1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53
54 /*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63 enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
67 };
68
69 #define CPU_AFFINITY_ALL -1ULL
70
71 /*
72 * Supported protocol versions in the order of probing - highest go
73 * first.
74 */
75 static enum pci_protocol_version_t pci_protocol_versions[] = {
76 PCI_PROTOCOL_VERSION_1_3,
77 PCI_PROTOCOL_VERSION_1_2,
78 PCI_PROTOCOL_VERSION_1_1,
79 };
80
81 #define PCI_CONFIG_MMIO_LENGTH 0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
84
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
86
87 #define STATUS_REVISION_MISMATCH 0xC0000059
88
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
91
92 /*
93 * Message Types
94 */
95
96 enum pci_message_type {
97 /*
98 * Version 1.1
99 */
100 PCI_MESSAGE_BASE = 0x42490000,
101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
124 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
125 PCI_MESSAGE_MAXIMUM
126 };
127
128 /*
129 * Structures defining the virtual PCI Express protocol.
130 */
131
132 union pci_version {
133 struct {
134 u16 minor_version;
135 u16 major_version;
136 } parts;
137 u32 version;
138 } __packed;
139
140 /*
141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142 * which is all this driver does. This representation is the one used in
143 * Windows, which is what is expected when sending this back and forth with
144 * the Hyper-V parent partition.
145 */
146 union win_slot_encoding {
147 struct {
148 u32 dev:5;
149 u32 func:3;
150 u32 reserved:24;
151 } bits;
152 u32 slot;
153 } __packed;
154
155 /*
156 * Pretty much as defined in the PCI Specifications.
157 */
158 struct pci_function_description {
159 u16 v_id; /* vendor ID */
160 u16 d_id; /* device ID */
161 u8 rev;
162 u8 prog_intf;
163 u8 subclass;
164 u8 base_class;
165 u32 subsystem_id;
166 union win_slot_encoding win_slot;
167 u32 ser; /* serial number */
168 } __packed;
169
170 enum pci_device_description_flags {
171 HV_PCI_DEVICE_FLAG_NONE = 0x0,
172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
173 };
174
175 struct pci_function_description2 {
176 u16 v_id; /* vendor ID */
177 u16 d_id; /* device ID */
178 u8 rev;
179 u8 prog_intf;
180 u8 subclass;
181 u8 base_class;
182 u32 subsystem_id;
183 union win_slot_encoding win_slot;
184 u32 ser; /* serial number */
185 u32 flags;
186 u16 virtual_numa_node;
187 u16 reserved;
188 } __packed;
189
190 /**
191 * struct hv_msi_desc
192 * @vector: IDT entry
193 * @delivery_mode: As defined in Intel's Programmer's
194 * Reference Manual, Volume 3, Chapter 8.
195 * @vector_count: Number of contiguous entries in the
196 * Interrupt Descriptor Table that are
197 * occupied by this Message-Signaled
198 * Interrupt. For "MSI", as first defined
199 * in PCI 2.2, this can be between 1 and
200 * 32. For "MSI-X," as first defined in PCI
201 * 3.0, this must be 1, as each MSI-X table
202 * entry would have its own descriptor.
203 * @reserved: Empty space
204 * @cpu_mask: All the target virtual processors.
205 */
206 struct hv_msi_desc {
207 u8 vector;
208 u8 delivery_mode;
209 u16 vector_count;
210 u32 reserved;
211 u64 cpu_mask;
212 } __packed;
213
214 /**
215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
216 * @vector: IDT entry
217 * @delivery_mode: As defined in Intel's Programmer's
218 * Reference Manual, Volume 3, Chapter 8.
219 * @vector_count: Number of contiguous entries in the
220 * Interrupt Descriptor Table that are
221 * occupied by this Message-Signaled
222 * Interrupt. For "MSI", as first defined
223 * in PCI 2.2, this can be between 1 and
224 * 32. For "MSI-X," as first defined in PCI
225 * 3.0, this must be 1, as each MSI-X table
226 * entry would have its own descriptor.
227 * @processor_count: number of bits enabled in array.
228 * @processor_array: All the target virtual processors.
229 */
230 struct hv_msi_desc2 {
231 u8 vector;
232 u8 delivery_mode;
233 u16 vector_count;
234 u16 processor_count;
235 u16 processor_array[32];
236 } __packed;
237
238 /**
239 * struct tran_int_desc
240 * @reserved: unused, padding
241 * @vector_count: same as in hv_msi_desc
242 * @data: This is the "data payload" value that is
243 * written by the device when it generates
244 * a message-signaled interrupt, either MSI
245 * or MSI-X.
246 * @address: This is the address to which the data
247 * payload is written on interrupt
248 * generation.
249 */
250 struct tran_int_desc {
251 u16 reserved;
252 u16 vector_count;
253 u32 data;
254 u64 address;
255 } __packed;
256
257 /*
258 * A generic message format for virtual PCI.
259 * Specific message formats are defined later in the file.
260 */
261
262 struct pci_message {
263 u32 type;
264 } __packed;
265
266 struct pci_child_message {
267 struct pci_message message_type;
268 union win_slot_encoding wslot;
269 } __packed;
270
271 struct pci_incoming_message {
272 struct vmpacket_descriptor hdr;
273 struct pci_message message_type;
274 } __packed;
275
276 struct pci_response {
277 struct vmpacket_descriptor hdr;
278 s32 status; /* negative values are failures */
279 } __packed;
280
281 struct pci_packet {
282 void (*completion_func)(void *context, struct pci_response *resp,
283 int resp_packet_size);
284 void *compl_ctxt;
285
286 struct pci_message message[];
287 };
288
289 /*
290 * Specific message types supporting the PCI protocol.
291 */
292
293 /*
294 * Version negotiation message. Sent from the guest to the host.
295 * The guest is free to try different versions until the host
296 * accepts the version.
297 *
298 * pci_version: The protocol version requested.
299 * is_last_attempt: If TRUE, this is the last version guest will request.
300 * reservedz: Reserved field, set to zero.
301 */
302
303 struct pci_version_request {
304 struct pci_message message_type;
305 u32 protocol_version;
306 } __packed;
307
308 /*
309 * Bus D0 Entry. This is sent from the guest to the host when the virtual
310 * bus (PCI Express port) is ready for action.
311 */
312
313 struct pci_bus_d0_entry {
314 struct pci_message message_type;
315 u32 reserved;
316 u64 mmio_base;
317 } __packed;
318
319 struct pci_bus_relations {
320 struct pci_incoming_message incoming;
321 u32 device_count;
322 struct pci_function_description func[];
323 } __packed;
324
325 struct pci_bus_relations2 {
326 struct pci_incoming_message incoming;
327 u32 device_count;
328 struct pci_function_description2 func[];
329 } __packed;
330
331 struct pci_q_res_req_response {
332 struct vmpacket_descriptor hdr;
333 s32 status; /* negative values are failures */
334 u32 probed_bar[PCI_STD_NUM_BARS];
335 } __packed;
336
337 struct pci_set_power {
338 struct pci_message message_type;
339 union win_slot_encoding wslot;
340 u32 power_state; /* In Windows terms */
341 u32 reserved;
342 } __packed;
343
344 struct pci_set_power_response {
345 struct vmpacket_descriptor hdr;
346 s32 status; /* negative values are failures */
347 union win_slot_encoding wslot;
348 u32 resultant_state; /* In Windows terms */
349 u32 reserved;
350 } __packed;
351
352 struct pci_resources_assigned {
353 struct pci_message message_type;
354 union win_slot_encoding wslot;
355 u8 memory_range[0x14][6]; /* not used here */
356 u32 msi_descriptors;
357 u32 reserved[4];
358 } __packed;
359
360 struct pci_resources_assigned2 {
361 struct pci_message message_type;
362 union win_slot_encoding wslot;
363 u8 memory_range[0x14][6]; /* not used here */
364 u32 msi_descriptor_count;
365 u8 reserved[70];
366 } __packed;
367
368 struct pci_create_interrupt {
369 struct pci_message message_type;
370 union win_slot_encoding wslot;
371 struct hv_msi_desc int_desc;
372 } __packed;
373
374 struct pci_create_int_response {
375 struct pci_response response;
376 u32 reserved;
377 struct tran_int_desc int_desc;
378 } __packed;
379
380 struct pci_create_interrupt2 {
381 struct pci_message message_type;
382 union win_slot_encoding wslot;
383 struct hv_msi_desc2 int_desc;
384 } __packed;
385
386 struct pci_delete_interrupt {
387 struct pci_message message_type;
388 union win_slot_encoding wslot;
389 struct tran_int_desc int_desc;
390 } __packed;
391
392 /*
393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
394 */
395 struct pci_read_block {
396 struct pci_message message_type;
397 u32 block_id;
398 union win_slot_encoding wslot;
399 u32 bytes_requested;
400 } __packed;
401
402 struct pci_read_block_response {
403 struct vmpacket_descriptor hdr;
404 u32 status;
405 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
406 } __packed;
407
408 /*
409 * Note: the VM must pass a valid block id, wslot and byte_count.
410 */
411 struct pci_write_block {
412 struct pci_message message_type;
413 u32 block_id;
414 union win_slot_encoding wslot;
415 u32 byte_count;
416 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
417 } __packed;
418
419 struct pci_dev_inval_block {
420 struct pci_incoming_message incoming;
421 union win_slot_encoding wslot;
422 u64 block_mask;
423 } __packed;
424
425 struct pci_dev_incoming {
426 struct pci_incoming_message incoming;
427 union win_slot_encoding wslot;
428 } __packed;
429
430 struct pci_eject_response {
431 struct pci_message message_type;
432 union win_slot_encoding wslot;
433 u32 status;
434 } __packed;
435
436 static int pci_ring_size = (4 * PAGE_SIZE);
437
438 /*
439 * Driver specific state.
440 */
441
442 enum hv_pcibus_state {
443 hv_pcibus_init = 0,
444 hv_pcibus_probed,
445 hv_pcibus_installed,
446 hv_pcibus_removing,
447 hv_pcibus_maximum
448 };
449
450 struct hv_pcibus_device {
451 struct pci_sysdata sysdata;
452 /* Protocol version negotiated with the host */
453 enum pci_protocol_version_t protocol_version;
454 enum hv_pcibus_state state;
455 refcount_t remove_lock;
456 struct hv_device *hdev;
457 resource_size_t low_mmio_space;
458 resource_size_t high_mmio_space;
459 struct resource *mem_config;
460 struct resource *low_mmio_res;
461 struct resource *high_mmio_res;
462 struct completion *survey_event;
463 struct completion remove_event;
464 struct pci_bus *pci_bus;
465 spinlock_t config_lock; /* Avoid two threads writing index page */
466 spinlock_t device_list_lock; /* Protect lists below */
467 void __iomem *cfg_addr;
468
469 struct list_head resources_for_children;
470
471 struct list_head children;
472 struct list_head dr_list;
473
474 struct msi_domain_info msi_info;
475 struct msi_controller msi_chip;
476 struct irq_domain *irq_domain;
477
478 spinlock_t retarget_msi_interrupt_lock;
479
480 struct workqueue_struct *wq;
481
482 /* Highest slot of child device with resources allocated */
483 int wslot_res_allocated;
484
485 /* hypercall arg, must not cross page boundary */
486 struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
487
488 /*
489 * Don't put anything here: retarget_msi_interrupt_params must be last
490 */
491 };
492
493 /*
494 * Tracks "Device Relations" messages from the host, which must be both
495 * processed in order and deferred so that they don't run in the context
496 * of the incoming packet callback.
497 */
498 struct hv_dr_work {
499 struct work_struct wrk;
500 struct hv_pcibus_device *bus;
501 };
502
503 struct hv_pcidev_description {
504 u16 v_id; /* vendor ID */
505 u16 d_id; /* device ID */
506 u8 rev;
507 u8 prog_intf;
508 u8 subclass;
509 u8 base_class;
510 u32 subsystem_id;
511 union win_slot_encoding win_slot;
512 u32 ser; /* serial number */
513 u32 flags;
514 u16 virtual_numa_node;
515 };
516
517 struct hv_dr_state {
518 struct list_head list_entry;
519 u32 device_count;
520 struct hv_pcidev_description func[];
521 };
522
523 enum hv_pcichild_state {
524 hv_pcichild_init = 0,
525 hv_pcichild_requirements,
526 hv_pcichild_resourced,
527 hv_pcichild_ejecting,
528 hv_pcichild_maximum
529 };
530
531 struct hv_pci_dev {
532 /* List protected by pci_rescan_remove_lock */
533 struct list_head list_entry;
534 refcount_t refs;
535 enum hv_pcichild_state state;
536 struct pci_slot *pci_slot;
537 struct hv_pcidev_description desc;
538 bool reported_missing;
539 struct hv_pcibus_device *hbus;
540 struct work_struct wrk;
541
542 void (*block_invalidate)(void *context, u64 block_mask);
543 void *invalidate_context;
544
545 /*
546 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
547 * read it back, for each of the BAR offsets within config space.
548 */
549 u32 probed_bar[PCI_STD_NUM_BARS];
550 };
551
552 struct hv_pci_compl {
553 struct completion host_event;
554 s32 completion_status;
555 };
556
557 static void hv_pci_onchannelcallback(void *context);
558
559 /**
560 * hv_pci_generic_compl() - Invoked for a completion packet
561 * @context: Set up by the sender of the packet.
562 * @resp: The response packet
563 * @resp_packet_size: Size in bytes of the packet
564 *
565 * This function is used to trigger an event and report status
566 * for any message for which the completion packet contains a
567 * status and nothing else.
568 */
hv_pci_generic_compl(void * context,struct pci_response * resp,int resp_packet_size)569 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
570 int resp_packet_size)
571 {
572 struct hv_pci_compl *comp_pkt = context;
573
574 if (resp_packet_size >= offsetofend(struct pci_response, status))
575 comp_pkt->completion_status = resp->status;
576 else
577 comp_pkt->completion_status = -1;
578
579 complete(&comp_pkt->host_event);
580 }
581
582 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
583 u32 wslot);
584
get_pcichild(struct hv_pci_dev * hpdev)585 static void get_pcichild(struct hv_pci_dev *hpdev)
586 {
587 refcount_inc(&hpdev->refs);
588 }
589
put_pcichild(struct hv_pci_dev * hpdev)590 static void put_pcichild(struct hv_pci_dev *hpdev)
591 {
592 if (refcount_dec_and_test(&hpdev->refs))
593 kfree(hpdev);
594 }
595
596 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
597 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
598
599 /*
600 * There is no good way to get notified from vmbus_onoffer_rescind(),
601 * so let's use polling here, since this is not a hot path.
602 */
wait_for_response(struct hv_device * hdev,struct completion * comp)603 static int wait_for_response(struct hv_device *hdev,
604 struct completion *comp)
605 {
606 while (true) {
607 if (hdev->channel->rescind) {
608 dev_warn_once(&hdev->device, "The device is gone.\n");
609 return -ENODEV;
610 }
611
612 if (wait_for_completion_timeout(comp, HZ / 10))
613 break;
614 }
615
616 return 0;
617 }
618
619 /**
620 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
621 * @devfn: The Linux representation of PCI slot
622 *
623 * Windows uses a slightly different representation of PCI slot.
624 *
625 * Return: The Windows representation
626 */
devfn_to_wslot(int devfn)627 static u32 devfn_to_wslot(int devfn)
628 {
629 union win_slot_encoding wslot;
630
631 wslot.slot = 0;
632 wslot.bits.dev = PCI_SLOT(devfn);
633 wslot.bits.func = PCI_FUNC(devfn);
634
635 return wslot.slot;
636 }
637
638 /**
639 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
640 * @wslot: The Windows representation of PCI slot
641 *
642 * Windows uses a slightly different representation of PCI slot.
643 *
644 * Return: The Linux representation
645 */
wslot_to_devfn(u32 wslot)646 static int wslot_to_devfn(u32 wslot)
647 {
648 union win_slot_encoding slot_no;
649
650 slot_no.slot = wslot;
651 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
652 }
653
654 /*
655 * PCI Configuration Space for these root PCI buses is implemented as a pair
656 * of pages in memory-mapped I/O space. Writing to the first page chooses
657 * the PCI function being written or read. Once the first page has been
658 * written to, the following page maps in the entire configuration space of
659 * the function.
660 */
661
662 /**
663 * _hv_pcifront_read_config() - Internal PCI config read
664 * @hpdev: The PCI driver's representation of the device
665 * @where: Offset within config space
666 * @size: Size of the transfer
667 * @val: Pointer to the buffer receiving the data
668 */
_hv_pcifront_read_config(struct hv_pci_dev * hpdev,int where,int size,u32 * val)669 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
670 int size, u32 *val)
671 {
672 unsigned long flags;
673 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
674
675 /*
676 * If the attempt is to read the IDs or the ROM BAR, simulate that.
677 */
678 if (where + size <= PCI_COMMAND) {
679 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
680 } else if (where >= PCI_CLASS_REVISION && where + size <=
681 PCI_CACHE_LINE_SIZE) {
682 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
683 PCI_CLASS_REVISION, size);
684 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
685 PCI_ROM_ADDRESS) {
686 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
687 PCI_SUBSYSTEM_VENDOR_ID, size);
688 } else if (where >= PCI_ROM_ADDRESS && where + size <=
689 PCI_CAPABILITY_LIST) {
690 /* ROM BARs are unimplemented */
691 *val = 0;
692 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
693 PCI_INTERRUPT_PIN) {
694 /*
695 * Interrupt Line and Interrupt PIN are hard-wired to zero
696 * because this front-end only supports message-signaled
697 * interrupts.
698 */
699 *val = 0;
700 } else if (where + size <= CFG_PAGE_SIZE) {
701 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
702 /* Choose the function to be read. (See comment above) */
703 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
704 /* Make sure the function was chosen before we start reading. */
705 mb();
706 /* Read from that function's config space. */
707 switch (size) {
708 case 1:
709 *val = readb(addr);
710 break;
711 case 2:
712 *val = readw(addr);
713 break;
714 default:
715 *val = readl(addr);
716 break;
717 }
718 /*
719 * Make sure the read was done before we release the spinlock
720 * allowing consecutive reads/writes.
721 */
722 mb();
723 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
724 } else {
725 dev_err(&hpdev->hbus->hdev->device,
726 "Attempt to read beyond a function's config space.\n");
727 }
728 }
729
hv_pcifront_get_vendor_id(struct hv_pci_dev * hpdev)730 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
731 {
732 u16 ret;
733 unsigned long flags;
734 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
735 PCI_VENDOR_ID;
736
737 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
738
739 /* Choose the function to be read. (See comment above) */
740 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
741 /* Make sure the function was chosen before we start reading. */
742 mb();
743 /* Read from that function's config space. */
744 ret = readw(addr);
745 /*
746 * mb() is not required here, because the spin_unlock_irqrestore()
747 * is a barrier.
748 */
749
750 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
751
752 return ret;
753 }
754
755 /**
756 * _hv_pcifront_write_config() - Internal PCI config write
757 * @hpdev: The PCI driver's representation of the device
758 * @where: Offset within config space
759 * @size: Size of the transfer
760 * @val: The data being transferred
761 */
_hv_pcifront_write_config(struct hv_pci_dev * hpdev,int where,int size,u32 val)762 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
763 int size, u32 val)
764 {
765 unsigned long flags;
766 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
767
768 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
769 where + size <= PCI_CAPABILITY_LIST) {
770 /* SSIDs and ROM BARs are read-only */
771 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
772 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
773 /* Choose the function to be written. (See comment above) */
774 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
775 /* Make sure the function was chosen before we start writing. */
776 wmb();
777 /* Write to that function's config space. */
778 switch (size) {
779 case 1:
780 writeb(val, addr);
781 break;
782 case 2:
783 writew(val, addr);
784 break;
785 default:
786 writel(val, addr);
787 break;
788 }
789 /*
790 * Make sure the write was done before we release the spinlock
791 * allowing consecutive reads/writes.
792 */
793 mb();
794 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
795 } else {
796 dev_err(&hpdev->hbus->hdev->device,
797 "Attempt to write beyond a function's config space.\n");
798 }
799 }
800
801 /**
802 * hv_pcifront_read_config() - Read configuration space
803 * @bus: PCI Bus structure
804 * @devfn: Device/function
805 * @where: Offset from base
806 * @size: Byte/word/dword
807 * @val: Value to be read
808 *
809 * Return: PCIBIOS_SUCCESSFUL on success
810 * PCIBIOS_DEVICE_NOT_FOUND on failure
811 */
hv_pcifront_read_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)812 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
813 int where, int size, u32 *val)
814 {
815 struct hv_pcibus_device *hbus =
816 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
817 struct hv_pci_dev *hpdev;
818
819 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
820 if (!hpdev)
821 return PCIBIOS_DEVICE_NOT_FOUND;
822
823 _hv_pcifront_read_config(hpdev, where, size, val);
824
825 put_pcichild(hpdev);
826 return PCIBIOS_SUCCESSFUL;
827 }
828
829 /**
830 * hv_pcifront_write_config() - Write configuration space
831 * @bus: PCI Bus structure
832 * @devfn: Device/function
833 * @where: Offset from base
834 * @size: Byte/word/dword
835 * @val: Value to be written to device
836 *
837 * Return: PCIBIOS_SUCCESSFUL on success
838 * PCIBIOS_DEVICE_NOT_FOUND on failure
839 */
hv_pcifront_write_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)840 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
841 int where, int size, u32 val)
842 {
843 struct hv_pcibus_device *hbus =
844 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
845 struct hv_pci_dev *hpdev;
846
847 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
848 if (!hpdev)
849 return PCIBIOS_DEVICE_NOT_FOUND;
850
851 _hv_pcifront_write_config(hpdev, where, size, val);
852
853 put_pcichild(hpdev);
854 return PCIBIOS_SUCCESSFUL;
855 }
856
857 /* PCIe operations */
858 static struct pci_ops hv_pcifront_ops = {
859 .read = hv_pcifront_read_config,
860 .write = hv_pcifront_write_config,
861 };
862
863 /*
864 * Paravirtual backchannel
865 *
866 * Hyper-V SR-IOV provides a backchannel mechanism in software for
867 * communication between a VF driver and a PF driver. These
868 * "configuration blocks" are similar in concept to PCI configuration space,
869 * but instead of doing reads and writes in 32-bit chunks through a very slow
870 * path, packets of up to 128 bytes can be sent or received asynchronously.
871 *
872 * Nearly every SR-IOV device contains just such a communications channel in
873 * hardware, so using this one in software is usually optional. Using the
874 * software channel, however, allows driver implementers to leverage software
875 * tools that fuzz the communications channel looking for vulnerabilities.
876 *
877 * The usage model for these packets puts the responsibility for reading or
878 * writing on the VF driver. The VF driver sends a read or a write packet,
879 * indicating which "block" is being referred to by number.
880 *
881 * If the PF driver wishes to initiate communication, it can "invalidate" one or
882 * more of the first 64 blocks. This invalidation is delivered via a callback
883 * supplied by the VF driver by this driver.
884 *
885 * No protocol is implied, except that supplied by the PF and VF drivers.
886 */
887
888 struct hv_read_config_compl {
889 struct hv_pci_compl comp_pkt;
890 void *buf;
891 unsigned int len;
892 unsigned int bytes_returned;
893 };
894
895 /**
896 * hv_pci_read_config_compl() - Invoked when a response packet
897 * for a read config block operation arrives.
898 * @context: Identifies the read config operation
899 * @resp: The response packet itself
900 * @resp_packet_size: Size in bytes of the response packet
901 */
hv_pci_read_config_compl(void * context,struct pci_response * resp,int resp_packet_size)902 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
903 int resp_packet_size)
904 {
905 struct hv_read_config_compl *comp = context;
906 struct pci_read_block_response *read_resp =
907 (struct pci_read_block_response *)resp;
908 unsigned int data_len, hdr_len;
909
910 hdr_len = offsetof(struct pci_read_block_response, bytes);
911 if (resp_packet_size < hdr_len) {
912 comp->comp_pkt.completion_status = -1;
913 goto out;
914 }
915
916 data_len = resp_packet_size - hdr_len;
917 if (data_len > 0 && read_resp->status == 0) {
918 comp->bytes_returned = min(comp->len, data_len);
919 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
920 } else {
921 comp->bytes_returned = 0;
922 }
923
924 comp->comp_pkt.completion_status = read_resp->status;
925 out:
926 complete(&comp->comp_pkt.host_event);
927 }
928
929 /**
930 * hv_read_config_block() - Sends a read config block request to
931 * the back-end driver running in the Hyper-V parent partition.
932 * @pdev: The PCI driver's representation for this device.
933 * @buf: Buffer into which the config block will be copied.
934 * @len: Size in bytes of buf.
935 * @block_id: Identifies the config block which has been requested.
936 * @bytes_returned: Size which came back from the back-end driver.
937 *
938 * Return: 0 on success, -errno on failure
939 */
hv_read_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id,unsigned int * bytes_returned)940 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
941 unsigned int len, unsigned int block_id,
942 unsigned int *bytes_returned)
943 {
944 struct hv_pcibus_device *hbus =
945 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
946 sysdata);
947 struct {
948 struct pci_packet pkt;
949 char buf[sizeof(struct pci_read_block)];
950 } pkt;
951 struct hv_read_config_compl comp_pkt;
952 struct pci_read_block *read_blk;
953 int ret;
954
955 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
956 return -EINVAL;
957
958 init_completion(&comp_pkt.comp_pkt.host_event);
959 comp_pkt.buf = buf;
960 comp_pkt.len = len;
961
962 memset(&pkt, 0, sizeof(pkt));
963 pkt.pkt.completion_func = hv_pci_read_config_compl;
964 pkt.pkt.compl_ctxt = &comp_pkt;
965 read_blk = (struct pci_read_block *)&pkt.pkt.message;
966 read_blk->message_type.type = PCI_READ_BLOCK;
967 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
968 read_blk->block_id = block_id;
969 read_blk->bytes_requested = len;
970
971 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
972 sizeof(*read_blk), (unsigned long)&pkt.pkt,
973 VM_PKT_DATA_INBAND,
974 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
975 if (ret)
976 return ret;
977
978 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
979 if (ret)
980 return ret;
981
982 if (comp_pkt.comp_pkt.completion_status != 0 ||
983 comp_pkt.bytes_returned == 0) {
984 dev_err(&hbus->hdev->device,
985 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
986 comp_pkt.comp_pkt.completion_status,
987 comp_pkt.bytes_returned);
988 return -EIO;
989 }
990
991 *bytes_returned = comp_pkt.bytes_returned;
992 return 0;
993 }
994
995 /**
996 * hv_pci_write_config_compl() - Invoked when a response packet for a write
997 * config block operation arrives.
998 * @context: Identifies the write config operation
999 * @resp: The response packet itself
1000 * @resp_packet_size: Size in bytes of the response packet
1001 */
hv_pci_write_config_compl(void * context,struct pci_response * resp,int resp_packet_size)1002 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1003 int resp_packet_size)
1004 {
1005 struct hv_pci_compl *comp_pkt = context;
1006
1007 comp_pkt->completion_status = resp->status;
1008 complete(&comp_pkt->host_event);
1009 }
1010
1011 /**
1012 * hv_write_config_block() - Sends a write config block request to the
1013 * back-end driver running in the Hyper-V parent partition.
1014 * @pdev: The PCI driver's representation for this device.
1015 * @buf: Buffer from which the config block will be copied.
1016 * @len: Size in bytes of buf.
1017 * @block_id: Identifies the config block which is being written.
1018 *
1019 * Return: 0 on success, -errno on failure
1020 */
hv_write_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id)1021 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1022 unsigned int len, unsigned int block_id)
1023 {
1024 struct hv_pcibus_device *hbus =
1025 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1026 sysdata);
1027 struct {
1028 struct pci_packet pkt;
1029 char buf[sizeof(struct pci_write_block)];
1030 u32 reserved;
1031 } pkt;
1032 struct hv_pci_compl comp_pkt;
1033 struct pci_write_block *write_blk;
1034 u32 pkt_size;
1035 int ret;
1036
1037 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1038 return -EINVAL;
1039
1040 init_completion(&comp_pkt.host_event);
1041
1042 memset(&pkt, 0, sizeof(pkt));
1043 pkt.pkt.completion_func = hv_pci_write_config_compl;
1044 pkt.pkt.compl_ctxt = &comp_pkt;
1045 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1046 write_blk->message_type.type = PCI_WRITE_BLOCK;
1047 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1048 write_blk->block_id = block_id;
1049 write_blk->byte_count = len;
1050 memcpy(write_blk->bytes, buf, len);
1051 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1052 /*
1053 * This quirk is required on some hosts shipped around 2018, because
1054 * these hosts don't check the pkt_size correctly (new hosts have been
1055 * fixed since early 2019). The quirk is also safe on very old hosts
1056 * and new hosts, because, on them, what really matters is the length
1057 * specified in write_blk->byte_count.
1058 */
1059 pkt_size += sizeof(pkt.reserved);
1060
1061 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1062 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1063 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1064 if (ret)
1065 return ret;
1066
1067 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1068 if (ret)
1069 return ret;
1070
1071 if (comp_pkt.completion_status != 0) {
1072 dev_err(&hbus->hdev->device,
1073 "Write Config Block failed: 0x%x\n",
1074 comp_pkt.completion_status);
1075 return -EIO;
1076 }
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * hv_register_block_invalidate() - Invoked when a config block invalidation
1083 * arrives from the back-end driver.
1084 * @pdev: The PCI driver's representation for this device.
1085 * @context: Identifies the device.
1086 * @block_invalidate: Identifies all of the blocks being invalidated.
1087 *
1088 * Return: 0 on success, -errno on failure
1089 */
hv_register_block_invalidate(struct pci_dev * pdev,void * context,void (* block_invalidate)(void * context,u64 block_mask))1090 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1091 void (*block_invalidate)(void *context,
1092 u64 block_mask))
1093 {
1094 struct hv_pcibus_device *hbus =
1095 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1096 sysdata);
1097 struct hv_pci_dev *hpdev;
1098
1099 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1100 if (!hpdev)
1101 return -ENODEV;
1102
1103 hpdev->block_invalidate = block_invalidate;
1104 hpdev->invalidate_context = context;
1105
1106 put_pcichild(hpdev);
1107 return 0;
1108
1109 }
1110
1111 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev * hpdev,struct tran_int_desc * int_desc)1112 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1113 struct tran_int_desc *int_desc)
1114 {
1115 struct pci_delete_interrupt *int_pkt;
1116 struct {
1117 struct pci_packet pkt;
1118 u8 buffer[sizeof(struct pci_delete_interrupt)];
1119 } ctxt;
1120
1121 if (!int_desc->vector_count) {
1122 kfree(int_desc);
1123 return;
1124 }
1125 memset(&ctxt, 0, sizeof(ctxt));
1126 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1127 int_pkt->message_type.type =
1128 PCI_DELETE_INTERRUPT_MESSAGE;
1129 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1130 int_pkt->int_desc = *int_desc;
1131 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1132 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1133 kfree(int_desc);
1134 }
1135
1136 /**
1137 * hv_msi_free() - Free the MSI.
1138 * @domain: The interrupt domain pointer
1139 * @info: Extra MSI-related context
1140 * @irq: Identifies the IRQ.
1141 *
1142 * The Hyper-V parent partition and hypervisor are tracking the
1143 * messages that are in use, keeping the interrupt redirection
1144 * table up to date. This callback sends a message that frees
1145 * the IRT entry and related tracking nonsense.
1146 */
hv_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)1147 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1148 unsigned int irq)
1149 {
1150 struct hv_pcibus_device *hbus;
1151 struct hv_pci_dev *hpdev;
1152 struct pci_dev *pdev;
1153 struct tran_int_desc *int_desc;
1154 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1155 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1156
1157 pdev = msi_desc_to_pci_dev(msi);
1158 hbus = info->data;
1159 int_desc = irq_data_get_irq_chip_data(irq_data);
1160 if (!int_desc)
1161 return;
1162
1163 irq_data->chip_data = NULL;
1164 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1165 if (!hpdev) {
1166 kfree(int_desc);
1167 return;
1168 }
1169
1170 hv_int_desc_free(hpdev, int_desc);
1171 put_pcichild(hpdev);
1172 }
1173
hv_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)1174 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1175 bool force)
1176 {
1177 struct irq_data *parent = data->parent_data;
1178
1179 return parent->chip->irq_set_affinity(parent, dest, force);
1180 }
1181
hv_irq_mask(struct irq_data * data)1182 static void hv_irq_mask(struct irq_data *data)
1183 {
1184 pci_msi_mask_irq(data);
1185 }
1186
hv_msi_get_int_vector(struct irq_data * data)1187 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
1188 {
1189 struct irq_cfg *cfg = irqd_cfg(data);
1190
1191 return cfg->vector;
1192 }
1193
hv_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)1194 static int hv_msi_prepare(struct irq_domain *domain, struct device *dev,
1195 int nvec, msi_alloc_info_t *info)
1196 {
1197 int ret = pci_msi_prepare(domain, dev, nvec, info);
1198
1199 /*
1200 * By using the interrupt remapper in the hypervisor IOMMU, contiguous
1201 * CPU vectors is not needed for multi-MSI
1202 */
1203 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1204 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1205
1206 return ret;
1207 }
1208
1209 /**
1210 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1211 * affinity.
1212 * @data: Describes the IRQ
1213 *
1214 * Build new a destination for the MSI and make a hypercall to
1215 * update the Interrupt Redirection Table. "Device Logical ID"
1216 * is built out of this PCI bus's instance GUID and the function
1217 * number of the device.
1218 */
hv_irq_unmask(struct irq_data * data)1219 static void hv_irq_unmask(struct irq_data *data)
1220 {
1221 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1222 struct irq_cfg *cfg = irqd_cfg(data);
1223 struct hv_retarget_device_interrupt *params;
1224 struct tran_int_desc *int_desc;
1225 struct hv_pcibus_device *hbus;
1226 struct cpumask *dest;
1227 cpumask_var_t tmp;
1228 struct pci_bus *pbus;
1229 struct pci_dev *pdev;
1230 unsigned long flags;
1231 u32 var_size = 0;
1232 int cpu, nr_bank;
1233 u64 res;
1234
1235 dest = irq_data_get_effective_affinity_mask(data);
1236 pdev = msi_desc_to_pci_dev(msi_desc);
1237 pbus = pdev->bus;
1238 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1239 int_desc = data->chip_data;
1240
1241 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1242
1243 params = &hbus->retarget_msi_interrupt_params;
1244 memset(params, 0, sizeof(*params));
1245 params->partition_id = HV_PARTITION_ID_SELF;
1246 params->int_entry.source = 1; /* MSI(-X) */
1247 params->int_entry.msi_entry.address = int_desc->address & 0xffffffff;
1248 params->int_entry.msi_entry.data = int_desc->data;
1249 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1250 (hbus->hdev->dev_instance.b[4] << 16) |
1251 (hbus->hdev->dev_instance.b[7] << 8) |
1252 (hbus->hdev->dev_instance.b[6] & 0xf8) |
1253 PCI_FUNC(pdev->devfn);
1254 params->int_target.vector = cfg->vector;
1255
1256 /*
1257 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1258 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1259 * spurious interrupt storm. Not doing so does not seem to have a
1260 * negative effect (yet?).
1261 */
1262
1263 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1264 /*
1265 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1266 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1267 * with >64 VP support.
1268 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1269 * is not sufficient for this hypercall.
1270 */
1271 params->int_target.flags |=
1272 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1273
1274 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1275 res = 1;
1276 goto exit_unlock;
1277 }
1278
1279 cpumask_and(tmp, dest, cpu_online_mask);
1280 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
1281 free_cpumask_var(tmp);
1282
1283 if (nr_bank <= 0) {
1284 res = 1;
1285 goto exit_unlock;
1286 }
1287
1288 /*
1289 * var-sized hypercall, var-size starts after vp_mask (thus
1290 * vp_set.format does not count, but vp_set.valid_bank_mask
1291 * does).
1292 */
1293 var_size = 1 + nr_bank;
1294 } else {
1295 for_each_cpu_and(cpu, dest, cpu_online_mask) {
1296 params->int_target.vp_mask |=
1297 (1ULL << hv_cpu_number_to_vp_number(cpu));
1298 }
1299 }
1300
1301 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1302 params, NULL);
1303
1304 exit_unlock:
1305 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1306
1307 /*
1308 * During hibernation, when a CPU is offlined, the kernel tries
1309 * to move the interrupt to the remaining CPUs that haven't
1310 * been offlined yet. In this case, the below hv_do_hypercall()
1311 * always fails since the vmbus channel has been closed:
1312 * refer to cpu_disable_common() -> fixup_irqs() ->
1313 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1314 *
1315 * Suppress the error message for hibernation because the failure
1316 * during hibernation does not matter (at this time all the devices
1317 * have been frozen). Note: the correct affinity info is still updated
1318 * into the irqdata data structure in migrate_one_irq() ->
1319 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1320 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1321 * the interrupt with the correct affinity.
1322 */
1323 if (res && hbus->state != hv_pcibus_removing)
1324 dev_err(&hbus->hdev->device,
1325 "%s() failed: %#llx", __func__, res);
1326
1327 pci_msi_unmask_irq(data);
1328 }
1329
1330 struct compose_comp_ctxt {
1331 struct hv_pci_compl comp_pkt;
1332 struct tran_int_desc int_desc;
1333 };
1334
hv_pci_compose_compl(void * context,struct pci_response * resp,int resp_packet_size)1335 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1336 int resp_packet_size)
1337 {
1338 struct compose_comp_ctxt *comp_pkt = context;
1339 struct pci_create_int_response *int_resp =
1340 (struct pci_create_int_response *)resp;
1341
1342 comp_pkt->comp_pkt.completion_status = resp->status;
1343 comp_pkt->int_desc = int_resp->int_desc;
1344 complete(&comp_pkt->comp_pkt.host_event);
1345 }
1346
hv_compose_msi_req_v1(struct pci_create_interrupt * int_pkt,struct cpumask * affinity,u32 slot,u8 vector,u8 vector_count)1347 static u32 hv_compose_msi_req_v1(
1348 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1349 u32 slot, u8 vector, u8 vector_count)
1350 {
1351 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1352 int_pkt->wslot.slot = slot;
1353 int_pkt->int_desc.vector = vector;
1354 int_pkt->int_desc.vector_count = vector_count;
1355 int_pkt->int_desc.delivery_mode = dest_Fixed;
1356
1357 /*
1358 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1359 * hv_irq_unmask().
1360 */
1361 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1362
1363 return sizeof(*int_pkt);
1364 }
1365
hv_compose_msi_req_v2(struct pci_create_interrupt2 * int_pkt,struct cpumask * affinity,u32 slot,u8 vector,u8 vector_count)1366 static u32 hv_compose_msi_req_v2(
1367 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1368 u32 slot, u8 vector, u8 vector_count)
1369 {
1370 int cpu;
1371
1372 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1373 int_pkt->wslot.slot = slot;
1374 int_pkt->int_desc.vector = vector;
1375 int_pkt->int_desc.vector_count = vector_count;
1376 int_pkt->int_desc.delivery_mode = dest_Fixed;
1377
1378 /*
1379 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1380 * by subsequent retarget in hv_irq_unmask().
1381 */
1382 cpu = cpumask_first_and(affinity, cpu_online_mask);
1383 int_pkt->int_desc.processor_array[0] =
1384 hv_cpu_number_to_vp_number(cpu);
1385 int_pkt->int_desc.processor_count = 1;
1386
1387 return sizeof(*int_pkt);
1388 }
1389
1390 /**
1391 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1392 * @data: Everything about this MSI
1393 * @msg: Buffer that is filled in by this function
1394 *
1395 * This function unpacks the IRQ looking for target CPU set, IDT
1396 * vector and mode and sends a message to the parent partition
1397 * asking for a mapping for that tuple in this partition. The
1398 * response supplies a data value and address to which that data
1399 * should be written to trigger that interrupt.
1400 */
hv_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1401 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1402 {
1403 struct hv_pcibus_device *hbus;
1404 struct vmbus_channel *channel;
1405 struct hv_pci_dev *hpdev;
1406 struct pci_bus *pbus;
1407 struct pci_dev *pdev;
1408 struct cpumask *dest;
1409 struct compose_comp_ctxt comp;
1410 struct tran_int_desc *int_desc;
1411 struct msi_desc *msi_desc;
1412 u8 vector, vector_count;
1413 struct {
1414 struct pci_packet pci_pkt;
1415 union {
1416 struct pci_create_interrupt v1;
1417 struct pci_create_interrupt2 v2;
1418 } int_pkts;
1419 } __packed ctxt;
1420
1421 u32 size;
1422 int ret;
1423
1424 /* Reuse the previous allocation */
1425 if (data->chip_data) {
1426 int_desc = data->chip_data;
1427 msg->address_hi = int_desc->address >> 32;
1428 msg->address_lo = int_desc->address & 0xffffffff;
1429 msg->data = int_desc->data;
1430 return;
1431 }
1432
1433 msi_desc = irq_data_get_msi_desc(data);
1434 pdev = msi_desc_to_pci_dev(msi_desc);
1435 dest = irq_data_get_effective_affinity_mask(data);
1436 pbus = pdev->bus;
1437 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1438 channel = hbus->hdev->channel;
1439 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1440 if (!hpdev)
1441 goto return_null_message;
1442
1443 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1444 if (!int_desc)
1445 goto drop_reference;
1446
1447 if (!msi_desc->msi_attrib.is_msix && msi_desc->nvec_used > 1) {
1448 /*
1449 * If this is not the first MSI of Multi MSI, we already have
1450 * a mapping. Can exit early.
1451 */
1452 if (msi_desc->irq != data->irq) {
1453 data->chip_data = int_desc;
1454 int_desc->address = msi_desc->msg.address_lo |
1455 (u64)msi_desc->msg.address_hi << 32;
1456 int_desc->data = msi_desc->msg.data +
1457 (data->irq - msi_desc->irq);
1458 msg->address_hi = msi_desc->msg.address_hi;
1459 msg->address_lo = msi_desc->msg.address_lo;
1460 msg->data = int_desc->data;
1461 put_pcichild(hpdev);
1462 return;
1463 }
1464 /*
1465 * The vector we select here is a dummy value. The correct
1466 * value gets sent to the hypervisor in unmask(). This needs
1467 * to be aligned with the count, and also not zero. Multi-msi
1468 * is powers of 2 up to 32, so 32 will always work here.
1469 */
1470 vector = 32;
1471 vector_count = msi_desc->nvec_used;
1472 } else {
1473 vector = hv_msi_get_int_vector(data);
1474 vector_count = 1;
1475 }
1476
1477 memset(&ctxt, 0, sizeof(ctxt));
1478 init_completion(&comp.comp_pkt.host_event);
1479 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1480 ctxt.pci_pkt.compl_ctxt = ∁
1481
1482 switch (hbus->protocol_version) {
1483 case PCI_PROTOCOL_VERSION_1_1:
1484 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1485 dest,
1486 hpdev->desc.win_slot.slot,
1487 vector,
1488 vector_count);
1489 break;
1490
1491 case PCI_PROTOCOL_VERSION_1_2:
1492 case PCI_PROTOCOL_VERSION_1_3:
1493 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1494 dest,
1495 hpdev->desc.win_slot.slot,
1496 vector,
1497 vector_count);
1498 break;
1499
1500 default:
1501 /* As we only negotiate protocol versions known to this driver,
1502 * this path should never hit. However, this is it not a hot
1503 * path so we print a message to aid future updates.
1504 */
1505 dev_err(&hbus->hdev->device,
1506 "Unexpected vPCI protocol, update driver.");
1507 goto free_int_desc;
1508 }
1509
1510 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1511 size, (unsigned long)&ctxt.pci_pkt,
1512 VM_PKT_DATA_INBAND,
1513 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1514 if (ret) {
1515 dev_err(&hbus->hdev->device,
1516 "Sending request for interrupt failed: 0x%x",
1517 comp.comp_pkt.completion_status);
1518 goto free_int_desc;
1519 }
1520
1521 /*
1522 * Prevents hv_pci_onchannelcallback() from running concurrently
1523 * in the tasklet.
1524 */
1525 tasklet_disable(&channel->callback_event);
1526
1527 /*
1528 * Since this function is called with IRQ locks held, can't
1529 * do normal wait for completion; instead poll.
1530 */
1531 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1532 unsigned long flags;
1533
1534 /* 0xFFFF means an invalid PCI VENDOR ID. */
1535 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1536 dev_err_once(&hbus->hdev->device,
1537 "the device has gone\n");
1538 goto enable_tasklet;
1539 }
1540
1541 /*
1542 * Make sure that the ring buffer data structure doesn't get
1543 * freed while we dereference the ring buffer pointer. Test
1544 * for the channel's onchannel_callback being NULL within a
1545 * sched_lock critical section. See also the inline comments
1546 * in vmbus_reset_channel_cb().
1547 */
1548 spin_lock_irqsave(&channel->sched_lock, flags);
1549 if (unlikely(channel->onchannel_callback == NULL)) {
1550 spin_unlock_irqrestore(&channel->sched_lock, flags);
1551 goto enable_tasklet;
1552 }
1553 hv_pci_onchannelcallback(hbus);
1554 spin_unlock_irqrestore(&channel->sched_lock, flags);
1555
1556 if (hpdev->state == hv_pcichild_ejecting) {
1557 dev_err_once(&hbus->hdev->device,
1558 "the device is being ejected\n");
1559 goto enable_tasklet;
1560 }
1561
1562 udelay(100);
1563 }
1564
1565 tasklet_enable(&channel->callback_event);
1566
1567 if (comp.comp_pkt.completion_status < 0) {
1568 dev_err(&hbus->hdev->device,
1569 "Request for interrupt failed: 0x%x",
1570 comp.comp_pkt.completion_status);
1571 goto free_int_desc;
1572 }
1573
1574 /*
1575 * Record the assignment so that this can be unwound later. Using
1576 * irq_set_chip_data() here would be appropriate, but the lock it takes
1577 * is already held.
1578 */
1579 *int_desc = comp.int_desc;
1580 data->chip_data = int_desc;
1581
1582 /* Pass up the result. */
1583 msg->address_hi = comp.int_desc.address >> 32;
1584 msg->address_lo = comp.int_desc.address & 0xffffffff;
1585 msg->data = comp.int_desc.data;
1586
1587 put_pcichild(hpdev);
1588 return;
1589
1590 enable_tasklet:
1591 tasklet_enable(&channel->callback_event);
1592 free_int_desc:
1593 kfree(int_desc);
1594 drop_reference:
1595 put_pcichild(hpdev);
1596 return_null_message:
1597 msg->address_hi = 0;
1598 msg->address_lo = 0;
1599 msg->data = 0;
1600 }
1601
1602 /* HW Interrupt Chip Descriptor */
1603 static struct irq_chip hv_msi_irq_chip = {
1604 .name = "Hyper-V PCIe MSI",
1605 .irq_compose_msi_msg = hv_compose_msi_msg,
1606 .irq_set_affinity = hv_set_affinity,
1607 .irq_ack = irq_chip_ack_parent,
1608 .irq_mask = hv_irq_mask,
1609 .irq_unmask = hv_irq_unmask,
1610 };
1611
1612 static struct msi_domain_ops hv_msi_ops = {
1613 .msi_prepare = hv_msi_prepare,
1614 .msi_free = hv_msi_free,
1615 };
1616
1617 /**
1618 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1619 * @hbus: The root PCI bus
1620 *
1621 * This function creates an IRQ domain which will be used for
1622 * interrupts from devices that have been passed through. These
1623 * devices only support MSI and MSI-X, not line-based interrupts
1624 * or simulations of line-based interrupts through PCIe's
1625 * fabric-layer messages. Because interrupts are remapped, we
1626 * can support multi-message MSI here.
1627 *
1628 * Return: '0' on success and error value on failure
1629 */
hv_pcie_init_irq_domain(struct hv_pcibus_device * hbus)1630 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1631 {
1632 hbus->msi_info.chip = &hv_msi_irq_chip;
1633 hbus->msi_info.ops = &hv_msi_ops;
1634 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1635 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1636 MSI_FLAG_PCI_MSIX);
1637 hbus->msi_info.handler = handle_edge_irq;
1638 hbus->msi_info.handler_name = "edge";
1639 hbus->msi_info.data = hbus;
1640 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1641 &hbus->msi_info,
1642 x86_vector_domain);
1643 if (!hbus->irq_domain) {
1644 dev_err(&hbus->hdev->device,
1645 "Failed to build an MSI IRQ domain\n");
1646 return -ENODEV;
1647 }
1648
1649 return 0;
1650 }
1651
1652 /**
1653 * get_bar_size() - Get the address space consumed by a BAR
1654 * @bar_val: Value that a BAR returned after -1 was written
1655 * to it.
1656 *
1657 * This function returns the size of the BAR, rounded up to 1
1658 * page. It has to be rounded up because the hypervisor's page
1659 * table entry that maps the BAR into the VM can't specify an
1660 * offset within a page. The invariant is that the hypervisor
1661 * must place any BARs of smaller than page length at the
1662 * beginning of a page.
1663 *
1664 * Return: Size in bytes of the consumed MMIO space.
1665 */
get_bar_size(u64 bar_val)1666 static u64 get_bar_size(u64 bar_val)
1667 {
1668 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1669 PAGE_SIZE);
1670 }
1671
1672 /**
1673 * survey_child_resources() - Total all MMIO requirements
1674 * @hbus: Root PCI bus, as understood by this driver
1675 */
survey_child_resources(struct hv_pcibus_device * hbus)1676 static void survey_child_resources(struct hv_pcibus_device *hbus)
1677 {
1678 struct hv_pci_dev *hpdev;
1679 resource_size_t bar_size = 0;
1680 unsigned long flags;
1681 struct completion *event;
1682 u64 bar_val;
1683 int i;
1684
1685 /* If nobody is waiting on the answer, don't compute it. */
1686 event = xchg(&hbus->survey_event, NULL);
1687 if (!event)
1688 return;
1689
1690 /* If the answer has already been computed, go with it. */
1691 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1692 complete(event);
1693 return;
1694 }
1695
1696 spin_lock_irqsave(&hbus->device_list_lock, flags);
1697
1698 /*
1699 * Due to an interesting quirk of the PCI spec, all memory regions
1700 * for a child device are a power of 2 in size and aligned in memory,
1701 * so it's sufficient to just add them up without tracking alignment.
1702 */
1703 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1704 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1705 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1706 dev_err(&hbus->hdev->device,
1707 "There's an I/O BAR in this list!\n");
1708
1709 if (hpdev->probed_bar[i] != 0) {
1710 /*
1711 * A probed BAR has all the upper bits set that
1712 * can be changed.
1713 */
1714
1715 bar_val = hpdev->probed_bar[i];
1716 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1717 bar_val |=
1718 ((u64)hpdev->probed_bar[++i] << 32);
1719 else
1720 bar_val |= 0xffffffff00000000ULL;
1721
1722 bar_size = get_bar_size(bar_val);
1723
1724 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1725 hbus->high_mmio_space += bar_size;
1726 else
1727 hbus->low_mmio_space += bar_size;
1728 }
1729 }
1730 }
1731
1732 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1733 complete(event);
1734 }
1735
1736 /**
1737 * prepopulate_bars() - Fill in BARs with defaults
1738 * @hbus: Root PCI bus, as understood by this driver
1739 *
1740 * The core PCI driver code seems much, much happier if the BARs
1741 * for a device have values upon first scan. So fill them in.
1742 * The algorithm below works down from large sizes to small,
1743 * attempting to pack the assignments optimally. The assumption,
1744 * enforced in other parts of the code, is that the beginning of
1745 * the memory-mapped I/O space will be aligned on the largest
1746 * BAR size.
1747 */
prepopulate_bars(struct hv_pcibus_device * hbus)1748 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1749 {
1750 resource_size_t high_size = 0;
1751 resource_size_t low_size = 0;
1752 resource_size_t high_base = 0;
1753 resource_size_t low_base = 0;
1754 resource_size_t bar_size;
1755 struct hv_pci_dev *hpdev;
1756 unsigned long flags;
1757 u64 bar_val;
1758 u32 command;
1759 bool high;
1760 int i;
1761
1762 if (hbus->low_mmio_space) {
1763 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1764 low_base = hbus->low_mmio_res->start;
1765 }
1766
1767 if (hbus->high_mmio_space) {
1768 high_size = 1ULL <<
1769 (63 - __builtin_clzll(hbus->high_mmio_space));
1770 high_base = hbus->high_mmio_res->start;
1771 }
1772
1773 spin_lock_irqsave(&hbus->device_list_lock, flags);
1774
1775 /*
1776 * Clear the memory enable bit, in case it's already set. This occurs
1777 * in the suspend path of hibernation, where the device is suspended,
1778 * resumed and suspended again: see hibernation_snapshot() and
1779 * hibernation_platform_enter().
1780 *
1781 * If the memory enable bit is already set, Hyper-V sliently ignores
1782 * the below BAR updates, and the related PCI device driver can not
1783 * work, because reading from the device register(s) always returns
1784 * 0xFFFFFFFF.
1785 */
1786 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1787 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1788 command &= ~PCI_COMMAND_MEMORY;
1789 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1790 }
1791
1792 /* Pick addresses for the BARs. */
1793 do {
1794 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1795 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1796 bar_val = hpdev->probed_bar[i];
1797 if (bar_val == 0)
1798 continue;
1799 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1800 if (high) {
1801 bar_val |=
1802 ((u64)hpdev->probed_bar[i + 1]
1803 << 32);
1804 } else {
1805 bar_val |= 0xffffffffULL << 32;
1806 }
1807 bar_size = get_bar_size(bar_val);
1808 if (high) {
1809 if (high_size != bar_size) {
1810 i++;
1811 continue;
1812 }
1813 _hv_pcifront_write_config(hpdev,
1814 PCI_BASE_ADDRESS_0 + (4 * i),
1815 4,
1816 (u32)(high_base & 0xffffff00));
1817 i++;
1818 _hv_pcifront_write_config(hpdev,
1819 PCI_BASE_ADDRESS_0 + (4 * i),
1820 4, (u32)(high_base >> 32));
1821 high_base += bar_size;
1822 } else {
1823 if (low_size != bar_size)
1824 continue;
1825 _hv_pcifront_write_config(hpdev,
1826 PCI_BASE_ADDRESS_0 + (4 * i),
1827 4,
1828 (u32)(low_base & 0xffffff00));
1829 low_base += bar_size;
1830 }
1831 }
1832 if (high_size <= 1 && low_size <= 1) {
1833 /* Set the memory enable bit. */
1834 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1835 &command);
1836 command |= PCI_COMMAND_MEMORY;
1837 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1838 command);
1839 break;
1840 }
1841 }
1842
1843 high_size >>= 1;
1844 low_size >>= 1;
1845 } while (high_size || low_size);
1846
1847 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1848 }
1849
1850 /*
1851 * Assign entries in sysfs pci slot directory.
1852 *
1853 * Note that this function does not need to lock the children list
1854 * because it is called from pci_devices_present_work which
1855 * is serialized with hv_eject_device_work because they are on the
1856 * same ordered workqueue. Therefore hbus->children list will not change
1857 * even when pci_create_slot sleeps.
1858 */
hv_pci_assign_slots(struct hv_pcibus_device * hbus)1859 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1860 {
1861 struct hv_pci_dev *hpdev;
1862 char name[SLOT_NAME_SIZE];
1863 int slot_nr;
1864
1865 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1866 if (hpdev->pci_slot)
1867 continue;
1868
1869 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1870 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1871 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1872 name, NULL);
1873 if (IS_ERR(hpdev->pci_slot)) {
1874 pr_warn("pci_create slot %s failed\n", name);
1875 hpdev->pci_slot = NULL;
1876 }
1877 }
1878 }
1879
1880 /*
1881 * Remove entries in sysfs pci slot directory.
1882 */
hv_pci_remove_slots(struct hv_pcibus_device * hbus)1883 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1884 {
1885 struct hv_pci_dev *hpdev;
1886
1887 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1888 if (!hpdev->pci_slot)
1889 continue;
1890 pci_destroy_slot(hpdev->pci_slot);
1891 hpdev->pci_slot = NULL;
1892 }
1893 }
1894
1895 /*
1896 * Set NUMA node for the devices on the bus
1897 */
hv_pci_assign_numa_node(struct hv_pcibus_device * hbus)1898 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1899 {
1900 struct pci_dev *dev;
1901 struct pci_bus *bus = hbus->pci_bus;
1902 struct hv_pci_dev *hv_dev;
1903
1904 list_for_each_entry(dev, &bus->devices, bus_list) {
1905 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1906 if (!hv_dev)
1907 continue;
1908
1909 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
1910 hv_dev->desc.virtual_numa_node < num_possible_nodes())
1911 /*
1912 * The kernel may boot with some NUMA nodes offline
1913 * (e.g. in a KDUMP kernel) or with NUMA disabled via
1914 * "numa=off". In those cases, adjust the host provided
1915 * NUMA node to a valid NUMA node used by the kernel.
1916 */
1917 set_dev_node(&dev->dev,
1918 numa_map_to_online_node(
1919 hv_dev->desc.virtual_numa_node));
1920
1921 put_pcichild(hv_dev);
1922 }
1923 }
1924
1925 /**
1926 * create_root_hv_pci_bus() - Expose a new root PCI bus
1927 * @hbus: Root PCI bus, as understood by this driver
1928 *
1929 * Return: 0 on success, -errno on failure
1930 */
create_root_hv_pci_bus(struct hv_pcibus_device * hbus)1931 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1932 {
1933 /* Register the device */
1934 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1935 0, /* bus number is always zero */
1936 &hv_pcifront_ops,
1937 &hbus->sysdata,
1938 &hbus->resources_for_children);
1939 if (!hbus->pci_bus)
1940 return -ENODEV;
1941
1942 hbus->pci_bus->msi = &hbus->msi_chip;
1943 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1944
1945 pci_lock_rescan_remove();
1946 pci_scan_child_bus(hbus->pci_bus);
1947 hv_pci_assign_numa_node(hbus);
1948 pci_bus_assign_resources(hbus->pci_bus);
1949 hv_pci_assign_slots(hbus);
1950 pci_bus_add_devices(hbus->pci_bus);
1951 pci_unlock_rescan_remove();
1952 hbus->state = hv_pcibus_installed;
1953 return 0;
1954 }
1955
1956 struct q_res_req_compl {
1957 struct completion host_event;
1958 struct hv_pci_dev *hpdev;
1959 };
1960
1961 /**
1962 * q_resource_requirements() - Query Resource Requirements
1963 * @context: The completion context.
1964 * @resp: The response that came from the host.
1965 * @resp_packet_size: The size in bytes of resp.
1966 *
1967 * This function is invoked on completion of a Query Resource
1968 * Requirements packet.
1969 */
q_resource_requirements(void * context,struct pci_response * resp,int resp_packet_size)1970 static void q_resource_requirements(void *context, struct pci_response *resp,
1971 int resp_packet_size)
1972 {
1973 struct q_res_req_compl *completion = context;
1974 struct pci_q_res_req_response *q_res_req =
1975 (struct pci_q_res_req_response *)resp;
1976 int i;
1977
1978 if (resp->status < 0) {
1979 dev_err(&completion->hpdev->hbus->hdev->device,
1980 "query resource requirements failed: %x\n",
1981 resp->status);
1982 } else {
1983 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1984 completion->hpdev->probed_bar[i] =
1985 q_res_req->probed_bar[i];
1986 }
1987 }
1988
1989 complete(&completion->host_event);
1990 }
1991
1992 /**
1993 * new_pcichild_device() - Create a new child device
1994 * @hbus: The internal struct tracking this root PCI bus.
1995 * @desc: The information supplied so far from the host
1996 * about the device.
1997 *
1998 * This function creates the tracking structure for a new child
1999 * device and kicks off the process of figuring out what it is.
2000 *
2001 * Return: Pointer to the new tracking struct
2002 */
new_pcichild_device(struct hv_pcibus_device * hbus,struct hv_pcidev_description * desc)2003 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2004 struct hv_pcidev_description *desc)
2005 {
2006 struct hv_pci_dev *hpdev;
2007 struct pci_child_message *res_req;
2008 struct q_res_req_compl comp_pkt;
2009 struct {
2010 struct pci_packet init_packet;
2011 u8 buffer[sizeof(struct pci_child_message)];
2012 } pkt;
2013 unsigned long flags;
2014 int ret;
2015
2016 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2017 if (!hpdev)
2018 return NULL;
2019
2020 hpdev->hbus = hbus;
2021
2022 memset(&pkt, 0, sizeof(pkt));
2023 init_completion(&comp_pkt.host_event);
2024 comp_pkt.hpdev = hpdev;
2025 pkt.init_packet.compl_ctxt = &comp_pkt;
2026 pkt.init_packet.completion_func = q_resource_requirements;
2027 res_req = (struct pci_child_message *)&pkt.init_packet.message;
2028 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2029 res_req->wslot.slot = desc->win_slot.slot;
2030
2031 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2032 sizeof(struct pci_child_message),
2033 (unsigned long)&pkt.init_packet,
2034 VM_PKT_DATA_INBAND,
2035 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2036 if (ret)
2037 goto error;
2038
2039 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2040 goto error;
2041
2042 hpdev->desc = *desc;
2043 refcount_set(&hpdev->refs, 1);
2044 get_pcichild(hpdev);
2045 spin_lock_irqsave(&hbus->device_list_lock, flags);
2046
2047 list_add_tail(&hpdev->list_entry, &hbus->children);
2048 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2049 return hpdev;
2050
2051 error:
2052 kfree(hpdev);
2053 return NULL;
2054 }
2055
2056 /**
2057 * get_pcichild_wslot() - Find device from slot
2058 * @hbus: Root PCI bus, as understood by this driver
2059 * @wslot: Location on the bus
2060 *
2061 * This function looks up a PCI device and returns the internal
2062 * representation of it. It acquires a reference on it, so that
2063 * the device won't be deleted while somebody is using it. The
2064 * caller is responsible for calling put_pcichild() to release
2065 * this reference.
2066 *
2067 * Return: Internal representation of a PCI device
2068 */
get_pcichild_wslot(struct hv_pcibus_device * hbus,u32 wslot)2069 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2070 u32 wslot)
2071 {
2072 unsigned long flags;
2073 struct hv_pci_dev *iter, *hpdev = NULL;
2074
2075 spin_lock_irqsave(&hbus->device_list_lock, flags);
2076 list_for_each_entry(iter, &hbus->children, list_entry) {
2077 if (iter->desc.win_slot.slot == wslot) {
2078 hpdev = iter;
2079 get_pcichild(hpdev);
2080 break;
2081 }
2082 }
2083 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2084
2085 return hpdev;
2086 }
2087
2088 /**
2089 * pci_devices_present_work() - Handle new list of child devices
2090 * @work: Work struct embedded in struct hv_dr_work
2091 *
2092 * "Bus Relations" is the Windows term for "children of this
2093 * bus." The terminology is preserved here for people trying to
2094 * debug the interaction between Hyper-V and Linux. This
2095 * function is called when the parent partition reports a list
2096 * of functions that should be observed under this PCI Express
2097 * port (bus).
2098 *
2099 * This function updates the list, and must tolerate being
2100 * called multiple times with the same information. The typical
2101 * number of child devices is one, with very atypical cases
2102 * involving three or four, so the algorithms used here can be
2103 * simple and inefficient.
2104 *
2105 * It must also treat the omission of a previously observed device as
2106 * notification that the device no longer exists.
2107 *
2108 * Note that this function is serialized with hv_eject_device_work(),
2109 * because both are pushed to the ordered workqueue hbus->wq.
2110 */
pci_devices_present_work(struct work_struct * work)2111 static void pci_devices_present_work(struct work_struct *work)
2112 {
2113 u32 child_no;
2114 bool found;
2115 struct hv_pcidev_description *new_desc;
2116 struct hv_pci_dev *hpdev;
2117 struct hv_pcibus_device *hbus;
2118 struct list_head removed;
2119 struct hv_dr_work *dr_wrk;
2120 struct hv_dr_state *dr = NULL;
2121 unsigned long flags;
2122
2123 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2124 hbus = dr_wrk->bus;
2125 kfree(dr_wrk);
2126
2127 INIT_LIST_HEAD(&removed);
2128
2129 /* Pull this off the queue and process it if it was the last one. */
2130 spin_lock_irqsave(&hbus->device_list_lock, flags);
2131 while (!list_empty(&hbus->dr_list)) {
2132 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2133 list_entry);
2134 list_del(&dr->list_entry);
2135
2136 /* Throw this away if the list still has stuff in it. */
2137 if (!list_empty(&hbus->dr_list)) {
2138 kfree(dr);
2139 continue;
2140 }
2141 }
2142 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2143
2144 if (!dr) {
2145 put_hvpcibus(hbus);
2146 return;
2147 }
2148
2149 /* First, mark all existing children as reported missing. */
2150 spin_lock_irqsave(&hbus->device_list_lock, flags);
2151 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2152 hpdev->reported_missing = true;
2153 }
2154 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2155
2156 /* Next, add back any reported devices. */
2157 for (child_no = 0; child_no < dr->device_count; child_no++) {
2158 found = false;
2159 new_desc = &dr->func[child_no];
2160
2161 spin_lock_irqsave(&hbus->device_list_lock, flags);
2162 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2163 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2164 (hpdev->desc.v_id == new_desc->v_id) &&
2165 (hpdev->desc.d_id == new_desc->d_id) &&
2166 (hpdev->desc.ser == new_desc->ser)) {
2167 hpdev->reported_missing = false;
2168 found = true;
2169 }
2170 }
2171 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2172
2173 if (!found) {
2174 hpdev = new_pcichild_device(hbus, new_desc);
2175 if (!hpdev)
2176 dev_err(&hbus->hdev->device,
2177 "couldn't record a child device.\n");
2178 }
2179 }
2180
2181 /* Move missing children to a list on the stack. */
2182 spin_lock_irqsave(&hbus->device_list_lock, flags);
2183 do {
2184 found = false;
2185 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2186 if (hpdev->reported_missing) {
2187 found = true;
2188 put_pcichild(hpdev);
2189 list_move_tail(&hpdev->list_entry, &removed);
2190 break;
2191 }
2192 }
2193 } while (found);
2194 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2195
2196 /* Delete everything that should no longer exist. */
2197 while (!list_empty(&removed)) {
2198 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2199 list_entry);
2200 list_del(&hpdev->list_entry);
2201
2202 if (hpdev->pci_slot)
2203 pci_destroy_slot(hpdev->pci_slot);
2204
2205 put_pcichild(hpdev);
2206 }
2207
2208 switch (hbus->state) {
2209 case hv_pcibus_installed:
2210 /*
2211 * Tell the core to rescan bus
2212 * because there may have been changes.
2213 */
2214 pci_lock_rescan_remove();
2215 pci_scan_child_bus(hbus->pci_bus);
2216 hv_pci_assign_numa_node(hbus);
2217 hv_pci_assign_slots(hbus);
2218 pci_unlock_rescan_remove();
2219 break;
2220
2221 case hv_pcibus_init:
2222 case hv_pcibus_probed:
2223 survey_child_resources(hbus);
2224 break;
2225
2226 default:
2227 break;
2228 }
2229
2230 put_hvpcibus(hbus);
2231 kfree(dr);
2232 }
2233
2234 /**
2235 * hv_pci_start_relations_work() - Queue work to start device discovery
2236 * @hbus: Root PCI bus, as understood by this driver
2237 * @dr: The list of children returned from host
2238 *
2239 * Return: 0 on success, -errno on failure
2240 */
hv_pci_start_relations_work(struct hv_pcibus_device * hbus,struct hv_dr_state * dr)2241 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2242 struct hv_dr_state *dr)
2243 {
2244 struct hv_dr_work *dr_wrk;
2245 unsigned long flags;
2246 bool pending_dr;
2247
2248 if (hbus->state == hv_pcibus_removing) {
2249 dev_info(&hbus->hdev->device,
2250 "PCI VMBus BUS_RELATIONS: ignored\n");
2251 return -ENOENT;
2252 }
2253
2254 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2255 if (!dr_wrk)
2256 return -ENOMEM;
2257
2258 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2259 dr_wrk->bus = hbus;
2260
2261 spin_lock_irqsave(&hbus->device_list_lock, flags);
2262 /*
2263 * If pending_dr is true, we have already queued a work,
2264 * which will see the new dr. Otherwise, we need to
2265 * queue a new work.
2266 */
2267 pending_dr = !list_empty(&hbus->dr_list);
2268 list_add_tail(&dr->list_entry, &hbus->dr_list);
2269 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2270
2271 if (pending_dr) {
2272 kfree(dr_wrk);
2273 } else {
2274 get_hvpcibus(hbus);
2275 queue_work(hbus->wq, &dr_wrk->wrk);
2276 }
2277
2278 return 0;
2279 }
2280
2281 /**
2282 * hv_pci_devices_present() - Handle list of new children
2283 * @hbus: Root PCI bus, as understood by this driver
2284 * @relations: Packet from host listing children
2285 *
2286 * Process a new list of devices on the bus. The list of devices is
2287 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2288 * whenever a new list of devices for this bus appears.
2289 */
hv_pci_devices_present(struct hv_pcibus_device * hbus,struct pci_bus_relations * relations)2290 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2291 struct pci_bus_relations *relations)
2292 {
2293 struct hv_dr_state *dr;
2294 int i;
2295
2296 dr = kzalloc(struct_size(dr, func, relations->device_count),
2297 GFP_NOWAIT);
2298 if (!dr)
2299 return;
2300
2301 dr->device_count = relations->device_count;
2302 for (i = 0; i < dr->device_count; i++) {
2303 dr->func[i].v_id = relations->func[i].v_id;
2304 dr->func[i].d_id = relations->func[i].d_id;
2305 dr->func[i].rev = relations->func[i].rev;
2306 dr->func[i].prog_intf = relations->func[i].prog_intf;
2307 dr->func[i].subclass = relations->func[i].subclass;
2308 dr->func[i].base_class = relations->func[i].base_class;
2309 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2310 dr->func[i].win_slot = relations->func[i].win_slot;
2311 dr->func[i].ser = relations->func[i].ser;
2312 }
2313
2314 if (hv_pci_start_relations_work(hbus, dr))
2315 kfree(dr);
2316 }
2317
2318 /**
2319 * hv_pci_devices_present2() - Handle list of new children
2320 * @hbus: Root PCI bus, as understood by this driver
2321 * @relations: Packet from host listing children
2322 *
2323 * This function is the v2 version of hv_pci_devices_present()
2324 */
hv_pci_devices_present2(struct hv_pcibus_device * hbus,struct pci_bus_relations2 * relations)2325 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2326 struct pci_bus_relations2 *relations)
2327 {
2328 struct hv_dr_state *dr;
2329 int i;
2330
2331 dr = kzalloc(struct_size(dr, func, relations->device_count),
2332 GFP_NOWAIT);
2333 if (!dr)
2334 return;
2335
2336 dr->device_count = relations->device_count;
2337 for (i = 0; i < dr->device_count; i++) {
2338 dr->func[i].v_id = relations->func[i].v_id;
2339 dr->func[i].d_id = relations->func[i].d_id;
2340 dr->func[i].rev = relations->func[i].rev;
2341 dr->func[i].prog_intf = relations->func[i].prog_intf;
2342 dr->func[i].subclass = relations->func[i].subclass;
2343 dr->func[i].base_class = relations->func[i].base_class;
2344 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2345 dr->func[i].win_slot = relations->func[i].win_slot;
2346 dr->func[i].ser = relations->func[i].ser;
2347 dr->func[i].flags = relations->func[i].flags;
2348 dr->func[i].virtual_numa_node =
2349 relations->func[i].virtual_numa_node;
2350 }
2351
2352 if (hv_pci_start_relations_work(hbus, dr))
2353 kfree(dr);
2354 }
2355
2356 /**
2357 * hv_eject_device_work() - Asynchronously handles ejection
2358 * @work: Work struct embedded in internal device struct
2359 *
2360 * This function handles ejecting a device. Windows will
2361 * attempt to gracefully eject a device, waiting 60 seconds to
2362 * hear back from the guest OS that this completed successfully.
2363 * If this timer expires, the device will be forcibly removed.
2364 */
hv_eject_device_work(struct work_struct * work)2365 static void hv_eject_device_work(struct work_struct *work)
2366 {
2367 struct pci_eject_response *ejct_pkt;
2368 struct hv_pcibus_device *hbus;
2369 struct hv_pci_dev *hpdev;
2370 struct pci_dev *pdev;
2371 unsigned long flags;
2372 int wslot;
2373 struct {
2374 struct pci_packet pkt;
2375 u8 buffer[sizeof(struct pci_eject_response)];
2376 } ctxt;
2377
2378 hpdev = container_of(work, struct hv_pci_dev, wrk);
2379 hbus = hpdev->hbus;
2380
2381 WARN_ON(hpdev->state != hv_pcichild_ejecting);
2382
2383 /*
2384 * Ejection can come before or after the PCI bus has been set up, so
2385 * attempt to find it and tear down the bus state, if it exists. This
2386 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2387 * because hbus->pci_bus may not exist yet.
2388 */
2389 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2390 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2391 if (pdev) {
2392 pci_lock_rescan_remove();
2393 pci_stop_and_remove_bus_device(pdev);
2394 pci_dev_put(pdev);
2395 pci_unlock_rescan_remove();
2396 }
2397
2398 spin_lock_irqsave(&hbus->device_list_lock, flags);
2399 list_del(&hpdev->list_entry);
2400 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2401
2402 if (hpdev->pci_slot)
2403 pci_destroy_slot(hpdev->pci_slot);
2404
2405 memset(&ctxt, 0, sizeof(ctxt));
2406 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2407 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2408 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2409 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2410 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2411 VM_PKT_DATA_INBAND, 0);
2412
2413 /* For the get_pcichild() in hv_pci_eject_device() */
2414 put_pcichild(hpdev);
2415 /* For the two refs got in new_pcichild_device() */
2416 put_pcichild(hpdev);
2417 put_pcichild(hpdev);
2418 /* hpdev has been freed. Do not use it any more. */
2419
2420 put_hvpcibus(hbus);
2421 }
2422
2423 /**
2424 * hv_pci_eject_device() - Handles device ejection
2425 * @hpdev: Internal device tracking struct
2426 *
2427 * This function is invoked when an ejection packet arrives. It
2428 * just schedules work so that we don't re-enter the packet
2429 * delivery code handling the ejection.
2430 */
hv_pci_eject_device(struct hv_pci_dev * hpdev)2431 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2432 {
2433 struct hv_pcibus_device *hbus = hpdev->hbus;
2434 struct hv_device *hdev = hbus->hdev;
2435
2436 if (hbus->state == hv_pcibus_removing) {
2437 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2438 return;
2439 }
2440
2441 hpdev->state = hv_pcichild_ejecting;
2442 get_pcichild(hpdev);
2443 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2444 get_hvpcibus(hbus);
2445 queue_work(hbus->wq, &hpdev->wrk);
2446 }
2447
2448 /**
2449 * hv_pci_onchannelcallback() - Handles incoming packets
2450 * @context: Internal bus tracking struct
2451 *
2452 * This function is invoked whenever the host sends a packet to
2453 * this channel (which is private to this root PCI bus).
2454 */
hv_pci_onchannelcallback(void * context)2455 static void hv_pci_onchannelcallback(void *context)
2456 {
2457 const int packet_size = 0x100;
2458 int ret;
2459 struct hv_pcibus_device *hbus = context;
2460 u32 bytes_recvd;
2461 u64 req_id;
2462 struct vmpacket_descriptor *desc;
2463 unsigned char *buffer;
2464 int bufferlen = packet_size;
2465 struct pci_packet *comp_packet;
2466 struct pci_response *response;
2467 struct pci_incoming_message *new_message;
2468 struct pci_bus_relations *bus_rel;
2469 struct pci_bus_relations2 *bus_rel2;
2470 struct pci_dev_inval_block *inval;
2471 struct pci_dev_incoming *dev_message;
2472 struct hv_pci_dev *hpdev;
2473
2474 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2475 if (!buffer)
2476 return;
2477
2478 while (1) {
2479 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2480 bufferlen, &bytes_recvd, &req_id);
2481
2482 if (ret == -ENOBUFS) {
2483 kfree(buffer);
2484 /* Handle large packet */
2485 bufferlen = bytes_recvd;
2486 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2487 if (!buffer)
2488 return;
2489 continue;
2490 }
2491
2492 /* Zero length indicates there are no more packets. */
2493 if (ret || !bytes_recvd)
2494 break;
2495
2496 /*
2497 * All incoming packets must be at least as large as a
2498 * response.
2499 */
2500 if (bytes_recvd <= sizeof(struct pci_response))
2501 continue;
2502 desc = (struct vmpacket_descriptor *)buffer;
2503
2504 switch (desc->type) {
2505 case VM_PKT_COMP:
2506
2507 /*
2508 * The host is trusted, and thus it's safe to interpret
2509 * this transaction ID as a pointer.
2510 */
2511 comp_packet = (struct pci_packet *)req_id;
2512 response = (struct pci_response *)buffer;
2513 comp_packet->completion_func(comp_packet->compl_ctxt,
2514 response,
2515 bytes_recvd);
2516 break;
2517
2518 case VM_PKT_DATA_INBAND:
2519
2520 new_message = (struct pci_incoming_message *)buffer;
2521 switch (new_message->message_type.type) {
2522 case PCI_BUS_RELATIONS:
2523
2524 bus_rel = (struct pci_bus_relations *)buffer;
2525 if (bytes_recvd <
2526 struct_size(bus_rel, func,
2527 bus_rel->device_count)) {
2528 dev_err(&hbus->hdev->device,
2529 "bus relations too small\n");
2530 break;
2531 }
2532
2533 hv_pci_devices_present(hbus, bus_rel);
2534 break;
2535
2536 case PCI_BUS_RELATIONS2:
2537
2538 bus_rel2 = (struct pci_bus_relations2 *)buffer;
2539 if (bytes_recvd <
2540 struct_size(bus_rel2, func,
2541 bus_rel2->device_count)) {
2542 dev_err(&hbus->hdev->device,
2543 "bus relations v2 too small\n");
2544 break;
2545 }
2546
2547 hv_pci_devices_present2(hbus, bus_rel2);
2548 break;
2549
2550 case PCI_EJECT:
2551
2552 dev_message = (struct pci_dev_incoming *)buffer;
2553 hpdev = get_pcichild_wslot(hbus,
2554 dev_message->wslot.slot);
2555 if (hpdev) {
2556 hv_pci_eject_device(hpdev);
2557 put_pcichild(hpdev);
2558 }
2559 break;
2560
2561 case PCI_INVALIDATE_BLOCK:
2562
2563 inval = (struct pci_dev_inval_block *)buffer;
2564 hpdev = get_pcichild_wslot(hbus,
2565 inval->wslot.slot);
2566 if (hpdev) {
2567 if (hpdev->block_invalidate) {
2568 hpdev->block_invalidate(
2569 hpdev->invalidate_context,
2570 inval->block_mask);
2571 }
2572 put_pcichild(hpdev);
2573 }
2574 break;
2575
2576 default:
2577 dev_warn(&hbus->hdev->device,
2578 "Unimplemented protocol message %x\n",
2579 new_message->message_type.type);
2580 break;
2581 }
2582 break;
2583
2584 default:
2585 dev_err(&hbus->hdev->device,
2586 "unhandled packet type %d, tid %llx len %d\n",
2587 desc->type, req_id, bytes_recvd);
2588 break;
2589 }
2590 }
2591
2592 kfree(buffer);
2593 }
2594
2595 /**
2596 * hv_pci_protocol_negotiation() - Set up protocol
2597 * @hdev: VMBus's tracking struct for this root PCI bus.
2598 * @version: Array of supported channel protocol versions in
2599 * the order of probing - highest go first.
2600 * @num_version: Number of elements in the version array.
2601 *
2602 * This driver is intended to support running on Windows 10
2603 * (server) and later versions. It will not run on earlier
2604 * versions, as they assume that many of the operations which
2605 * Linux needs accomplished with a spinlock held were done via
2606 * asynchronous messaging via VMBus. Windows 10 increases the
2607 * surface area of PCI emulation so that these actions can take
2608 * place by suspending a virtual processor for their duration.
2609 *
2610 * This function negotiates the channel protocol version,
2611 * failing if the host doesn't support the necessary protocol
2612 * level.
2613 */
hv_pci_protocol_negotiation(struct hv_device * hdev,enum pci_protocol_version_t version[],int num_version)2614 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2615 enum pci_protocol_version_t version[],
2616 int num_version)
2617 {
2618 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2619 struct pci_version_request *version_req;
2620 struct hv_pci_compl comp_pkt;
2621 struct pci_packet *pkt;
2622 int ret;
2623 int i;
2624
2625 /*
2626 * Initiate the handshake with the host and negotiate
2627 * a version that the host can support. We start with the
2628 * highest version number and go down if the host cannot
2629 * support it.
2630 */
2631 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2632 if (!pkt)
2633 return -ENOMEM;
2634
2635 init_completion(&comp_pkt.host_event);
2636 pkt->completion_func = hv_pci_generic_compl;
2637 pkt->compl_ctxt = &comp_pkt;
2638 version_req = (struct pci_version_request *)&pkt->message;
2639 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2640
2641 for (i = 0; i < num_version; i++) {
2642 version_req->protocol_version = version[i];
2643 ret = vmbus_sendpacket(hdev->channel, version_req,
2644 sizeof(struct pci_version_request),
2645 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2646 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2647 if (!ret)
2648 ret = wait_for_response(hdev, &comp_pkt.host_event);
2649
2650 if (ret) {
2651 dev_err(&hdev->device,
2652 "PCI Pass-through VSP failed to request version: %d",
2653 ret);
2654 goto exit;
2655 }
2656
2657 if (comp_pkt.completion_status >= 0) {
2658 hbus->protocol_version = version[i];
2659 dev_info(&hdev->device,
2660 "PCI VMBus probing: Using version %#x\n",
2661 hbus->protocol_version);
2662 goto exit;
2663 }
2664
2665 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2666 dev_err(&hdev->device,
2667 "PCI Pass-through VSP failed version request: %#x",
2668 comp_pkt.completion_status);
2669 ret = -EPROTO;
2670 goto exit;
2671 }
2672
2673 reinit_completion(&comp_pkt.host_event);
2674 }
2675
2676 dev_err(&hdev->device,
2677 "PCI pass-through VSP failed to find supported version");
2678 ret = -EPROTO;
2679
2680 exit:
2681 kfree(pkt);
2682 return ret;
2683 }
2684
2685 /**
2686 * hv_pci_free_bridge_windows() - Release memory regions for the
2687 * bus
2688 * @hbus: Root PCI bus, as understood by this driver
2689 */
hv_pci_free_bridge_windows(struct hv_pcibus_device * hbus)2690 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2691 {
2692 /*
2693 * Set the resources back to the way they looked when they
2694 * were allocated by setting IORESOURCE_BUSY again.
2695 */
2696
2697 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2698 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2699 vmbus_free_mmio(hbus->low_mmio_res->start,
2700 resource_size(hbus->low_mmio_res));
2701 }
2702
2703 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2704 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2705 vmbus_free_mmio(hbus->high_mmio_res->start,
2706 resource_size(hbus->high_mmio_res));
2707 }
2708 }
2709
2710 /**
2711 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2712 * for the bus
2713 * @hbus: Root PCI bus, as understood by this driver
2714 *
2715 * This function calls vmbus_allocate_mmio(), which is itself a
2716 * bit of a compromise. Ideally, we might change the pnp layer
2717 * in the kernel such that it comprehends either PCI devices
2718 * which are "grandchildren of ACPI," with some intermediate bus
2719 * node (in this case, VMBus) or change it such that it
2720 * understands VMBus. The pnp layer, however, has been declared
2721 * deprecated, and not subject to change.
2722 *
2723 * The workaround, implemented here, is to ask VMBus to allocate
2724 * MMIO space for this bus. VMBus itself knows which ranges are
2725 * appropriate by looking at its own ACPI objects. Then, after
2726 * these ranges are claimed, they're modified to look like they
2727 * would have looked if the ACPI and pnp code had allocated
2728 * bridge windows. These descriptors have to exist in this form
2729 * in order to satisfy the code which will get invoked when the
2730 * endpoint PCI function driver calls request_mem_region() or
2731 * request_mem_region_exclusive().
2732 *
2733 * Return: 0 on success, -errno on failure
2734 */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device * hbus)2735 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2736 {
2737 resource_size_t align;
2738 int ret;
2739
2740 if (hbus->low_mmio_space) {
2741 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2742 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2743 (u64)(u32)0xffffffff,
2744 hbus->low_mmio_space,
2745 align, false);
2746 if (ret) {
2747 dev_err(&hbus->hdev->device,
2748 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2749 hbus->low_mmio_space);
2750 return ret;
2751 }
2752
2753 /* Modify this resource to become a bridge window. */
2754 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2755 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2756 pci_add_resource(&hbus->resources_for_children,
2757 hbus->low_mmio_res);
2758 }
2759
2760 if (hbus->high_mmio_space) {
2761 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2762 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2763 0x100000000, -1,
2764 hbus->high_mmio_space, align,
2765 false);
2766 if (ret) {
2767 dev_err(&hbus->hdev->device,
2768 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2769 hbus->high_mmio_space);
2770 goto release_low_mmio;
2771 }
2772
2773 /* Modify this resource to become a bridge window. */
2774 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2775 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2776 pci_add_resource(&hbus->resources_for_children,
2777 hbus->high_mmio_res);
2778 }
2779
2780 return 0;
2781
2782 release_low_mmio:
2783 if (hbus->low_mmio_res) {
2784 vmbus_free_mmio(hbus->low_mmio_res->start,
2785 resource_size(hbus->low_mmio_res));
2786 }
2787
2788 return ret;
2789 }
2790
2791 /**
2792 * hv_allocate_config_window() - Find MMIO space for PCI Config
2793 * @hbus: Root PCI bus, as understood by this driver
2794 *
2795 * This function claims memory-mapped I/O space for accessing
2796 * configuration space for the functions on this bus.
2797 *
2798 * Return: 0 on success, -errno on failure
2799 */
hv_allocate_config_window(struct hv_pcibus_device * hbus)2800 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2801 {
2802 int ret;
2803
2804 /*
2805 * Set up a region of MMIO space to use for accessing configuration
2806 * space.
2807 */
2808 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2809 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2810 if (ret)
2811 return ret;
2812
2813 /*
2814 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2815 * resource claims (those which cannot be overlapped) and the ranges
2816 * which are valid for the children of this bus, which are intended
2817 * to be overlapped by those children. Set the flag on this claim
2818 * meaning that this region can't be overlapped.
2819 */
2820
2821 hbus->mem_config->flags |= IORESOURCE_BUSY;
2822
2823 return 0;
2824 }
2825
hv_free_config_window(struct hv_pcibus_device * hbus)2826 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2827 {
2828 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2829 }
2830
2831 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2832
2833 /**
2834 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2835 * @hdev: VMBus's tracking struct for this root PCI bus
2836 *
2837 * Return: 0 on success, -errno on failure
2838 */
hv_pci_enter_d0(struct hv_device * hdev)2839 static int hv_pci_enter_d0(struct hv_device *hdev)
2840 {
2841 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2842 struct pci_bus_d0_entry *d0_entry;
2843 struct hv_pci_compl comp_pkt;
2844 struct pci_packet *pkt;
2845 int ret;
2846
2847 /*
2848 * Tell the host that the bus is ready to use, and moved into the
2849 * powered-on state. This includes telling the host which region
2850 * of memory-mapped I/O space has been chosen for configuration space
2851 * access.
2852 */
2853 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2854 if (!pkt)
2855 return -ENOMEM;
2856
2857 init_completion(&comp_pkt.host_event);
2858 pkt->completion_func = hv_pci_generic_compl;
2859 pkt->compl_ctxt = &comp_pkt;
2860 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2861 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2862 d0_entry->mmio_base = hbus->mem_config->start;
2863
2864 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2865 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2866 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2867 if (!ret)
2868 ret = wait_for_response(hdev, &comp_pkt.host_event);
2869
2870 if (ret)
2871 goto exit;
2872
2873 if (comp_pkt.completion_status < 0) {
2874 dev_err(&hdev->device,
2875 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2876 comp_pkt.completion_status);
2877 ret = -EPROTO;
2878 goto exit;
2879 }
2880
2881 ret = 0;
2882
2883 exit:
2884 kfree(pkt);
2885 return ret;
2886 }
2887
2888 /**
2889 * hv_pci_query_relations() - Ask host to send list of child
2890 * devices
2891 * @hdev: VMBus's tracking struct for this root PCI bus
2892 *
2893 * Return: 0 on success, -errno on failure
2894 */
hv_pci_query_relations(struct hv_device * hdev)2895 static int hv_pci_query_relations(struct hv_device *hdev)
2896 {
2897 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2898 struct pci_message message;
2899 struct completion comp;
2900 int ret;
2901
2902 /* Ask the host to send along the list of child devices */
2903 init_completion(&comp);
2904 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2905 return -ENOTEMPTY;
2906
2907 memset(&message, 0, sizeof(message));
2908 message.type = PCI_QUERY_BUS_RELATIONS;
2909
2910 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2911 0, VM_PKT_DATA_INBAND, 0);
2912 if (!ret)
2913 ret = wait_for_response(hdev, &comp);
2914
2915 return ret;
2916 }
2917
2918 /**
2919 * hv_send_resources_allocated() - Report local resource choices
2920 * @hdev: VMBus's tracking struct for this root PCI bus
2921 *
2922 * The host OS is expecting to be sent a request as a message
2923 * which contains all the resources that the device will use.
2924 * The response contains those same resources, "translated"
2925 * which is to say, the values which should be used by the
2926 * hardware, when it delivers an interrupt. (MMIO resources are
2927 * used in local terms.) This is nice for Windows, and lines up
2928 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2929 * is deeply expecting to scan an emulated PCI configuration
2930 * space. So this message is sent here only to drive the state
2931 * machine on the host forward.
2932 *
2933 * Return: 0 on success, -errno on failure
2934 */
hv_send_resources_allocated(struct hv_device * hdev)2935 static int hv_send_resources_allocated(struct hv_device *hdev)
2936 {
2937 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2938 struct pci_resources_assigned *res_assigned;
2939 struct pci_resources_assigned2 *res_assigned2;
2940 struct hv_pci_compl comp_pkt;
2941 struct hv_pci_dev *hpdev;
2942 struct pci_packet *pkt;
2943 size_t size_res;
2944 int wslot;
2945 int ret;
2946
2947 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2948 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2949
2950 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2951 if (!pkt)
2952 return -ENOMEM;
2953
2954 ret = 0;
2955
2956 for (wslot = 0; wslot < 256; wslot++) {
2957 hpdev = get_pcichild_wslot(hbus, wslot);
2958 if (!hpdev)
2959 continue;
2960
2961 memset(pkt, 0, sizeof(*pkt) + size_res);
2962 init_completion(&comp_pkt.host_event);
2963 pkt->completion_func = hv_pci_generic_compl;
2964 pkt->compl_ctxt = &comp_pkt;
2965
2966 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2967 res_assigned =
2968 (struct pci_resources_assigned *)&pkt->message;
2969 res_assigned->message_type.type =
2970 PCI_RESOURCES_ASSIGNED;
2971 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2972 } else {
2973 res_assigned2 =
2974 (struct pci_resources_assigned2 *)&pkt->message;
2975 res_assigned2->message_type.type =
2976 PCI_RESOURCES_ASSIGNED2;
2977 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2978 }
2979 put_pcichild(hpdev);
2980
2981 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2982 size_res, (unsigned long)pkt,
2983 VM_PKT_DATA_INBAND,
2984 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2985 if (!ret)
2986 ret = wait_for_response(hdev, &comp_pkt.host_event);
2987 if (ret)
2988 break;
2989
2990 if (comp_pkt.completion_status < 0) {
2991 ret = -EPROTO;
2992 dev_err(&hdev->device,
2993 "resource allocated returned 0x%x",
2994 comp_pkt.completion_status);
2995 break;
2996 }
2997
2998 hbus->wslot_res_allocated = wslot;
2999 }
3000
3001 kfree(pkt);
3002 return ret;
3003 }
3004
3005 /**
3006 * hv_send_resources_released() - Report local resources
3007 * released
3008 * @hdev: VMBus's tracking struct for this root PCI bus
3009 *
3010 * Return: 0 on success, -errno on failure
3011 */
hv_send_resources_released(struct hv_device * hdev)3012 static int hv_send_resources_released(struct hv_device *hdev)
3013 {
3014 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3015 struct pci_child_message pkt;
3016 struct hv_pci_dev *hpdev;
3017 int wslot;
3018 int ret;
3019
3020 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3021 hpdev = get_pcichild_wslot(hbus, wslot);
3022 if (!hpdev)
3023 continue;
3024
3025 memset(&pkt, 0, sizeof(pkt));
3026 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3027 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3028
3029 put_pcichild(hpdev);
3030
3031 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3032 VM_PKT_DATA_INBAND, 0);
3033 if (ret)
3034 return ret;
3035
3036 hbus->wslot_res_allocated = wslot - 1;
3037 }
3038
3039 hbus->wslot_res_allocated = -1;
3040
3041 return 0;
3042 }
3043
get_hvpcibus(struct hv_pcibus_device * hbus)3044 static void get_hvpcibus(struct hv_pcibus_device *hbus)
3045 {
3046 refcount_inc(&hbus->remove_lock);
3047 }
3048
put_hvpcibus(struct hv_pcibus_device * hbus)3049 static void put_hvpcibus(struct hv_pcibus_device *hbus)
3050 {
3051 if (refcount_dec_and_test(&hbus->remove_lock))
3052 complete(&hbus->remove_event);
3053 }
3054
3055 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3056 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3057
3058 /*
3059 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3060 * as invalid for passthrough PCI devices of this driver.
3061 */
3062 #define HVPCI_DOM_INVALID 0
3063
3064 /**
3065 * hv_get_dom_num() - Get a valid PCI domain number
3066 * Check if the PCI domain number is in use, and return another number if
3067 * it is in use.
3068 *
3069 * @dom: Requested domain number
3070 *
3071 * return: domain number on success, HVPCI_DOM_INVALID on failure
3072 */
hv_get_dom_num(u16 dom)3073 static u16 hv_get_dom_num(u16 dom)
3074 {
3075 unsigned int i;
3076
3077 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3078 return dom;
3079
3080 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3081 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3082 return i;
3083 }
3084
3085 return HVPCI_DOM_INVALID;
3086 }
3087
3088 /**
3089 * hv_put_dom_num() - Mark the PCI domain number as free
3090 * @dom: Domain number to be freed
3091 */
hv_put_dom_num(u16 dom)3092 static void hv_put_dom_num(u16 dom)
3093 {
3094 clear_bit(dom, hvpci_dom_map);
3095 }
3096
3097 /**
3098 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3099 * @hdev: VMBus's tracking struct for this root PCI bus
3100 * @dev_id: Identifies the device itself
3101 *
3102 * Return: 0 on success, -errno on failure
3103 */
hv_pci_probe(struct hv_device * hdev,const struct hv_vmbus_device_id * dev_id)3104 static int hv_pci_probe(struct hv_device *hdev,
3105 const struct hv_vmbus_device_id *dev_id)
3106 {
3107 struct hv_pcibus_device *hbus;
3108 u16 dom_req, dom;
3109 char *name;
3110 bool enter_d0_retry = true;
3111 int ret;
3112
3113 /*
3114 * hv_pcibus_device contains the hypercall arguments for retargeting in
3115 * hv_irq_unmask(). Those must not cross a page boundary.
3116 */
3117 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3118
3119 /*
3120 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3121 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3122 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3123 * alignment of hbus is important because hbus's field
3124 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3125 *
3126 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3127 * allocated by the latter is not tracked and scanned by kmemleak, and
3128 * hence kmemleak reports the pointer contained in the hbus buffer
3129 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3130 * is tracked by hbus->children) as memory leak (false positive).
3131 *
3132 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3133 * used to allocate the hbus buffer and we can avoid the kmemleak false
3134 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3135 * kmemleak to track and scan the hbus buffer.
3136 */
3137 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3138 if (!hbus)
3139 return -ENOMEM;
3140 hbus->state = hv_pcibus_init;
3141 hbus->wslot_res_allocated = -1;
3142
3143 /*
3144 * The PCI bus "domain" is what is called "segment" in ACPI and other
3145 * specs. Pull it from the instance ID, to get something usually
3146 * unique. In rare cases of collision, we will find out another number
3147 * not in use.
3148 *
3149 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3150 * together with this guest driver can guarantee that (1) The only
3151 * domain used by Gen1 VMs for something that looks like a physical
3152 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3153 * (2) There will be no overlap between domains (after fixing possible
3154 * collisions) in the same VM.
3155 */
3156 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3157 dom = hv_get_dom_num(dom_req);
3158
3159 if (dom == HVPCI_DOM_INVALID) {
3160 dev_err(&hdev->device,
3161 "Unable to use dom# 0x%hx or other numbers", dom_req);
3162 ret = -EINVAL;
3163 goto free_bus;
3164 }
3165
3166 if (dom != dom_req)
3167 dev_info(&hdev->device,
3168 "PCI dom# 0x%hx has collision, using 0x%hx",
3169 dom_req, dom);
3170
3171 hbus->sysdata.domain = dom;
3172
3173 hbus->hdev = hdev;
3174 refcount_set(&hbus->remove_lock, 1);
3175 INIT_LIST_HEAD(&hbus->children);
3176 INIT_LIST_HEAD(&hbus->dr_list);
3177 INIT_LIST_HEAD(&hbus->resources_for_children);
3178 spin_lock_init(&hbus->config_lock);
3179 spin_lock_init(&hbus->device_list_lock);
3180 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3181 init_completion(&hbus->remove_event);
3182 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3183 hbus->sysdata.domain);
3184 if (!hbus->wq) {
3185 ret = -ENOMEM;
3186 goto free_dom;
3187 }
3188
3189 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3190 hv_pci_onchannelcallback, hbus);
3191 if (ret)
3192 goto destroy_wq;
3193
3194 hv_set_drvdata(hdev, hbus);
3195
3196 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3197 ARRAY_SIZE(pci_protocol_versions));
3198 if (ret)
3199 goto close;
3200
3201 ret = hv_allocate_config_window(hbus);
3202 if (ret)
3203 goto close;
3204
3205 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3206 PCI_CONFIG_MMIO_LENGTH);
3207 if (!hbus->cfg_addr) {
3208 dev_err(&hdev->device,
3209 "Unable to map a virtual address for config space\n");
3210 ret = -ENOMEM;
3211 goto free_config;
3212 }
3213
3214 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3215 if (!name) {
3216 ret = -ENOMEM;
3217 goto unmap;
3218 }
3219
3220 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3221 kfree(name);
3222 if (!hbus->sysdata.fwnode) {
3223 ret = -ENOMEM;
3224 goto unmap;
3225 }
3226
3227 ret = hv_pcie_init_irq_domain(hbus);
3228 if (ret)
3229 goto free_fwnode;
3230
3231 retry:
3232 ret = hv_pci_query_relations(hdev);
3233 if (ret)
3234 goto free_irq_domain;
3235
3236 ret = hv_pci_enter_d0(hdev);
3237 /*
3238 * In certain case (Kdump) the pci device of interest was
3239 * not cleanly shut down and resource is still held on host
3240 * side, the host could return invalid device status.
3241 * We need to explicitly request host to release the resource
3242 * and try to enter D0 again.
3243 * Since the hv_pci_bus_exit() call releases structures
3244 * of all its child devices, we need to start the retry from
3245 * hv_pci_query_relations() call, requesting host to send
3246 * the synchronous child device relations message before this
3247 * information is needed in hv_send_resources_allocated()
3248 * call later.
3249 */
3250 if (ret == -EPROTO && enter_d0_retry) {
3251 enter_d0_retry = false;
3252
3253 dev_err(&hdev->device, "Retrying D0 Entry\n");
3254
3255 /*
3256 * Hv_pci_bus_exit() calls hv_send_resources_released()
3257 * to free up resources of its child devices.
3258 * In the kdump kernel we need to set the
3259 * wslot_res_allocated to 255 so it scans all child
3260 * devices to release resources allocated in the
3261 * normal kernel before panic happened.
3262 */
3263 hbus->wslot_res_allocated = 255;
3264 ret = hv_pci_bus_exit(hdev, true);
3265
3266 if (ret == 0)
3267 goto retry;
3268
3269 dev_err(&hdev->device,
3270 "Retrying D0 failed with ret %d\n", ret);
3271 }
3272 if (ret)
3273 goto free_irq_domain;
3274
3275 ret = hv_pci_allocate_bridge_windows(hbus);
3276 if (ret)
3277 goto exit_d0;
3278
3279 ret = hv_send_resources_allocated(hdev);
3280 if (ret)
3281 goto free_windows;
3282
3283 prepopulate_bars(hbus);
3284
3285 hbus->state = hv_pcibus_probed;
3286
3287 ret = create_root_hv_pci_bus(hbus);
3288 if (ret)
3289 goto free_windows;
3290
3291 return 0;
3292
3293 free_windows:
3294 hv_pci_free_bridge_windows(hbus);
3295 exit_d0:
3296 (void) hv_pci_bus_exit(hdev, true);
3297 free_irq_domain:
3298 irq_domain_remove(hbus->irq_domain);
3299 free_fwnode:
3300 irq_domain_free_fwnode(hbus->sysdata.fwnode);
3301 unmap:
3302 iounmap(hbus->cfg_addr);
3303 free_config:
3304 hv_free_config_window(hbus);
3305 close:
3306 vmbus_close(hdev->channel);
3307 destroy_wq:
3308 destroy_workqueue(hbus->wq);
3309 free_dom:
3310 hv_put_dom_num(hbus->sysdata.domain);
3311 free_bus:
3312 kfree(hbus);
3313 return ret;
3314 }
3315
hv_pci_bus_exit(struct hv_device * hdev,bool keep_devs)3316 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3317 {
3318 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3319 struct {
3320 struct pci_packet teardown_packet;
3321 u8 buffer[sizeof(struct pci_message)];
3322 } pkt;
3323 struct hv_pci_compl comp_pkt;
3324 struct hv_pci_dev *hpdev, *tmp;
3325 unsigned long flags;
3326 int ret;
3327
3328 /*
3329 * After the host sends the RESCIND_CHANNEL message, it doesn't
3330 * access the per-channel ringbuffer any longer.
3331 */
3332 if (hdev->channel->rescind)
3333 return 0;
3334
3335 if (!keep_devs) {
3336 struct list_head removed;
3337
3338 /* Move all present children to the list on stack */
3339 INIT_LIST_HEAD(&removed);
3340 spin_lock_irqsave(&hbus->device_list_lock, flags);
3341 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3342 list_move_tail(&hpdev->list_entry, &removed);
3343 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3344
3345 /* Remove all children in the list */
3346 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3347 list_del(&hpdev->list_entry);
3348 if (hpdev->pci_slot)
3349 pci_destroy_slot(hpdev->pci_slot);
3350 /* For the two refs got in new_pcichild_device() */
3351 put_pcichild(hpdev);
3352 put_pcichild(hpdev);
3353 }
3354 }
3355
3356 ret = hv_send_resources_released(hdev);
3357 if (ret) {
3358 dev_err(&hdev->device,
3359 "Couldn't send resources released packet(s)\n");
3360 return ret;
3361 }
3362
3363 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3364 init_completion(&comp_pkt.host_event);
3365 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3366 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3367 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3368
3369 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3370 sizeof(struct pci_message),
3371 (unsigned long)&pkt.teardown_packet,
3372 VM_PKT_DATA_INBAND,
3373 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3374 if (ret)
3375 return ret;
3376
3377 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3378 return -ETIMEDOUT;
3379
3380 return 0;
3381 }
3382
3383 /**
3384 * hv_pci_remove() - Remove routine for this VMBus channel
3385 * @hdev: VMBus's tracking struct for this root PCI bus
3386 *
3387 * Return: 0 on success, -errno on failure
3388 */
hv_pci_remove(struct hv_device * hdev)3389 static int hv_pci_remove(struct hv_device *hdev)
3390 {
3391 struct hv_pcibus_device *hbus;
3392 int ret;
3393
3394 hbus = hv_get_drvdata(hdev);
3395 if (hbus->state == hv_pcibus_installed) {
3396 tasklet_disable(&hdev->channel->callback_event);
3397 hbus->state = hv_pcibus_removing;
3398 tasklet_enable(&hdev->channel->callback_event);
3399 destroy_workqueue(hbus->wq);
3400 hbus->wq = NULL;
3401 /*
3402 * At this point, no work is running or can be scheduled
3403 * on hbus-wq. We can't race with hv_pci_devices_present()
3404 * or hv_pci_eject_device(), it's safe to proceed.
3405 */
3406
3407 /* Remove the bus from PCI's point of view. */
3408 pci_lock_rescan_remove();
3409 pci_stop_root_bus(hbus->pci_bus);
3410 hv_pci_remove_slots(hbus);
3411 pci_remove_root_bus(hbus->pci_bus);
3412 pci_unlock_rescan_remove();
3413 }
3414
3415 ret = hv_pci_bus_exit(hdev, false);
3416
3417 vmbus_close(hdev->channel);
3418
3419 iounmap(hbus->cfg_addr);
3420 hv_free_config_window(hbus);
3421 pci_free_resource_list(&hbus->resources_for_children);
3422 hv_pci_free_bridge_windows(hbus);
3423 irq_domain_remove(hbus->irq_domain);
3424 irq_domain_free_fwnode(hbus->sysdata.fwnode);
3425 put_hvpcibus(hbus);
3426 wait_for_completion(&hbus->remove_event);
3427
3428 hv_put_dom_num(hbus->sysdata.domain);
3429
3430 kfree(hbus);
3431 return ret;
3432 }
3433
hv_pci_suspend(struct hv_device * hdev)3434 static int hv_pci_suspend(struct hv_device *hdev)
3435 {
3436 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3437 enum hv_pcibus_state old_state;
3438 int ret;
3439
3440 /*
3441 * hv_pci_suspend() must make sure there are no pending work items
3442 * before calling vmbus_close(), since it runs in a process context
3443 * as a callback in dpm_suspend(). When it starts to run, the channel
3444 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3445 * context, can be still running concurrently and scheduling new work
3446 * items onto hbus->wq in hv_pci_devices_present() and
3447 * hv_pci_eject_device(), and the work item handlers can access the
3448 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3449 * the work item handler pci_devices_present_work() ->
3450 * new_pcichild_device() writes to the vmbus channel.
3451 *
3452 * To eliminate the race, hv_pci_suspend() disables the channel
3453 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3454 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3455 * it knows that no new work item can be scheduled, and then it flushes
3456 * hbus->wq and safely closes the vmbus channel.
3457 */
3458 tasklet_disable(&hdev->channel->callback_event);
3459
3460 /* Change the hbus state to prevent new work items. */
3461 old_state = hbus->state;
3462 if (hbus->state == hv_pcibus_installed)
3463 hbus->state = hv_pcibus_removing;
3464
3465 tasklet_enable(&hdev->channel->callback_event);
3466
3467 if (old_state != hv_pcibus_installed)
3468 return -EINVAL;
3469
3470 flush_workqueue(hbus->wq);
3471
3472 ret = hv_pci_bus_exit(hdev, true);
3473 if (ret)
3474 return ret;
3475
3476 vmbus_close(hdev->channel);
3477
3478 return 0;
3479 }
3480
hv_pci_restore_msi_msg(struct pci_dev * pdev,void * arg)3481 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3482 {
3483 struct msi_desc *entry;
3484 struct irq_data *irq_data;
3485
3486 for_each_pci_msi_entry(entry, pdev) {
3487 irq_data = irq_get_irq_data(entry->irq);
3488 if (WARN_ON_ONCE(!irq_data))
3489 return -EINVAL;
3490
3491 hv_compose_msi_msg(irq_data, &entry->msg);
3492 }
3493
3494 return 0;
3495 }
3496
3497 /*
3498 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
3499 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3500 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3501 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3502 * Table entries.
3503 */
hv_pci_restore_msi_state(struct hv_pcibus_device * hbus)3504 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3505 {
3506 pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3507 }
3508
hv_pci_resume(struct hv_device * hdev)3509 static int hv_pci_resume(struct hv_device *hdev)
3510 {
3511 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3512 enum pci_protocol_version_t version[1];
3513 int ret;
3514
3515 hbus->state = hv_pcibus_init;
3516
3517 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3518 hv_pci_onchannelcallback, hbus);
3519 if (ret)
3520 return ret;
3521
3522 /* Only use the version that was in use before hibernation. */
3523 version[0] = hbus->protocol_version;
3524 ret = hv_pci_protocol_negotiation(hdev, version, 1);
3525 if (ret)
3526 goto out;
3527
3528 ret = hv_pci_query_relations(hdev);
3529 if (ret)
3530 goto out;
3531
3532 ret = hv_pci_enter_d0(hdev);
3533 if (ret)
3534 goto out;
3535
3536 ret = hv_send_resources_allocated(hdev);
3537 if (ret)
3538 goto out;
3539
3540 prepopulate_bars(hbus);
3541
3542 hv_pci_restore_msi_state(hbus);
3543
3544 hbus->state = hv_pcibus_installed;
3545 return 0;
3546 out:
3547 vmbus_close(hdev->channel);
3548 return ret;
3549 }
3550
3551 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3552 /* PCI Pass-through Class ID */
3553 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3554 { HV_PCIE_GUID, },
3555 { },
3556 };
3557
3558 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3559
3560 static struct hv_driver hv_pci_drv = {
3561 .name = "hv_pci",
3562 .id_table = hv_pci_id_table,
3563 .probe = hv_pci_probe,
3564 .remove = hv_pci_remove,
3565 .suspend = hv_pci_suspend,
3566 .resume = hv_pci_resume,
3567 };
3568
exit_hv_pci_drv(void)3569 static void __exit exit_hv_pci_drv(void)
3570 {
3571 vmbus_driver_unregister(&hv_pci_drv);
3572
3573 hvpci_block_ops.read_block = NULL;
3574 hvpci_block_ops.write_block = NULL;
3575 hvpci_block_ops.reg_blk_invalidate = NULL;
3576 }
3577
init_hv_pci_drv(void)3578 static int __init init_hv_pci_drv(void)
3579 {
3580 if (!hv_is_hyperv_initialized())
3581 return -ENODEV;
3582
3583 /* Set the invalid domain number's bit, so it will not be used */
3584 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3585
3586 /* Initialize PCI block r/w interface */
3587 hvpci_block_ops.read_block = hv_read_config_block;
3588 hvpci_block_ops.write_block = hv_write_config_block;
3589 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3590
3591 return vmbus_driver_register(&hv_pci_drv);
3592 }
3593
3594 module_init(init_hv_pci_drv);
3595 module_exit(exit_hv_pci_drv);
3596
3597 MODULE_DESCRIPTION("Hyper-V PCI");
3598 MODULE_LICENSE("GPL v2");
3599