 802.11 frame */
8222 skb_pull(skb, IPW_RX_FRAME_SIZE);
8223
8224 /* Push the libipw_rx_stats before the 802.11 frame */
8225 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8226
8227 skb->dev = priv->ieee->dev;
8228
8229 /* Point raw at the libipw_stats */
8230 skb_reset_mac_header(skb);
8231
8232 skb->pkt_type = PACKET_OTHERHOST;
8233 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8234 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8235 netif_rx(skb);
8236 rxb->skb = NULL;
8237 }
8238 }
8239
8240 /*
8241 * Main entry function for receiving a packet with 80211 headers. This
8242 * should be called when ever the FW has notified us that there is a new
8243 * skb in the receive queue.
8244 */
ipw_rx(struct ipw_priv * priv)8245 static void ipw_rx(struct ipw_priv *priv)
8246 {
8247 struct ipw_rx_mem_buffer *rxb;
8248 struct ipw_rx_packet *pkt;
8249 struct libipw_hdr_4addr *header;
8250 u32 r, i;
8251 u8 network_packet;
8252 u8 fill_rx = 0;
8253
8254 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8255 ipw_read32(priv, IPW_RX_WRITE_INDEX);
8256 i = priv->rxq->read;
8257
8258 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8259 fill_rx = 1;
8260
8261 while (i != r) {
8262 rxb = priv->rxq->queue[i];
8263 if (unlikely(rxb == NULL)) {
8264 printk(KERN_CRIT "Queue not allocated!\n");
8265 break;
8266 }
8267 priv->rxq->queue[i] = NULL;
8268
8269 dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8270 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8271
8272 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8273 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8274 pkt->header.message_type,
8275 pkt->header.rx_seq_num, pkt->header.control_bits);
8276
8277 switch (pkt->header.message_type) {
8278 case RX_FRAME_TYPE: /* 802.11 frame */ {
8279 struct libipw_rx_stats stats = {
8280 .rssi = pkt->u.frame.rssi_dbm -
8281 IPW_RSSI_TO_DBM,
8282 .signal =
8283 pkt->u.frame.rssi_dbm -
8284 IPW_RSSI_TO_DBM + 0x100,
8285 .noise =
8286 le16_to_cpu(pkt->u.frame.noise),
8287 .rate = pkt->u.frame.rate,
8288 .mac_time = jiffies,
8289 .received_channel =
8290 pkt->u.frame.received_channel,
8291 .freq =
8292 (pkt->u.frame.
8293 control & (1 << 0)) ?
8294 LIBIPW_24GHZ_BAND :
8295 LIBIPW_52GHZ_BAND,
8296 .len = le16_to_cpu(pkt->u.frame.length),
8297 };
8298
8299 if (stats.rssi != 0)
8300 stats.mask |= LIBIPW_STATMASK_RSSI;
8301 if (stats.signal != 0)
8302 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8303 if (stats.noise != 0)
8304 stats.mask |= LIBIPW_STATMASK_NOISE;
8305 if (stats.rate != 0)
8306 stats.mask |= LIBIPW_STATMASK_RATE;
8307
8308 priv->rx_packets++;
8309
8310 #ifdef CONFIG_IPW2200_PROMISCUOUS
8311 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8312 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8313 #endif
8314
8315 #ifdef CONFIG_IPW2200_MONITOR
8316 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8317 #ifdef CONFIG_IPW2200_RADIOTAP
8318
8319 ipw_handle_data_packet_monitor(priv,
8320 rxb,
8321 &stats);
8322 #else
8323 ipw_handle_data_packet(priv, rxb,
8324 &stats);
8325 #endif
8326 break;
8327 }
8328 #endif
8329
8330 header =
8331 (struct libipw_hdr_4addr *)(rxb->skb->
8332 data +
8333 IPW_RX_FRAME_SIZE);
8334 /* TODO: Check Ad-Hoc dest/source and make sure
8335 * that we are actually parsing these packets
8336 * correctly -- we should probably use the
8337 * frame control of the packet and disregard
8338 * the current iw_mode */
8339
8340 network_packet =
8341 is_network_packet(priv, header);
8342 if (network_packet && priv->assoc_network) {
8343 priv->assoc_network->stats.rssi =
8344 stats.rssi;
8345 priv->exp_avg_rssi =
8346 exponential_average(priv->exp_avg_rssi,
8347 stats.rssi, DEPTH_RSSI);
8348 }
8349
8350 IPW_DEBUG_RX("Frame: len=%u\n",
8351 le16_to_cpu(pkt->u.frame.length));
8352
8353 if (le16_to_cpu(pkt->u.frame.length) <
8354 libipw_get_hdrlen(le16_to_cpu(
8355 header->frame_ctl))) {
8356 IPW_DEBUG_DROP
8357 ("Received packet is too small. "
8358 "Dropping.\n");
8359 priv->net_dev->stats.rx_errors++;
8360 priv->wstats.discard.misc++;
8361 break;
8362 }
8363
8364 switch (WLAN_FC_GET_TYPE
8365 (le16_to_cpu(header->frame_ctl))) {
8366
8367 case IEEE80211_FTYPE_MGMT:
8368 ipw_handle_mgmt_packet(priv, rxb,
8369 &stats);
8370 break;
8371
8372 case IEEE80211_FTYPE_CTL:
8373 break;
8374
8375 case IEEE80211_FTYPE_DATA:
8376 if (unlikely(!network_packet ||
8377 is_duplicate_packet(priv,
8378 header)))
8379 {
8380 IPW_DEBUG_DROP("Dropping: "
8381 "%pM, "
8382 "%pM, "
8383 "%pM\n",
8384 header->addr1,
8385 header->addr2,
8386 header->addr3);
8387 break;
8388 }
8389
8390 ipw_handle_data_packet(priv, rxb,
8391 &stats);
8392
8393 break;
8394 }
8395 break;
8396 }
8397
8398 case RX_HOST_NOTIFICATION_TYPE:{
8399 IPW_DEBUG_RX
8400 ("Notification: subtype=%02X flags=%02X size=%d\n",
8401 pkt->u.notification.subtype,
8402 pkt->u.notification.flags,
8403 le16_to_cpu(pkt->u.notification.size));
8404 ipw_rx_notification(priv, &pkt->u.notification);
8405 break;
8406 }
8407
8408 default:
8409 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8410 pkt->header.message_type);
8411 break;
8412 }
8413
8414 /* For now we just don't re-use anything. We can tweak this
8415 * later to try and re-use notification packets and SKBs that
8416 * fail to Rx correctly */
8417 if (rxb->skb != NULL) {
8418 dev_kfree_skb_any(rxb->skb);
8419 rxb->skb = NULL;
8420 }
8421
8422 dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8423 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8424 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8425
8426 i = (i + 1) % RX_QUEUE_SIZE;
8427
8428 /* If there are a lot of unsued frames, restock the Rx queue
8429 * so the ucode won't assert */
8430 if (fill_rx) {
8431 priv->rxq->read = i;
8432 ipw_rx_queue_replenish(priv);
8433 }
8434 }
8435
8436 /* Backtrack one entry */
8437 priv->rxq->read = i;
8438 ipw_rx_queue_restock(priv);
8439 }
8440
8441 #define DEFAULT_RTS_THRESHOLD 2304U
8442 #define MIN_RTS_THRESHOLD 1U
8443 #define MAX_RTS_THRESHOLD 2304U
8444 #define DEFAULT_BEACON_INTERVAL 100U
8445 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8446 #define DEFAULT_LONG_RETRY_LIMIT 4U
8447
8448 /*
8449 * ipw_sw_reset
8450 * @option: options to control different reset behaviour
8451 * 0 = reset everything except the 'disable' module_param
8452 * 1 = reset everything and print out driver info (for probe only)
8453 * 2 = reset everything
8454 */
ipw_sw_reset(struct ipw_priv * priv,int option)8455 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8456 {
8457 int band, modulation;
8458 int old_mode = priv->ieee->iw_mode;
8459
8460 /* Initialize module parameter values here */
8461 priv->config = 0;
8462
8463 /* We default to disabling the LED code as right now it causes
8464 * too many systems to lock up... */
8465 if (!led_support)
8466 priv->config |= CFG_NO_LED;
8467
8468 if (associate)
8469 priv->config |= CFG_ASSOCIATE;
8470 else
8471 IPW_DEBUG_INFO("Auto associate disabled.\n");
8472
8473 if (auto_create)
8474 priv->config |= CFG_ADHOC_CREATE;
8475 else
8476 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8477
8478 priv->config &= ~CFG_STATIC_ESSID;
8479 priv->essid_len = 0;
8480 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8481
8482 if (disable && option) {
8483 priv->status |= STATUS_RF_KILL_SW;
8484 IPW_DEBUG_INFO("Radio disabled.\n");
8485 }
8486
8487 if (default_channel != 0) {
8488 priv->config |= CFG_STATIC_CHANNEL;
8489 priv->channel = default_channel;
8490 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8491 /* TODO: Validate that provided channel is in range */
8492 }
8493 #ifdef CONFIG_IPW2200_QOS
8494 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8495 burst_duration_CCK, burst_duration_OFDM);
8496 #endif /* CONFIG_IPW2200_QOS */
8497
8498 switch (network_mode) {
8499 case 1:
8500 priv->ieee->iw_mode = IW_MODE_ADHOC;
8501 priv->net_dev->type = ARPHRD_ETHER;
8502
8503 break;
8504 #ifdef CONFIG_IPW2200_MONITOR
8505 case 2:
8506 priv->ieee->iw_mode = IW_MODE_MONITOR;
8507 #ifdef CONFIG_IPW2200_RADIOTAP
8508 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8509 #else
8510 priv->net_dev->type = ARPHRD_IEEE80211;
8511 #endif
8512 break;
8513 #endif
8514 default:
8515 case 0:
8516 priv->net_dev->type = ARPHRD_ETHER;
8517 priv->ieee->iw_mode = IW_MODE_INFRA;
8518 break;
8519 }
8520
8521 if (hwcrypto) {
8522 priv->ieee->host_encrypt = 0;
8523 priv->ieee->host_encrypt_msdu = 0;
8524 priv->ieee->host_decrypt = 0;
8525 priv->ieee->host_mc_decrypt = 0;
8526 }
8527 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8528
8529 /* IPW2200/2915 is abled to do hardware fragmentation. */
8530 priv->ieee->host_open_frag = 0;
8531
8532 if ((priv->pci_dev->device == 0x4223) ||
8533 (priv->pci_dev->device == 0x4224)) {
8534 if (option == 1)
8535 printk(KERN_INFO DRV_NAME
8536 ": Detected Intel PRO/Wireless 2915ABG Network "
8537 "Connection\n");
8538 priv->ieee->abg_true = 1;
8539 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8540 modulation = LIBIPW_OFDM_MODULATION |
8541 LIBIPW_CCK_MODULATION;
8542 priv->adapter = IPW_2915ABG;
8543 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8544 } else {
8545 if (option == 1)
8546 printk(KERN_INFO DRV_NAME
8547 ": Detected Intel PRO/Wireless 2200BG Network "
8548 "Connection\n");
8549
8550 priv->ieee->abg_true = 0;
8551 band = LIBIPW_24GHZ_BAND;
8552 modulation = LIBIPW_OFDM_MODULATION |
8553 LIBIPW_CCK_MODULATION;
8554 priv->adapter = IPW_2200BG;
8555 priv->ieee->mode = IEEE_G | IEEE_B;
8556 }
8557
8558 priv->ieee->freq_band = band;
8559 priv->ieee->modulation = modulation;
8560
8561 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8562
8563 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8564 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8565
8566 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8567 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8568 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8569
8570 /* If power management is turned on, default to AC mode */
8571 priv->power_mode = IPW_POWER_AC;
8572 priv->tx_power = IPW_TX_POWER_DEFAULT;
8573
8574 return old_mode == priv->ieee->iw_mode;
8575 }
8576
8577 /*
8578 * This file defines the Wireless Extension handlers. It does not
8579 * define any methods of hardware manipulation and relies on the
8580 * functions defined in ipw_main to provide the HW interaction.
8581 *
8582 * The exception to this is the use of the ipw_get_ordinal()
8583 * function used to poll the hardware vs. making unnecessary calls.
8584 *
8585 */
8586
ipw_set_channel(struct ipw_priv * priv,u8 channel)8587 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8588 {
8589 if (channel == 0) {
8590 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8591 priv->config &= ~CFG_STATIC_CHANNEL;
8592 IPW_DEBUG_ASSOC("Attempting to associate with new "
8593 "parameters.\n");
8594 ipw_associate(priv);
8595 return 0;
8596 }
8597
8598 priv->config |= CFG_STATIC_CHANNEL;
8599
8600 if (priv->channel == channel) {
8601 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8602 channel);
8603 return 0;
8604 }
8605
8606 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8607 priv->channel = channel;
8608
8609 #ifdef CONFIG_IPW2200_MONITOR
8610 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8611 int i;
8612 if (priv->status & STATUS_SCANNING) {
8613 IPW_DEBUG_SCAN("Scan abort triggered due to "
8614 "channel change.\n");
8615 ipw_abort_scan(priv);
8616 }
8617
8618 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8619 udelay(10);
8620
8621 if (priv->status & STATUS_SCANNING)
8622 IPW_DEBUG_SCAN("Still scanning...\n");
8623 else
8624 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8625 1000 - i);
8626
8627 return 0;
8628 }
8629 #endif /* CONFIG_IPW2200_MONITOR */
8630
8631 /* Network configuration changed -- force [re]association */
8632 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8633 if (!ipw_disassociate(priv))
8634 ipw_associate(priv);
8635
8636 return 0;
8637 }
8638
ipw_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8639 static int ipw_wx_set_freq(struct net_device *dev,
8640 struct iw_request_info *info,
8641 union iwreq_data *wrqu, char *extra)
8642 {
8643 struct ipw_priv *priv = libipw_priv(dev);
8644 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8645 struct iw_freq *fwrq = &wrqu->freq;
8646 int ret = 0, i;
8647 u8 channel, flags;
8648 int band;
8649
8650 if (fwrq->m == 0) {
8651 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8652 mutex_lock(&priv->mutex);
8653 ret = ipw_set_channel(priv, 0);
8654 mutex_unlock(&priv->mutex);
8655 return ret;
8656 }
8657 /* if setting by freq convert to channel */
8658 if (fwrq->e == 1) {
8659 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8660 if (channel == 0)
8661 return -EINVAL;
8662 } else
8663 channel = fwrq->m;
8664
8665 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8666 return -EINVAL;
8667
8668 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8669 i = libipw_channel_to_index(priv->ieee, channel);
8670 if (i == -1)
8671 return -EINVAL;
8672
8673 flags = (band == LIBIPW_24GHZ_BAND) ?
8674 geo->bg[i].flags : geo->a[i].flags;
8675 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8676 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8677 return -EINVAL;
8678 }
8679 }
8680
8681 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8682 mutex_lock(&priv->mutex);
8683 ret = ipw_set_channel(priv, channel);
8684 mutex_unlock(&priv->mutex);
8685 return ret;
8686 }
8687
ipw_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8688 static int ipw_wx_get_freq(struct net_device *dev,
8689 struct iw_request_info *info,
8690 union iwreq_data *wrqu, char *extra)
8691 {
8692 struct ipw_priv *priv = libipw_priv(dev);
8693
8694 wrqu->freq.e = 0;
8695
8696 /* If we are associated, trying to associate, or have a statically
8697 * configured CHANNEL then return that; otherwise return ANY */
8698 mutex_lock(&priv->mutex);
8699 if (priv->config & CFG_STATIC_CHANNEL ||
8700 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8701 int i;
8702
8703 i = libipw_channel_to_index(priv->ieee, priv->channel);
8704 BUG_ON(i == -1);
8705 wrqu->freq.e = 1;
8706
8707 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8708 case LIBIPW_52GHZ_BAND:
8709 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8710 break;
8711
8712 case LIBIPW_24GHZ_BAND:
8713 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8714 break;
8715
8716 default:
8717 BUG();
8718 }
8719 } else
8720 wrqu->freq.m = 0;
8721
8722 mutex_unlock(&priv->mutex);
8723 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8724 return 0;
8725 }
8726
ipw_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8727 static int ipw_wx_set_mode(struct net_device *dev,
8728 struct iw_request_info *info,
8729 union iwreq_data *wrqu, char *extra)
8730 {
8731 struct ipw_priv *priv = libipw_priv(dev);
8732 int err = 0;
8733
8734 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8735
8736 switch (wrqu->mode) {
8737 #ifdef CONFIG_IPW2200_MONITOR
8738 case IW_MODE_MONITOR:
8739 #endif
8740 case IW_MODE_ADHOC:
8741 case IW_MODE_INFRA:
8742 break;
8743 case IW_MODE_AUTO:
8744 wrqu->mode = IW_MODE_INFRA;
8745 break;
8746 default:
8747 return -EINVAL;
8748 }
8749 if (wrqu->mode == priv->ieee->iw_mode)
8750 return 0;
8751
8752 mutex_lock(&priv->mutex);
8753
8754 ipw_sw_reset(priv, 0);
8755
8756 #ifdef CONFIG_IPW2200_MONITOR
8757 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8758 priv->net_dev->type = ARPHRD_ETHER;
8759
8760 if (wrqu->mode == IW_MODE_MONITOR)
8761 #ifdef CONFIG_IPW2200_RADIOTAP
8762 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8763 #else
8764 priv->net_dev->type = ARPHRD_IEEE80211;
8765 #endif
8766 #endif /* CONFIG_IPW2200_MONITOR */
8767
8768 /* Free the existing firmware and reset the fw_loaded
8769 * flag so ipw_load() will bring in the new firmware */
8770 free_firmware();
8771
8772 priv->ieee->iw_mode = wrqu->mode;
8773
8774 schedule_work(&priv->adapter_restart);
8775 mutex_unlock(&priv->mutex);
8776 return err;
8777 }
8778
ipw_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8779 static int ipw_wx_get_mode(struct net_device *dev,
8780 struct iw_request_info *info,
8781 union iwreq_data *wrqu, char *extra)
8782 {
8783 struct ipw_priv *priv = libipw_priv(dev);
8784 mutex_lock(&priv->mutex);
8785 wrqu->mode = priv->ieee->iw_mode;
8786 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8787 mutex_unlock(&priv->mutex);
8788 return 0;
8789 }
8790
8791 /* Values are in microsecond */
8792 static const s32 timeout_duration[] = {
8793 350000,
8794 250000,
8795 75000,
8796 37000,
8797 25000,
8798 };
8799
8800 static const s32 period_duration[] = {
8801 400000,
8802 700000,
8803 1000000,
8804 1000000,
8805 1000000
8806 };
8807
ipw_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8808 static int ipw_wx_get_range(struct net_device *dev,
8809 struct iw_request_info *info,
8810 union iwreq_data *wrqu, char *extra)
8811 {
8812 struct ipw_priv *priv = libipw_priv(dev);
8813 struct iw_range *range = (struct iw_range *)extra;
8814 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8815 int i = 0, j;
8816
8817 wrqu->data.length = sizeof(*range);
8818 memset(range, 0, sizeof(*range));
8819
8820 /* 54Mbs == ~27 Mb/s real (802.11g) */
8821 range->throughput = 27 * 1000 * 1000;
8822
8823 range->max_qual.qual = 100;
8824 /* TODO: Find real max RSSI and stick here */
8825 range->max_qual.level = 0;
8826 range->max_qual.noise = 0;
8827 range->max_qual.updated = 7; /* Updated all three */
8828
8829 range->avg_qual.qual = 70;
8830 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8831 range->avg_qual.level = 0; /* FIXME to real average level */
8832 range->avg_qual.noise = 0;
8833 range->avg_qual.updated = 7; /* Updated all three */
8834 mutex_lock(&priv->mutex);
8835 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8836
8837 for (i = 0; i < range->num_bitrates; i++)
8838 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8839 500000;
8840
8841 range->max_rts = DEFAULT_RTS_THRESHOLD;
8842 range->min_frag = MIN_FRAG_THRESHOLD;
8843 range->max_frag = MAX_FRAG_THRESHOLD;
8844
8845 range->encoding_size[0] = 5;
8846 range->encoding_size[1] = 13;
8847 range->num_encoding_sizes = 2;
8848 range->max_encoding_tokens = WEP_KEYS;
8849
8850 /* Set the Wireless Extension versions */
8851 range->we_version_compiled = WIRELESS_EXT;
8852 range->we_version_source = 18;
8853
8854 i = 0;
8855 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8856 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8857 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8858 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8859 continue;
8860
8861 range->freq[i].i = geo->bg[j].channel;
8862 range->freq[i].m = geo->bg[j].freq * 100000;
8863 range->freq[i].e = 1;
8864 i++;
8865 }
8866 }
8867
8868 if (priv->ieee->mode & IEEE_A) {
8869 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8870 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8871 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8872 continue;
8873
8874 range->freq[i].i = geo->a[j].channel;
8875 range->freq[i].m = geo->a[j].freq * 100000;
8876 range->freq[i].e = 1;
8877 i++;
8878 }
8879 }
8880
8881 range->num_channels = i;
8882 range->num_frequency = i;
8883
8884 mutex_unlock(&priv->mutex);
8885
8886 /* Event capability (kernel + driver) */
8887 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8888 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8889 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8890 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8891 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8892
8893 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8894 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8895
8896 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8897
8898 IPW_DEBUG_WX("GET Range\n");
8899 return 0;
8900 }
8901
ipw_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8902 static int ipw_wx_set_wap(struct net_device *dev,
8903 struct iw_request_info *info,
8904 union iwreq_data *wrqu, char *extra)
8905 {
8906 struct ipw_priv *priv = libipw_priv(dev);
8907
8908 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8909 return -EINVAL;
8910 mutex_lock(&priv->mutex);
8911 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8912 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8913 /* we disable mandatory BSSID association */
8914 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8915 priv->config &= ~CFG_STATIC_BSSID;
8916 IPW_DEBUG_ASSOC("Attempting to associate with new "
8917 "parameters.\n");
8918 ipw_associate(priv);
8919 mutex_unlock(&priv->mutex);
8920 return 0;
8921 }
8922
8923 priv->config |= CFG_STATIC_BSSID;
8924 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8925 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8926 mutex_unlock(&priv->mutex);
8927 return 0;
8928 }
8929
8930 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8931 wrqu->ap_addr.sa_data);
8932
8933 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8934
8935 /* Network configuration changed -- force [re]association */
8936 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8937 if (!ipw_disassociate(priv))
8938 ipw_associate(priv);
8939
8940 mutex_unlock(&priv->mutex);
8941 return 0;
8942 }
8943
ipw_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8944 static int ipw_wx_get_wap(struct net_device *dev,
8945 struct iw_request_info *info,
8946 union iwreq_data *wrqu, char *extra)
8947 {
8948 struct ipw_priv *priv = libipw_priv(dev);
8949
8950 /* If we are associated, trying to associate, or have a statically
8951 * configured BSSID then return that; otherwise return ANY */
8952 mutex_lock(&priv->mutex);
8953 if (priv->config & CFG_STATIC_BSSID ||
8954 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8955 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8956 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8957 } else
8958 eth_zero_addr(wrqu->ap_addr.sa_data);
8959
8960 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8961 wrqu->ap_addr.sa_data);
8962 mutex_unlock(&priv->mutex);
8963 return 0;
8964 }
8965
ipw_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8966 static int ipw_wx_set_essid(struct net_device *dev,
8967 struct iw_request_info *info,
8968 union iwreq_data *wrqu, char *extra)
8969 {
8970 struct ipw_priv *priv = libipw_priv(dev);
8971 int length;
8972
8973 mutex_lock(&priv->mutex);
8974
8975 if (!wrqu->essid.flags)
8976 {
8977 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8978 ipw_disassociate(priv);
8979 priv->config &= ~CFG_STATIC_ESSID;
8980 ipw_associate(priv);
8981 mutex_unlock(&priv->mutex);
8982 return 0;
8983 }
8984
8985 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8986
8987 priv->config |= CFG_STATIC_ESSID;
8988
8989 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8990 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8991 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8992 mutex_unlock(&priv->mutex);
8993 return 0;
8994 }
8995
8996 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8997
8998 priv->essid_len = length;
8999 memcpy(priv->essid, extra, priv->essid_len);
9000
9001 /* Network configuration changed -- force [re]association */
9002 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9003 if (!ipw_disassociate(priv))
9004 ipw_associate(priv);
9005
9006 mutex_unlock(&priv->mutex);
9007 return 0;
9008 }
9009
ipw_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9010 static int ipw_wx_get_essid(struct net_device *dev,
9011 struct iw_request_info *info,
9012 union iwreq_data *wrqu, char *extra)
9013 {
9014 struct ipw_priv *priv = libipw_priv(dev);
9015
9016 /* If we are associated, trying to associate, or have a statically
9017 * configured ESSID then return that; otherwise return ANY */
9018 mutex_lock(&priv->mutex);
9019 if (priv->config & CFG_STATIC_ESSID ||
9020 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9021 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9022 priv->essid_len, priv->essid);
9023 memcpy(extra, priv->essid, priv->essid_len);
9024 wrqu->essid.length = priv->essid_len;
9025 wrqu->essid.flags = 1; /* active */
9026 } else {
9027 IPW_DEBUG_WX("Getting essid: ANY\n");
9028 wrqu->essid.length = 0;
9029 wrqu->essid.flags = 0; /* active */
9030 }
9031 mutex_unlock(&priv->mutex);
9032 return 0;
9033 }
9034
ipw_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9035 static int ipw_wx_set_nick(struct net_device *dev,
9036 struct iw_request_info *info,
9037 union iwreq_data *wrqu, char *extra)
9038 {
9039 struct ipw_priv *priv = libipw_priv(dev);
9040
9041 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9042 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9043 return -E2BIG;
9044 mutex_lock(&priv->mutex);
9045 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9046 memset(priv->nick, 0, sizeof(priv->nick));
9047 memcpy(priv->nick, extra, wrqu->data.length);
9048 IPW_DEBUG_TRACE("<<\n");
9049 mutex_unlock(&priv->mutex);
9050 return 0;
9051
9052 }
9053
ipw_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9054 static int ipw_wx_get_nick(struct net_device *dev,
9055 struct iw_request_info *info,
9056 union iwreq_data *wrqu, char *extra)
9057 {
9058 struct ipw_priv *priv = libipw_priv(dev);
9059 IPW_DEBUG_WX("Getting nick\n");
9060 mutex_lock(&priv->mutex);
9061 wrqu->data.length = strlen(priv->nick);
9062 memcpy(extra, priv->nick, wrqu->data.length);
9063 wrqu->data.flags = 1; /* active */
9064 mutex_unlock(&priv->mutex);
9065 return 0;
9066 }
9067
ipw_wx_set_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9068 static int ipw_wx_set_sens(struct net_device *dev,
9069 struct iw_request_info *info,
9070 union iwreq_data *wrqu, char *extra)
9071 {
9072 struct ipw_priv *priv = libipw_priv(dev);
9073 int err = 0;
9074
9075 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9076 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9077 mutex_lock(&priv->mutex);
9078
9079 if (wrqu->sens.fixed == 0)
9080 {
9081 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9082 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9083 goto out;
9084 }
9085 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9086 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9087 err = -EINVAL;
9088 goto out;
9089 }
9090
9091 priv->roaming_threshold = wrqu->sens.value;
9092 priv->disassociate_threshold = 3*wrqu->sens.value;
9093 out:
9094 mutex_unlock(&priv->mutex);
9095 return err;
9096 }
9097
ipw_wx_get_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9098 static int ipw_wx_get_sens(struct net_device *dev,
9099 struct iw_request_info *info,
9100 union iwreq_data *wrqu, char *extra)
9101 {
9102 struct ipw_priv *priv = libipw_priv(dev);
9103 mutex_lock(&priv->mutex);
9104 wrqu->sens.fixed = 1;
9105 wrqu->sens.value = priv->roaming_threshold;
9106 mutex_unlock(&priv->mutex);
9107
9108 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9109 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9110
9111 return 0;
9112 }
9113
ipw_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9114 static int ipw_wx_set_rate(struct net_device *dev,
9115 struct iw_request_info *info,
9116 union iwreq_data *wrqu, char *extra)
9117 {
9118 /* TODO: We should use semaphores or locks for access to priv */
9119 struct ipw_priv *priv = libipw_priv(dev);
9120 u32 target_rate = wrqu->bitrate.value;
9121 u32 fixed, mask;
9122
9123 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9124 /* value = X, fixed = 1 means only rate X */
9125 /* value = X, fixed = 0 means all rates lower equal X */
9126
9127 if (target_rate == -1) {
9128 fixed = 0;
9129 mask = LIBIPW_DEFAULT_RATES_MASK;
9130 /* Now we should reassociate */
9131 goto apply;
9132 }
9133
9134 mask = 0;
9135 fixed = wrqu->bitrate.fixed;
9136
9137 if (target_rate == 1000000 || !fixed)
9138 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9139 if (target_rate == 1000000)
9140 goto apply;
9141
9142 if (target_rate == 2000000 || !fixed)
9143 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9144 if (target_rate == 2000000)
9145 goto apply;
9146
9147 if (target_rate == 5500000 || !fixed)
9148 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9149 if (target_rate == 5500000)
9150 goto apply;
9151
9152 if (target_rate == 6000000 || !fixed)
9153 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9154 if (target_rate == 6000000)
9155 goto apply;
9156
9157 if (target_rate == 9000000 || !fixed)
9158 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9159 if (target_rate == 9000000)
9160 goto apply;
9161
9162 if (target_rate == 11000000 || !fixed)
9163 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9164 if (target_rate == 11000000)
9165 goto apply;
9166
9167 if (target_rate == 12000000 || !fixed)
9168 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9169 if (target_rate == 12000000)
9170 goto apply;
9171
9172 if (target_rate == 18000000 || !fixed)
9173 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9174 if (target_rate == 18000000)
9175 goto apply;
9176
9177 if (target_rate == 24000000 || !fixed)
9178 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9179 if (target_rate == 24000000)
9180 goto apply;
9181
9182 if (target_rate == 36000000 || !fixed)
9183 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9184 if (target_rate == 36000000)
9185 goto apply;
9186
9187 if (target_rate == 48000000 || !fixed)
9188 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9189 if (target_rate == 48000000)
9190 goto apply;
9191
9192 if (target_rate == 54000000 || !fixed)
9193 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9194 if (target_rate == 54000000)
9195 goto apply;
9196
9197 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9198 return -EINVAL;
9199
9200 apply:
9201 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9202 mask, fixed ? "fixed" : "sub-rates");
9203 mutex_lock(&priv->mutex);
9204 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9205 priv->config &= ~CFG_FIXED_RATE;
9206 ipw_set_fixed_rate(priv, priv->ieee->mode);
9207 } else
9208 priv->config |= CFG_FIXED_RATE;
9209
9210 if (priv->rates_mask == mask) {
9211 IPW_DEBUG_WX("Mask set to current mask.\n");
9212 mutex_unlock(&priv->mutex);
9213 return 0;
9214 }
9215
9216 priv->rates_mask = mask;
9217
9218 /* Network configuration changed -- force [re]association */
9219 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9220 if (!ipw_disassociate(priv))
9221 ipw_associate(priv);
9222
9223 mutex_unlock(&priv->mutex);
9224 return 0;
9225 }
9226
ipw_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9227 static int ipw_wx_get_rate(struct net_device *dev,
9228 struct iw_request_info *info,
9229 union iwreq_data *wrqu, char *extra)
9230 {
9231 struct ipw_priv *priv = libipw_priv(dev);
9232 mutex_lock(&priv->mutex);
9233 wrqu->bitrate.value = priv->last_rate;
9234 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9235 mutex_unlock(&priv->mutex);
9236 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9237 return 0;
9238 }
9239
ipw_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9240 static int ipw_wx_set_rts(struct net_device *dev,
9241 struct iw_request_info *info,
9242 union iwreq_data *wrqu, char *extra)
9243 {
9244 struct ipw_priv *priv = libipw_priv(dev);
9245 mutex_lock(&priv->mutex);
9246 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9247 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9248 else {
9249 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9250 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9251 mutex_unlock(&priv->mutex);
9252 return -EINVAL;
9253 }
9254 priv->rts_threshold = wrqu->rts.value;
9255 }
9256
9257 ipw_send_rts_threshold(priv, priv->rts_threshold);
9258 mutex_unlock(&priv->mutex);
9259 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9260 return 0;
9261 }
9262
ipw_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9263 static int ipw_wx_get_rts(struct net_device *dev,
9264 struct iw_request_info *info,
9265 union iwreq_data *wrqu, char *extra)
9266 {
9267 struct ipw_priv *priv = libipw_priv(dev);
9268 mutex_lock(&priv->mutex);
9269 wrqu->rts.value = priv->rts_threshold;
9270 wrqu->rts.fixed = 0; /* no auto select */
9271 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9272 mutex_unlock(&priv->mutex);
9273 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9274 return 0;
9275 }
9276
ipw_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9277 static int ipw_wx_set_txpow(struct net_device *dev,
9278 struct iw_request_info *info,
9279 union iwreq_data *wrqu, char *extra)
9280 {
9281 struct ipw_priv *priv = libipw_priv(dev);
9282 int err = 0;
9283
9284 mutex_lock(&priv->mutex);
9285 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9286 err = -EINPROGRESS;
9287 goto out;
9288 }
9289
9290 if (!wrqu->power.fixed)
9291 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9292
9293 if (wrqu->power.flags != IW_TXPOW_DBM) {
9294 err = -EINVAL;
9295 goto out;
9296 }
9297
9298 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9299 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9300 err = -EINVAL;
9301 goto out;
9302 }
9303
9304 priv->tx_power = wrqu->power.value;
9305 err = ipw_set_tx_power(priv);
9306 out:
9307 mutex_unlock(&priv->mutex);
9308 return err;
9309 }
9310
ipw_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9311 static int ipw_wx_get_txpow(struct net_device *dev,
9312 struct iw_request_info *info,
9313 union iwreq_data *wrqu, char *extra)
9314 {
9315 struct ipw_priv *priv = libipw_priv(dev);
9316 mutex_lock(&priv->mutex);
9317 wrqu->power.value = priv->tx_power;
9318 wrqu->power.fixed = 1;
9319 wrqu->power.flags = IW_TXPOW_DBM;
9320 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9321 mutex_unlock(&priv->mutex);
9322
9323 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9324 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9325
9326 return 0;
9327 }
9328
ipw_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9329 static int ipw_wx_set_frag(struct net_device *dev,
9330 struct iw_request_info *info,
9331 union iwreq_data *wrqu, char *extra)
9332 {
9333 struct ipw_priv *priv = libipw_priv(dev);
9334 mutex_lock(&priv->mutex);
9335 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9336 priv->ieee->fts = DEFAULT_FTS;
9337 else {
9338 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9339 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9340 mutex_unlock(&priv->mutex);
9341 return -EINVAL;
9342 }
9343
9344 priv->ieee->fts = wrqu->frag.value & ~0x1;
9345 }
9346
9347 ipw_send_frag_threshold(priv, wrqu->frag.value);
9348 mutex_unlock(&priv->mutex);
9349 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9350 return 0;
9351 }
9352
ipw_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9353 static int ipw_wx_get_frag(struct net_device *dev,
9354 struct iw_request_info *info,
9355 union iwreq_data *wrqu, char *extra)
9356 {
9357 struct ipw_priv *priv = libipw_priv(dev);
9358 mutex_lock(&priv->mutex);
9359 wrqu->frag.value = priv->ieee->fts;
9360 wrqu->frag.fixed = 0; /* no auto select */
9361 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9362 mutex_unlock(&priv->mutex);
9363 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9364
9365 return 0;
9366 }
9367
ipw_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9368 static int ipw_wx_set_retry(struct net_device *dev,
9369 struct iw_request_info *info,
9370 union iwreq_data *wrqu, char *extra)
9371 {
9372 struct ipw_priv *priv = libipw_priv(dev);
9373
9374 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9375 return -EINVAL;
9376
9377 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9378 return 0;
9379
9380 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9381 return -EINVAL;
9382
9383 mutex_lock(&priv->mutex);
9384 if (wrqu->retry.flags & IW_RETRY_SHORT)
9385 priv->short_retry_limit = (u8) wrqu->retry.value;
9386 else if (wrqu->retry.flags & IW_RETRY_LONG)
9387 priv->long_retry_limit = (u8) wrqu->retry.value;
9388 else {
9389 priv->short_retry_limit = (u8) wrqu->retry.value;
9390 priv->long_retry_limit = (u8) wrqu->retry.value;
9391 }
9392
9393 ipw_send_retry_limit(priv, priv->short_retry_limit,
9394 priv->long_retry_limit);
9395 mutex_unlock(&priv->mutex);
9396 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9397 priv->short_retry_limit, priv->long_retry_limit);
9398 return 0;
9399 }
9400
ipw_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9401 static int ipw_wx_get_retry(struct net_device *dev,
9402 struct iw_request_info *info,
9403 union iwreq_data *wrqu, char *extra)
9404 {
9405 struct ipw_priv *priv = libipw_priv(dev);
9406
9407 mutex_lock(&priv->mutex);
9408 wrqu->retry.disabled = 0;
9409
9410 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9411 mutex_unlock(&priv->mutex);
9412 return -EINVAL;
9413 }
9414
9415 if (wrqu->retry.flags & IW_RETRY_LONG) {
9416 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9417 wrqu->retry.value = priv->long_retry_limit;
9418 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9419 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9420 wrqu->retry.value = priv->short_retry_limit;
9421 } else {
9422 wrqu->retry.flags = IW_RETRY_LIMIT;
9423 wrqu->retry.value = priv->short_retry_limit;
9424 }
9425 mutex_unlock(&priv->mutex);
9426
9427 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9428
9429 return 0;
9430 }
9431
ipw_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9432 static int ipw_wx_set_scan(struct net_device *dev,
9433 struct iw_request_info *info,
9434 union iwreq_data *wrqu, char *extra)
9435 {
9436 struct ipw_priv *priv = libipw_priv(dev);
9437 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9438 struct delayed_work *work = NULL;
9439
9440 mutex_lock(&priv->mutex);
9441
9442 priv->user_requested_scan = 1;
9443
9444 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9445 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9446 int len = min((int)req->essid_len,
9447 (int)sizeof(priv->direct_scan_ssid));
9448 memcpy(priv->direct_scan_ssid, req->essid, len);
9449 priv->direct_scan_ssid_len = len;
9450 work = &priv->request_direct_scan;
9451 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9452 work = &priv->request_passive_scan;
9453 }
9454 } else {
9455 /* Normal active broadcast scan */
9456 work = &priv->request_scan;
9457 }
9458
9459 mutex_unlock(&priv->mutex);
9460
9461 IPW_DEBUG_WX("Start scan\n");
9462
9463 schedule_delayed_work(work, 0);
9464
9465 return 0;
9466 }
9467
ipw_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9468 static int ipw_wx_get_scan(struct net_device *dev,
9469 struct iw_request_info *info,
9470 union iwreq_data *wrqu, char *extra)
9471 {
9472 struct ipw_priv *priv = libipw_priv(dev);
9473 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9474 }
9475
ipw_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9476 static int ipw_wx_set_encode(struct net_device *dev,
9477 struct iw_request_info *info,
9478 union iwreq_data *wrqu, char *key)
9479 {
9480 struct ipw_priv *priv = libipw_priv(dev);
9481 int ret;
9482 u32 cap = priv->capability;
9483
9484 mutex_lock(&priv->mutex);
9485 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9486
9487 /* In IBSS mode, we need to notify the firmware to update
9488 * the beacon info after we changed the capability. */
9489 if (cap != priv->capability &&
9490 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9491 priv->status & STATUS_ASSOCIATED)
9492 ipw_disassociate(priv);
9493
9494 mutex_unlock(&priv->mutex);
9495 return ret;
9496 }
9497
ipw_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9498 static int ipw_wx_get_encode(struct net_device *dev,
9499 struct iw_request_info *info,
9500 union iwreq_data *wrqu, char *key)
9501 {
9502 struct ipw_priv *priv = libipw_priv(dev);
9503 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9504 }
9505
ipw_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9506 static int ipw_wx_set_power(struct net_device *dev,
9507 struct iw_request_info *info,
9508 union iwreq_data *wrqu, char *extra)
9509 {
9510 struct ipw_priv *priv = libipw_priv(dev);
9511 int err;
9512 mutex_lock(&priv->mutex);
9513 if (wrqu->power.disabled) {
9514 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9515 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9516 if (err) {
9517 IPW_DEBUG_WX("failed setting power mode.\n");
9518 mutex_unlock(&priv->mutex);
9519 return err;
9520 }
9521 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9522 mutex_unlock(&priv->mutex);
9523 return 0;
9524 }
9525
9526 switch (wrqu->power.flags & IW_POWER_MODE) {
9527 case IW_POWER_ON: /* If not specified */
9528 case IW_POWER_MODE: /* If set all mask */
9529 case IW_POWER_ALL_R: /* If explicitly state all */
9530 break;
9531 default: /* Otherwise we don't support it */
9532 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9533 wrqu->power.flags);
9534 mutex_unlock(&priv->mutex);
9535 return -EOPNOTSUPP;
9536 }
9537
9538 /* If the user hasn't specified a power management mode yet, default
9539 * to BATTERY */
9540 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9541 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9542 else
9543 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9544
9545 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9546 if (err) {
9547 IPW_DEBUG_WX("failed setting power mode.\n");
9548 mutex_unlock(&priv->mutex);
9549 return err;
9550 }
9551
9552 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9553 mutex_unlock(&priv->mutex);
9554 return 0;
9555 }
9556
ipw_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9557 static int ipw_wx_get_power(struct net_device *dev,
9558 struct iw_request_info *info,
9559 union iwreq_data *wrqu, char *extra)
9560 {
9561 struct ipw_priv *priv = libipw_priv(dev);
9562 mutex_lock(&priv->mutex);
9563 if (!(priv->power_mode & IPW_POWER_ENABLED))
9564 wrqu->power.disabled = 1;
9565 else
9566 wrqu->power.disabled = 0;
9567
9568 mutex_unlock(&priv->mutex);
9569 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9570
9571 return 0;
9572 }
9573
ipw_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9574 static int ipw_wx_set_powermode(struct net_device *dev,
9575 struct iw_request_info *info,
9576 union iwreq_data *wrqu, char *extra)
9577 {
9578 struct ipw_priv *priv = libipw_priv(dev);
9579 int mode = *(int *)extra;
9580 int err;
9581
9582 mutex_lock(&priv->mutex);
9583 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9584 mode = IPW_POWER_AC;
9585
9586 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9587 err = ipw_send_power_mode(priv, mode);
9588 if (err) {
9589 IPW_DEBUG_WX("failed setting power mode.\n");
9590 mutex_unlock(&priv->mutex);
9591 return err;
9592 }
9593 priv->power_mode = IPW_POWER_ENABLED | mode;
9594 }
9595 mutex_unlock(&priv->mutex);
9596 return 0;
9597 }
9598
9599 #define MAX_WX_STRING 80
ipw_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9600 static int ipw_wx_get_powermode(struct net_device *dev,
9601 struct iw_request_info *info,
9602 union iwreq_data *wrqu, char *extra)
9603 {
9604 struct ipw_priv *priv = libipw_priv(dev);
9605 int level = IPW_POWER_LEVEL(priv->power_mode);
9606 char *p = extra;
9607
9608 p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9609
9610 switch (level) {
9611 case IPW_POWER_AC:
9612 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9613 break;
9614 case IPW_POWER_BATTERY:
9615 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9616 break;
9617 default:
9618 p += scnprintf(p, MAX_WX_STRING - (p - extra),
9619 "(Timeout %dms, Period %dms)",
9620 timeout_duration[level - 1] / 1000,
9621 period_duration[level - 1] / 1000);
9622 }
9623
9624 if (!(priv->power_mode & IPW_POWER_ENABLED))
9625 p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9626
9627 wrqu->data.length = p - extra + 1;
9628
9629 return 0;
9630 }
9631
ipw_wx_set_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9632 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9633 struct iw_request_info *info,
9634 union iwreq_data *wrqu, char *extra)
9635 {
9636 struct ipw_priv *priv = libipw_priv(dev);
9637 int mode = *(int *)extra;
9638 u8 band = 0, modulation = 0;
9639
9640 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9641 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9642 return -EINVAL;
9643 }
9644 mutex_lock(&priv->mutex);
9645 if (priv->adapter == IPW_2915ABG) {
9646 priv->ieee->abg_true = 1;
9647 if (mode & IEEE_A) {
9648 band |= LIBIPW_52GHZ_BAND;
9649 modulation |= LIBIPW_OFDM_MODULATION;
9650 } else
9651 priv->ieee->abg_true = 0;
9652 } else {
9653 if (mode & IEEE_A) {
9654 IPW_WARNING("Attempt to set 2200BG into "
9655 "802.11a mode\n");
9656 mutex_unlock(&priv->mutex);
9657 return -EINVAL;
9658 }
9659
9660 priv->ieee->abg_true = 0;
9661 }
9662
9663 if (mode & IEEE_B) {
9664 band |= LIBIPW_24GHZ_BAND;
9665 modulation |= LIBIPW_CCK_MODULATION;
9666 } else
9667 priv->ieee->abg_true = 0;
9668
9669 if (mode & IEEE_G) {
9670 band |= LIBIPW_24GHZ_BAND;
9671 modulation |= LIBIPW_OFDM_MODULATION;
9672 } else
9673 priv->ieee->abg_true = 0;
9674
9675 priv->ieee->mode = mode;
9676 priv->ieee->freq_band = band;
9677 priv->ieee->modulation = modulation;
9678 init_supported_rates(priv, &priv->rates);
9679
9680 /* Network configuration changed -- force [re]association */
9681 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9682 if (!ipw_disassociate(priv)) {
9683 ipw_send_supported_rates(priv, &priv->rates);
9684 ipw_associate(priv);
9685 }
9686
9687 /* Update the band LEDs */
9688 ipw_led_band_on(priv);
9689
9690 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9691 mode & IEEE_A ? 'a' : '.',
9692 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9693 mutex_unlock(&priv->mutex);
9694 return 0;
9695 }
9696
ipw_wx_get_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9697 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9698 struct iw_request_info *info,
9699 union iwreq_data *wrqu, char *extra)
9700 {
9701 struct ipw_priv *priv = libipw_priv(dev);
9702 mutex_lock(&priv->mutex);
9703 switch (priv->ieee->mode) {
9704 case IEEE_A:
9705 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9706 break;
9707 case IEEE_B:
9708 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9709 break;
9710 case IEEE_A | IEEE_B:
9711 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9712 break;
9713 case IEEE_G:
9714 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9715 break;
9716 case IEEE_A | IEEE_G:
9717 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9718 break;
9719 case IEEE_B | IEEE_G:
9720 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9721 break;
9722 case IEEE_A | IEEE_B | IEEE_G:
9723 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9724 break;
9725 default:
9726 strncpy(extra, "unknown", MAX_WX_STRING);
9727 break;
9728 }
9729 extra[MAX_WX_STRING - 1] = '\0';
9730
9731 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9732
9733 wrqu->data.length = strlen(extra) + 1;
9734 mutex_unlock(&priv->mutex);
9735
9736 return 0;
9737 }
9738
ipw_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9739 static int ipw_wx_set_preamble(struct net_device *dev,
9740 struct iw_request_info *info,
9741 union iwreq_data *wrqu, char *extra)
9742 {
9743 struct ipw_priv *priv = libipw_priv(dev);
9744 int mode = *(int *)extra;
9745 mutex_lock(&priv->mutex);
9746 /* Switching from SHORT -> LONG requires a disassociation */
9747 if (mode == 1) {
9748 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9749 priv->config |= CFG_PREAMBLE_LONG;
9750
9751 /* Network configuration changed -- force [re]association */
9752 IPW_DEBUG_ASSOC
9753 ("[re]association triggered due to preamble change.\n");
9754 if (!ipw_disassociate(priv))
9755 ipw_associate(priv);
9756 }
9757 goto done;
9758 }
9759
9760 if (mode == 0) {
9761 priv->config &= ~CFG_PREAMBLE_LONG;
9762 goto done;
9763 }
9764 mutex_unlock(&priv->mutex);
9765 return -EINVAL;
9766
9767 done:
9768 mutex_unlock(&priv->mutex);
9769 return 0;
9770 }
9771
ipw_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9772 static int ipw_wx_get_preamble(struct net_device *dev,
9773 struct iw_request_info *info,
9774 union iwreq_data *wrqu, char *extra)
9775 {
9776 struct ipw_priv *priv = libipw_priv(dev);
9777 mutex_lock(&priv->mutex);
9778 if (priv->config & CFG_PREAMBLE_LONG)
9779 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9780 else
9781 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9782 mutex_unlock(&priv->mutex);
9783 return 0;
9784 }
9785
9786 #ifdef CONFIG_IPW2200_MONITOR
ipw_wx_set_monitor(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9787 static int ipw_wx_set_monitor(struct net_device *dev,
9788 struct iw_request_info *info,
9789 union iwreq_data *wrqu, char *extra)
9790 {
9791 struct ipw_priv *priv = libipw_priv(dev);
9792 int *parms = (int *)extra;
9793 int enable = (parms[0] > 0);
9794 mutex_lock(&priv->mutex);
9795 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9796 if (enable) {
9797 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9798 #ifdef CONFIG_IPW2200_RADIOTAP
9799 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9800 #else
9801 priv->net_dev->type = ARPHRD_IEEE80211;
9802 #endif
9803 schedule_work(&priv->adapter_restart);
9804 }
9805
9806 ipw_set_channel(priv, parms[1]);
9807 } else {
9808 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9809 mutex_unlock(&priv->mutex);
9810 return 0;
9811 }
9812 priv->net_dev->type = ARPHRD_ETHER;
9813 schedule_work(&priv->adapter_restart);
9814 }
9815 mutex_unlock(&priv->mutex);
9816 return 0;
9817 }
9818
9819 #endif /* CONFIG_IPW2200_MONITOR */
9820
ipw_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9821 static int ipw_wx_reset(struct net_device *dev,
9822 struct iw_request_info *info,
9823 union iwreq_data *wrqu, char *extra)
9824 {
9825 struct ipw_priv *priv = libipw_priv(dev);
9826 IPW_DEBUG_WX("RESET\n");
9827 schedule_work(&priv->adapter_restart);
9828 return 0;
9829 }
9830
ipw_wx_sw_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9831 static int ipw_wx_sw_reset(struct net_device *dev,
9832 struct iw_request_info *info,
9833 union iwreq_data *wrqu, char *extra)
9834 {
9835 struct ipw_priv *priv = libipw_priv(dev);
9836 union iwreq_data wrqu_sec = {
9837 .encoding = {
9838 .flags = IW_ENCODE_DISABLED,
9839 },
9840 };
9841 int ret;
9842
9843 IPW_DEBUG_WX("SW_RESET\n");
9844
9845 mutex_lock(&priv->mutex);
9846
9847 ret = ipw_sw_reset(priv, 2);
9848 if (!ret) {
9849 free_firmware();
9850 ipw_adapter_restart(priv);
9851 }
9852
9853 /* The SW reset bit might have been toggled on by the 'disable'
9854 * module parameter, so take appropriate action */
9855 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9856
9857 mutex_unlock(&priv->mutex);
9858 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9859 mutex_lock(&priv->mutex);
9860
9861 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9862 /* Configuration likely changed -- force [re]association */
9863 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9864 "reset.\n");
9865 if (!ipw_disassociate(priv))
9866 ipw_associate(priv);
9867 }
9868
9869 mutex_unlock(&priv->mutex);
9870
9871 return 0;
9872 }
9873
9874 /* Rebase the WE IOCTLs to zero for the handler array */
9875 static iw_handler ipw_wx_handlers[] = {
9876 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9877 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9878 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9879 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9880 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9881 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9882 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9883 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9884 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9885 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9886 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9887 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9888 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9889 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9890 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9891 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9892 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9893 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9894 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9895 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9896 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9897 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9898 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9899 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9900 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9901 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9902 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9903 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9904 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9905 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9906 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9907 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9908 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9909 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9910 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9911 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9912 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9913 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9914 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9915 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9916 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9917 };
9918
9919 enum {
9920 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9921 IPW_PRIV_GET_POWER,
9922 IPW_PRIV_SET_MODE,
9923 IPW_PRIV_GET_MODE,
9924 IPW_PRIV_SET_PREAMBLE,
9925 IPW_PRIV_GET_PREAMBLE,
9926 IPW_PRIV_RESET,
9927 IPW_PRIV_SW_RESET,
9928 #ifdef CONFIG_IPW2200_MONITOR
9929 IPW_PRIV_SET_MONITOR,
9930 #endif
9931 };
9932
9933 static struct iw_priv_args ipw_priv_args[] = {
9934 {
9935 .cmd = IPW_PRIV_SET_POWER,
9936 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9937 .name = "set_power"},
9938 {
9939 .cmd = IPW_PRIV_GET_POWER,
9940 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9941 .name = "get_power"},
9942 {
9943 .cmd = IPW_PRIV_SET_MODE,
9944 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9945 .name = "set_mode"},
9946 {
9947 .cmd = IPW_PRIV_GET_MODE,
9948 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9949 .name = "get_mode"},
9950 {
9951 .cmd = IPW_PRIV_SET_PREAMBLE,
9952 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9953 .name = "set_preamble"},
9954 {
9955 .cmd = IPW_PRIV_GET_PREAMBLE,
9956 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9957 .name = "get_preamble"},
9958 {
9959 IPW_PRIV_RESET,
9960 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9961 {
9962 IPW_PRIV_SW_RESET,
9963 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9964 #ifdef CONFIG_IPW2200_MONITOR
9965 {
9966 IPW_PRIV_SET_MONITOR,
9967 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9968 #endif /* CONFIG_IPW2200_MONITOR */
9969 };
9970
9971 static iw_handler ipw_priv_handler[] = {
9972 ipw_wx_set_powermode,
9973 ipw_wx_get_powermode,
9974 ipw_wx_set_wireless_mode,
9975 ipw_wx_get_wireless_mode,
9976 ipw_wx_set_preamble,
9977 ipw_wx_get_preamble,
9978 ipw_wx_reset,
9979 ipw_wx_sw_reset,
9980 #ifdef CONFIG_IPW2200_MONITOR
9981 ipw_wx_set_monitor,
9982 #endif
9983 };
9984
9985 static const struct iw_handler_def ipw_wx_handler_def = {
9986 .standard = ipw_wx_handlers,
9987 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9988 .num_private = ARRAY_SIZE(ipw_priv_handler),
9989 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9990 .private = ipw_priv_handler,
9991 .private_args = ipw_priv_args,
9992 .get_wireless_stats = ipw_get_wireless_stats,
9993 };
9994
9995 /*
9996 * Get wireless statistics.
9997 * Called by /proc/net/wireless
9998 * Also called by SIOCGIWSTATS
9999 */
ipw_get_wireless_stats(struct net_device * dev)10000 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10001 {
10002 struct ipw_priv *priv = libipw_priv(dev);
10003 struct iw_statistics *wstats;
10004
10005 wstats = &priv->wstats;
10006
10007 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10008 * netdev->get_wireless_stats seems to be called before fw is
10009 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10010 * and associated; if not associcated, the values are all meaningless
10011 * anyway, so set them all to NULL and INVALID */
10012 if (!(priv->status & STATUS_ASSOCIATED)) {
10013 wstats->miss.beacon = 0;
10014 wstats->discard.retries = 0;
10015 wstats->qual.qual = 0;
10016 wstats->qual.level = 0;
10017 wstats->qual.noise = 0;
10018 wstats->qual.updated = 7;
10019 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10020 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10021 return wstats;
10022 }
10023
10024 wstats->qual.qual = priv->quality;
10025 wstats->qual.level = priv->exp_avg_rssi;
10026 wstats->qual.noise = priv->exp_avg_noise;
10027 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10028 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10029
10030 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10031 wstats->discard.retries = priv->last_tx_failures;
10032 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10033
10034 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10035 goto fail_get_ordinal;
10036 wstats->discard.retries += tx_retry; */
10037
10038 return wstats;
10039 }
10040
10041 /* net device stuff */
10042
init_sys_config(struct ipw_sys_config * sys_config)10043 static void init_sys_config(struct ipw_sys_config *sys_config)
10044 {
10045 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10046 sys_config->bt_coexistence = 0;
10047 sys_config->answer_broadcast_ssid_probe = 0;
10048 sys_config->accept_all_data_frames = 0;
10049 sys_config->accept_non_directed_frames = 1;
10050 sys_config->exclude_unicast_unencrypted = 0;
10051 sys_config->disable_unicast_decryption = 1;
10052 sys_config->exclude_multicast_unencrypted = 0;
10053 sys_config->disable_multicast_decryption = 1;
10054 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10055 antenna = CFG_SYS_ANTENNA_BOTH;
10056 sys_config->antenna_diversity = antenna;
10057 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10058 sys_config->dot11g_auto_detection = 0;
10059 sys_config->enable_cts_to_self = 0;
10060 sys_config->bt_coexist_collision_thr = 0;
10061 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10062 sys_config->silence_threshold = 0x1e;
10063 }
10064
ipw_net_open(struct net_device * dev)10065 static int ipw_net_open(struct net_device *dev)
10066 {
10067 IPW_DEBUG_INFO("dev->open\n");
10068 netif_start_queue(dev);
10069 return 0;
10070 }
10071
ipw_net_stop(struct net_device * dev)10072 static int ipw_net_stop(struct net_device *dev)
10073 {
10074 IPW_DEBUG_INFO("dev->close\n");
10075 netif_stop_queue(dev);
10076 return 0;
10077 }
10078
10079 /*
10080 todo:
10081
10082 modify to send one tfd per fragment instead of using chunking. otherwise
10083 we need to heavily modify the libipw_skb_to_txb.
10084 */
10085
ipw_tx_skb(struct ipw_priv * priv,struct libipw_txb * txb,int pri)10086 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10087 int pri)
10088 {
10089 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10090 txb->fragments[0]->data;
10091 int i = 0;
10092 struct tfd_frame *tfd;
10093 #ifdef CONFIG_IPW2200_QOS
10094 int tx_id = ipw_get_tx_queue_number(priv, pri);
10095 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10096 #else
10097 struct clx2_tx_queue *txq = &priv->txq[0];
10098 #endif
10099 struct clx2_queue *q = &txq->q;
10100 u8 id, hdr_len, unicast;
10101 int fc;
10102
10103 if (!(priv->status & STATUS_ASSOCIATED))
10104 goto drop;
10105
10106 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10107 switch (priv->ieee->iw_mode) {
10108 case IW_MODE_ADHOC:
10109 unicast = !is_multicast_ether_addr(hdr->addr1);
10110 id = ipw_find_station(priv, hdr->addr1);
10111 if (id == IPW_INVALID_STATION) {
10112 id = ipw_add_station(priv, hdr->addr1);
10113 if (id == IPW_INVALID_STATION) {
10114 IPW_WARNING("Attempt to send data to "
10115 "invalid cell: %pM\n",
10116 hdr->addr1);
10117 goto drop;
10118 }
10119 }
10120 break;
10121
10122 case IW_MODE_INFRA:
10123 default:
10124 unicast = !is_multicast_ether_addr(hdr->addr3);
10125 id = 0;
10126 break;
10127 }
10128
10129 tfd = &txq->bd[q->first_empty];
10130 txq->txb[q->first_empty] = txb;
10131 memset(tfd, 0, sizeof(*tfd));
10132 tfd->u.data.station_number = id;
10133
10134 tfd->control_flags.message_type = TX_FRAME_TYPE;
10135 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10136
10137 tfd->u.data.cmd_id = DINO_CMD_TX;
10138 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10139
10140 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10141 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10142 else
10143 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10144
10145 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10146 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10147
10148 fc = le16_to_cpu(hdr->frame_ctl);
10149 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10150
10151 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10152
10153 if (likely(unicast))
10154 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10155
10156 if (txb->encrypted && !priv->ieee->host_encrypt) {
10157 switch (priv->ieee->sec.level) {
10158 case SEC_LEVEL_3:
10159 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10160 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10161 /* XXX: ACK flag must be set for CCMP even if it
10162 * is a multicast/broadcast packet, because CCMP
10163 * group communication encrypted by GTK is
10164 * actually done by the AP. */
10165 if (!unicast)
10166 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10167
10168 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10169 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10170 tfd->u.data.key_index = 0;
10171 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10172 break;
10173 case SEC_LEVEL_2:
10174 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10175 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10176 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10177 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10178 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10179 break;
10180 case SEC_LEVEL_1:
10181 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10182 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10183 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10184 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10185 40)
10186 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10187 else
10188 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10189 break;
10190 case SEC_LEVEL_0:
10191 break;
10192 default:
10193 printk(KERN_ERR "Unknown security level %d\n",
10194 priv->ieee->sec.level);
10195 break;
10196 }
10197 } else
10198 /* No hardware encryption */
10199 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10200
10201 #ifdef CONFIG_IPW2200_QOS
10202 if (fc & IEEE80211_STYPE_QOS_DATA)
10203 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10204 #endif /* CONFIG_IPW2200_QOS */
10205
10206 /* payload */
10207 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10208 txb->nr_frags));
10209 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10210 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10211 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10212 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10213 i, le32_to_cpu(tfd->u.data.num_chunks),
10214 txb->fragments[i]->len - hdr_len);
10215 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10216 i, tfd->u.data.num_chunks,
10217 txb->fragments[i]->len - hdr_len);
10218 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10219 txb->fragments[i]->len - hdr_len);
10220
10221 tfd->u.data.chunk_ptr[i] =
10222 cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10223 txb->fragments[i]->data + hdr_len,
10224 txb->fragments[i]->len - hdr_len,
10225 DMA_TO_DEVICE));
10226 tfd->u.data.chunk_len[i] =
10227 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10228 }
10229
10230 if (i != txb->nr_frags) {
10231 struct sk_buff *skb;
10232 u16 remaining_bytes = 0;
10233 int j;
10234
10235 for (j = i; j < txb->nr_frags; j++)
10236 remaining_bytes += txb->fragments[j]->len - hdr_len;
10237
10238 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10239 remaining_bytes);
10240 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10241 if (skb != NULL) {
10242 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10243 for (j = i; j < txb->nr_frags; j++) {
10244 int size = txb->fragments[j]->len - hdr_len;
10245
10246 printk(KERN_INFO "Adding frag %d %d...\n",
10247 j, size);
10248 skb_put_data(skb,
10249 txb->fragments[j]->data + hdr_len,
10250 size);
10251 }
10252 dev_kfree_skb_any(txb->fragments[i]);
10253 txb->fragments[i] = skb;
10254 tfd->u.data.chunk_ptr[i] =
10255 cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10256 skb->data,
10257 remaining_bytes,
10258 DMA_TO_DEVICE));
10259
10260 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10261 }
10262 }
10263
10264 /* kick DMA */
10265 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10266 ipw_write32(priv, q->reg_w, q->first_empty);
10267
10268 if (ipw_tx_queue_space(q) < q->high_mark)
10269 netif_stop_queue(priv->net_dev);
10270
10271 return NETDEV_TX_OK;
10272
10273 drop:
10274 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10275 libipw_txb_free(txb);
10276 return NETDEV_TX_OK;
10277 }
10278
ipw_net_is_queue_full(struct net_device * dev,int pri)10279 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10280 {
10281 struct ipw_priv *priv = libipw_priv(dev);
10282 #ifdef CONFIG_IPW2200_QOS
10283 int tx_id = ipw_get_tx_queue_number(priv, pri);
10284 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10285 #else
10286 struct clx2_tx_queue *txq = &priv->txq[0];
10287 #endif /* CONFIG_IPW2200_QOS */
10288
10289 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10290 return 1;
10291
10292 return 0;
10293 }
10294
10295 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_handle_promiscuous_tx(struct ipw_priv * priv,struct libipw_txb * txb)10296 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10297 struct libipw_txb *txb)
10298 {
10299 struct libipw_rx_stats dummystats;
10300 struct ieee80211_hdr *hdr;
10301 u8 n;
10302 u16 filter = priv->prom_priv->filter;
10303 int hdr_only = 0;
10304
10305 if (filter & IPW_PROM_NO_TX)
10306 return;
10307
10308 memset(&dummystats, 0, sizeof(dummystats));
10309
10310 /* Filtering of fragment chains is done against the first fragment */
10311 hdr = (void *)txb->fragments[0]->data;
10312 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10313 if (filter & IPW_PROM_NO_MGMT)
10314 return;
10315 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10316 hdr_only = 1;
10317 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10318 if (filter & IPW_PROM_NO_CTL)
10319 return;
10320 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10321 hdr_only = 1;
10322 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10323 if (filter & IPW_PROM_NO_DATA)
10324 return;
10325 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10326 hdr_only = 1;
10327 }
10328
10329 for(n=0; n<txb->nr_frags; ++n) {
10330 struct sk_buff *src = txb->fragments[n];
10331 struct sk_buff *dst;
10332 struct ieee80211_radiotap_header *rt_hdr;
10333 int len;
10334
10335 if (hdr_only) {
10336 hdr = (void *)src->data;
10337 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10338 } else
10339 len = src->len;
10340
10341 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10342 if (!dst)
10343 continue;
10344
10345 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10346
10347 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10348 rt_hdr->it_pad = 0;
10349 rt_hdr->it_present = 0; /* after all, it's just an idea */
10350 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10351
10352 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10353 ieee80211chan2mhz(priv->channel));
10354 if (priv->channel > 14) /* 802.11a */
10355 *(__le16*)skb_put(dst, sizeof(u16)) =
10356 cpu_to_le16(IEEE80211_CHAN_OFDM |
10357 IEEE80211_CHAN_5GHZ);
10358 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10359 *(__le16*)skb_put(dst, sizeof(u16)) =
10360 cpu_to_le16(IEEE80211_CHAN_CCK |
10361 IEEE80211_CHAN_2GHZ);
10362 else /* 802.11g */
10363 *(__le16*)skb_put(dst, sizeof(u16)) =
10364 cpu_to_le16(IEEE80211_CHAN_OFDM |
10365 IEEE80211_CHAN_2GHZ);
10366
10367 rt_hdr->it_len = cpu_to_le16(dst->len);
10368
10369 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10370
10371 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10372 dev_kfree_skb_any(dst);
10373 }
10374 }
10375 #endif
10376
ipw_net_hard_start_xmit(struct libipw_txb * txb,struct net_device * dev,int pri)10377 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10378 struct net_device *dev, int pri)
10379 {
10380 struct ipw_priv *priv = libipw_priv(dev);
10381 unsigned long flags;
10382 netdev_tx_t ret;
10383
10384 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10385 spin_lock_irqsave(&priv->lock, flags);
10386
10387 #ifdef CONFIG_IPW2200_PROMISCUOUS
10388 if (rtap_iface && netif_running(priv->prom_net_dev))
10389 ipw_handle_promiscuous_tx(priv, txb);
10390 #endif
10391
10392 ret = ipw_tx_skb(priv, txb, pri);
10393 if (ret == NETDEV_TX_OK)
10394 __ipw_led_activity_on(priv);
10395 spin_unlock_irqrestore(&priv->lock, flags);
10396
10397 return ret;
10398 }
10399
ipw_net_set_multicast_list(struct net_device * dev)10400 static void ipw_net_set_multicast_list(struct net_device *dev)
10401 {
10402
10403 }
10404
ipw_net_set_mac_address(struct net_device * dev,void * p)10405 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10406 {
10407 struct ipw_priv *priv = libipw_priv(dev);
10408 struct sockaddr *addr = p;
10409
10410 if (!is_valid_ether_addr(addr->sa_data))
10411 return -EADDRNOTAVAIL;
10412 mutex_lock(&priv->mutex);
10413 priv->config |= CFG_CUSTOM_MAC;
10414 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10415 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10416 priv->net_dev->name, priv->mac_addr);
10417 schedule_work(&priv->adapter_restart);
10418 mutex_unlock(&priv->mutex);
10419 return 0;
10420 }
10421
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)10422 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10423 struct ethtool_drvinfo *info)
10424 {
10425 struct ipw_priv *p = libipw_priv(dev);
10426 char vers[64];
10427 char date[32];
10428 u32 len;
10429
10430 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10431 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10432
10433 len = sizeof(vers);
10434 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10435 len = sizeof(date);
10436 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10437
10438 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10439 vers, date);
10440 strlcpy(info->bus_info, pci_name(p->pci_dev),
10441 sizeof(info->bus_info));
10442 }
10443
ipw_ethtool_get_link(struct net_device * dev)10444 static u32 ipw_ethtool_get_link(struct net_device *dev)
10445 {
10446 struct ipw_priv *priv = libipw_priv(dev);
10447 return (priv->status & STATUS_ASSOCIATED) != 0;
10448 }
10449
ipw_ethtool_get_eeprom_len(struct net_device * dev)10450 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10451 {
10452 return IPW_EEPROM_IMAGE_SIZE;
10453 }
10454
ipw_ethtool_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10455 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10456 struct ethtool_eeprom *eeprom, u8 * bytes)
10457 {
10458 struct ipw_priv *p = libipw_priv(dev);
10459
10460 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10461 return -EINVAL;
10462 mutex_lock(&p->mutex);
10463 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10464 mutex_unlock(&p->mutex);
10465 return 0;
10466 }
10467
ipw_ethtool_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10468 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10469 struct ethtool_eeprom *eeprom, u8 * bytes)
10470 {
10471 struct ipw_priv *p = libipw_priv(dev);
10472 int i;
10473
10474 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10475 return -EINVAL;
10476 mutex_lock(&p->mutex);
10477 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10478 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10479 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10480 mutex_unlock(&p->mutex);
10481 return 0;
10482 }
10483
10484 static const struct ethtool_ops ipw_ethtool_ops = {
10485 .get_link = ipw_ethtool_get_link,
10486 .get_drvinfo = ipw_ethtool_get_drvinfo,
10487 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10488 .get_eeprom = ipw_ethtool_get_eeprom,
10489 .set_eeprom = ipw_ethtool_set_eeprom,
10490 };
10491
ipw_isr(int irq,void * data)10492 static irqreturn_t ipw_isr(int irq, void *data)
10493 {
10494 struct ipw_priv *priv = data;
10495 u32 inta, inta_mask;
10496
10497 if (!priv)
10498 return IRQ_NONE;
10499
10500 spin_lock(&priv->irq_lock);
10501
10502 if (!(priv->status & STATUS_INT_ENABLED)) {
10503 /* IRQ is disabled */
10504 goto none;
10505 }
10506
10507 inta = ipw_read32(priv, IPW_INTA_RW);
10508 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10509
10510 if (inta == 0xFFFFFFFF) {
10511 /* Hardware disappeared */
10512 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10513 goto none;
10514 }
10515
10516 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10517 /* Shared interrupt */
10518 goto none;
10519 }
10520
10521 /* tell the device to stop sending interrupts */
10522 __ipw_disable_interrupts(priv);
10523
10524 /* ack current interrupts */
10525 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10526 ipw_write32(priv, IPW_INTA_RW, inta);
10527
10528 /* Cache INTA value for our tasklet */
10529 priv->isr_inta = inta;
10530
10531 tasklet_schedule(&priv->irq_tasklet);
10532
10533 spin_unlock(&priv->irq_lock);
10534
10535 return IRQ_HANDLED;
10536 none:
10537 spin_unlock(&priv->irq_lock);
10538 return IRQ_NONE;
10539 }
10540
ipw_rf_kill(void * adapter)10541 static void ipw_rf_kill(void *adapter)
10542 {
10543 struct ipw_priv *priv = adapter;
10544 unsigned long flags;
10545
10546 spin_lock_irqsave(&priv->lock, flags);
10547
10548 if (rf_kill_active(priv)) {
10549 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10550 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10551 goto exit_unlock;
10552 }
10553
10554 /* RF Kill is now disabled, so bring the device back up */
10555
10556 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10557 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10558 "device\n");
10559
10560 /* we can not do an adapter restart while inside an irq lock */
10561 schedule_work(&priv->adapter_restart);
10562 } else
10563 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10564 "enabled\n");
10565
10566 exit_unlock:
10567 spin_unlock_irqrestore(&priv->lock, flags);
10568 }
10569
ipw_bg_rf_kill(struct work_struct * work)10570 static void ipw_bg_rf_kill(struct work_struct *work)
10571 {
10572 struct ipw_priv *priv =
10573 container_of(work, struct ipw_priv, rf_kill.work);
10574 mutex_lock(&priv->mutex);
10575 ipw_rf_kill(priv);
10576 mutex_unlock(&priv->mutex);
10577 }
10578
ipw_link_up(struct ipw_priv * priv)10579 static void ipw_link_up(struct ipw_priv *priv)
10580 {
10581 priv->last_seq_num = -1;
10582 priv->last_frag_num = -1;
10583 priv->last_packet_time = 0;
10584
10585 netif_carrier_on(priv->net_dev);
10586
10587 cancel_delayed_work(&priv->request_scan);
10588 cancel_delayed_work(&priv->request_direct_scan);
10589 cancel_delayed_work(&priv->request_passive_scan);
10590 cancel_delayed_work(&priv->scan_event);
10591 ipw_reset_stats(priv);
10592 /* Ensure the rate is updated immediately */
10593 priv->last_rate = ipw_get_current_rate(priv);
10594 ipw_gather_stats(priv);
10595 ipw_led_link_up(priv);
10596 notify_wx_assoc_event(priv);
10597
10598 if (priv->config & CFG_BACKGROUND_SCAN)
10599 schedule_delayed_work(&priv->request_scan, HZ);
10600 }
10601
ipw_bg_link_up(struct work_struct * work)10602 static void ipw_bg_link_up(struct work_struct *work)
10603 {
10604 struct ipw_priv *priv =
10605 container_of(work, struct ipw_priv, link_up);
10606 mutex_lock(&priv->mutex);
10607 ipw_link_up(priv);
10608 mutex_unlock(&priv->mutex);
10609 }
10610
ipw_link_down(struct ipw_priv * priv)10611 static void ipw_link_down(struct ipw_priv *priv)
10612 {
10613 ipw_led_link_down(priv);
10614 netif_carrier_off(priv->net_dev);
10615 notify_wx_assoc_event(priv);
10616
10617 /* Cancel any queued work ... */
10618 cancel_delayed_work(&priv->request_scan);
10619 cancel_delayed_work(&priv->request_direct_scan);
10620 cancel_delayed_work(&priv->request_passive_scan);
10621 cancel_delayed_work(&priv->adhoc_check);
10622 cancel_delayed_work(&priv->gather_stats);
10623
10624 ipw_reset_stats(priv);
10625
10626 if (!(priv->status & STATUS_EXIT_PENDING)) {
10627 /* Queue up another scan... */
10628 schedule_delayed_work(&priv->request_scan, 0);
10629 } else
10630 cancel_delayed_work(&priv->scan_event);
10631 }
10632
ipw_bg_link_down(struct work_struct * work)10633 static void ipw_bg_link_down(struct work_struct *work)
10634 {
10635 struct ipw_priv *priv =
10636 container_of(work, struct ipw_priv, link_down);
10637 mutex_lock(&priv->mutex);
10638 ipw_link_down(priv);
10639 mutex_unlock(&priv->mutex);
10640 }
10641
ipw_setup_deferred_work(struct ipw_priv * priv)10642 static void ipw_setup_deferred_work(struct ipw_priv *priv)
10643 {
10644 init_waitqueue_head(&priv->wait_command_queue);
10645 init_waitqueue_head(&priv->wait_state);
10646
10647 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10648 INIT_WORK(&priv->associate, ipw_bg_associate);
10649 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10650 INIT_WORK(&priv->system_config, ipw_system_config);
10651 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10652 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10653 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10654 INIT_WORK(&priv->up, ipw_bg_up);
10655 INIT_WORK(&priv->down, ipw_bg_down);
10656 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10657 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10658 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10659 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10660 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10661 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10662 INIT_WORK(&priv->roam, ipw_bg_roam);
10663 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10664 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10665 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10666 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10667 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10668 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10669 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10670
10671 #ifdef CONFIG_IPW2200_QOS
10672 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10673 #endif /* CONFIG_IPW2200_QOS */
10674
10675 tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10676 }
10677
shim__set_security(struct net_device * dev,struct libipw_security * sec)10678 static void shim__set_security(struct net_device *dev,
10679 struct libipw_security *sec)
10680 {
10681 struct ipw_priv *priv = libipw_priv(dev);
10682 int i;
10683 for (i = 0; i < 4; i++) {
10684 if (sec->flags & (1 << i)) {
10685 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10686 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10687 if (sec->key_sizes[i] == 0)
10688 priv->ieee->sec.flags &= ~(1 << i);
10689 else {
10690 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10691 sec->key_sizes[i]);
10692 priv->ieee->sec.flags |= (1 << i);
10693 }
10694 priv->status |= STATUS_SECURITY_UPDATED;
10695 } else if (sec->level != SEC_LEVEL_1)
10696 priv->ieee->sec.flags &= ~(1 << i);
10697 }
10698
10699 if (sec->flags & SEC_ACTIVE_KEY) {
10700 priv->ieee->sec.active_key = sec->active_key;
10701 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10702 priv->status |= STATUS_SECURITY_UPDATED;
10703 } else
10704 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10705
10706 if ((sec->flags & SEC_AUTH_MODE) &&
10707 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10708 priv->ieee->sec.auth_mode = sec->auth_mode;
10709 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10710 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10711 priv->capability |= CAP_SHARED_KEY;
10712 else
10713 priv->capability &= ~CAP_SHARED_KEY;
10714 priv->status |= STATUS_SECURITY_UPDATED;
10715 }
10716
10717 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10718 priv->ieee->sec.flags |= SEC_ENABLED;
10719 priv->ieee->sec.enabled = sec->enabled;
10720 priv->status |= STATUS_SECURITY_UPDATED;
10721 if (sec->enabled)
10722 priv->capability |= CAP_PRIVACY_ON;
10723 else
10724 priv->capability &= ~CAP_PRIVACY_ON;
10725 }
10726
10727 if (sec->flags & SEC_ENCRYPT)
10728 priv->ieee->sec.encrypt = sec->encrypt;
10729
10730 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10731 priv->ieee->sec.level = sec->level;
10732 priv->ieee->sec.flags |= SEC_LEVEL;
10733 priv->status |= STATUS_SECURITY_UPDATED;
10734 }
10735
10736 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10737 ipw_set_hwcrypto_keys(priv);
10738
10739 /* To match current functionality of ipw2100 (which works well w/
10740 * various supplicants, we don't force a disassociate if the
10741 * privacy capability changes ... */
10742 #if 0
10743 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10744 (((priv->assoc_request.capability &
10745 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10746 (!(priv->assoc_request.capability &
10747 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10748 IPW_DEBUG_ASSOC("Disassociating due to capability "
10749 "change.\n");
10750 ipw_disassociate(priv);
10751 }
10752 #endif
10753 }
10754
init_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)10755 static int init_supported_rates(struct ipw_priv *priv,
10756 struct ipw_supported_rates *rates)
10757 {
10758 /* TODO: Mask out rates based on priv->rates_mask */
10759
10760 memset(rates, 0, sizeof(*rates));
10761 /* configure supported rates */
10762 switch (priv->ieee->freq_band) {
10763 case LIBIPW_52GHZ_BAND:
10764 rates->ieee_mode = IPW_A_MODE;
10765 rates->purpose = IPW_RATE_CAPABILITIES;
10766 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10767 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10768 break;
10769
10770 default: /* Mixed or 2.4Ghz */
10771 rates->ieee_mode = IPW_G_MODE;
10772 rates->purpose = IPW_RATE_CAPABILITIES;
10773 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10774 LIBIPW_CCK_DEFAULT_RATES_MASK);
10775 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10776 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10777 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10778 }
10779 break;
10780 }
10781
10782 return 0;
10783 }
10784
ipw_config(struct ipw_priv * priv)10785 static int ipw_config(struct ipw_priv *priv)
10786 {
10787 /* This is only called from ipw_up, which resets/reloads the firmware
10788 so, we don't need to first disable the card before we configure
10789 it */
10790 if (ipw_set_tx_power(priv))
10791 goto error;
10792
10793 /* initialize adapter address */
10794 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10795 goto error;
10796
10797 /* set basic system config settings */
10798 init_sys_config(&priv->sys_config);
10799
10800 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10801 * Does not support BT priority yet (don't abort or defer our Tx) */
10802 if (bt_coexist) {
10803 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10804
10805 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10806 priv->sys_config.bt_coexistence
10807 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10808 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10809 priv->sys_config.bt_coexistence
10810 |= CFG_BT_COEXISTENCE_OOB;
10811 }
10812
10813 #ifdef CONFIG_IPW2200_PROMISCUOUS
10814 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10815 priv->sys_config.accept_all_data_frames = 1;
10816 priv->sys_config.accept_non_directed_frames = 1;
10817 priv->sys_config.accept_all_mgmt_bcpr = 1;
10818 priv->sys_config.accept_all_mgmt_frames = 1;
10819 }
10820 #endif
10821
10822 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10823 priv->sys_config.answer_broadcast_ssid_probe = 1;
10824 else
10825 priv->sys_config.answer_broadcast_ssid_probe = 0;
10826
10827 if (ipw_send_system_config(priv))
10828 goto error;
10829
10830 init_supported_rates(priv, &priv->rates);
10831 if (ipw_send_supported_rates(priv, &priv->rates))
10832 goto error;
10833
10834 /* Set request-to-send threshold */
10835 if (priv->rts_threshold) {
10836 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10837 goto error;
10838 }
10839 #ifdef CONFIG_IPW2200_QOS
10840 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10841 ipw_qos_activate(priv, NULL);
10842 #endif /* CONFIG_IPW2200_QOS */
10843
10844 if (ipw_set_random_seed(priv))
10845 goto error;
10846
10847 /* final state transition to the RUN state */
10848 if (ipw_send_host_complete(priv))
10849 goto error;
10850
10851 priv->status |= STATUS_INIT;
10852
10853 ipw_led_init(priv);
10854 ipw_led_radio_on(priv);
10855 priv->notif_missed_beacons = 0;
10856
10857 /* Set hardware WEP key if it is configured. */
10858 if ((priv->capability & CAP_PRIVACY_ON) &&
10859 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10860 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10861 ipw_set_hwcrypto_keys(priv);
10862
10863 return 0;
10864
10865 error:
10866 return -EIO;
10867 }
10868
10869 /*
10870 * NOTE:
10871 *
10872 * These tables have been tested in conjunction with the
10873 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10874 *
10875 * Altering this values, using it on other hardware, or in geographies
10876 * not intended for resale of the above mentioned Intel adapters has
10877 * not been tested.
10878 *
10879 * Remember to update the table in README.ipw2200 when changing this
10880 * table.
10881 *
10882 */
10883 static const struct libipw_geo ipw_geos[] = {
10884 { /* Restricted */
10885 "---",
10886 .bg_channels = 11,
10887 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10888 {2427, 4}, {2432, 5}, {2437, 6},
10889 {2442, 7}, {2447, 8}, {2452, 9},
10890 {2457, 10}, {2462, 11}},
10891 },
10892
10893 { /* Custom US/Canada */
10894 "ZZF",
10895 .bg_channels = 11,
10896 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897 {2427, 4}, {2432, 5}, {2437, 6},
10898 {2442, 7}, {2447, 8}, {2452, 9},
10899 {2457, 10}, {2462, 11}},
10900 .a_channels = 8,
10901 .a = {{5180, 36},
10902 {5200, 40},
10903 {5220, 44},
10904 {5240, 48},
10905 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10906 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10907 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10908 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10909 },
10910
10911 { /* Rest of World */
10912 "ZZD",
10913 .bg_channels = 13,
10914 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10915 {2427, 4}, {2432, 5}, {2437, 6},
10916 {2442, 7}, {2447, 8}, {2452, 9},
10917 {2457, 10}, {2462, 11}, {2467, 12},
10918 {2472, 13}},
10919 },
10920
10921 { /* Custom USA & Europe & High */
10922 "ZZA",
10923 .bg_channels = 11,
10924 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925 {2427, 4}, {2432, 5}, {2437, 6},
10926 {2442, 7}, {2447, 8}, {2452, 9},
10927 {2457, 10}, {2462, 11}},
10928 .a_channels = 13,
10929 .a = {{5180, 36},
10930 {5200, 40},
10931 {5220, 44},
10932 {5240, 48},
10933 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10934 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10935 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10936 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10937 {5745, 149},
10938 {5765, 153},
10939 {5785, 157},
10940 {5805, 161},
10941 {5825, 165}},
10942 },
10943
10944 { /* Custom NA & Europe */
10945 "ZZB",
10946 .bg_channels = 11,
10947 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10948 {2427, 4}, {2432, 5}, {2437, 6},
10949 {2442, 7}, {2447, 8}, {2452, 9},
10950 {2457, 10}, {2462, 11}},
10951 .a_channels = 13,
10952 .a = {{5180, 36},
10953 {5200, 40},
10954 {5220, 44},
10955 {5240, 48},
10956 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10957 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10958 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10959 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10960 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10961 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10962 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10963 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10964 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10965 },
10966
10967 { /* Custom Japan */
10968 "ZZC",
10969 .bg_channels = 11,
10970 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10971 {2427, 4}, {2432, 5}, {2437, 6},
10972 {2442, 7}, {2447, 8}, {2452, 9},
10973 {2457, 10}, {2462, 11}},
10974 .a_channels = 4,
10975 .a = {{5170, 34}, {5190, 38},
10976 {5210, 42}, {5230, 46}},
10977 },
10978
10979 { /* Custom */
10980 "ZZM",
10981 .bg_channels = 11,
10982 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10983 {2427, 4}, {2432, 5}, {2437, 6},
10984 {2442, 7}, {2447, 8}, {2452, 9},
10985 {2457, 10}, {2462, 11}},
10986 },
10987
10988 { /* Europe */
10989 "ZZE",
10990 .bg_channels = 13,
10991 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992 {2427, 4}, {2432, 5}, {2437, 6},
10993 {2442, 7}, {2447, 8}, {2452, 9},
10994 {2457, 10}, {2462, 11}, {2467, 12},
10995 {2472, 13}},
10996 .a_channels = 19,
10997 .a = {{5180, 36},
10998 {5200, 40},
10999 {5220, 44},
11000 {5240, 48},
11001 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11002 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11003 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11004 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11005 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11006 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11007 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11008 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11009 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11010 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11011 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11012 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11013 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11014 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11015 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11016 },
11017
11018 { /* Custom Japan */
11019 "ZZJ",
11020 .bg_channels = 14,
11021 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022 {2427, 4}, {2432, 5}, {2437, 6},
11023 {2442, 7}, {2447, 8}, {2452, 9},
11024 {2457, 10}, {2462, 11}, {2467, 12},
11025 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11026 .a_channels = 4,
11027 .a = {{5170, 34}, {5190, 38},
11028 {5210, 42}, {5230, 46}},
11029 },
11030
11031 { /* Rest of World */
11032 "ZZR",
11033 .bg_channels = 14,
11034 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035 {2427, 4}, {2432, 5}, {2437, 6},
11036 {2442, 7}, {2447, 8}, {2452, 9},
11037 {2457, 10}, {2462, 11}, {2467, 12},
11038 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11039 LIBIPW_CH_PASSIVE_ONLY}},
11040 },
11041
11042 { /* High Band */
11043 "ZZH",
11044 .bg_channels = 13,
11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046 {2427, 4}, {2432, 5}, {2437, 6},
11047 {2442, 7}, {2447, 8}, {2452, 9},
11048 {2457, 10}, {2462, 11},
11049 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11050 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11051 .a_channels = 4,
11052 .a = {{5745, 149}, {5765, 153},
11053 {5785, 157}, {5805, 161}},
11054 },
11055
11056 { /* Custom Europe */
11057 "ZZG",
11058 .bg_channels = 13,
11059 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060 {2427, 4}, {2432, 5}, {2437, 6},
11061 {2442, 7}, {2447, 8}, {2452, 9},
11062 {2457, 10}, {2462, 11},
11063 {2467, 12}, {2472, 13}},
11064 .a_channels = 4,
11065 .a = {{5180, 36}, {5200, 40},
11066 {5220, 44}, {5240, 48}},
11067 },
11068
11069 { /* Europe */
11070 "ZZK",
11071 .bg_channels = 13,
11072 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11073 {2427, 4}, {2432, 5}, {2437, 6},
11074 {2442, 7}, {2447, 8}, {2452, 9},
11075 {2457, 10}, {2462, 11},
11076 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11077 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11078 .a_channels = 24,
11079 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11080 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11081 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11082 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11083 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11084 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11085 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11086 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11087 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11088 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11089 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11090 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11091 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11092 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11093 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11094 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11095 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11096 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11097 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11098 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11099 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11100 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11101 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11102 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11103 },
11104
11105 { /* Europe */
11106 "ZZL",
11107 .bg_channels = 11,
11108 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11109 {2427, 4}, {2432, 5}, {2437, 6},
11110 {2442, 7}, {2447, 8}, {2452, 9},
11111 {2457, 10}, {2462, 11}},
11112 .a_channels = 13,
11113 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11114 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11115 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11116 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11117 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11118 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11119 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11120 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11121 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11122 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11123 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11124 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11125 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11126 }
11127 };
11128
ipw_set_geo(struct ipw_priv * priv)11129 static void ipw_set_geo(struct ipw_priv *priv)
11130 {
11131 int j;
11132
11133 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11134 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11135 ipw_geos[j].name, 3))
11136 break;
11137 }
11138
11139 if (j == ARRAY_SIZE(ipw_geos)) {
11140 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11141 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11142 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11143 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11144 j = 0;
11145 }
11146
11147 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11148 }
11149
11150 #define MAX_HW_RESTARTS 5
ipw_up(struct ipw_priv * priv)11151 static int ipw_up(struct ipw_priv *priv)
11152 {
11153 int rc, i;
11154
11155 /* Age scan list entries found before suspend */
11156 if (priv->suspend_time) {
11157 libipw_networks_age(priv->ieee, priv->suspend_time);
11158 priv->suspend_time = 0;
11159 }
11160
11161 if (priv->status & STATUS_EXIT_PENDING)
11162 return -EIO;
11163
11164 if (cmdlog && !priv->cmdlog) {
11165 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11166 GFP_KERNEL);
11167 if (priv->cmdlog == NULL) {
11168 IPW_ERROR("Error allocating %d command log entries.\n",
11169 cmdlog);
11170 return -ENOMEM;
11171 } else {
11172 priv->cmdlog_len = cmdlog;
11173 }
11174 }
11175
11176 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11177 /* Load the microcode, firmware, and eeprom.
11178 * Also start the clocks. */
11179 rc = ipw_load(priv);
11180 if (rc) {
11181 IPW_ERROR("Unable to load firmware: %d\n", rc);
11182 return rc;
11183 }
11184
11185 ipw_init_ordinals(priv);
11186 if (!(priv->config & CFG_CUSTOM_MAC))
11187 eeprom_parse_mac(priv, priv->mac_addr);
11188 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11189
11190 ipw_set_geo(priv);
11191
11192 if (priv->status & STATUS_RF_KILL_SW) {
11193 IPW_WARNING("Radio disabled by module parameter.\n");
11194 return 0;
11195 } else if (rf_kill_active(priv)) {
11196 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11197 "Kill switch must be turned off for "
11198 "wireless networking to work.\n");
11199 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11200 return 0;
11201 }
11202
11203 rc = ipw_config(priv);
11204 if (!rc) {
11205 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11206
11207 /* If configure to try and auto-associate, kick
11208 * off a scan. */
11209 schedule_delayed_work(&priv->request_scan, 0);
11210
11211 return 0;
11212 }
11213
11214 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11215 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11216 i, MAX_HW_RESTARTS);
11217
11218 /* We had an error bringing up the hardware, so take it
11219 * all the way back down so we can try again */
11220 ipw_down(priv);
11221 }
11222
11223 /* tried to restart and config the device for as long as our
11224 * patience could withstand */
11225 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11226
11227 return -EIO;
11228 }
11229
ipw_bg_up(struct work_struct * work)11230 static void ipw_bg_up(struct work_struct *work)
11231 {
11232 struct ipw_priv *priv =
11233 container_of(work, struct ipw_priv, up);
11234 mutex_lock(&priv->mutex);
11235 ipw_up(priv);
11236 mutex_unlock(&priv->mutex);
11237 }
11238
ipw_deinit(struct ipw_priv * priv)11239 static void ipw_deinit(struct ipw_priv *priv)
11240 {
11241 int i;
11242
11243 if (priv->status & STATUS_SCANNING) {
11244 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11245 ipw_abort_scan(priv);
11246 }
11247
11248 if (priv->status & STATUS_ASSOCIATED) {
11249 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11250 ipw_disassociate(priv);
11251 }
11252
11253 ipw_led_shutdown(priv);
11254
11255 /* Wait up to 1s for status to change to not scanning and not
11256 * associated (disassociation can take a while for a ful 802.11
11257 * exchange */
11258 for (i = 1000; i && (priv->status &
11259 (STATUS_DISASSOCIATING |
11260 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11261 udelay(10);
11262
11263 if (priv->status & (STATUS_DISASSOCIATING |
11264 STATUS_ASSOCIATED | STATUS_SCANNING))
11265 IPW_DEBUG_INFO("Still associated or scanning...\n");
11266 else
11267 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11268
11269 /* Attempt to disable the card */
11270 ipw_send_card_disable(priv, 0);
11271
11272 priv->status &= ~STATUS_INIT;
11273 }
11274
ipw_down(struct ipw_priv * priv)11275 static void ipw_down(struct ipw_priv *priv)
11276 {
11277 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11278
11279 priv->status |= STATUS_EXIT_PENDING;
11280
11281 if (ipw_is_init(priv))
11282 ipw_deinit(priv);
11283
11284 /* Wipe out the EXIT_PENDING status bit if we are not actually
11285 * exiting the module */
11286 if (!exit_pending)
11287 priv->status &= ~STATUS_EXIT_PENDING;
11288
11289 /* tell the device to stop sending interrupts */
11290 ipw_disable_interrupts(priv);
11291
11292 /* Clear all bits but the RF Kill */
11293 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11294 netif_carrier_off(priv->net_dev);
11295
11296 ipw_stop_nic(priv);
11297
11298 ipw_led_radio_off(priv);
11299 }
11300
ipw_bg_down(struct work_struct * work)11301 static void ipw_bg_down(struct work_struct *work)
11302 {
11303 struct ipw_priv *priv =
11304 container_of(work, struct ipw_priv, down);
11305 mutex_lock(&priv->mutex);
11306 ipw_down(priv);
11307 mutex_unlock(&priv->mutex);
11308 }
11309
ipw_wdev_init(struct net_device * dev)11310 static int ipw_wdev_init(struct net_device *dev)
11311 {
11312 int i, rc = 0;
11313 struct ipw_priv *priv = libipw_priv(dev);
11314 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11315 struct wireless_dev *wdev = &priv->ieee->wdev;
11316
11317 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11318
11319 /* fill-out priv->ieee->bg_band */
11320 if (geo->bg_channels) {
11321 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11322
11323 bg_band->band = NL80211_BAND_2GHZ;
11324 bg_band->n_channels = geo->bg_channels;
11325 bg_band->channels = kcalloc(geo->bg_channels,
11326 sizeof(struct ieee80211_channel),
11327 GFP_KERNEL);
11328 if (!bg_band->channels) {
11329 rc = -ENOMEM;
11330 goto out;
11331 }
11332 /* translate geo->bg to bg_band.channels */
11333 for (i = 0; i < geo->bg_channels; i++) {
11334 bg_band->channels[i].band = NL80211_BAND_2GHZ;
11335 bg_band->channels[i].center_freq = geo->bg[i].freq;
11336 bg_band->channels[i].hw_value = geo->bg[i].channel;
11337 bg_band->channels[i].max_power = geo->bg[i].max_power;
11338 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11339 bg_band->channels[i].flags |=
11340 IEEE80211_CHAN_NO_IR;
11341 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11342 bg_band->channels[i].flags |=
11343 IEEE80211_CHAN_NO_IR;
11344 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11345 bg_band->channels[i].flags |=
11346 IEEE80211_CHAN_RADAR;
11347 /* No equivalent for LIBIPW_CH_80211H_RULES,
11348 LIBIPW_CH_UNIFORM_SPREADING, or
11349 LIBIPW_CH_B_ONLY... */
11350 }
11351 /* point at bitrate info */
11352 bg_band->bitrates = ipw2200_bg_rates;
11353 bg_band->n_bitrates = ipw2200_num_bg_rates;
11354
11355 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11356 }
11357
11358 /* fill-out priv->ieee->a_band */
11359 if (geo->a_channels) {
11360 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11361
11362 a_band->band = NL80211_BAND_5GHZ;
11363 a_band->n_channels = geo->a_channels;
11364 a_band->channels = kcalloc(geo->a_channels,
11365 sizeof(struct ieee80211_channel),
11366 GFP_KERNEL);
11367 if (!a_band->channels) {
11368 rc = -ENOMEM;
11369 goto out;
11370 }
11371 /* translate geo->a to a_band.channels */
11372 for (i = 0; i < geo->a_channels; i++) {
11373 a_band->channels[i].band = NL80211_BAND_5GHZ;
11374 a_band->channels[i].center_freq = geo->a[i].freq;
11375 a_band->channels[i].hw_value = geo->a[i].channel;
11376 a_band->channels[i].max_power = geo->a[i].max_power;
11377 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11378 a_band->channels[i].flags |=
11379 IEEE80211_CHAN_NO_IR;
11380 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11381 a_band->channels[i].flags |=
11382 IEEE80211_CHAN_NO_IR;
11383 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11384 a_band->channels[i].flags |=
11385 IEEE80211_CHAN_RADAR;
11386 /* No equivalent for LIBIPW_CH_80211H_RULES,
11387 LIBIPW_CH_UNIFORM_SPREADING, or
11388 LIBIPW_CH_B_ONLY... */
11389 }
11390 /* point at bitrate info */
11391 a_band->bitrates = ipw2200_a_rates;
11392 a_band->n_bitrates = ipw2200_num_a_rates;
11393
11394 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11395 }
11396
11397 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11398 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11399
11400 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11401
11402 /* With that information in place, we can now register the wiphy... */
11403 rc = wiphy_register(wdev->wiphy);
11404 if (rc)
11405 goto out;
11406
11407 return 0;
11408 out:
11409 kfree(priv->ieee->a_band.channels);
11410 kfree(priv->ieee->bg_band.channels);
11411 return rc;
11412 }
11413
11414 /* PCI driver stuff */
11415 static const struct pci_device_id card_ids[] = {
11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11433 {PCI_VDEVICE(INTEL, 0x104f), 0},
11434 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11435 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11436 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11437 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11438
11439 /* required last entry */
11440 {0,}
11441 };
11442
11443 MODULE_DEVICE_TABLE(pci, card_ids);
11444
11445 static struct attribute *ipw_sysfs_entries[] = {
11446 &dev_attr_rf_kill.attr,
11447 &dev_attr_direct_dword.attr,
11448 &dev_attr_indirect_byte.attr,
11449 &dev_attr_indirect_dword.attr,
11450 &dev_attr_mem_gpio_reg.attr,
11451 &dev_attr_command_event_reg.attr,
11452 &dev_attr_nic_type.attr,
11453 &dev_attr_status.attr,
11454 &dev_attr_cfg.attr,
11455 &dev_attr_error.attr,
11456 &dev_attr_event_log.attr,
11457 &dev_attr_cmd_log.attr,
11458 &dev_attr_eeprom_delay.attr,
11459 &dev_attr_ucode_version.attr,
11460 &dev_attr_rtc.attr,
11461 &dev_attr_scan_age.attr,
11462 &dev_attr_led.attr,
11463 &dev_attr_speed_scan.attr,
11464 &dev_attr_net_stats.attr,
11465 &dev_attr_channels.attr,
11466 #ifdef CONFIG_IPW2200_PROMISCUOUS
11467 &dev_attr_rtap_iface.attr,
11468 &dev_attr_rtap_filter.attr,
11469 #endif
11470 NULL
11471 };
11472
11473 static const struct attribute_group ipw_attribute_group = {
11474 .name = NULL, /* put in device directory */
11475 .attrs = ipw_sysfs_entries,
11476 };
11477
11478 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_prom_open(struct net_device * dev)11479 static int ipw_prom_open(struct net_device *dev)
11480 {
11481 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11482 struct ipw_priv *priv = prom_priv->priv;
11483
11484 IPW_DEBUG_INFO("prom dev->open\n");
11485 netif_carrier_off(dev);
11486
11487 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11488 priv->sys_config.accept_all_data_frames = 1;
11489 priv->sys_config.accept_non_directed_frames = 1;
11490 priv->sys_config.accept_all_mgmt_bcpr = 1;
11491 priv->sys_config.accept_all_mgmt_frames = 1;
11492
11493 ipw_send_system_config(priv);
11494 }
11495
11496 return 0;
11497 }
11498
ipw_prom_stop(struct net_device * dev)11499 static int ipw_prom_stop(struct net_device *dev)
11500 {
11501 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11502 struct ipw_priv *priv = prom_priv->priv;
11503
11504 IPW_DEBUG_INFO("prom dev->stop\n");
11505
11506 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11507 priv->sys_config.accept_all_data_frames = 0;
11508 priv->sys_config.accept_non_directed_frames = 0;
11509 priv->sys_config.accept_all_mgmt_bcpr = 0;
11510 priv->sys_config.accept_all_mgmt_frames = 0;
11511
11512 ipw_send_system_config(priv);
11513 }
11514
11515 return 0;
11516 }
11517
ipw_prom_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)11518 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11519 struct net_device *dev)
11520 {
11521 IPW_DEBUG_INFO("prom dev->xmit\n");
11522 dev_kfree_skb(skb);
11523 return NETDEV_TX_OK;
11524 }
11525
11526 static const struct net_device_ops ipw_prom_netdev_ops = {
11527 .ndo_open = ipw_prom_open,
11528 .ndo_stop = ipw_prom_stop,
11529 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11530 .ndo_set_mac_address = eth_mac_addr,
11531 .ndo_validate_addr = eth_validate_addr,
11532 };
11533
ipw_prom_alloc(struct ipw_priv * priv)11534 static int ipw_prom_alloc(struct ipw_priv *priv)
11535 {
11536 int rc = 0;
11537
11538 if (priv->prom_net_dev)
11539 return -EPERM;
11540
11541 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11542 if (priv->prom_net_dev == NULL)
11543 return -ENOMEM;
11544
11545 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11546 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11547 priv->prom_priv->priv = priv;
11548
11549 strcpy(priv->prom_net_dev->name, "rtap%d");
11550 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11551
11552 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11553 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11554
11555 priv->prom_net_dev->min_mtu = 68;
11556 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11557
11558 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11559 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11560
11561 rc = register_netdev(priv->prom_net_dev);
11562 if (rc) {
11563 free_libipw(priv->prom_net_dev, 1);
11564 priv->prom_net_dev = NULL;
11565 return rc;
11566 }
11567
11568 return 0;
11569 }
11570
ipw_prom_free(struct ipw_priv * priv)11571 static void ipw_prom_free(struct ipw_priv *priv)
11572 {
11573 if (!priv->prom_net_dev)
11574 return;
11575
11576 unregister_netdev(priv->prom_net_dev);
11577 free_libipw(priv->prom_net_dev, 1);
11578
11579 priv->prom_net_dev = NULL;
11580 }
11581
11582 #endif
11583
11584 static const struct net_device_ops ipw_netdev_ops = {
11585 .ndo_open = ipw_net_open,
11586 .ndo_stop = ipw_net_stop,
11587 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11588 .ndo_set_mac_address = ipw_net_set_mac_address,
11589 .ndo_start_xmit = libipw_xmit,
11590 .ndo_validate_addr = eth_validate_addr,
11591 };
11592
ipw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11593 static int ipw_pci_probe(struct pci_dev *pdev,
11594 const struct pci_device_id *ent)
11595 {
11596 int err = 0;
11597 struct net_device *net_dev;
11598 void __iomem *base;
11599 u32 length, val;
11600 struct ipw_priv *priv;
11601 int i;
11602
11603 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11604 if (net_dev == NULL) {
11605 err = -ENOMEM;
11606 goto out;
11607 }
11608
11609 priv = libipw_priv(net_dev);
11610 priv->ieee = netdev_priv(net_dev);
11611
11612 priv->net_dev = net_dev;
11613 priv->pci_dev = pdev;
11614 ipw_debug_level = debug;
11615 spin_lock_init(&priv->irq_lock);
11616 spin_lock_init(&priv->lock);
11617 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11618 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11619
11620 mutex_init(&priv->mutex);
11621 if (pci_enable_device(pdev)) {
11622 err = -ENODEV;
11623 goto out_free_libipw;
11624 }
11625
11626 pci_set_master(pdev);
11627
11628 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11629 if (!err)
11630 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11631 if (err) {
11632 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11633 goto out_pci_disable_device;
11634 }
11635
11636 pci_set_drvdata(pdev, priv);
11637
11638 err = pci_request_regions(pdev, DRV_NAME);
11639 if (err)
11640 goto out_pci_disable_device;
11641
11642 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11643 * PCI Tx retries from interfering with C3 CPU state */
11644 pci_read_config_dword(pdev, 0x40, &val);
11645 if ((val & 0x0000ff00) != 0)
11646 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11647
11648 length = pci_resource_len(pdev, 0);
11649 priv->hw_len = length;
11650
11651 base = pci_ioremap_bar(pdev, 0);
11652 if (!base) {
11653 err = -ENODEV;
11654 goto out_pci_release_regions;
11655 }
11656
11657 priv->hw_base = base;
11658 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11659 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11660
11661 ipw_setup_deferred_work(priv);
11662
11663 ipw_sw_reset(priv, 1);
11664
11665 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11666 if (err) {
11667 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11668 goto out_iounmap;
11669 }
11670
11671 SET_NETDEV_DEV(net_dev, &pdev->dev);
11672
11673 mutex_lock(&priv->mutex);
11674
11675 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11676 priv->ieee->set_security = shim__set_security;
11677 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11678
11679 #ifdef CONFIG_IPW2200_QOS
11680 priv->ieee->is_qos_active = ipw_is_qos_active;
11681 priv->ieee->handle_probe_response = ipw_handle_beacon;
11682 priv->ieee->handle_beacon = ipw_handle_probe_response;
11683 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11684 #endif /* CONFIG_IPW2200_QOS */
11685
11686 priv->ieee->perfect_rssi = -20;
11687 priv->ieee->worst_rssi = -85;
11688
11689 net_dev->netdev_ops = &ipw_netdev_ops;
11690 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11691 net_dev->wireless_data = &priv->wireless_data;
11692 net_dev->wireless_handlers = &ipw_wx_handler_def;
11693 net_dev->ethtool_ops = &ipw_ethtool_ops;
11694
11695 net_dev->min_mtu = 68;
11696 net_dev->max_mtu = LIBIPW_DATA_LEN;
11697
11698 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11699 if (err) {
11700 IPW_ERROR("failed to create sysfs device attributes\n");
11701 mutex_unlock(&priv->mutex);
11702 goto out_release_irq;
11703 }
11704
11705 if (ipw_up(priv)) {
11706 mutex_unlock(&priv->mutex);
11707 err = -EIO;
11708 goto out_remove_sysfs;
11709 }
11710
11711 mutex_unlock(&priv->mutex);
11712
11713 err = ipw_wdev_init(net_dev);
11714 if (err) {
11715 IPW_ERROR("failed to register wireless device\n");
11716 goto out_remove_sysfs;
11717 }
11718
11719 err = register_netdev(net_dev);
11720 if (err) {
11721 IPW_ERROR("failed to register network device\n");
11722 goto out_unregister_wiphy;
11723 }
11724
11725 #ifdef CONFIG_IPW2200_PROMISCUOUS
11726 if (rtap_iface) {
11727 err = ipw_prom_alloc(priv);
11728 if (err) {
11729 IPW_ERROR("Failed to register promiscuous network "
11730 "device (error %d).\n", err);
11731 unregister_netdev(priv->net_dev);
11732 goto out_unregister_wiphy;
11733 }
11734 }
11735 #endif
11736
11737 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11738 "channels, %d 802.11a channels)\n",
11739 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11740 priv->ieee->geo.a_channels);
11741
11742 return 0;
11743
11744 out_unregister_wiphy:
11745 wiphy_unregister(priv->ieee->wdev.wiphy);
11746 kfree(priv->ieee->a_band.channels);
11747 kfree(priv->ieee->bg_band.channels);
11748 out_remove_sysfs:
11749 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11750 out_release_irq:
11751 free_irq(pdev->irq, priv);
11752 out_iounmap:
11753 iounmap(priv->hw_base);
11754 out_pci_release_regions:
11755 pci_release_regions(pdev);
11756 out_pci_disable_device:
11757 pci_disable_device(pdev);
11758 out_free_libipw:
11759 free_libipw(priv->net_dev, 0);
11760 out:
11761 return err;
11762 }
11763
ipw_pci_remove(struct pci_dev * pdev)11764 static void ipw_pci_remove(struct pci_dev *pdev)
11765 {
11766 struct ipw_priv *priv = pci_get_drvdata(pdev);
11767 struct list_head *p, *q;
11768 int i;
11769
11770 if (!priv)
11771 return;
11772
11773 mutex_lock(&priv->mutex);
11774
11775 priv->status |= STATUS_EXIT_PENDING;
11776 ipw_down(priv);
11777 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11778
11779 mutex_unlock(&priv->mutex);
11780
11781 unregister_netdev(priv->net_dev);
11782
11783 if (priv->rxq) {
11784 ipw_rx_queue_free(priv, priv->rxq);
11785 priv->rxq = NULL;
11786 }
11787 ipw_tx_queue_free(priv);
11788
11789 if (priv->cmdlog) {
11790 kfree(priv->cmdlog);
11791 priv->cmdlog = NULL;
11792 }
11793
11794 /* make sure all works are inactive */
11795 cancel_delayed_work_sync(&priv->adhoc_check);
11796 cancel_work_sync(&priv->associate);
11797 cancel_work_sync(&priv->disassociate);
11798 cancel_work_sync(&priv->system_config);
11799 cancel_work_sync(&priv->rx_replenish);
11800 cancel_work_sync(&priv->adapter_restart);
11801 cancel_delayed_work_sync(&priv->rf_kill);
11802 cancel_work_sync(&priv->up);
11803 cancel_work_sync(&priv->down);
11804 cancel_delayed_work_sync(&priv->request_scan);
11805 cancel_delayed_work_sync(&priv->request_direct_scan);
11806 cancel_delayed_work_sync(&priv->request_passive_scan);
11807 cancel_delayed_work_sync(&priv->scan_event);
11808 cancel_delayed_work_sync(&priv->gather_stats);
11809 cancel_work_sync(&priv->abort_scan);
11810 cancel_work_sync(&priv->roam);
11811 cancel_delayed_work_sync(&priv->scan_check);
11812 cancel_work_sync(&priv->link_up);
11813 cancel_work_sync(&priv->link_down);
11814 cancel_delayed_work_sync(&priv->led_link_on);
11815 cancel_delayed_work_sync(&priv->led_link_off);
11816 cancel_delayed_work_sync(&priv->led_act_off);
11817 cancel_work_sync(&priv->merge_networks);
11818
11819 /* Free MAC hash list for ADHOC */
11820 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11821 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11822 list_del(p);
11823 kfree(list_entry(p, struct ipw_ibss_seq, list));
11824 }
11825 }
11826
11827 kfree(priv->error);
11828 priv->error = NULL;
11829
11830 #ifdef CONFIG_IPW2200_PROMISCUOUS
11831 ipw_prom_free(priv);
11832 #endif
11833
11834 free_irq(pdev->irq, priv);
11835 iounmap(priv->hw_base);
11836 pci_release_regions(pdev);
11837 pci_disable_device(pdev);
11838 /* wiphy_unregister needs to be here, before free_libipw */
11839 wiphy_unregister(priv->ieee->wdev.wiphy);
11840 kfree(priv->ieee->a_band.channels);
11841 kfree(priv->ieee->bg_band.channels);
11842 free_libipw(priv->net_dev, 0);
11843 free_firmware();
11844 }
11845
ipw_pci_suspend(struct device * dev_d)11846 static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11847 {
11848 struct ipw_priv *priv = dev_get_drvdata(dev_d);
11849 struct net_device *dev = priv->net_dev;
11850
11851 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11852
11853 /* Take down the device; powers it off, etc. */
11854 ipw_down(priv);
11855
11856 /* Remove the PRESENT state of the device */
11857 netif_device_detach(dev);
11858
11859 priv->suspend_at = ktime_get_boottime_seconds();
11860
11861 return 0;
11862 }
11863
ipw_pci_resume(struct device * dev_d)11864 static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11865 {
11866 struct pci_dev *pdev = to_pci_dev(dev_d);
11867 struct ipw_priv *priv = pci_get_drvdata(pdev);
11868 struct net_device *dev = priv->net_dev;
11869 u32 val;
11870
11871 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11872
11873 /*
11874 * Suspend/Resume resets the PCI configuration space, so we have to
11875 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11876 * from interfering with C3 CPU state. pci_restore_state won't help
11877 * here since it only restores the first 64 bytes pci config header.
11878 */
11879 pci_read_config_dword(pdev, 0x40, &val);
11880 if ((val & 0x0000ff00) != 0)
11881 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11882
11883 /* Set the device back into the PRESENT state; this will also wake
11884 * the queue of needed */
11885 netif_device_attach(dev);
11886
11887 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11888
11889 /* Bring the device back up */
11890 schedule_work(&priv->up);
11891
11892 return 0;
11893 }
11894
ipw_pci_shutdown(struct pci_dev * pdev)11895 static void ipw_pci_shutdown(struct pci_dev *pdev)
11896 {
11897 struct ipw_priv *priv = pci_get_drvdata(pdev);
11898
11899 /* Take down the device; powers it off, etc. */
11900 ipw_down(priv);
11901
11902 pci_disable_device(pdev);
11903 }
11904
11905 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11906
11907 /* driver initialization stuff */
11908 static struct pci_driver ipw_driver = {
11909 .name = DRV_NAME,
11910 .id_table = card_ids,
11911 .probe = ipw_pci_probe,
11912 .remove = ipw_pci_remove,
11913 .driver.pm = &ipw_pci_pm_ops,
11914 .shutdown = ipw_pci_shutdown,
11915 };
11916
ipw_init(void)11917 static int __init ipw_init(void)
11918 {
11919 int ret;
11920
11921 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11922 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11923
11924 ret = pci_register_driver(&ipw_driver);
11925 if (ret) {
11926 IPW_ERROR("Unable to initialize PCI module\n");
11927 return ret;
11928 }
11929
11930 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11931 if (ret) {
11932 IPW_ERROR("Unable to create driver sysfs file\n");
11933 pci_unregister_driver(&ipw_driver);
11934 return ret;
11935 }
11936
11937 return ret;
11938 }
11939
ipw_exit(void)11940 static void __exit ipw_exit(void)
11941 {
11942 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11943 pci_unregister_driver(&ipw_driver);
11944 }
11945
11946 module_param(disable, int, 0444);
11947 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11948
11949 module_param(associate, int, 0444);
11950 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11951
11952 module_param(auto_create, int, 0444);
11953 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11954
11955 module_param_named(led, led_support, int, 0444);
11956 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11957
11958 module_param(debug, int, 0444);
11959 MODULE_PARM_DESC(debug, "debug output mask");
11960
11961 module_param_named(channel, default_channel, int, 0444);
11962 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11963
11964 #ifdef CONFIG_IPW2200_PROMISCUOUS
11965 module_param(rtap_iface, int, 0444);
11966 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11967 #endif
11968
11969 #ifdef CONFIG_IPW2200_QOS
11970 module_param(qos_enable, int, 0444);
11971 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11972
11973 module_param(qos_burst_enable, int, 0444);
11974 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11975
11976 module_param(qos_no_ack_mask, int, 0444);
11977 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11978
11979 module_param(burst_duration_CCK, int, 0444);
11980 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11981
11982 module_param(burst_duration_OFDM, int, 0444);
11983 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11984 #endif /* CONFIG_IPW2200_QOS */
11985
11986 #ifdef CONFIG_IPW2200_MONITOR
11987 module_param_named(mode, network_mode, int, 0444);
11988 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11989 #else
11990 module_param_named(mode, network_mode, int, 0444);
11991 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11992 #endif
11993
11994 module_param(bt_coexist, int, 0444);
11995 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11996
11997 module_param(hwcrypto, int, 0444);
11998 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11999
12000 module_param(cmdlog, int, 0444);
12001 MODULE_PARM_DESC(cmdlog,
12002 "allocate a ring buffer for logging firmware commands");
12003
12004 module_param(roaming, int, 0444);
12005 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12006
12007 module_param(antenna, int, 0444);
12008 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12009
12010 module_exit(ipw_exit);
12011 module_init(ipw_init);
12012