1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
21 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
32
33 #define NVMET_TCP_RECV_BUDGET 8
34 #define NVMET_TCP_SEND_BUDGET 8
35 #define NVMET_TCP_IO_WORK_BUDGET 64
36
37 enum nvmet_tcp_send_state {
38 NVMET_TCP_SEND_DATA_PDU,
39 NVMET_TCP_SEND_DATA,
40 NVMET_TCP_SEND_R2T,
41 NVMET_TCP_SEND_DDGST,
42 NVMET_TCP_SEND_RESPONSE
43 };
44
45 enum nvmet_tcp_recv_state {
46 NVMET_TCP_RECV_PDU,
47 NVMET_TCP_RECV_DATA,
48 NVMET_TCP_RECV_DDGST,
49 NVMET_TCP_RECV_ERR,
50 };
51
52 enum {
53 NVMET_TCP_F_INIT_FAILED = (1 << 0),
54 };
55
56 struct nvmet_tcp_cmd {
57 struct nvmet_tcp_queue *queue;
58 struct nvmet_req req;
59
60 struct nvme_tcp_cmd_pdu *cmd_pdu;
61 struct nvme_tcp_rsp_pdu *rsp_pdu;
62 struct nvme_tcp_data_pdu *data_pdu;
63 struct nvme_tcp_r2t_pdu *r2t_pdu;
64
65 u32 rbytes_done;
66 u32 wbytes_done;
67
68 u32 pdu_len;
69 u32 pdu_recv;
70 int sg_idx;
71 int nr_mapped;
72 struct msghdr recv_msg;
73 struct kvec *iov;
74 u32 flags;
75
76 struct list_head entry;
77 struct llist_node lentry;
78
79 /* send state */
80 u32 offset;
81 struct scatterlist *cur_sg;
82 enum nvmet_tcp_send_state state;
83
84 __le32 exp_ddgst;
85 __le32 recv_ddgst;
86 };
87
88 enum nvmet_tcp_queue_state {
89 NVMET_TCP_Q_CONNECTING,
90 NVMET_TCP_Q_LIVE,
91 NVMET_TCP_Q_DISCONNECTING,
92 };
93
94 struct nvmet_tcp_queue {
95 struct socket *sock;
96 struct nvmet_tcp_port *port;
97 struct work_struct io_work;
98 struct nvmet_cq nvme_cq;
99 struct nvmet_sq nvme_sq;
100
101 /* send state */
102 struct nvmet_tcp_cmd *cmds;
103 unsigned int nr_cmds;
104 struct list_head free_list;
105 struct llist_head resp_list;
106 struct list_head resp_send_list;
107 int send_list_len;
108 struct nvmet_tcp_cmd *snd_cmd;
109
110 /* recv state */
111 int offset;
112 int left;
113 enum nvmet_tcp_recv_state rcv_state;
114 struct nvmet_tcp_cmd *cmd;
115 union nvme_tcp_pdu pdu;
116
117 /* digest state */
118 bool hdr_digest;
119 bool data_digest;
120 struct ahash_request *snd_hash;
121 struct ahash_request *rcv_hash;
122
123 spinlock_t state_lock;
124 enum nvmet_tcp_queue_state state;
125
126 struct sockaddr_storage sockaddr;
127 struct sockaddr_storage sockaddr_peer;
128 struct work_struct release_work;
129
130 int idx;
131 struct list_head queue_list;
132
133 struct nvmet_tcp_cmd connect;
134
135 struct page_frag_cache pf_cache;
136
137 void (*data_ready)(struct sock *);
138 void (*state_change)(struct sock *);
139 void (*write_space)(struct sock *);
140 };
141
142 struct nvmet_tcp_port {
143 struct socket *sock;
144 struct work_struct accept_work;
145 struct nvmet_port *nport;
146 struct sockaddr_storage addr;
147 void (*data_ready)(struct sock *);
148 };
149
150 static DEFINE_IDA(nvmet_tcp_queue_ida);
151 static LIST_HEAD(nvmet_tcp_queue_list);
152 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
153
154 static struct workqueue_struct *nvmet_tcp_wq;
155 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
156 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
157 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
158
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)159 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
160 struct nvmet_tcp_cmd *cmd)
161 {
162 if (unlikely(!queue->nr_cmds)) {
163 /* We didn't allocate cmds yet, send 0xffff */
164 return USHRT_MAX;
165 }
166
167 return cmd - queue->cmds;
168 }
169
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)170 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
171 {
172 return nvme_is_write(cmd->req.cmd) &&
173 cmd->rbytes_done < cmd->req.transfer_len;
174 }
175
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)176 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
177 {
178 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
179 }
180
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)181 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
182 {
183 return !nvme_is_write(cmd->req.cmd) &&
184 cmd->req.transfer_len > 0 &&
185 !cmd->req.cqe->status;
186 }
187
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)188 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
189 {
190 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
191 !cmd->rbytes_done;
192 }
193
194 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)195 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
196 {
197 struct nvmet_tcp_cmd *cmd;
198
199 cmd = list_first_entry_or_null(&queue->free_list,
200 struct nvmet_tcp_cmd, entry);
201 if (!cmd)
202 return NULL;
203 list_del_init(&cmd->entry);
204
205 cmd->rbytes_done = cmd->wbytes_done = 0;
206 cmd->pdu_len = 0;
207 cmd->pdu_recv = 0;
208 cmd->iov = NULL;
209 cmd->flags = 0;
210 return cmd;
211 }
212
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)213 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
214 {
215 if (unlikely(cmd == &cmd->queue->connect))
216 return;
217
218 list_add_tail(&cmd->entry, &cmd->queue->free_list);
219 }
220
queue_cpu(struct nvmet_tcp_queue * queue)221 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
222 {
223 return queue->sock->sk->sk_incoming_cpu;
224 }
225
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)226 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
227 {
228 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
229 }
230
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)231 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
232 {
233 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
234 }
235
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)236 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
237 void *pdu, size_t len)
238 {
239 struct scatterlist sg;
240
241 sg_init_one(&sg, pdu, len);
242 ahash_request_set_crypt(hash, &sg, pdu + len, len);
243 crypto_ahash_digest(hash);
244 }
245
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)246 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
247 void *pdu, size_t len)
248 {
249 struct nvme_tcp_hdr *hdr = pdu;
250 __le32 recv_digest;
251 __le32 exp_digest;
252
253 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
254 pr_err("queue %d: header digest enabled but no header digest\n",
255 queue->idx);
256 return -EPROTO;
257 }
258
259 recv_digest = *(__le32 *)(pdu + hdr->hlen);
260 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
261 exp_digest = *(__le32 *)(pdu + hdr->hlen);
262 if (recv_digest != exp_digest) {
263 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
264 queue->idx, le32_to_cpu(recv_digest),
265 le32_to_cpu(exp_digest));
266 return -EPROTO;
267 }
268
269 return 0;
270 }
271
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)272 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
273 {
274 struct nvme_tcp_hdr *hdr = pdu;
275 u8 digest_len = nvmet_tcp_hdgst_len(queue);
276 u32 len;
277
278 len = le32_to_cpu(hdr->plen) - hdr->hlen -
279 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
280
281 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
282 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
283 return -EPROTO;
284 }
285
286 return 0;
287 }
288
nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd * cmd)289 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
290 {
291 struct scatterlist *sg;
292 int i;
293
294 sg = &cmd->req.sg[cmd->sg_idx];
295
296 for (i = 0; i < cmd->nr_mapped; i++)
297 kunmap(sg_page(&sg[i]));
298 }
299
nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd * cmd)300 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
301 {
302 struct kvec *iov = cmd->iov;
303 struct scatterlist *sg;
304 u32 length, offset, sg_offset;
305
306 length = cmd->pdu_len;
307 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
308 offset = cmd->rbytes_done;
309 cmd->sg_idx = offset / PAGE_SIZE;
310 sg_offset = offset % PAGE_SIZE;
311 sg = &cmd->req.sg[cmd->sg_idx];
312
313 while (length) {
314 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
315
316 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
317 iov->iov_len = iov_len;
318
319 length -= iov_len;
320 sg = sg_next(sg);
321 iov++;
322 sg_offset = 0;
323 }
324
325 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
326 cmd->nr_mapped, cmd->pdu_len);
327 }
328
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)329 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
330 {
331 queue->rcv_state = NVMET_TCP_RECV_ERR;
332 if (queue->nvme_sq.ctrl)
333 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
334 else
335 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
336 }
337
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)338 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
339 {
340 queue->rcv_state = NVMET_TCP_RECV_ERR;
341 if (status == -EPIPE || status == -ECONNRESET)
342 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
343 else
344 nvmet_tcp_fatal_error(queue);
345 }
346
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)347 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
348 {
349 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
350 u32 len = le32_to_cpu(sgl->length);
351
352 if (!len)
353 return 0;
354
355 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
356 NVME_SGL_FMT_OFFSET)) {
357 if (!nvme_is_write(cmd->req.cmd))
358 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
359
360 if (len > cmd->req.port->inline_data_size)
361 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
362 cmd->pdu_len = len;
363 }
364 cmd->req.transfer_len += len;
365
366 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
367 if (!cmd->req.sg)
368 return NVME_SC_INTERNAL;
369 cmd->cur_sg = cmd->req.sg;
370
371 if (nvmet_tcp_has_data_in(cmd)) {
372 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
373 sizeof(*cmd->iov), GFP_KERNEL);
374 if (!cmd->iov)
375 goto err;
376 }
377
378 return 0;
379 err:
380 sgl_free(cmd->req.sg);
381 return NVME_SC_INTERNAL;
382 }
383
nvmet_tcp_send_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)384 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
385 struct nvmet_tcp_cmd *cmd)
386 {
387 ahash_request_set_crypt(hash, cmd->req.sg,
388 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
389 crypto_ahash_digest(hash);
390 }
391
nvmet_tcp_recv_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)392 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
393 struct nvmet_tcp_cmd *cmd)
394 {
395 struct scatterlist sg;
396 struct kvec *iov;
397 int i;
398
399 crypto_ahash_init(hash);
400 for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
401 sg_init_one(&sg, iov->iov_base, iov->iov_len);
402 ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
403 crypto_ahash_update(hash);
404 }
405 ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
406 crypto_ahash_final(hash);
407 }
408
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)409 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
410 {
411 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
412 struct nvmet_tcp_queue *queue = cmd->queue;
413 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
414 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
415
416 cmd->offset = 0;
417 cmd->state = NVMET_TCP_SEND_DATA_PDU;
418
419 pdu->hdr.type = nvme_tcp_c2h_data;
420 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
421 NVME_TCP_F_DATA_SUCCESS : 0);
422 pdu->hdr.hlen = sizeof(*pdu);
423 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
424 pdu->hdr.plen =
425 cpu_to_le32(pdu->hdr.hlen + hdgst +
426 cmd->req.transfer_len + ddgst);
427 pdu->command_id = cmd->req.cqe->command_id;
428 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
429 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
430
431 if (queue->data_digest) {
432 pdu->hdr.flags |= NVME_TCP_F_DDGST;
433 nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
434 }
435
436 if (cmd->queue->hdr_digest) {
437 pdu->hdr.flags |= NVME_TCP_F_HDGST;
438 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
439 }
440 }
441
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)442 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
443 {
444 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
445 struct nvmet_tcp_queue *queue = cmd->queue;
446 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
447
448 cmd->offset = 0;
449 cmd->state = NVMET_TCP_SEND_R2T;
450
451 pdu->hdr.type = nvme_tcp_r2t;
452 pdu->hdr.flags = 0;
453 pdu->hdr.hlen = sizeof(*pdu);
454 pdu->hdr.pdo = 0;
455 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
456
457 pdu->command_id = cmd->req.cmd->common.command_id;
458 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
459 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
460 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
461 if (cmd->queue->hdr_digest) {
462 pdu->hdr.flags |= NVME_TCP_F_HDGST;
463 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
464 }
465 }
466
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)467 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
468 {
469 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
470 struct nvmet_tcp_queue *queue = cmd->queue;
471 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
472
473 cmd->offset = 0;
474 cmd->state = NVMET_TCP_SEND_RESPONSE;
475
476 pdu->hdr.type = nvme_tcp_rsp;
477 pdu->hdr.flags = 0;
478 pdu->hdr.hlen = sizeof(*pdu);
479 pdu->hdr.pdo = 0;
480 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
481 if (cmd->queue->hdr_digest) {
482 pdu->hdr.flags |= NVME_TCP_F_HDGST;
483 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
484 }
485 }
486
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)487 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
488 {
489 struct llist_node *node;
490 struct nvmet_tcp_cmd *cmd;
491
492 for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
493 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
494 list_add(&cmd->entry, &queue->resp_send_list);
495 queue->send_list_len++;
496 }
497 }
498
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)499 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
500 {
501 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
502 struct nvmet_tcp_cmd, entry);
503 if (!queue->snd_cmd) {
504 nvmet_tcp_process_resp_list(queue);
505 queue->snd_cmd =
506 list_first_entry_or_null(&queue->resp_send_list,
507 struct nvmet_tcp_cmd, entry);
508 if (unlikely(!queue->snd_cmd))
509 return NULL;
510 }
511
512 list_del_init(&queue->snd_cmd->entry);
513 queue->send_list_len--;
514
515 if (nvmet_tcp_need_data_out(queue->snd_cmd))
516 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
517 else if (nvmet_tcp_need_data_in(queue->snd_cmd))
518 nvmet_setup_r2t_pdu(queue->snd_cmd);
519 else
520 nvmet_setup_response_pdu(queue->snd_cmd);
521
522 return queue->snd_cmd;
523 }
524
nvmet_tcp_queue_response(struct nvmet_req * req)525 static void nvmet_tcp_queue_response(struct nvmet_req *req)
526 {
527 struct nvmet_tcp_cmd *cmd =
528 container_of(req, struct nvmet_tcp_cmd, req);
529 struct nvmet_tcp_queue *queue = cmd->queue;
530 struct nvme_sgl_desc *sgl;
531 u32 len;
532
533 if (unlikely(cmd == queue->cmd)) {
534 sgl = &cmd->req.cmd->common.dptr.sgl;
535 len = le32_to_cpu(sgl->length);
536
537 /*
538 * Wait for inline data before processing the response.
539 * Avoid using helpers, this might happen before
540 * nvmet_req_init is completed.
541 */
542 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
543 len && len <= cmd->req.port->inline_data_size &&
544 nvme_is_write(cmd->req.cmd))
545 return;
546 }
547
548 llist_add(&cmd->lentry, &queue->resp_list);
549 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
550 }
551
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)552 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
553 {
554 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
555 nvmet_tcp_queue_response(&cmd->req);
556 else
557 cmd->req.execute(&cmd->req);
558 }
559
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)560 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
561 {
562 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
563 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
564 int ret;
565
566 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
567 offset_in_page(cmd->data_pdu) + cmd->offset,
568 left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
569 if (ret <= 0)
570 return ret;
571
572 cmd->offset += ret;
573 left -= ret;
574
575 if (left)
576 return -EAGAIN;
577
578 cmd->state = NVMET_TCP_SEND_DATA;
579 cmd->offset = 0;
580 return 1;
581 }
582
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)583 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
584 {
585 struct nvmet_tcp_queue *queue = cmd->queue;
586 int ret;
587
588 while (cmd->cur_sg) {
589 struct page *page = sg_page(cmd->cur_sg);
590 u32 left = cmd->cur_sg->length - cmd->offset;
591 int flags = MSG_DONTWAIT;
592
593 if ((!last_in_batch && cmd->queue->send_list_len) ||
594 cmd->wbytes_done + left < cmd->req.transfer_len ||
595 queue->data_digest || !queue->nvme_sq.sqhd_disabled)
596 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
597
598 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
599 left, flags);
600 if (ret <= 0)
601 return ret;
602
603 cmd->offset += ret;
604 cmd->wbytes_done += ret;
605
606 /* Done with sg?*/
607 if (cmd->offset == cmd->cur_sg->length) {
608 cmd->cur_sg = sg_next(cmd->cur_sg);
609 cmd->offset = 0;
610 }
611 }
612
613 if (queue->data_digest) {
614 cmd->state = NVMET_TCP_SEND_DDGST;
615 cmd->offset = 0;
616 } else {
617 if (queue->nvme_sq.sqhd_disabled) {
618 cmd->queue->snd_cmd = NULL;
619 nvmet_tcp_put_cmd(cmd);
620 } else {
621 nvmet_setup_response_pdu(cmd);
622 }
623 }
624
625 if (queue->nvme_sq.sqhd_disabled) {
626 kfree(cmd->iov);
627 sgl_free(cmd->req.sg);
628 }
629
630 return 1;
631
632 }
633
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)634 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
635 bool last_in_batch)
636 {
637 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
638 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
639 int flags = MSG_DONTWAIT;
640 int ret;
641
642 if (!last_in_batch && cmd->queue->send_list_len)
643 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
644 else
645 flags |= MSG_EOR;
646
647 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
648 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
649 if (ret <= 0)
650 return ret;
651 cmd->offset += ret;
652 left -= ret;
653
654 if (left)
655 return -EAGAIN;
656
657 kfree(cmd->iov);
658 sgl_free(cmd->req.sg);
659 cmd->queue->snd_cmd = NULL;
660 nvmet_tcp_put_cmd(cmd);
661 return 1;
662 }
663
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)664 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
665 {
666 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
667 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
668 int flags = MSG_DONTWAIT;
669 int ret;
670
671 if (!last_in_batch && cmd->queue->send_list_len)
672 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
673 else
674 flags |= MSG_EOR;
675
676 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
677 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
678 if (ret <= 0)
679 return ret;
680 cmd->offset += ret;
681 left -= ret;
682
683 if (left)
684 return -EAGAIN;
685
686 cmd->queue->snd_cmd = NULL;
687 return 1;
688 }
689
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)690 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
691 {
692 struct nvmet_tcp_queue *queue = cmd->queue;
693 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
694 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
695 struct kvec iov = {
696 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
697 .iov_len = left
698 };
699 int ret;
700
701 if (!last_in_batch && cmd->queue->send_list_len)
702 msg.msg_flags |= MSG_MORE;
703 else
704 msg.msg_flags |= MSG_EOR;
705
706 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
707 if (unlikely(ret <= 0))
708 return ret;
709
710 cmd->offset += ret;
711 left -= ret;
712
713 if (left)
714 return -EAGAIN;
715
716 if (queue->nvme_sq.sqhd_disabled) {
717 cmd->queue->snd_cmd = NULL;
718 nvmet_tcp_put_cmd(cmd);
719 } else {
720 nvmet_setup_response_pdu(cmd);
721 }
722 return 1;
723 }
724
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)725 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
726 bool last_in_batch)
727 {
728 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
729 int ret = 0;
730
731 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
732 cmd = nvmet_tcp_fetch_cmd(queue);
733 if (unlikely(!cmd))
734 return 0;
735 }
736
737 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
738 ret = nvmet_try_send_data_pdu(cmd);
739 if (ret <= 0)
740 goto done_send;
741 }
742
743 if (cmd->state == NVMET_TCP_SEND_DATA) {
744 ret = nvmet_try_send_data(cmd, last_in_batch);
745 if (ret <= 0)
746 goto done_send;
747 }
748
749 if (cmd->state == NVMET_TCP_SEND_DDGST) {
750 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
751 if (ret <= 0)
752 goto done_send;
753 }
754
755 if (cmd->state == NVMET_TCP_SEND_R2T) {
756 ret = nvmet_try_send_r2t(cmd, last_in_batch);
757 if (ret <= 0)
758 goto done_send;
759 }
760
761 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
762 ret = nvmet_try_send_response(cmd, last_in_batch);
763
764 done_send:
765 if (ret < 0) {
766 if (ret == -EAGAIN)
767 return 0;
768 return ret;
769 }
770
771 return 1;
772 }
773
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)774 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
775 int budget, int *sends)
776 {
777 int i, ret = 0;
778
779 for (i = 0; i < budget; i++) {
780 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
781 if (unlikely(ret < 0)) {
782 nvmet_tcp_socket_error(queue, ret);
783 goto done;
784 } else if (ret == 0) {
785 break;
786 }
787 (*sends)++;
788 }
789 done:
790 return ret;
791 }
792
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)793 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
794 {
795 queue->offset = 0;
796 queue->left = sizeof(struct nvme_tcp_hdr);
797 queue->cmd = NULL;
798 queue->rcv_state = NVMET_TCP_RECV_PDU;
799 }
800
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)801 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
802 {
803 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
804
805 ahash_request_free(queue->rcv_hash);
806 ahash_request_free(queue->snd_hash);
807 crypto_free_ahash(tfm);
808 }
809
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)810 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
811 {
812 struct crypto_ahash *tfm;
813
814 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
815 if (IS_ERR(tfm))
816 return PTR_ERR(tfm);
817
818 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
819 if (!queue->snd_hash)
820 goto free_tfm;
821 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
822
823 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
824 if (!queue->rcv_hash)
825 goto free_snd_hash;
826 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
827
828 return 0;
829 free_snd_hash:
830 ahash_request_free(queue->snd_hash);
831 free_tfm:
832 crypto_free_ahash(tfm);
833 return -ENOMEM;
834 }
835
836
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)837 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
838 {
839 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
840 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
841 struct msghdr msg = {};
842 struct kvec iov;
843 int ret;
844
845 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
846 pr_err("bad nvme-tcp pdu length (%d)\n",
847 le32_to_cpu(icreq->hdr.plen));
848 nvmet_tcp_fatal_error(queue);
849 }
850
851 if (icreq->pfv != NVME_TCP_PFV_1_0) {
852 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
853 return -EPROTO;
854 }
855
856 if (icreq->hpda != 0) {
857 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
858 icreq->hpda);
859 return -EPROTO;
860 }
861
862 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
863 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
864 if (queue->hdr_digest || queue->data_digest) {
865 ret = nvmet_tcp_alloc_crypto(queue);
866 if (ret)
867 return ret;
868 }
869
870 memset(icresp, 0, sizeof(*icresp));
871 icresp->hdr.type = nvme_tcp_icresp;
872 icresp->hdr.hlen = sizeof(*icresp);
873 icresp->hdr.pdo = 0;
874 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
875 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
876 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
877 icresp->cpda = 0;
878 if (queue->hdr_digest)
879 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
880 if (queue->data_digest)
881 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
882
883 iov.iov_base = icresp;
884 iov.iov_len = sizeof(*icresp);
885 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
886 if (ret < 0)
887 return ret; /* queue removal will cleanup */
888
889 queue->state = NVMET_TCP_Q_LIVE;
890 nvmet_prepare_receive_pdu(queue);
891 return 0;
892 }
893
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)894 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
895 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
896 {
897 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
898 int ret;
899
900 if (!nvme_is_write(cmd->req.cmd) ||
901 data_len > cmd->req.port->inline_data_size) {
902 nvmet_prepare_receive_pdu(queue);
903 return;
904 }
905
906 ret = nvmet_tcp_map_data(cmd);
907 if (unlikely(ret)) {
908 pr_err("queue %d: failed to map data\n", queue->idx);
909 nvmet_tcp_fatal_error(queue);
910 return;
911 }
912
913 queue->rcv_state = NVMET_TCP_RECV_DATA;
914 nvmet_tcp_map_pdu_iovec(cmd);
915 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
916 }
917
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)918 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
919 {
920 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
921 struct nvmet_tcp_cmd *cmd;
922 unsigned int plen;
923
924 if (likely(queue->nr_cmds)) {
925 if (unlikely(data->ttag >= queue->nr_cmds)) {
926 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
927 queue->idx, data->ttag, queue->nr_cmds);
928 nvmet_tcp_fatal_error(queue);
929 return -EPROTO;
930 }
931 cmd = &queue->cmds[data->ttag];
932 } else {
933 cmd = &queue->connect;
934 }
935
936 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
937 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
938 data->ttag, le32_to_cpu(data->data_offset),
939 cmd->rbytes_done);
940 /* FIXME: use path and transport errors */
941 nvmet_req_complete(&cmd->req,
942 NVME_SC_INVALID_FIELD | NVME_SC_DNR);
943 return -EPROTO;
944 }
945
946 plen = le32_to_cpu(data->hdr.plen);
947 cmd->pdu_len = le32_to_cpu(data->data_length);
948 if (unlikely(cmd->pdu_len != (plen - sizeof(*data)) ||
949 cmd->pdu_len == 0 ||
950 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
951 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
952 /* FIXME: use proper transport errors */
953 nvmet_tcp_fatal_error(queue);
954 return -EPROTO;
955 }
956 cmd->pdu_recv = 0;
957 nvmet_tcp_map_pdu_iovec(cmd);
958 queue->cmd = cmd;
959 queue->rcv_state = NVMET_TCP_RECV_DATA;
960
961 return 0;
962 }
963
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)964 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
965 {
966 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
967 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
968 struct nvmet_req *req;
969 int ret;
970
971 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
972 if (hdr->type != nvme_tcp_icreq) {
973 pr_err("unexpected pdu type (%d) before icreq\n",
974 hdr->type);
975 nvmet_tcp_fatal_error(queue);
976 return -EPROTO;
977 }
978 return nvmet_tcp_handle_icreq(queue);
979 }
980
981 if (hdr->type == nvme_tcp_h2c_data) {
982 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
983 if (unlikely(ret))
984 return ret;
985 return 0;
986 }
987
988 queue->cmd = nvmet_tcp_get_cmd(queue);
989 if (unlikely(!queue->cmd)) {
990 /* This should never happen */
991 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
992 queue->idx, queue->nr_cmds, queue->send_list_len,
993 nvme_cmd->common.opcode);
994 nvmet_tcp_fatal_error(queue);
995 return -ENOMEM;
996 }
997
998 req = &queue->cmd->req;
999 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1000
1001 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1002 &queue->nvme_sq, &nvmet_tcp_ops))) {
1003 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1004 req->cmd, req->cmd->common.command_id,
1005 req->cmd->common.opcode,
1006 le32_to_cpu(req->cmd->common.dptr.sgl.length));
1007
1008 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1009 return 0;
1010 }
1011
1012 ret = nvmet_tcp_map_data(queue->cmd);
1013 if (unlikely(ret)) {
1014 pr_err("queue %d: failed to map data\n", queue->idx);
1015 if (nvmet_tcp_has_inline_data(queue->cmd))
1016 nvmet_tcp_fatal_error(queue);
1017 else
1018 nvmet_req_complete(req, ret);
1019 ret = -EAGAIN;
1020 goto out;
1021 }
1022
1023 if (nvmet_tcp_need_data_in(queue->cmd)) {
1024 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1025 queue->rcv_state = NVMET_TCP_RECV_DATA;
1026 nvmet_tcp_map_pdu_iovec(queue->cmd);
1027 return 0;
1028 }
1029 /* send back R2T */
1030 nvmet_tcp_queue_response(&queue->cmd->req);
1031 goto out;
1032 }
1033
1034 queue->cmd->req.execute(&queue->cmd->req);
1035 out:
1036 nvmet_prepare_receive_pdu(queue);
1037 return ret;
1038 }
1039
1040 static const u8 nvme_tcp_pdu_sizes[] = {
1041 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
1042 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
1043 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1044 };
1045
nvmet_tcp_pdu_size(u8 type)1046 static inline u8 nvmet_tcp_pdu_size(u8 type)
1047 {
1048 size_t idx = type;
1049
1050 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1051 nvme_tcp_pdu_sizes[idx]) ?
1052 nvme_tcp_pdu_sizes[idx] : 0;
1053 }
1054
nvmet_tcp_pdu_valid(u8 type)1055 static inline bool nvmet_tcp_pdu_valid(u8 type)
1056 {
1057 switch (type) {
1058 case nvme_tcp_icreq:
1059 case nvme_tcp_cmd:
1060 case nvme_tcp_h2c_data:
1061 /* fallthru */
1062 return true;
1063 }
1064
1065 return false;
1066 }
1067
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1068 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1069 {
1070 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1071 int len;
1072 struct kvec iov;
1073 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1074
1075 recv:
1076 iov.iov_base = (void *)&queue->pdu + queue->offset;
1077 iov.iov_len = queue->left;
1078 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1079 iov.iov_len, msg.msg_flags);
1080 if (unlikely(len < 0))
1081 return len;
1082
1083 queue->offset += len;
1084 queue->left -= len;
1085 if (queue->left)
1086 return -EAGAIN;
1087
1088 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1089 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1090
1091 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1092 pr_err("unexpected pdu type %d\n", hdr->type);
1093 nvmet_tcp_fatal_error(queue);
1094 return -EIO;
1095 }
1096
1097 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1098 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1099 return -EIO;
1100 }
1101
1102 queue->left = hdr->hlen - queue->offset + hdgst;
1103 goto recv;
1104 }
1105
1106 if (queue->hdr_digest &&
1107 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1108 nvmet_tcp_fatal_error(queue); /* fatal */
1109 return -EPROTO;
1110 }
1111
1112 if (queue->data_digest &&
1113 nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1114 nvmet_tcp_fatal_error(queue); /* fatal */
1115 return -EPROTO;
1116 }
1117
1118 return nvmet_tcp_done_recv_pdu(queue);
1119 }
1120
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1121 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1122 {
1123 struct nvmet_tcp_queue *queue = cmd->queue;
1124
1125 nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1126 queue->offset = 0;
1127 queue->left = NVME_TCP_DIGEST_LENGTH;
1128 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1129 }
1130
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1131 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1132 {
1133 struct nvmet_tcp_cmd *cmd = queue->cmd;
1134 int ret;
1135
1136 while (msg_data_left(&cmd->recv_msg)) {
1137 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1138 cmd->recv_msg.msg_flags);
1139 if (ret <= 0)
1140 return ret;
1141
1142 cmd->pdu_recv += ret;
1143 cmd->rbytes_done += ret;
1144 }
1145
1146 nvmet_tcp_unmap_pdu_iovec(cmd);
1147 if (queue->data_digest) {
1148 nvmet_tcp_prep_recv_ddgst(cmd);
1149 return 0;
1150 }
1151
1152 if (cmd->rbytes_done == cmd->req.transfer_len)
1153 nvmet_tcp_execute_request(cmd);
1154
1155 nvmet_prepare_receive_pdu(queue);
1156 return 0;
1157 }
1158
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1159 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1160 {
1161 struct nvmet_tcp_cmd *cmd = queue->cmd;
1162 int ret;
1163 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1164 struct kvec iov = {
1165 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1166 .iov_len = queue->left
1167 };
1168
1169 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1170 iov.iov_len, msg.msg_flags);
1171 if (unlikely(ret < 0))
1172 return ret;
1173
1174 queue->offset += ret;
1175 queue->left -= ret;
1176 if (queue->left)
1177 return -EAGAIN;
1178
1179 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1180 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1181 queue->idx, cmd->req.cmd->common.command_id,
1182 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1183 le32_to_cpu(cmd->exp_ddgst));
1184 nvmet_tcp_finish_cmd(cmd);
1185 nvmet_tcp_fatal_error(queue);
1186 ret = -EPROTO;
1187 goto out;
1188 }
1189
1190 if (cmd->rbytes_done == cmd->req.transfer_len)
1191 nvmet_tcp_execute_request(cmd);
1192
1193 ret = 0;
1194 out:
1195 nvmet_prepare_receive_pdu(queue);
1196 return ret;
1197 }
1198
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1199 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1200 {
1201 int result = 0;
1202
1203 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1204 return 0;
1205
1206 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1207 result = nvmet_tcp_try_recv_pdu(queue);
1208 if (result != 0)
1209 goto done_recv;
1210 }
1211
1212 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1213 result = nvmet_tcp_try_recv_data(queue);
1214 if (result != 0)
1215 goto done_recv;
1216 }
1217
1218 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1219 result = nvmet_tcp_try_recv_ddgst(queue);
1220 if (result != 0)
1221 goto done_recv;
1222 }
1223
1224 done_recv:
1225 if (result < 0) {
1226 if (result == -EAGAIN)
1227 return 0;
1228 return result;
1229 }
1230 return 1;
1231 }
1232
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1233 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1234 int budget, int *recvs)
1235 {
1236 int i, ret = 0;
1237
1238 for (i = 0; i < budget; i++) {
1239 ret = nvmet_tcp_try_recv_one(queue);
1240 if (unlikely(ret < 0)) {
1241 nvmet_tcp_socket_error(queue, ret);
1242 goto done;
1243 } else if (ret == 0) {
1244 break;
1245 }
1246 (*recvs)++;
1247 }
1248 done:
1249 return ret;
1250 }
1251
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1252 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1253 {
1254 spin_lock(&queue->state_lock);
1255 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1256 queue->state = NVMET_TCP_Q_DISCONNECTING;
1257 schedule_work(&queue->release_work);
1258 }
1259 spin_unlock(&queue->state_lock);
1260 }
1261
nvmet_tcp_io_work(struct work_struct * w)1262 static void nvmet_tcp_io_work(struct work_struct *w)
1263 {
1264 struct nvmet_tcp_queue *queue =
1265 container_of(w, struct nvmet_tcp_queue, io_work);
1266 bool pending;
1267 int ret, ops = 0;
1268
1269 do {
1270 pending = false;
1271
1272 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1273 if (ret > 0)
1274 pending = true;
1275 else if (ret < 0)
1276 return;
1277
1278 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1279 if (ret > 0)
1280 pending = true;
1281 else if (ret < 0)
1282 return;
1283
1284 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1285
1286 /*
1287 * We exahusted our budget, requeue our selves
1288 */
1289 if (pending)
1290 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1291 }
1292
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1293 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1294 struct nvmet_tcp_cmd *c)
1295 {
1296 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1297
1298 c->queue = queue;
1299 c->req.port = queue->port->nport;
1300
1301 c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1302 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1303 if (!c->cmd_pdu)
1304 return -ENOMEM;
1305 c->req.cmd = &c->cmd_pdu->cmd;
1306
1307 c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1308 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1309 if (!c->rsp_pdu)
1310 goto out_free_cmd;
1311 c->req.cqe = &c->rsp_pdu->cqe;
1312
1313 c->data_pdu = page_frag_alloc(&queue->pf_cache,
1314 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1315 if (!c->data_pdu)
1316 goto out_free_rsp;
1317
1318 c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1319 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1320 if (!c->r2t_pdu)
1321 goto out_free_data;
1322
1323 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1324
1325 list_add_tail(&c->entry, &queue->free_list);
1326
1327 return 0;
1328 out_free_data:
1329 page_frag_free(c->data_pdu);
1330 out_free_rsp:
1331 page_frag_free(c->rsp_pdu);
1332 out_free_cmd:
1333 page_frag_free(c->cmd_pdu);
1334 return -ENOMEM;
1335 }
1336
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1337 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1338 {
1339 page_frag_free(c->r2t_pdu);
1340 page_frag_free(c->data_pdu);
1341 page_frag_free(c->rsp_pdu);
1342 page_frag_free(c->cmd_pdu);
1343 }
1344
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1345 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1346 {
1347 struct nvmet_tcp_cmd *cmds;
1348 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1349
1350 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1351 if (!cmds)
1352 goto out;
1353
1354 for (i = 0; i < nr_cmds; i++) {
1355 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1356 if (ret)
1357 goto out_free;
1358 }
1359
1360 queue->cmds = cmds;
1361
1362 return 0;
1363 out_free:
1364 while (--i >= 0)
1365 nvmet_tcp_free_cmd(cmds + i);
1366 kfree(cmds);
1367 out:
1368 return ret;
1369 }
1370
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1371 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1372 {
1373 struct nvmet_tcp_cmd *cmds = queue->cmds;
1374 int i;
1375
1376 for (i = 0; i < queue->nr_cmds; i++)
1377 nvmet_tcp_free_cmd(cmds + i);
1378
1379 nvmet_tcp_free_cmd(&queue->connect);
1380 kfree(cmds);
1381 }
1382
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1383 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1384 {
1385 struct socket *sock = queue->sock;
1386
1387 write_lock_bh(&sock->sk->sk_callback_lock);
1388 sock->sk->sk_data_ready = queue->data_ready;
1389 sock->sk->sk_state_change = queue->state_change;
1390 sock->sk->sk_write_space = queue->write_space;
1391 sock->sk->sk_user_data = NULL;
1392 write_unlock_bh(&sock->sk->sk_callback_lock);
1393 }
1394
nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd * cmd)1395 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1396 {
1397 nvmet_req_uninit(&cmd->req);
1398 nvmet_tcp_unmap_pdu_iovec(cmd);
1399 kfree(cmd->iov);
1400 sgl_free(cmd->req.sg);
1401 }
1402
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1403 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1404 {
1405 struct nvmet_tcp_cmd *cmd = queue->cmds;
1406 int i;
1407
1408 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1409 if (nvmet_tcp_need_data_in(cmd))
1410 nvmet_tcp_finish_cmd(cmd);
1411 }
1412
1413 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1414 /* failed in connect */
1415 nvmet_tcp_finish_cmd(&queue->connect);
1416 }
1417 }
1418
nvmet_tcp_release_queue_work(struct work_struct * w)1419 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1420 {
1421 struct page *page;
1422 struct nvmet_tcp_queue *queue =
1423 container_of(w, struct nvmet_tcp_queue, release_work);
1424
1425 mutex_lock(&nvmet_tcp_queue_mutex);
1426 list_del_init(&queue->queue_list);
1427 mutex_unlock(&nvmet_tcp_queue_mutex);
1428
1429 nvmet_tcp_restore_socket_callbacks(queue);
1430 flush_work(&queue->io_work);
1431
1432 nvmet_tcp_uninit_data_in_cmds(queue);
1433 nvmet_sq_destroy(&queue->nvme_sq);
1434 cancel_work_sync(&queue->io_work);
1435 sock_release(queue->sock);
1436 nvmet_tcp_free_cmds(queue);
1437 if (queue->hdr_digest || queue->data_digest)
1438 nvmet_tcp_free_crypto(queue);
1439 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1440
1441 page = virt_to_head_page(queue->pf_cache.va);
1442 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1443 kfree(queue);
1444 }
1445
nvmet_tcp_data_ready(struct sock * sk)1446 static void nvmet_tcp_data_ready(struct sock *sk)
1447 {
1448 struct nvmet_tcp_queue *queue;
1449
1450 read_lock_bh(&sk->sk_callback_lock);
1451 queue = sk->sk_user_data;
1452 if (likely(queue))
1453 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1454 read_unlock_bh(&sk->sk_callback_lock);
1455 }
1456
nvmet_tcp_write_space(struct sock * sk)1457 static void nvmet_tcp_write_space(struct sock *sk)
1458 {
1459 struct nvmet_tcp_queue *queue;
1460
1461 read_lock_bh(&sk->sk_callback_lock);
1462 queue = sk->sk_user_data;
1463 if (unlikely(!queue))
1464 goto out;
1465
1466 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1467 queue->write_space(sk);
1468 goto out;
1469 }
1470
1471 if (sk_stream_is_writeable(sk)) {
1472 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1473 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1474 }
1475 out:
1476 read_unlock_bh(&sk->sk_callback_lock);
1477 }
1478
nvmet_tcp_state_change(struct sock * sk)1479 static void nvmet_tcp_state_change(struct sock *sk)
1480 {
1481 struct nvmet_tcp_queue *queue;
1482
1483 read_lock_bh(&sk->sk_callback_lock);
1484 queue = sk->sk_user_data;
1485 if (!queue)
1486 goto done;
1487
1488 switch (sk->sk_state) {
1489 case TCP_FIN_WAIT2:
1490 case TCP_LAST_ACK:
1491 break;
1492 case TCP_FIN_WAIT1:
1493 case TCP_CLOSE_WAIT:
1494 case TCP_CLOSE:
1495 /* FALLTHRU */
1496 nvmet_tcp_schedule_release_queue(queue);
1497 break;
1498 default:
1499 pr_warn("queue %d unhandled state %d\n",
1500 queue->idx, sk->sk_state);
1501 }
1502 done:
1503 read_unlock_bh(&sk->sk_callback_lock);
1504 }
1505
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1506 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1507 {
1508 struct socket *sock = queue->sock;
1509 struct inet_sock *inet = inet_sk(sock->sk);
1510 int ret;
1511
1512 ret = kernel_getsockname(sock,
1513 (struct sockaddr *)&queue->sockaddr);
1514 if (ret < 0)
1515 return ret;
1516
1517 ret = kernel_getpeername(sock,
1518 (struct sockaddr *)&queue->sockaddr_peer);
1519 if (ret < 0)
1520 return ret;
1521
1522 /*
1523 * Cleanup whatever is sitting in the TCP transmit queue on socket
1524 * close. This is done to prevent stale data from being sent should
1525 * the network connection be restored before TCP times out.
1526 */
1527 sock_no_linger(sock->sk);
1528
1529 if (so_priority > 0)
1530 sock_set_priority(sock->sk, so_priority);
1531
1532 /* Set socket type of service */
1533 if (inet->rcv_tos > 0)
1534 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1535
1536 ret = 0;
1537 write_lock_bh(&sock->sk->sk_callback_lock);
1538 if (sock->sk->sk_state != TCP_ESTABLISHED) {
1539 /*
1540 * If the socket is already closing, don't even start
1541 * consuming it
1542 */
1543 ret = -ENOTCONN;
1544 } else {
1545 sock->sk->sk_user_data = queue;
1546 queue->data_ready = sock->sk->sk_data_ready;
1547 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1548 queue->state_change = sock->sk->sk_state_change;
1549 sock->sk->sk_state_change = nvmet_tcp_state_change;
1550 queue->write_space = sock->sk->sk_write_space;
1551 sock->sk->sk_write_space = nvmet_tcp_write_space;
1552 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1553 }
1554 write_unlock_bh(&sock->sk->sk_callback_lock);
1555
1556 return ret;
1557 }
1558
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1559 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1560 struct socket *newsock)
1561 {
1562 struct nvmet_tcp_queue *queue;
1563 int ret;
1564
1565 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1566 if (!queue)
1567 return -ENOMEM;
1568
1569 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1570 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1571 queue->sock = newsock;
1572 queue->port = port;
1573 queue->nr_cmds = 0;
1574 spin_lock_init(&queue->state_lock);
1575 queue->state = NVMET_TCP_Q_CONNECTING;
1576 INIT_LIST_HEAD(&queue->free_list);
1577 init_llist_head(&queue->resp_list);
1578 INIT_LIST_HEAD(&queue->resp_send_list);
1579
1580 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1581 if (queue->idx < 0) {
1582 ret = queue->idx;
1583 goto out_free_queue;
1584 }
1585
1586 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1587 if (ret)
1588 goto out_ida_remove;
1589
1590 ret = nvmet_sq_init(&queue->nvme_sq);
1591 if (ret)
1592 goto out_free_connect;
1593
1594 nvmet_prepare_receive_pdu(queue);
1595
1596 mutex_lock(&nvmet_tcp_queue_mutex);
1597 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1598 mutex_unlock(&nvmet_tcp_queue_mutex);
1599
1600 ret = nvmet_tcp_set_queue_sock(queue);
1601 if (ret)
1602 goto out_destroy_sq;
1603
1604 return 0;
1605 out_destroy_sq:
1606 mutex_lock(&nvmet_tcp_queue_mutex);
1607 list_del_init(&queue->queue_list);
1608 mutex_unlock(&nvmet_tcp_queue_mutex);
1609 nvmet_sq_destroy(&queue->nvme_sq);
1610 out_free_connect:
1611 nvmet_tcp_free_cmd(&queue->connect);
1612 out_ida_remove:
1613 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1614 out_free_queue:
1615 kfree(queue);
1616 return ret;
1617 }
1618
nvmet_tcp_accept_work(struct work_struct * w)1619 static void nvmet_tcp_accept_work(struct work_struct *w)
1620 {
1621 struct nvmet_tcp_port *port =
1622 container_of(w, struct nvmet_tcp_port, accept_work);
1623 struct socket *newsock;
1624 int ret;
1625
1626 while (true) {
1627 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1628 if (ret < 0) {
1629 if (ret != -EAGAIN)
1630 pr_warn("failed to accept err=%d\n", ret);
1631 return;
1632 }
1633 ret = nvmet_tcp_alloc_queue(port, newsock);
1634 if (ret) {
1635 pr_err("failed to allocate queue\n");
1636 sock_release(newsock);
1637 }
1638 }
1639 }
1640
nvmet_tcp_listen_data_ready(struct sock * sk)1641 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1642 {
1643 struct nvmet_tcp_port *port;
1644
1645 read_lock_bh(&sk->sk_callback_lock);
1646 port = sk->sk_user_data;
1647 if (!port)
1648 goto out;
1649
1650 if (sk->sk_state == TCP_LISTEN)
1651 schedule_work(&port->accept_work);
1652 out:
1653 read_unlock_bh(&sk->sk_callback_lock);
1654 }
1655
nvmet_tcp_add_port(struct nvmet_port * nport)1656 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1657 {
1658 struct nvmet_tcp_port *port;
1659 __kernel_sa_family_t af;
1660 int ret;
1661
1662 port = kzalloc(sizeof(*port), GFP_KERNEL);
1663 if (!port)
1664 return -ENOMEM;
1665
1666 switch (nport->disc_addr.adrfam) {
1667 case NVMF_ADDR_FAMILY_IP4:
1668 af = AF_INET;
1669 break;
1670 case NVMF_ADDR_FAMILY_IP6:
1671 af = AF_INET6;
1672 break;
1673 default:
1674 pr_err("address family %d not supported\n",
1675 nport->disc_addr.adrfam);
1676 ret = -EINVAL;
1677 goto err_port;
1678 }
1679
1680 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1681 nport->disc_addr.trsvcid, &port->addr);
1682 if (ret) {
1683 pr_err("malformed ip/port passed: %s:%s\n",
1684 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1685 goto err_port;
1686 }
1687
1688 port->nport = nport;
1689 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1690 if (port->nport->inline_data_size < 0)
1691 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1692
1693 ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1694 IPPROTO_TCP, &port->sock);
1695 if (ret) {
1696 pr_err("failed to create a socket\n");
1697 goto err_port;
1698 }
1699
1700 port->sock->sk->sk_user_data = port;
1701 port->data_ready = port->sock->sk->sk_data_ready;
1702 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1703 sock_set_reuseaddr(port->sock->sk);
1704 tcp_sock_set_nodelay(port->sock->sk);
1705 if (so_priority > 0)
1706 sock_set_priority(port->sock->sk, so_priority);
1707
1708 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1709 sizeof(port->addr));
1710 if (ret) {
1711 pr_err("failed to bind port socket %d\n", ret);
1712 goto err_sock;
1713 }
1714
1715 ret = kernel_listen(port->sock, 128);
1716 if (ret) {
1717 pr_err("failed to listen %d on port sock\n", ret);
1718 goto err_sock;
1719 }
1720
1721 nport->priv = port;
1722 pr_info("enabling port %d (%pISpc)\n",
1723 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1724
1725 return 0;
1726
1727 err_sock:
1728 sock_release(port->sock);
1729 err_port:
1730 kfree(port);
1731 return ret;
1732 }
1733
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)1734 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1735 {
1736 struct nvmet_tcp_queue *queue;
1737
1738 mutex_lock(&nvmet_tcp_queue_mutex);
1739 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1740 if (queue->port == port)
1741 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1742 mutex_unlock(&nvmet_tcp_queue_mutex);
1743 }
1744
nvmet_tcp_remove_port(struct nvmet_port * nport)1745 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1746 {
1747 struct nvmet_tcp_port *port = nport->priv;
1748
1749 write_lock_bh(&port->sock->sk->sk_callback_lock);
1750 port->sock->sk->sk_data_ready = port->data_ready;
1751 port->sock->sk->sk_user_data = NULL;
1752 write_unlock_bh(&port->sock->sk->sk_callback_lock);
1753 cancel_work_sync(&port->accept_work);
1754 /*
1755 * Destroy the remaining queues, which are not belong to any
1756 * controller yet.
1757 */
1758 nvmet_tcp_destroy_port_queues(port);
1759
1760 sock_release(port->sock);
1761 kfree(port);
1762 }
1763
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)1764 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1765 {
1766 struct nvmet_tcp_queue *queue;
1767
1768 mutex_lock(&nvmet_tcp_queue_mutex);
1769 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1770 if (queue->nvme_sq.ctrl == ctrl)
1771 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1772 mutex_unlock(&nvmet_tcp_queue_mutex);
1773 }
1774
nvmet_tcp_install_queue(struct nvmet_sq * sq)1775 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1776 {
1777 struct nvmet_tcp_queue *queue =
1778 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1779
1780 if (sq->qid == 0) {
1781 /* Let inflight controller teardown complete */
1782 flush_scheduled_work();
1783 }
1784
1785 queue->nr_cmds = sq->size * 2;
1786 if (nvmet_tcp_alloc_cmds(queue))
1787 return NVME_SC_INTERNAL;
1788 return 0;
1789 }
1790
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1791 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1792 struct nvmet_port *nport, char *traddr)
1793 {
1794 struct nvmet_tcp_port *port = nport->priv;
1795
1796 if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1797 struct nvmet_tcp_cmd *cmd =
1798 container_of(req, struct nvmet_tcp_cmd, req);
1799 struct nvmet_tcp_queue *queue = cmd->queue;
1800
1801 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1802 } else {
1803 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1804 }
1805 }
1806
1807 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1808 .owner = THIS_MODULE,
1809 .type = NVMF_TRTYPE_TCP,
1810 .msdbd = 1,
1811 .add_port = nvmet_tcp_add_port,
1812 .remove_port = nvmet_tcp_remove_port,
1813 .queue_response = nvmet_tcp_queue_response,
1814 .delete_ctrl = nvmet_tcp_delete_ctrl,
1815 .install_queue = nvmet_tcp_install_queue,
1816 .disc_traddr = nvmet_tcp_disc_port_addr,
1817 };
1818
nvmet_tcp_init(void)1819 static int __init nvmet_tcp_init(void)
1820 {
1821 int ret;
1822
1823 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1824 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1825 if (!nvmet_tcp_wq)
1826 return -ENOMEM;
1827
1828 ret = nvmet_register_transport(&nvmet_tcp_ops);
1829 if (ret)
1830 goto err;
1831
1832 return 0;
1833 err:
1834 destroy_workqueue(nvmet_tcp_wq);
1835 return ret;
1836 }
1837
nvmet_tcp_exit(void)1838 static void __exit nvmet_tcp_exit(void)
1839 {
1840 struct nvmet_tcp_queue *queue;
1841
1842 nvmet_unregister_transport(&nvmet_tcp_ops);
1843
1844 flush_scheduled_work();
1845 mutex_lock(&nvmet_tcp_queue_mutex);
1846 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1847 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1848 mutex_unlock(&nvmet_tcp_queue_mutex);
1849 flush_scheduled_work();
1850
1851 destroy_workqueue(nvmet_tcp_wq);
1852 }
1853
1854 module_init(nvmet_tcp_init);
1855 module_exit(nvmet_tcp_exit);
1856
1857 MODULE_LICENSE("GPL v2");
1858 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1859