• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 /**
220  * regulator_lock_two - lock two regulators
221  * @rdev1:		first regulator
222  * @rdev2:		second regulator
223  * @ww_ctx:		w/w mutex acquire context
224  *
225  * Locks both rdevs using the regulator_ww_class.
226  */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)227 static void regulator_lock_two(struct regulator_dev *rdev1,
228 			       struct regulator_dev *rdev2,
229 			       struct ww_acquire_ctx *ww_ctx)
230 {
231 	struct regulator_dev *tmp;
232 	int ret;
233 
234 	ww_acquire_init(ww_ctx, &regulator_ww_class);
235 
236 	/* Try to just grab both of them */
237 	ret = regulator_lock_nested(rdev1, ww_ctx);
238 	WARN_ON(ret);
239 	ret = regulator_lock_nested(rdev2, ww_ctx);
240 	if (ret != -EDEADLOCK) {
241 		WARN_ON(ret);
242 		goto exit;
243 	}
244 
245 	while (true) {
246 		/*
247 		 * Start of loop: rdev1 was locked and rdev2 was contended.
248 		 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249 		 * again.
250 		 */
251 		regulator_unlock(rdev1);
252 
253 		ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254 		rdev2->ref_cnt++;
255 		rdev2->mutex_owner = current;
256 		ret = regulator_lock_nested(rdev1, ww_ctx);
257 
258 		if (ret == -EDEADLOCK) {
259 			/* More contention; swap which needs to be slow */
260 			tmp = rdev1;
261 			rdev1 = rdev2;
262 			rdev2 = tmp;
263 		} else {
264 			WARN_ON(ret);
265 			break;
266 		}
267 	}
268 
269 exit:
270 	ww_acquire_done(ww_ctx);
271 }
272 
273 /**
274  * regulator_unlock_two - unlock two regulators
275  * @rdev1:		first regulator
276  * @rdev2:		second regulator
277  * @ww_ctx:		w/w mutex acquire context
278  *
279  * The inverse of regulator_lock_two().
280  */
281 
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283 				 struct regulator_dev *rdev2,
284 				 struct ww_acquire_ctx *ww_ctx)
285 {
286 	regulator_unlock(rdev2);
287 	regulator_unlock(rdev1);
288 	ww_acquire_fini(ww_ctx);
289 }
290 
regulator_supply_is_couple(struct regulator_dev * rdev)291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293 	struct regulator_dev *c_rdev;
294 	int i;
295 
296 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298 
299 		if (rdev->supply->rdev == c_rdev)
300 			return true;
301 	}
302 
303 	return false;
304 }
305 
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307 				       unsigned int n_coupled)
308 {
309 	struct regulator_dev *c_rdev, *supply_rdev;
310 	int i, supply_n_coupled;
311 
312 	for (i = n_coupled; i > 0; i--) {
313 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314 
315 		if (!c_rdev)
316 			continue;
317 
318 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319 			supply_rdev = c_rdev->supply->rdev;
320 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321 
322 			regulator_unlock_recursive(supply_rdev,
323 						   supply_n_coupled);
324 		}
325 
326 		regulator_unlock(c_rdev);
327 	}
328 }
329 
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331 				    struct regulator_dev **new_contended_rdev,
332 				    struct regulator_dev **old_contended_rdev,
333 				    struct ww_acquire_ctx *ww_ctx)
334 {
335 	struct regulator_dev *c_rdev;
336 	int i, err;
337 
338 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340 
341 		if (!c_rdev)
342 			continue;
343 
344 		if (c_rdev != *old_contended_rdev) {
345 			err = regulator_lock_nested(c_rdev, ww_ctx);
346 			if (err) {
347 				if (err == -EDEADLK) {
348 					*new_contended_rdev = c_rdev;
349 					goto err_unlock;
350 				}
351 
352 				/* shouldn't happen */
353 				WARN_ON_ONCE(err != -EALREADY);
354 			}
355 		} else {
356 			*old_contended_rdev = NULL;
357 		}
358 
359 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360 			err = regulator_lock_recursive(c_rdev->supply->rdev,
361 						       new_contended_rdev,
362 						       old_contended_rdev,
363 						       ww_ctx);
364 			if (err) {
365 				regulator_unlock(c_rdev);
366 				goto err_unlock;
367 			}
368 		}
369 	}
370 
371 	return 0;
372 
373 err_unlock:
374 	regulator_unlock_recursive(rdev, i);
375 
376 	return err;
377 }
378 
379 /**
380  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381  *				regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * Unlock all regulators related with rdev by coupling or supplying.
386  */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388 				       struct ww_acquire_ctx *ww_ctx)
389 {
390 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391 	ww_acquire_fini(ww_ctx);
392 }
393 
394 /**
395  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396  * @rdev:			regulator source
397  * @ww_ctx:			w/w mutex acquire context
398  *
399  * This function as a wrapper on regulator_lock_recursive(), which locks
400  * all regulators related with rdev by coupling or supplying.
401  */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403 				     struct ww_acquire_ctx *ww_ctx)
404 {
405 	struct regulator_dev *new_contended_rdev = NULL;
406 	struct regulator_dev *old_contended_rdev = NULL;
407 	int err;
408 
409 	mutex_lock(&regulator_list_mutex);
410 
411 	ww_acquire_init(ww_ctx, &regulator_ww_class);
412 
413 	do {
414 		if (new_contended_rdev) {
415 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416 			old_contended_rdev = new_contended_rdev;
417 			old_contended_rdev->ref_cnt++;
418 			old_contended_rdev->mutex_owner = current;
419 		}
420 
421 		err = regulator_lock_recursive(rdev,
422 					       &new_contended_rdev,
423 					       &old_contended_rdev,
424 					       ww_ctx);
425 
426 		if (old_contended_rdev)
427 			regulator_unlock(old_contended_rdev);
428 
429 	} while (err == -EDEADLK);
430 
431 	ww_acquire_done(ww_ctx);
432 
433 	mutex_unlock(&regulator_list_mutex);
434 }
435 
436 /**
437  * of_get_child_regulator - get a child regulator device node
438  * based on supply name
439  * @parent: Parent device node
440  * @prop_name: Combination regulator supply name and "-supply"
441  *
442  * Traverse all child nodes.
443  * Extract the child regulator device node corresponding to the supply name.
444  * returns the device node corresponding to the regulator if found, else
445  * returns NULL.
446  */
of_get_child_regulator(struct device_node * parent,const char * prop_name)447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448 						  const char *prop_name)
449 {
450 	struct device_node *regnode = NULL;
451 	struct device_node *child = NULL;
452 
453 	for_each_child_of_node(parent, child) {
454 		regnode = of_parse_phandle(child, prop_name, 0);
455 
456 		if (!regnode) {
457 			regnode = of_get_child_regulator(child, prop_name);
458 			if (regnode)
459 				goto err_node_put;
460 		} else {
461 			goto err_node_put;
462 		}
463 	}
464 	return NULL;
465 
466 err_node_put:
467 	of_node_put(child);
468 	return regnode;
469 }
470 
471 /**
472  * of_get_regulator - get a regulator device node based on supply name
473  * @dev: Device pointer for the consumer (of regulator) device
474  * @supply: regulator supply name
475  *
476  * Extract the regulator device node corresponding to the supply name.
477  * returns the device node corresponding to the regulator if found, else
478  * returns NULL.
479  */
of_get_regulator(struct device * dev,const char * supply)480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482 	struct device_node *regnode = NULL;
483 	char prop_name[64]; /* 64 is max size of property name */
484 
485 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486 
487 	snprintf(prop_name, 64, "%s-supply", supply);
488 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489 
490 	if (!regnode) {
491 		regnode = of_get_child_regulator(dev->of_node, prop_name);
492 		if (regnode)
493 			return regnode;
494 
495 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496 				prop_name, dev->of_node);
497 		return NULL;
498 	}
499 	return regnode;
500 }
501 
502 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)503 int regulator_check_voltage(struct regulator_dev *rdev,
504 			    int *min_uV, int *max_uV)
505 {
506 	BUG_ON(*min_uV > *max_uV);
507 
508 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509 		rdev_err(rdev, "voltage operation not allowed\n");
510 		return -EPERM;
511 	}
512 
513 	if (*max_uV > rdev->constraints->max_uV)
514 		*max_uV = rdev->constraints->max_uV;
515 	if (*min_uV < rdev->constraints->min_uV)
516 		*min_uV = rdev->constraints->min_uV;
517 
518 	if (*min_uV > *max_uV) {
519 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520 			 *min_uV, *max_uV);
521 		return -EINVAL;
522 	}
523 
524 	return 0;
525 }
526 
527 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)528 static int regulator_check_states(suspend_state_t state)
529 {
530 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532 
533 /* Make sure we select a voltage that suits the needs of all
534  * regulator consumers
535  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)536 int regulator_check_consumers(struct regulator_dev *rdev,
537 			      int *min_uV, int *max_uV,
538 			      suspend_state_t state)
539 {
540 	struct regulator *regulator;
541 	struct regulator_voltage *voltage;
542 
543 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
544 		voltage = &regulator->voltage[state];
545 		/*
546 		 * Assume consumers that didn't say anything are OK
547 		 * with anything in the constraint range.
548 		 */
549 		if (!voltage->min_uV && !voltage->max_uV)
550 			continue;
551 
552 		if (*max_uV > voltage->max_uV)
553 			*max_uV = voltage->max_uV;
554 		if (*min_uV < voltage->min_uV)
555 			*min_uV = voltage->min_uV;
556 	}
557 
558 	if (*min_uV > *max_uV) {
559 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560 			*min_uV, *max_uV);
561 		return -EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569 					int *min_uA, int *max_uA)
570 {
571 	BUG_ON(*min_uA > *max_uA);
572 
573 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574 		rdev_err(rdev, "current operation not allowed\n");
575 		return -EPERM;
576 	}
577 
578 	if (*max_uA > rdev->constraints->max_uA)
579 		*max_uA = rdev->constraints->max_uA;
580 	if (*min_uA < rdev->constraints->min_uA)
581 		*min_uA = rdev->constraints->min_uA;
582 
583 	if (*min_uA > *max_uA) {
584 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585 			 *min_uA, *max_uA);
586 		return -EINVAL;
587 	}
588 
589 	return 0;
590 }
591 
592 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594 				    unsigned int *mode)
595 {
596 	switch (*mode) {
597 	case REGULATOR_MODE_FAST:
598 	case REGULATOR_MODE_NORMAL:
599 	case REGULATOR_MODE_IDLE:
600 	case REGULATOR_MODE_STANDBY:
601 		break;
602 	default:
603 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
604 		return -EINVAL;
605 	}
606 
607 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608 		rdev_err(rdev, "mode operation not allowed\n");
609 		return -EPERM;
610 	}
611 
612 	/* The modes are bitmasks, the most power hungry modes having
613 	 * the lowest values. If the requested mode isn't supported
614 	 * try higher modes. */
615 	while (*mode) {
616 		if (rdev->constraints->valid_modes_mask & *mode)
617 			return 0;
618 		*mode /= 2;
619 	}
620 
621 	return -EINVAL;
622 }
623 
624 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627 	if (rdev->constraints == NULL)
628 		return NULL;
629 
630 	switch (state) {
631 	case PM_SUSPEND_STANDBY:
632 		return &rdev->constraints->state_standby;
633 	case PM_SUSPEND_MEM:
634 		return &rdev->constraints->state_mem;
635 	case PM_SUSPEND_MAX:
636 		return &rdev->constraints->state_disk;
637 	default:
638 		return NULL;
639 	}
640 }
641 
642 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645 	const struct regulator_state *rstate;
646 
647 	rstate = regulator_get_suspend_state(rdev, state);
648 	if (rstate == NULL)
649 		return NULL;
650 
651 	/* If we have no suspend mode configuration don't set anything;
652 	 * only warn if the driver implements set_suspend_voltage or
653 	 * set_suspend_mode callback.
654 	 */
655 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
656 	    rstate->enabled != DISABLE_IN_SUSPEND) {
657 		if (rdev->desc->ops->set_suspend_voltage ||
658 		    rdev->desc->ops->set_suspend_mode)
659 			rdev_warn(rdev, "No configuration\n");
660 		return NULL;
661 	}
662 
663 	return rstate;
664 }
665 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_uV_show(struct device *dev,
667 				struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	int uV;
671 
672 	regulator_lock(rdev);
673 	uV = regulator_get_voltage_rdev(rdev);
674 	regulator_unlock(rdev);
675 
676 	if (uV < 0)
677 		return uV;
678 	return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)682 static ssize_t regulator_uA_show(struct device *dev,
683 				struct device_attribute *attr, char *buf)
684 {
685 	struct regulator_dev *rdev = dev_get_drvdata(dev);
686 
687 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690 
name_show(struct device * dev,struct device_attribute * attr,char * buf)691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 			 char *buf)
693 {
694 	struct regulator_dev *rdev = dev_get_drvdata(dev);
695 
696 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699 
regulator_opmode_to_str(int mode)700 static const char *regulator_opmode_to_str(int mode)
701 {
702 	switch (mode) {
703 	case REGULATOR_MODE_FAST:
704 		return "fast";
705 	case REGULATOR_MODE_NORMAL:
706 		return "normal";
707 	case REGULATOR_MODE_IDLE:
708 		return "idle";
709 	case REGULATOR_MODE_STANDBY:
710 		return "standby";
711 	}
712 	return "unknown";
713 }
714 
regulator_print_opmode(char * buf,int mode)715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)720 static ssize_t regulator_opmode_show(struct device *dev,
721 				    struct device_attribute *attr, char *buf)
722 {
723 	struct regulator_dev *rdev = dev_get_drvdata(dev);
724 
725 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728 
regulator_print_state(char * buf,int state)729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731 	if (state > 0)
732 		return sprintf(buf, "enabled\n");
733 	else if (state == 0)
734 		return sprintf(buf, "disabled\n");
735 	else
736 		return sprintf(buf, "unknown\n");
737 }
738 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_state_show(struct device *dev,
740 				   struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 	ssize_t ret;
744 
745 	regulator_lock(rdev);
746 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747 	regulator_unlock(rdev);
748 
749 	return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)753 static ssize_t regulator_status_show(struct device *dev,
754 				   struct device_attribute *attr, char *buf)
755 {
756 	struct regulator_dev *rdev = dev_get_drvdata(dev);
757 	int status;
758 	char *label;
759 
760 	status = rdev->desc->ops->get_status(rdev);
761 	if (status < 0)
762 		return status;
763 
764 	switch (status) {
765 	case REGULATOR_STATUS_OFF:
766 		label = "off";
767 		break;
768 	case REGULATOR_STATUS_ON:
769 		label = "on";
770 		break;
771 	case REGULATOR_STATUS_ERROR:
772 		label = "error";
773 		break;
774 	case REGULATOR_STATUS_FAST:
775 		label = "fast";
776 		break;
777 	case REGULATOR_STATUS_NORMAL:
778 		label = "normal";
779 		break;
780 	case REGULATOR_STATUS_IDLE:
781 		label = "idle";
782 		break;
783 	case REGULATOR_STATUS_STANDBY:
784 		label = "standby";
785 		break;
786 	case REGULATOR_STATUS_BYPASS:
787 		label = "bypass";
788 		break;
789 	case REGULATOR_STATUS_UNDEFINED:
790 		label = "undefined";
791 		break;
792 	default:
793 		return -ERANGE;
794 	}
795 
796 	return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t regulator_min_uA_show(struct device *dev,
801 				    struct device_attribute *attr, char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	if (!rdev->constraints)
806 		return sprintf(buf, "constraint not defined\n");
807 
808 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)812 static ssize_t regulator_max_uA_show(struct device *dev,
813 				    struct device_attribute *attr, char *buf)
814 {
815 	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 
817 	if (!rdev->constraints)
818 		return sprintf(buf, "constraint not defined\n");
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)824 static ssize_t regulator_min_uV_show(struct device *dev,
825 				    struct device_attribute *attr, char *buf)
826 {
827 	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 
829 	if (!rdev->constraints)
830 		return sprintf(buf, "constraint not defined\n");
831 
832 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t regulator_max_uV_show(struct device *dev,
837 				    struct device_attribute *attr, char *buf)
838 {
839 	struct regulator_dev *rdev = dev_get_drvdata(dev);
840 
841 	if (!rdev->constraints)
842 		return sprintf(buf, "constraint not defined\n");
843 
844 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t regulator_total_uA_show(struct device *dev,
849 				      struct device_attribute *attr, char *buf)
850 {
851 	struct regulator_dev *rdev = dev_get_drvdata(dev);
852 	struct regulator *regulator;
853 	int uA = 0;
854 
855 	regulator_lock(rdev);
856 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
857 		if (regulator->enable_count)
858 			uA += regulator->uA_load;
859 	}
860 	regulator_unlock(rdev);
861 	return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866 			      char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 	return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872 
type_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874 			 char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	switch (rdev->desc->type) {
879 	case REGULATOR_VOLTAGE:
880 		return sprintf(buf, "voltage\n");
881 	case REGULATOR_CURRENT:
882 		return sprintf(buf, "current\n");
883 	}
884 	return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889 				struct device_attribute *attr, char *buf)
890 {
891 	struct regulator_dev *rdev = dev_get_drvdata(dev);
892 
893 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896 		regulator_suspend_mem_uV_show, NULL);
897 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899 				struct device_attribute *attr, char *buf)
900 {
901 	struct regulator_dev *rdev = dev_get_drvdata(dev);
902 
903 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906 		regulator_suspend_disk_uV_show, NULL);
907 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909 				struct device_attribute *attr, char *buf)
910 {
911 	struct regulator_dev *rdev = dev_get_drvdata(dev);
912 
913 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916 		regulator_suspend_standby_uV_show, NULL);
917 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919 				struct device_attribute *attr, char *buf)
920 {
921 	struct regulator_dev *rdev = dev_get_drvdata(dev);
922 
923 	return regulator_print_opmode(buf,
924 		rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927 		regulator_suspend_mem_mode_show, NULL);
928 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930 				struct device_attribute *attr, char *buf)
931 {
932 	struct regulator_dev *rdev = dev_get_drvdata(dev);
933 
934 	return regulator_print_opmode(buf,
935 		rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938 		regulator_suspend_disk_mode_show, NULL);
939 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941 				struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_opmode(buf,
946 		rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949 		regulator_suspend_standby_mode_show, NULL);
950 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952 				   struct device_attribute *attr, char *buf)
953 {
954 	struct regulator_dev *rdev = dev_get_drvdata(dev);
955 
956 	return regulator_print_state(buf,
957 			rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960 		regulator_suspend_mem_state_show, NULL);
961 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963 				   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 
967 	return regulator_print_state(buf,
968 			rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971 		regulator_suspend_disk_state_show, NULL);
972 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974 				   struct device_attribute *attr, char *buf)
975 {
976 	struct regulator_dev *rdev = dev_get_drvdata(dev);
977 
978 	return regulator_print_state(buf,
979 			rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982 		regulator_suspend_standby_state_show, NULL);
983 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)984 static ssize_t regulator_bypass_show(struct device *dev,
985 				     struct device_attribute *attr, char *buf)
986 {
987 	struct regulator_dev *rdev = dev_get_drvdata(dev);
988 	const char *report;
989 	bool bypass;
990 	int ret;
991 
992 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993 
994 	if (ret != 0)
995 		report = "unknown";
996 	else if (bypass)
997 		report = "enabled";
998 	else
999 		report = "disabled";
1000 
1001 	return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004 		   regulator_bypass_show, NULL);
1005 
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/* get output voltage */
1047 		output_uV = regulator_get_voltage_rdev(rdev);
1048 		if (output_uV <= 0) {
1049 			rdev_err(rdev, "invalid output voltage found\n");
1050 			return -EINVAL;
1051 		}
1052 
1053 		/* get input voltage */
1054 		input_uV = 0;
1055 		if (rdev->supply)
1056 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057 		if (input_uV <= 0)
1058 			input_uV = rdev->constraints->input_uV;
1059 		if (input_uV <= 0) {
1060 			rdev_err(rdev, "invalid input voltage found\n");
1061 			return -EINVAL;
1062 		}
1063 
1064 		/* now get the optimum mode for our new total regulator load */
1065 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066 							 output_uV, current_uA);
1067 
1068 		/* check the new mode is allowed */
1069 		err = regulator_mode_constrain(rdev, &mode);
1070 		if (err < 0) {
1071 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1073 			return err;
1074 		}
1075 
1076 		err = rdev->desc->ops->set_mode(rdev, mode);
1077 		if (err < 0)
1078 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079 				 mode, ERR_PTR(err));
1080 	}
1081 
1082 	return err;
1083 }
1084 
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086 			       const struct regulator_state *rstate)
1087 {
1088 	int ret = 0;
1089 
1090 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091 		rdev->desc->ops->set_suspend_enable)
1092 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1093 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094 		rdev->desc->ops->set_suspend_disable)
1095 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1096 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097 		ret = 0;
1098 
1099 	if (ret < 0) {
1100 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101 		return ret;
1102 	}
1103 
1104 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106 		if (ret < 0) {
1107 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108 			return ret;
1109 		}
1110 	}
1111 
1112 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114 		if (ret < 0) {
1115 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	return ret;
1121 }
1122 
suspend_set_initial_state(struct regulator_dev * rdev)1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125 	const struct regulator_state *rstate;
1126 
1127 	rstate = regulator_get_suspend_state_check(rdev,
1128 			rdev->constraints->initial_state);
1129 	if (!rstate)
1130 		return 0;
1131 
1132 	return __suspend_set_state(rdev, rstate);
1133 }
1134 
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 	char buf[160] = "";
1140 	size_t len = sizeof(buf) - 1;
1141 	int count = 0;
1142 	int ret;
1143 
1144 	if (constraints->min_uV && constraints->max_uV) {
1145 		if (constraints->min_uV == constraints->max_uV)
1146 			count += scnprintf(buf + count, len - count, "%d mV ",
1147 					   constraints->min_uV / 1000);
1148 		else
1149 			count += scnprintf(buf + count, len - count,
1150 					   "%d <--> %d mV ",
1151 					   constraints->min_uV / 1000,
1152 					   constraints->max_uV / 1000);
1153 	}
1154 
1155 	if (!constraints->min_uV ||
1156 	    constraints->min_uV != constraints->max_uV) {
1157 		ret = regulator_get_voltage_rdev(rdev);
1158 		if (ret > 0)
1159 			count += scnprintf(buf + count, len - count,
1160 					   "at %d mV ", ret / 1000);
1161 	}
1162 
1163 	if (constraints->uV_offset)
1164 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1165 				   constraints->uV_offset / 1000);
1166 
1167 	if (constraints->min_uA && constraints->max_uA) {
1168 		if (constraints->min_uA == constraints->max_uA)
1169 			count += scnprintf(buf + count, len - count, "%d mA ",
1170 					   constraints->min_uA / 1000);
1171 		else
1172 			count += scnprintf(buf + count, len - count,
1173 					   "%d <--> %d mA ",
1174 					   constraints->min_uA / 1000,
1175 					   constraints->max_uA / 1000);
1176 	}
1177 
1178 	if (!constraints->min_uA ||
1179 	    constraints->min_uA != constraints->max_uA) {
1180 		ret = _regulator_get_current_limit(rdev);
1181 		if (ret > 0)
1182 			count += scnprintf(buf + count, len - count,
1183 					   "at %d mA ", ret / 1000);
1184 	}
1185 
1186 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187 		count += scnprintf(buf + count, len - count, "fast ");
1188 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189 		count += scnprintf(buf + count, len - count, "normal ");
1190 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191 		count += scnprintf(buf + count, len - count, "idle ");
1192 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193 		count += scnprintf(buf + count, len - count, "standby ");
1194 
1195 	if (!count)
1196 		count = scnprintf(buf, len, "no parameters");
1197 	else
1198 		--count;
1199 
1200 	count += scnprintf(buf + count, len - count, ", %s",
1201 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202 
1203 	rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208 
print_constraints(struct regulator_dev * rdev)1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211 	struct regulation_constraints *constraints = rdev->constraints;
1212 
1213 	print_constraints_debug(rdev);
1214 
1215 	if ((constraints->min_uV != constraints->max_uV) &&
1216 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217 		rdev_warn(rdev,
1218 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222 	struct regulation_constraints *constraints)
1223 {
1224 	const struct regulator_ops *ops = rdev->desc->ops;
1225 	int ret;
1226 
1227 	/* do we need to apply the constraint voltage */
1228 	if (rdev->constraints->apply_uV &&
1229 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230 		int target_min, target_max;
1231 		int current_uV = regulator_get_voltage_rdev(rdev);
1232 
1233 		if (current_uV == -ENOTRECOVERABLE) {
1234 			/* This regulator can't be read and must be initialized */
1235 			rdev_info(rdev, "Setting %d-%duV\n",
1236 				  rdev->constraints->min_uV,
1237 				  rdev->constraints->max_uV);
1238 			_regulator_do_set_voltage(rdev,
1239 						  rdev->constraints->min_uV,
1240 						  rdev->constraints->max_uV);
1241 			current_uV = regulator_get_voltage_rdev(rdev);
1242 		}
1243 
1244 		if (current_uV < 0) {
1245 			rdev_err(rdev,
1246 				 "failed to get the current voltage: %pe\n",
1247 				 ERR_PTR(current_uV));
1248 			return current_uV;
1249 		}
1250 
1251 		/*
1252 		 * If we're below the minimum voltage move up to the
1253 		 * minimum voltage, if we're above the maximum voltage
1254 		 * then move down to the maximum.
1255 		 */
1256 		target_min = current_uV;
1257 		target_max = current_uV;
1258 
1259 		if (current_uV < rdev->constraints->min_uV) {
1260 			target_min = rdev->constraints->min_uV;
1261 			target_max = rdev->constraints->min_uV;
1262 		}
1263 
1264 		if (current_uV > rdev->constraints->max_uV) {
1265 			target_min = rdev->constraints->max_uV;
1266 			target_max = rdev->constraints->max_uV;
1267 		}
1268 
1269 		if (target_min != current_uV || target_max != current_uV) {
1270 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271 				  current_uV, target_min, target_max);
1272 			ret = _regulator_do_set_voltage(
1273 				rdev, target_min, target_max);
1274 			if (ret < 0) {
1275 				rdev_err(rdev,
1276 					"failed to apply %d-%duV constraint: %pe\n",
1277 					target_min, target_max, ERR_PTR(ret));
1278 				return ret;
1279 			}
1280 		}
1281 	}
1282 
1283 	/* constrain machine-level voltage specs to fit
1284 	 * the actual range supported by this regulator.
1285 	 */
1286 	if (ops->list_voltage && rdev->desc->n_voltages) {
1287 		int	count = rdev->desc->n_voltages;
1288 		int	i;
1289 		int	min_uV = INT_MAX;
1290 		int	max_uV = INT_MIN;
1291 		int	cmin = constraints->min_uV;
1292 		int	cmax = constraints->max_uV;
1293 
1294 		/* it's safe to autoconfigure fixed-voltage supplies
1295 		   and the constraints are used by list_voltage. */
1296 		if (count == 1 && !cmin) {
1297 			cmin = 1;
1298 			cmax = INT_MAX;
1299 			constraints->min_uV = cmin;
1300 			constraints->max_uV = cmax;
1301 		}
1302 
1303 		/* voltage constraints are optional */
1304 		if ((cmin == 0) && (cmax == 0))
1305 			return 0;
1306 
1307 		/* else require explicit machine-level constraints */
1308 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309 			rdev_err(rdev, "invalid voltage constraints\n");
1310 			return -EINVAL;
1311 		}
1312 
1313 		/* no need to loop voltages if range is continuous */
1314 		if (rdev->desc->continuous_voltage_range)
1315 			return 0;
1316 
1317 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318 		for (i = 0; i < count; i++) {
1319 			int	value;
1320 
1321 			value = ops->list_voltage(rdev, i);
1322 			if (value <= 0)
1323 				continue;
1324 
1325 			/* maybe adjust [min_uV..max_uV] */
1326 			if (value >= cmin && value < min_uV)
1327 				min_uV = value;
1328 			if (value <= cmax && value > max_uV)
1329 				max_uV = value;
1330 		}
1331 
1332 		/* final: [min_uV..max_uV] valid iff constraints valid */
1333 		if (max_uV < min_uV) {
1334 			rdev_err(rdev,
1335 				 "unsupportable voltage constraints %u-%uuV\n",
1336 				 min_uV, max_uV);
1337 			return -EINVAL;
1338 		}
1339 
1340 		/* use regulator's subset of machine constraints */
1341 		if (constraints->min_uV < min_uV) {
1342 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343 				 constraints->min_uV, min_uV);
1344 			constraints->min_uV = min_uV;
1345 		}
1346 		if (constraints->max_uV > max_uV) {
1347 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348 				 constraints->max_uV, max_uV);
1349 			constraints->max_uV = max_uV;
1350 		}
1351 	}
1352 
1353 	return 0;
1354 }
1355 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357 	struct regulation_constraints *constraints)
1358 {
1359 	const struct regulator_ops *ops = rdev->desc->ops;
1360 	int ret;
1361 
1362 	if (!constraints->min_uA && !constraints->max_uA)
1363 		return 0;
1364 
1365 	if (constraints->min_uA > constraints->max_uA) {
1366 		rdev_err(rdev, "Invalid current constraints\n");
1367 		return -EINVAL;
1368 	}
1369 
1370 	if (!ops->set_current_limit || !ops->get_current_limit) {
1371 		rdev_warn(rdev, "Operation of current configuration missing\n");
1372 		return 0;
1373 	}
1374 
1375 	/* Set regulator current in constraints range */
1376 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1377 			constraints->max_uA);
1378 	if (ret < 0) {
1379 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380 		return ret;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387 
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
set_machine_constraints(struct regulator_dev * rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 	int ret = 0;
1401 	const struct regulator_ops *ops = rdev->desc->ops;
1402 
1403 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 	if (ret != 0)
1405 		return ret;
1406 
1407 	ret = machine_constraints_current(rdev, rdev->constraints);
1408 	if (ret != 0)
1409 		return ret;
1410 
1411 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 		ret = ops->set_input_current_limit(rdev,
1413 						   rdev->constraints->ilim_uA);
1414 		if (ret < 0) {
1415 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 			return ret;
1417 		}
1418 	}
1419 
1420 	/* do we need to setup our suspend state */
1421 	if (rdev->constraints->initial_state) {
1422 		ret = suspend_set_initial_state(rdev);
1423 		if (ret < 0) {
1424 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	if (rdev->constraints->initial_mode) {
1430 		if (!ops->set_mode) {
1431 			rdev_err(rdev, "no set_mode operation\n");
1432 			return -EINVAL;
1433 		}
1434 
1435 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 		if (ret < 0) {
1437 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 			return ret;
1439 		}
1440 	} else if (rdev->constraints->system_load) {
1441 		/*
1442 		 * We'll only apply the initial system load if an
1443 		 * initial mode wasn't specified.
1444 		 */
1445 		drms_uA_update(rdev);
1446 	}
1447 
1448 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 		&& ops->set_ramp_delay) {
1450 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 		if (ret < 0) {
1452 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 		ret = ops->set_pull_down(rdev);
1459 		if (ret < 0) {
1460 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 			return ret;
1462 		}
1463 	}
1464 
1465 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 		ret = ops->set_soft_start(rdev);
1467 		if (ret < 0) {
1468 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 			return ret;
1470 		}
1471 	}
1472 
1473 	if (rdev->constraints->over_current_protection
1474 		&& ops->set_over_current_protection) {
1475 		ret = ops->set_over_current_protection(rdev);
1476 		if (ret < 0) {
1477 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 				 ERR_PTR(ret));
1479 			return ret;
1480 		}
1481 	}
1482 
1483 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484 		bool ad_state = (rdev->constraints->active_discharge ==
1485 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486 
1487 		ret = ops->set_active_discharge(rdev, ad_state);
1488 		if (ret < 0) {
1489 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490 			return ret;
1491 		}
1492 	}
1493 
1494 	/* If the constraints say the regulator should be on at this point
1495 	 * and we have control then make sure it is enabled.
1496 	 */
1497 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498 		/* If we want to enable this regulator, make sure that we know
1499 		 * the supplying regulator.
1500 		 */
1501 		if (rdev->supply_name && !rdev->supply)
1502 			return -EPROBE_DEFER;
1503 
1504 		/* If supplying regulator has already been enabled,
1505 		 * it's not intended to have use_count increment
1506 		 * when rdev is only boot-on.
1507 		 */
1508 		if (rdev->supply &&
1509 		    (rdev->constraints->always_on ||
1510 		     !regulator_is_enabled(rdev->supply))) {
1511 			ret = regulator_enable(rdev->supply);
1512 			if (ret < 0) {
1513 				_regulator_put(rdev->supply);
1514 				rdev->supply = NULL;
1515 				return ret;
1516 			}
1517 		}
1518 
1519 		ret = _regulator_do_enable(rdev);
1520 		if (ret < 0 && ret != -EINVAL) {
1521 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522 			return ret;
1523 		}
1524 
1525 		if (rdev->constraints->always_on)
1526 			rdev->use_count++;
1527 	} else if (rdev->desc->off_on_delay) {
1528 		rdev->last_off_jiffy = jiffies;
1529 	}
1530 
1531 	print_constraints(rdev);
1532 	return 0;
1533 }
1534 
1535 /**
1536  * set_supply - set regulator supply regulator
1537  * @rdev: regulator (locked)
1538  * @supply_rdev: supply regulator (locked))
1539  *
1540  * Called by platform initialisation code to set the supply regulator for this
1541  * regulator. This ensures that a regulators supply will also be enabled by the
1542  * core if it's child is enabled.
1543  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1544 static int set_supply(struct regulator_dev *rdev,
1545 		      struct regulator_dev *supply_rdev)
1546 {
1547 	int err;
1548 
1549 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1550 
1551 	if (!try_module_get(supply_rdev->owner))
1552 		return -ENODEV;
1553 
1554 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1555 	if (rdev->supply == NULL) {
1556 		module_put(supply_rdev->owner);
1557 		err = -ENOMEM;
1558 		return err;
1559 	}
1560 	supply_rdev->open_count++;
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1567  * @rdev:         regulator source
1568  * @consumer_dev_name: dev_name() string for device supply applies to
1569  * @supply:       symbolic name for supply
1570  *
1571  * Allows platform initialisation code to map physical regulator
1572  * sources to symbolic names for supplies for use by devices.  Devices
1573  * should use these symbolic names to request regulators, avoiding the
1574  * need to provide board-specific regulator names as platform data.
1575  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1576 static int set_consumer_device_supply(struct regulator_dev *rdev,
1577 				      const char *consumer_dev_name,
1578 				      const char *supply)
1579 {
1580 	struct regulator_map *node, *new_node;
1581 	int has_dev;
1582 
1583 	if (supply == NULL)
1584 		return -EINVAL;
1585 
1586 	if (consumer_dev_name != NULL)
1587 		has_dev = 1;
1588 	else
1589 		has_dev = 0;
1590 
1591 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1592 	if (new_node == NULL)
1593 		return -ENOMEM;
1594 
1595 	new_node->regulator = rdev;
1596 	new_node->supply = supply;
1597 
1598 	if (has_dev) {
1599 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1600 		if (new_node->dev_name == NULL) {
1601 			kfree(new_node);
1602 			return -ENOMEM;
1603 		}
1604 	}
1605 
1606 	mutex_lock(&regulator_list_mutex);
1607 	list_for_each_entry(node, &regulator_map_list, list) {
1608 		if (node->dev_name && consumer_dev_name) {
1609 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1610 				continue;
1611 		} else if (node->dev_name || consumer_dev_name) {
1612 			continue;
1613 		}
1614 
1615 		if (strcmp(node->supply, supply) != 0)
1616 			continue;
1617 
1618 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1619 			 consumer_dev_name,
1620 			 dev_name(&node->regulator->dev),
1621 			 node->regulator->desc->name,
1622 			 supply,
1623 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1624 		goto fail;
1625 	}
1626 
1627 	list_add(&new_node->list, &regulator_map_list);
1628 	mutex_unlock(&regulator_list_mutex);
1629 
1630 	return 0;
1631 
1632 fail:
1633 	mutex_unlock(&regulator_list_mutex);
1634 	kfree(new_node->dev_name);
1635 	kfree(new_node);
1636 	return -EBUSY;
1637 }
1638 
unset_regulator_supplies(struct regulator_dev * rdev)1639 static void unset_regulator_supplies(struct regulator_dev *rdev)
1640 {
1641 	struct regulator_map *node, *n;
1642 
1643 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1644 		if (rdev == node->regulator) {
1645 			list_del(&node->list);
1646 			kfree(node->dev_name);
1647 			kfree(node);
1648 		}
1649 	}
1650 }
1651 
1652 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1653 static ssize_t constraint_flags_read_file(struct file *file,
1654 					  char __user *user_buf,
1655 					  size_t count, loff_t *ppos)
1656 {
1657 	const struct regulator *regulator = file->private_data;
1658 	const struct regulation_constraints *c = regulator->rdev->constraints;
1659 	char *buf;
1660 	ssize_t ret;
1661 
1662 	if (!c)
1663 		return 0;
1664 
1665 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1666 	if (!buf)
1667 		return -ENOMEM;
1668 
1669 	ret = snprintf(buf, PAGE_SIZE,
1670 			"always_on: %u\n"
1671 			"boot_on: %u\n"
1672 			"apply_uV: %u\n"
1673 			"ramp_disable: %u\n"
1674 			"soft_start: %u\n"
1675 			"pull_down: %u\n"
1676 			"over_current_protection: %u\n",
1677 			c->always_on,
1678 			c->boot_on,
1679 			c->apply_uV,
1680 			c->ramp_disable,
1681 			c->soft_start,
1682 			c->pull_down,
1683 			c->over_current_protection);
1684 
1685 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1686 	kfree(buf);
1687 
1688 	return ret;
1689 }
1690 
1691 #endif
1692 
1693 static const struct file_operations constraint_flags_fops = {
1694 #ifdef CONFIG_DEBUG_FS
1695 	.open = simple_open,
1696 	.read = constraint_flags_read_file,
1697 	.llseek = default_llseek,
1698 #endif
1699 };
1700 
1701 #define REG_STR_SIZE	64
1702 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1703 static struct regulator *create_regulator(struct regulator_dev *rdev,
1704 					  struct device *dev,
1705 					  const char *supply_name)
1706 {
1707 	struct regulator *regulator;
1708 	int err = 0;
1709 
1710 	lockdep_assert_held_once(&rdev->mutex.base);
1711 
1712 	if (dev) {
1713 		char buf[REG_STR_SIZE];
1714 		int size;
1715 
1716 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1717 				dev->kobj.name, supply_name);
1718 		if (size >= REG_STR_SIZE)
1719 			return NULL;
1720 
1721 		supply_name = kstrdup(buf, GFP_KERNEL);
1722 		if (supply_name == NULL)
1723 			return NULL;
1724 	} else {
1725 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1726 		if (supply_name == NULL)
1727 			return NULL;
1728 	}
1729 
1730 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1731 	if (regulator == NULL) {
1732 		kfree_const(supply_name);
1733 		return NULL;
1734 	}
1735 
1736 	regulator->rdev = rdev;
1737 	regulator->supply_name = supply_name;
1738 
1739 	list_add(&regulator->list, &rdev->consumer_list);
1740 
1741 	if (dev) {
1742 		regulator->dev = dev;
1743 
1744 		/* Add a link to the device sysfs entry */
1745 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1746 					       supply_name);
1747 		if (err) {
1748 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1749 				  dev->kobj.name, ERR_PTR(err));
1750 			/* non-fatal */
1751 		}
1752 	}
1753 
1754 	if (err != -EEXIST)
1755 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1756 	if (!regulator->debugfs) {
1757 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1758 	} else {
1759 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1760 				   &regulator->uA_load);
1761 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1762 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1763 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1764 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1765 		debugfs_create_file("constraint_flags", 0444,
1766 				    regulator->debugfs, regulator,
1767 				    &constraint_flags_fops);
1768 	}
1769 
1770 	/*
1771 	 * Check now if the regulator is an always on regulator - if
1772 	 * it is then we don't need to do nearly so much work for
1773 	 * enable/disable calls.
1774 	 */
1775 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1776 	    _regulator_is_enabled(rdev))
1777 		regulator->always_on = true;
1778 
1779 	return regulator;
1780 }
1781 
_regulator_get_enable_time(struct regulator_dev * rdev)1782 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1783 {
1784 	if (rdev->constraints && rdev->constraints->enable_time)
1785 		return rdev->constraints->enable_time;
1786 	if (rdev->desc->ops->enable_time)
1787 		return rdev->desc->ops->enable_time(rdev);
1788 	return rdev->desc->enable_time;
1789 }
1790 
regulator_find_supply_alias(struct device * dev,const char * supply)1791 static struct regulator_supply_alias *regulator_find_supply_alias(
1792 		struct device *dev, const char *supply)
1793 {
1794 	struct regulator_supply_alias *map;
1795 
1796 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1797 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1798 			return map;
1799 
1800 	return NULL;
1801 }
1802 
regulator_supply_alias(struct device ** dev,const char ** supply)1803 static void regulator_supply_alias(struct device **dev, const char **supply)
1804 {
1805 	struct regulator_supply_alias *map;
1806 
1807 	map = regulator_find_supply_alias(*dev, *supply);
1808 	if (map) {
1809 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1810 				*supply, map->alias_supply,
1811 				dev_name(map->alias_dev));
1812 		*dev = map->alias_dev;
1813 		*supply = map->alias_supply;
1814 	}
1815 }
1816 
regulator_match(struct device * dev,const void * data)1817 static int regulator_match(struct device *dev, const void *data)
1818 {
1819 	struct regulator_dev *r = dev_to_rdev(dev);
1820 
1821 	return strcmp(rdev_get_name(r), data) == 0;
1822 }
1823 
regulator_lookup_by_name(const char * name)1824 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1825 {
1826 	struct device *dev;
1827 
1828 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1829 
1830 	return dev ? dev_to_rdev(dev) : NULL;
1831 }
1832 
1833 /**
1834  * regulator_dev_lookup - lookup a regulator device.
1835  * @dev: device for regulator "consumer".
1836  * @supply: Supply name or regulator ID.
1837  *
1838  * If successful, returns a struct regulator_dev that corresponds to the name
1839  * @supply and with the embedded struct device refcount incremented by one.
1840  * The refcount must be dropped by calling put_device().
1841  * On failure one of the following ERR-PTR-encoded values is returned:
1842  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1843  * in the future.
1844  */
regulator_dev_lookup(struct device * dev,const char * supply)1845 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1846 						  const char *supply)
1847 {
1848 	struct regulator_dev *r = NULL;
1849 	struct device_node *node;
1850 	struct regulator_map *map;
1851 	const char *devname = NULL;
1852 
1853 	regulator_supply_alias(&dev, &supply);
1854 
1855 	/* first do a dt based lookup */
1856 	if (dev && dev->of_node) {
1857 		node = of_get_regulator(dev, supply);
1858 		if (node) {
1859 			r = of_find_regulator_by_node(node);
1860 			of_node_put(node);
1861 			if (r)
1862 				return r;
1863 
1864 			/*
1865 			 * We have a node, but there is no device.
1866 			 * assume it has not registered yet.
1867 			 */
1868 			return ERR_PTR(-EPROBE_DEFER);
1869 		}
1870 	}
1871 
1872 	/* if not found, try doing it non-dt way */
1873 	if (dev)
1874 		devname = dev_name(dev);
1875 
1876 	mutex_lock(&regulator_list_mutex);
1877 	list_for_each_entry(map, &regulator_map_list, list) {
1878 		/* If the mapping has a device set up it must match */
1879 		if (map->dev_name &&
1880 		    (!devname || strcmp(map->dev_name, devname)))
1881 			continue;
1882 
1883 		if (strcmp(map->supply, supply) == 0 &&
1884 		    get_device(&map->regulator->dev)) {
1885 			r = map->regulator;
1886 			break;
1887 		}
1888 	}
1889 	mutex_unlock(&regulator_list_mutex);
1890 
1891 	if (r)
1892 		return r;
1893 
1894 	r = regulator_lookup_by_name(supply);
1895 	if (r)
1896 		return r;
1897 
1898 	return ERR_PTR(-ENODEV);
1899 }
1900 
regulator_resolve_supply(struct regulator_dev * rdev)1901 static int regulator_resolve_supply(struct regulator_dev *rdev)
1902 {
1903 	struct regulator_dev *r;
1904 	struct device *dev = rdev->dev.parent;
1905 	struct ww_acquire_ctx ww_ctx;
1906 	int ret = 0;
1907 
1908 	/* No supply to resolve? */
1909 	if (!rdev->supply_name)
1910 		return 0;
1911 
1912 	/* Supply already resolved? (fast-path without locking contention) */
1913 	if (rdev->supply)
1914 		return 0;
1915 
1916 	r = regulator_dev_lookup(dev, rdev->supply_name);
1917 	if (IS_ERR(r)) {
1918 		ret = PTR_ERR(r);
1919 
1920 		/* Did the lookup explicitly defer for us? */
1921 		if (ret == -EPROBE_DEFER)
1922 			goto out;
1923 
1924 		if (have_full_constraints()) {
1925 			r = dummy_regulator_rdev;
1926 			get_device(&r->dev);
1927 		} else {
1928 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1929 				rdev->supply_name, rdev->desc->name);
1930 			ret = -EPROBE_DEFER;
1931 			goto out;
1932 		}
1933 	}
1934 
1935 	if (r == rdev) {
1936 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1937 			rdev->desc->name, rdev->supply_name);
1938 		if (!have_full_constraints()) {
1939 			ret = -EINVAL;
1940 			goto out;
1941 		}
1942 		r = dummy_regulator_rdev;
1943 		get_device(&r->dev);
1944 	}
1945 
1946 	/*
1947 	 * If the supply's parent device is not the same as the
1948 	 * regulator's parent device, then ensure the parent device
1949 	 * is bound before we resolve the supply, in case the parent
1950 	 * device get probe deferred and unregisters the supply.
1951 	 */
1952 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1953 		if (!device_is_bound(r->dev.parent)) {
1954 			put_device(&r->dev);
1955 			ret = -EPROBE_DEFER;
1956 			goto out;
1957 		}
1958 	}
1959 
1960 	/* Recursively resolve the supply of the supply */
1961 	ret = regulator_resolve_supply(r);
1962 	if (ret < 0) {
1963 		put_device(&r->dev);
1964 		goto out;
1965 	}
1966 
1967 	/*
1968 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1969 	 * between rdev->supply null check and setting rdev->supply in
1970 	 * set_supply() from concurrent tasks.
1971 	 */
1972 	regulator_lock_two(rdev, r, &ww_ctx);
1973 
1974 	/* Supply just resolved by a concurrent task? */
1975 	if (rdev->supply) {
1976 		regulator_unlock_two(rdev, r, &ww_ctx);
1977 		put_device(&r->dev);
1978 		goto out;
1979 	}
1980 
1981 	ret = set_supply(rdev, r);
1982 	if (ret < 0) {
1983 		regulator_unlock_two(rdev, r, &ww_ctx);
1984 		put_device(&r->dev);
1985 		goto out;
1986 	}
1987 
1988 	regulator_unlock_two(rdev, r, &ww_ctx);
1989 
1990 	/*
1991 	 * In set_machine_constraints() we may have turned this regulator on
1992 	 * but we couldn't propagate to the supply if it hadn't been resolved
1993 	 * yet.  Do it now.
1994 	 */
1995 	if (rdev->use_count) {
1996 		ret = regulator_enable(rdev->supply);
1997 		if (ret < 0) {
1998 			_regulator_put(rdev->supply);
1999 			rdev->supply = NULL;
2000 			goto out;
2001 		}
2002 	}
2003 
2004 out:
2005 	return ret;
2006 }
2007 
2008 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2009 struct regulator *_regulator_get(struct device *dev, const char *id,
2010 				 enum regulator_get_type get_type)
2011 {
2012 	struct regulator_dev *rdev;
2013 	struct regulator *regulator;
2014 	struct device_link *link;
2015 	int ret;
2016 
2017 	if (get_type >= MAX_GET_TYPE) {
2018 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2019 		return ERR_PTR(-EINVAL);
2020 	}
2021 
2022 	if (id == NULL) {
2023 		pr_err("get() with no identifier\n");
2024 		return ERR_PTR(-EINVAL);
2025 	}
2026 
2027 	rdev = regulator_dev_lookup(dev, id);
2028 	if (IS_ERR(rdev)) {
2029 		ret = PTR_ERR(rdev);
2030 
2031 		/*
2032 		 * If regulator_dev_lookup() fails with error other
2033 		 * than -ENODEV our job here is done, we simply return it.
2034 		 */
2035 		if (ret != -ENODEV)
2036 			return ERR_PTR(ret);
2037 
2038 		if (!have_full_constraints()) {
2039 			dev_warn(dev,
2040 				 "incomplete constraints, dummy supplies not allowed\n");
2041 			return ERR_PTR(-ENODEV);
2042 		}
2043 
2044 		switch (get_type) {
2045 		case NORMAL_GET:
2046 			/*
2047 			 * Assume that a regulator is physically present and
2048 			 * enabled, even if it isn't hooked up, and just
2049 			 * provide a dummy.
2050 			 */
2051 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2052 			rdev = dummy_regulator_rdev;
2053 			get_device(&rdev->dev);
2054 			break;
2055 
2056 		case EXCLUSIVE_GET:
2057 			dev_warn(dev,
2058 				 "dummy supplies not allowed for exclusive requests\n");
2059 			fallthrough;
2060 
2061 		default:
2062 			return ERR_PTR(-ENODEV);
2063 		}
2064 	}
2065 
2066 	if (rdev->exclusive) {
2067 		regulator = ERR_PTR(-EPERM);
2068 		put_device(&rdev->dev);
2069 		return regulator;
2070 	}
2071 
2072 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2073 		regulator = ERR_PTR(-EBUSY);
2074 		put_device(&rdev->dev);
2075 		return regulator;
2076 	}
2077 
2078 	mutex_lock(&regulator_list_mutex);
2079 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2080 	mutex_unlock(&regulator_list_mutex);
2081 
2082 	if (ret != 0) {
2083 		regulator = ERR_PTR(-EPROBE_DEFER);
2084 		put_device(&rdev->dev);
2085 		return regulator;
2086 	}
2087 
2088 	ret = regulator_resolve_supply(rdev);
2089 	if (ret < 0) {
2090 		regulator = ERR_PTR(ret);
2091 		put_device(&rdev->dev);
2092 		return regulator;
2093 	}
2094 
2095 	if (!try_module_get(rdev->owner)) {
2096 		regulator = ERR_PTR(-EPROBE_DEFER);
2097 		put_device(&rdev->dev);
2098 		return regulator;
2099 	}
2100 
2101 	regulator_lock(rdev);
2102 	regulator = create_regulator(rdev, dev, id);
2103 	regulator_unlock(rdev);
2104 	if (regulator == NULL) {
2105 		regulator = ERR_PTR(-ENOMEM);
2106 		module_put(rdev->owner);
2107 		put_device(&rdev->dev);
2108 		return regulator;
2109 	}
2110 
2111 	rdev->open_count++;
2112 	if (get_type == EXCLUSIVE_GET) {
2113 		rdev->exclusive = 1;
2114 
2115 		ret = _regulator_is_enabled(rdev);
2116 		if (ret > 0) {
2117 			rdev->use_count = 1;
2118 			regulator->enable_count = 1;
2119 		} else {
2120 			rdev->use_count = 0;
2121 			regulator->enable_count = 0;
2122 		}
2123 	}
2124 
2125 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2126 	if (!IS_ERR_OR_NULL(link))
2127 		regulator->device_link = true;
2128 
2129 	return regulator;
2130 }
2131 
2132 /**
2133  * regulator_get - lookup and obtain a reference to a regulator.
2134  * @dev: device for regulator "consumer"
2135  * @id: Supply name or regulator ID.
2136  *
2137  * Returns a struct regulator corresponding to the regulator producer,
2138  * or IS_ERR() condition containing errno.
2139  *
2140  * Use of supply names configured via regulator_set_device_supply() is
2141  * strongly encouraged.  It is recommended that the supply name used
2142  * should match the name used for the supply and/or the relevant
2143  * device pins in the datasheet.
2144  */
regulator_get(struct device * dev,const char * id)2145 struct regulator *regulator_get(struct device *dev, const char *id)
2146 {
2147 	return _regulator_get(dev, id, NORMAL_GET);
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_get);
2150 
2151 /**
2152  * regulator_get_exclusive - obtain exclusive access to a regulator.
2153  * @dev: device for regulator "consumer"
2154  * @id: Supply name or regulator ID.
2155  *
2156  * Returns a struct regulator corresponding to the regulator producer,
2157  * or IS_ERR() condition containing errno.  Other consumers will be
2158  * unable to obtain this regulator while this reference is held and the
2159  * use count for the regulator will be initialised to reflect the current
2160  * state of the regulator.
2161  *
2162  * This is intended for use by consumers which cannot tolerate shared
2163  * use of the regulator such as those which need to force the
2164  * regulator off for correct operation of the hardware they are
2165  * controlling.
2166  *
2167  * Use of supply names configured via regulator_set_device_supply() is
2168  * strongly encouraged.  It is recommended that the supply name used
2169  * should match the name used for the supply and/or the relevant
2170  * device pins in the datasheet.
2171  */
regulator_get_exclusive(struct device * dev,const char * id)2172 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2173 {
2174 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2175 }
2176 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2177 
2178 /**
2179  * regulator_get_optional - obtain optional access to a regulator.
2180  * @dev: device for regulator "consumer"
2181  * @id: Supply name or regulator ID.
2182  *
2183  * Returns a struct regulator corresponding to the regulator producer,
2184  * or IS_ERR() condition containing errno.
2185  *
2186  * This is intended for use by consumers for devices which can have
2187  * some supplies unconnected in normal use, such as some MMC devices.
2188  * It can allow the regulator core to provide stub supplies for other
2189  * supplies requested using normal regulator_get() calls without
2190  * disrupting the operation of drivers that can handle absent
2191  * supplies.
2192  *
2193  * Use of supply names configured via regulator_set_device_supply() is
2194  * strongly encouraged.  It is recommended that the supply name used
2195  * should match the name used for the supply and/or the relevant
2196  * device pins in the datasheet.
2197  */
regulator_get_optional(struct device * dev,const char * id)2198 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2199 {
2200 	return _regulator_get(dev, id, OPTIONAL_GET);
2201 }
2202 EXPORT_SYMBOL_GPL(regulator_get_optional);
2203 
destroy_regulator(struct regulator * regulator)2204 static void destroy_regulator(struct regulator *regulator)
2205 {
2206 	struct regulator_dev *rdev = regulator->rdev;
2207 
2208 	debugfs_remove_recursive(regulator->debugfs);
2209 
2210 	if (regulator->dev) {
2211 		if (regulator->device_link)
2212 			device_link_remove(regulator->dev, &rdev->dev);
2213 
2214 		/* remove any sysfs entries */
2215 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2216 	}
2217 
2218 	regulator_lock(rdev);
2219 	list_del(&regulator->list);
2220 
2221 	rdev->open_count--;
2222 	rdev->exclusive = 0;
2223 	regulator_unlock(rdev);
2224 
2225 	kfree_const(regulator->supply_name);
2226 	kfree(regulator);
2227 }
2228 
2229 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2230 static void _regulator_put(struct regulator *regulator)
2231 {
2232 	struct regulator_dev *rdev;
2233 
2234 	if (IS_ERR_OR_NULL(regulator))
2235 		return;
2236 
2237 	lockdep_assert_held_once(&regulator_list_mutex);
2238 
2239 	/* Docs say you must disable before calling regulator_put() */
2240 	WARN_ON(regulator->enable_count);
2241 
2242 	rdev = regulator->rdev;
2243 
2244 	destroy_regulator(regulator);
2245 
2246 	module_put(rdev->owner);
2247 	put_device(&rdev->dev);
2248 }
2249 
2250 /**
2251  * regulator_put - "free" the regulator source
2252  * @regulator: regulator source
2253  *
2254  * Note: drivers must ensure that all regulator_enable calls made on this
2255  * regulator source are balanced by regulator_disable calls prior to calling
2256  * this function.
2257  */
regulator_put(struct regulator * regulator)2258 void regulator_put(struct regulator *regulator)
2259 {
2260 	mutex_lock(&regulator_list_mutex);
2261 	_regulator_put(regulator);
2262 	mutex_unlock(&regulator_list_mutex);
2263 }
2264 EXPORT_SYMBOL_GPL(regulator_put);
2265 
2266 /**
2267  * regulator_register_supply_alias - Provide device alias for supply lookup
2268  *
2269  * @dev: device that will be given as the regulator "consumer"
2270  * @id: Supply name or regulator ID
2271  * @alias_dev: device that should be used to lookup the supply
2272  * @alias_id: Supply name or regulator ID that should be used to lookup the
2273  * supply
2274  *
2275  * All lookups for id on dev will instead be conducted for alias_id on
2276  * alias_dev.
2277  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2278 int regulator_register_supply_alias(struct device *dev, const char *id,
2279 				    struct device *alias_dev,
2280 				    const char *alias_id)
2281 {
2282 	struct regulator_supply_alias *map;
2283 
2284 	map = regulator_find_supply_alias(dev, id);
2285 	if (map)
2286 		return -EEXIST;
2287 
2288 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2289 	if (!map)
2290 		return -ENOMEM;
2291 
2292 	map->src_dev = dev;
2293 	map->src_supply = id;
2294 	map->alias_dev = alias_dev;
2295 	map->alias_supply = alias_id;
2296 
2297 	list_add(&map->list, &regulator_supply_alias_list);
2298 
2299 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2300 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2301 
2302 	return 0;
2303 }
2304 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2305 
2306 /**
2307  * regulator_unregister_supply_alias - Remove device alias
2308  *
2309  * @dev: device that will be given as the regulator "consumer"
2310  * @id: Supply name or regulator ID
2311  *
2312  * Remove a lookup alias if one exists for id on dev.
2313  */
regulator_unregister_supply_alias(struct device * dev,const char * id)2314 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2315 {
2316 	struct regulator_supply_alias *map;
2317 
2318 	map = regulator_find_supply_alias(dev, id);
2319 	if (map) {
2320 		list_del(&map->list);
2321 		kfree(map);
2322 	}
2323 }
2324 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2325 
2326 /**
2327  * regulator_bulk_register_supply_alias - register multiple aliases
2328  *
2329  * @dev: device that will be given as the regulator "consumer"
2330  * @id: List of supply names or regulator IDs
2331  * @alias_dev: device that should be used to lookup the supply
2332  * @alias_id: List of supply names or regulator IDs that should be used to
2333  * lookup the supply
2334  * @num_id: Number of aliases to register
2335  *
2336  * @return 0 on success, an errno on failure.
2337  *
2338  * This helper function allows drivers to register several supply
2339  * aliases in one operation.  If any of the aliases cannot be
2340  * registered any aliases that were registered will be removed
2341  * before returning to the caller.
2342  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2343 int regulator_bulk_register_supply_alias(struct device *dev,
2344 					 const char *const *id,
2345 					 struct device *alias_dev,
2346 					 const char *const *alias_id,
2347 					 int num_id)
2348 {
2349 	int i;
2350 	int ret;
2351 
2352 	for (i = 0; i < num_id; ++i) {
2353 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2354 						      alias_id[i]);
2355 		if (ret < 0)
2356 			goto err;
2357 	}
2358 
2359 	return 0;
2360 
2361 err:
2362 	dev_err(dev,
2363 		"Failed to create supply alias %s,%s -> %s,%s\n",
2364 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2365 
2366 	while (--i >= 0)
2367 		regulator_unregister_supply_alias(dev, id[i]);
2368 
2369 	return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2372 
2373 /**
2374  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2375  *
2376  * @dev: device that will be given as the regulator "consumer"
2377  * @id: List of supply names or regulator IDs
2378  * @num_id: Number of aliases to unregister
2379  *
2380  * This helper function allows drivers to unregister several supply
2381  * aliases in one operation.
2382  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2383 void regulator_bulk_unregister_supply_alias(struct device *dev,
2384 					    const char *const *id,
2385 					    int num_id)
2386 {
2387 	int i;
2388 
2389 	for (i = 0; i < num_id; ++i)
2390 		regulator_unregister_supply_alias(dev, id[i]);
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2393 
2394 
2395 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2396 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2397 				const struct regulator_config *config)
2398 {
2399 	struct regulator_enable_gpio *pin, *new_pin;
2400 	struct gpio_desc *gpiod;
2401 
2402 	gpiod = config->ena_gpiod;
2403 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2404 
2405 	mutex_lock(&regulator_list_mutex);
2406 
2407 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2408 		if (pin->gpiod == gpiod) {
2409 			rdev_dbg(rdev, "GPIO is already used\n");
2410 			goto update_ena_gpio_to_rdev;
2411 		}
2412 	}
2413 
2414 	if (new_pin == NULL) {
2415 		mutex_unlock(&regulator_list_mutex);
2416 		return -ENOMEM;
2417 	}
2418 
2419 	pin = new_pin;
2420 	new_pin = NULL;
2421 
2422 	pin->gpiod = gpiod;
2423 	list_add(&pin->list, &regulator_ena_gpio_list);
2424 
2425 update_ena_gpio_to_rdev:
2426 	pin->request_count++;
2427 	rdev->ena_pin = pin;
2428 
2429 	mutex_unlock(&regulator_list_mutex);
2430 	kfree(new_pin);
2431 
2432 	return 0;
2433 }
2434 
regulator_ena_gpio_free(struct regulator_dev * rdev)2435 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2436 {
2437 	struct regulator_enable_gpio *pin, *n;
2438 
2439 	if (!rdev->ena_pin)
2440 		return;
2441 
2442 	/* Free the GPIO only in case of no use */
2443 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2444 		if (pin != rdev->ena_pin)
2445 			continue;
2446 
2447 		if (--pin->request_count)
2448 			break;
2449 
2450 		gpiod_put(pin->gpiod);
2451 		list_del(&pin->list);
2452 		kfree(pin);
2453 		break;
2454 	}
2455 
2456 	rdev->ena_pin = NULL;
2457 }
2458 
2459 /**
2460  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2461  * @rdev: regulator_dev structure
2462  * @enable: enable GPIO at initial use?
2463  *
2464  * GPIO is enabled in case of initial use. (enable_count is 0)
2465  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2466  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2467 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2468 {
2469 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2470 
2471 	if (!pin)
2472 		return -EINVAL;
2473 
2474 	if (enable) {
2475 		/* Enable GPIO at initial use */
2476 		if (pin->enable_count == 0)
2477 			gpiod_set_value_cansleep(pin->gpiod, 1);
2478 
2479 		pin->enable_count++;
2480 	} else {
2481 		if (pin->enable_count > 1) {
2482 			pin->enable_count--;
2483 			return 0;
2484 		}
2485 
2486 		/* Disable GPIO if not used */
2487 		if (pin->enable_count <= 1) {
2488 			gpiod_set_value_cansleep(pin->gpiod, 0);
2489 			pin->enable_count = 0;
2490 		}
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 /**
2497  * _regulator_enable_delay - a delay helper function
2498  * @delay: time to delay in microseconds
2499  *
2500  * Delay for the requested amount of time as per the guidelines in:
2501  *
2502  *     Documentation/timers/timers-howto.rst
2503  *
2504  * The assumption here is that regulators will never be enabled in
2505  * atomic context and therefore sleeping functions can be used.
2506  */
_regulator_enable_delay(unsigned int delay)2507 static void _regulator_enable_delay(unsigned int delay)
2508 {
2509 	unsigned int ms = delay / 1000;
2510 	unsigned int us = delay % 1000;
2511 
2512 	if (ms > 0) {
2513 		/*
2514 		 * For small enough values, handle super-millisecond
2515 		 * delays in the usleep_range() call below.
2516 		 */
2517 		if (ms < 20)
2518 			us += ms * 1000;
2519 		else
2520 			msleep(ms);
2521 	}
2522 
2523 	/*
2524 	 * Give the scheduler some room to coalesce with any other
2525 	 * wakeup sources. For delays shorter than 10 us, don't even
2526 	 * bother setting up high-resolution timers and just busy-
2527 	 * loop.
2528 	 */
2529 	if (us >= 10)
2530 		usleep_range(us, us + 100);
2531 	else
2532 		udelay(us);
2533 }
2534 
2535 /**
2536  * _regulator_check_status_enabled
2537  *
2538  * A helper function to check if the regulator status can be interpreted
2539  * as 'regulator is enabled'.
2540  * @rdev: the regulator device to check
2541  *
2542  * Return:
2543  * * 1			- if status shows regulator is in enabled state
2544  * * 0			- if not enabled state
2545  * * Error Value	- as received from ops->get_status()
2546  */
_regulator_check_status_enabled(struct regulator_dev * rdev)2547 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2548 {
2549 	int ret = rdev->desc->ops->get_status(rdev);
2550 
2551 	if (ret < 0) {
2552 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2553 		return ret;
2554 	}
2555 
2556 	switch (ret) {
2557 	case REGULATOR_STATUS_OFF:
2558 	case REGULATOR_STATUS_ERROR:
2559 	case REGULATOR_STATUS_UNDEFINED:
2560 		return 0;
2561 	default:
2562 		return 1;
2563 	}
2564 }
2565 
_regulator_do_enable(struct regulator_dev * rdev)2566 static int _regulator_do_enable(struct regulator_dev *rdev)
2567 {
2568 	int ret, delay;
2569 
2570 	/* Query before enabling in case configuration dependent.  */
2571 	ret = _regulator_get_enable_time(rdev);
2572 	if (ret >= 0) {
2573 		delay = ret;
2574 	} else {
2575 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2576 		delay = 0;
2577 	}
2578 
2579 	trace_regulator_enable(rdev_get_name(rdev));
2580 
2581 	if (rdev->desc->off_on_delay) {
2582 		/* if needed, keep a distance of off_on_delay from last time
2583 		 * this regulator was disabled.
2584 		 */
2585 		unsigned long start_jiffy = jiffies;
2586 		unsigned long intended, max_delay, remaining;
2587 
2588 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2589 		intended = rdev->last_off_jiffy + max_delay;
2590 
2591 		if (time_before(start_jiffy, intended)) {
2592 			/* calc remaining jiffies to deal with one-time
2593 			 * timer wrapping.
2594 			 * in case of multiple timer wrapping, either it can be
2595 			 * detected by out-of-range remaining, or it cannot be
2596 			 * detected and we get a penalty of
2597 			 * _regulator_enable_delay().
2598 			 */
2599 			remaining = intended - start_jiffy;
2600 			if (remaining <= max_delay)
2601 				_regulator_enable_delay(
2602 						jiffies_to_usecs(remaining));
2603 		}
2604 	}
2605 
2606 	if (rdev->ena_pin) {
2607 		if (!rdev->ena_gpio_state) {
2608 			ret = regulator_ena_gpio_ctrl(rdev, true);
2609 			if (ret < 0)
2610 				return ret;
2611 			rdev->ena_gpio_state = 1;
2612 		}
2613 	} else if (rdev->desc->ops->enable) {
2614 		ret = rdev->desc->ops->enable(rdev);
2615 		if (ret < 0)
2616 			return ret;
2617 	} else {
2618 		return -EINVAL;
2619 	}
2620 
2621 	/* Allow the regulator to ramp; it would be useful to extend
2622 	 * this for bulk operations so that the regulators can ramp
2623 	 * together.  */
2624 	trace_regulator_enable_delay(rdev_get_name(rdev));
2625 
2626 	/* If poll_enabled_time is set, poll upto the delay calculated
2627 	 * above, delaying poll_enabled_time uS to check if the regulator
2628 	 * actually got enabled.
2629 	 * If the regulator isn't enabled after enable_delay has
2630 	 * expired, return -ETIMEDOUT.
2631 	 */
2632 	if (rdev->desc->poll_enabled_time) {
2633 		int time_remaining = delay;
2634 
2635 		while (time_remaining > 0) {
2636 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2637 
2638 			if (rdev->desc->ops->get_status) {
2639 				ret = _regulator_check_status_enabled(rdev);
2640 				if (ret < 0)
2641 					return ret;
2642 				else if (ret)
2643 					break;
2644 			} else if (rdev->desc->ops->is_enabled(rdev))
2645 				break;
2646 
2647 			time_remaining -= rdev->desc->poll_enabled_time;
2648 		}
2649 
2650 		if (time_remaining <= 0) {
2651 			rdev_err(rdev, "Enabled check timed out\n");
2652 			return -ETIMEDOUT;
2653 		}
2654 	} else {
2655 		_regulator_enable_delay(delay);
2656 	}
2657 
2658 	trace_regulator_enable_complete(rdev_get_name(rdev));
2659 
2660 	return 0;
2661 }
2662 
2663 /**
2664  * _regulator_handle_consumer_enable - handle that a consumer enabled
2665  * @regulator: regulator source
2666  *
2667  * Some things on a regulator consumer (like the contribution towards total
2668  * load on the regulator) only have an effect when the consumer wants the
2669  * regulator enabled.  Explained in example with two consumers of the same
2670  * regulator:
2671  *   consumer A: set_load(100);       => total load = 0
2672  *   consumer A: regulator_enable();  => total load = 100
2673  *   consumer B: set_load(1000);      => total load = 100
2674  *   consumer B: regulator_enable();  => total load = 1100
2675  *   consumer A: regulator_disable(); => total_load = 1000
2676  *
2677  * This function (together with _regulator_handle_consumer_disable) is
2678  * responsible for keeping track of the refcount for a given regulator consumer
2679  * and applying / unapplying these things.
2680  *
2681  * Returns 0 upon no error; -error upon error.
2682  */
_regulator_handle_consumer_enable(struct regulator * regulator)2683 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2684 {
2685 	int ret;
2686 	struct regulator_dev *rdev = regulator->rdev;
2687 
2688 	lockdep_assert_held_once(&rdev->mutex.base);
2689 
2690 	regulator->enable_count++;
2691 	if (regulator->uA_load && regulator->enable_count == 1) {
2692 		ret = drms_uA_update(rdev);
2693 		if (ret)
2694 			regulator->enable_count--;
2695 		return ret;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  * _regulator_handle_consumer_disable - handle that a consumer disabled
2703  * @regulator: regulator source
2704  *
2705  * The opposite of _regulator_handle_consumer_enable().
2706  *
2707  * Returns 0 upon no error; -error upon error.
2708  */
_regulator_handle_consumer_disable(struct regulator * regulator)2709 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2710 {
2711 	struct regulator_dev *rdev = regulator->rdev;
2712 
2713 	lockdep_assert_held_once(&rdev->mutex.base);
2714 
2715 	if (!regulator->enable_count) {
2716 		rdev_err(rdev, "Underflow of regulator enable count\n");
2717 		return -EINVAL;
2718 	}
2719 
2720 	regulator->enable_count--;
2721 	if (regulator->uA_load && regulator->enable_count == 0)
2722 		return drms_uA_update(rdev);
2723 
2724 	return 0;
2725 }
2726 
2727 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2728 static int _regulator_enable(struct regulator *regulator)
2729 {
2730 	struct regulator_dev *rdev = regulator->rdev;
2731 	int ret;
2732 
2733 	lockdep_assert_held_once(&rdev->mutex.base);
2734 
2735 	if (rdev->use_count == 0 && rdev->supply) {
2736 		ret = _regulator_enable(rdev->supply);
2737 		if (ret < 0)
2738 			return ret;
2739 	}
2740 
2741 	/* balance only if there are regulators coupled */
2742 	if (rdev->coupling_desc.n_coupled > 1) {
2743 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2744 		if (ret < 0)
2745 			goto err_disable_supply;
2746 	}
2747 
2748 	ret = _regulator_handle_consumer_enable(regulator);
2749 	if (ret < 0)
2750 		goto err_disable_supply;
2751 
2752 	if (rdev->use_count == 0) {
2753 		/* The regulator may on if it's not switchable or left on */
2754 		ret = _regulator_is_enabled(rdev);
2755 		if (ret == -EINVAL || ret == 0) {
2756 			if (!regulator_ops_is_valid(rdev,
2757 					REGULATOR_CHANGE_STATUS)) {
2758 				ret = -EPERM;
2759 				goto err_consumer_disable;
2760 			}
2761 
2762 			ret = _regulator_do_enable(rdev);
2763 			if (ret < 0)
2764 				goto err_consumer_disable;
2765 
2766 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2767 					     NULL);
2768 		} else if (ret < 0) {
2769 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2770 			goto err_consumer_disable;
2771 		}
2772 		/* Fallthrough on positive return values - already enabled */
2773 	}
2774 
2775 	rdev->use_count++;
2776 
2777 	return 0;
2778 
2779 err_consumer_disable:
2780 	_regulator_handle_consumer_disable(regulator);
2781 
2782 err_disable_supply:
2783 	if (rdev->use_count == 0 && rdev->supply)
2784 		_regulator_disable(rdev->supply);
2785 
2786 	return ret;
2787 }
2788 
2789 /**
2790  * regulator_enable - enable regulator output
2791  * @regulator: regulator source
2792  *
2793  * Request that the regulator be enabled with the regulator output at
2794  * the predefined voltage or current value.  Calls to regulator_enable()
2795  * must be balanced with calls to regulator_disable().
2796  *
2797  * NOTE: the output value can be set by other drivers, boot loader or may be
2798  * hardwired in the regulator.
2799  */
regulator_enable(struct regulator * regulator)2800 int regulator_enable(struct regulator *regulator)
2801 {
2802 	struct regulator_dev *rdev = regulator->rdev;
2803 	struct ww_acquire_ctx ww_ctx;
2804 	int ret;
2805 
2806 	regulator_lock_dependent(rdev, &ww_ctx);
2807 	ret = _regulator_enable(regulator);
2808 	regulator_unlock_dependent(rdev, &ww_ctx);
2809 
2810 	return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(regulator_enable);
2813 
_regulator_do_disable(struct regulator_dev * rdev)2814 static int _regulator_do_disable(struct regulator_dev *rdev)
2815 {
2816 	int ret;
2817 
2818 	trace_regulator_disable(rdev_get_name(rdev));
2819 
2820 	if (rdev->ena_pin) {
2821 		if (rdev->ena_gpio_state) {
2822 			ret = regulator_ena_gpio_ctrl(rdev, false);
2823 			if (ret < 0)
2824 				return ret;
2825 			rdev->ena_gpio_state = 0;
2826 		}
2827 
2828 	} else if (rdev->desc->ops->disable) {
2829 		ret = rdev->desc->ops->disable(rdev);
2830 		if (ret != 0)
2831 			return ret;
2832 	}
2833 
2834 	/* cares about last_off_jiffy only if off_on_delay is required by
2835 	 * device.
2836 	 */
2837 	if (rdev->desc->off_on_delay)
2838 		rdev->last_off_jiffy = jiffies;
2839 
2840 	trace_regulator_disable_complete(rdev_get_name(rdev));
2841 
2842 	return 0;
2843 }
2844 
2845 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2846 static int _regulator_disable(struct regulator *regulator)
2847 {
2848 	struct regulator_dev *rdev = regulator->rdev;
2849 	int ret = 0;
2850 
2851 	lockdep_assert_held_once(&rdev->mutex.base);
2852 
2853 	if (WARN(rdev->use_count <= 0,
2854 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2855 		return -EIO;
2856 
2857 	/* are we the last user and permitted to disable ? */
2858 	if (rdev->use_count == 1 &&
2859 	    (rdev->constraints && !rdev->constraints->always_on)) {
2860 
2861 		/* we are last user */
2862 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2863 			ret = _notifier_call_chain(rdev,
2864 						   REGULATOR_EVENT_PRE_DISABLE,
2865 						   NULL);
2866 			if (ret & NOTIFY_STOP_MASK)
2867 				return -EINVAL;
2868 
2869 			ret = _regulator_do_disable(rdev);
2870 			if (ret < 0) {
2871 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2872 				_notifier_call_chain(rdev,
2873 						REGULATOR_EVENT_ABORT_DISABLE,
2874 						NULL);
2875 				return ret;
2876 			}
2877 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2878 					NULL);
2879 		}
2880 
2881 		rdev->use_count = 0;
2882 	} else if (rdev->use_count > 1) {
2883 		rdev->use_count--;
2884 	}
2885 
2886 	if (ret == 0)
2887 		ret = _regulator_handle_consumer_disable(regulator);
2888 
2889 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2890 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2891 
2892 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2893 		ret = _regulator_disable(rdev->supply);
2894 
2895 	return ret;
2896 }
2897 
2898 /**
2899  * regulator_disable - disable regulator output
2900  * @regulator: regulator source
2901  *
2902  * Disable the regulator output voltage or current.  Calls to
2903  * regulator_enable() must be balanced with calls to
2904  * regulator_disable().
2905  *
2906  * NOTE: this will only disable the regulator output if no other consumer
2907  * devices have it enabled, the regulator device supports disabling and
2908  * machine constraints permit this operation.
2909  */
regulator_disable(struct regulator * regulator)2910 int regulator_disable(struct regulator *regulator)
2911 {
2912 	struct regulator_dev *rdev = regulator->rdev;
2913 	struct ww_acquire_ctx ww_ctx;
2914 	int ret;
2915 
2916 	regulator_lock_dependent(rdev, &ww_ctx);
2917 	ret = _regulator_disable(regulator);
2918 	regulator_unlock_dependent(rdev, &ww_ctx);
2919 
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL_GPL(regulator_disable);
2923 
2924 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2925 static int _regulator_force_disable(struct regulator_dev *rdev)
2926 {
2927 	int ret = 0;
2928 
2929 	lockdep_assert_held_once(&rdev->mutex.base);
2930 
2931 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2932 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2933 	if (ret & NOTIFY_STOP_MASK)
2934 		return -EINVAL;
2935 
2936 	ret = _regulator_do_disable(rdev);
2937 	if (ret < 0) {
2938 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2939 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2940 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2941 		return ret;
2942 	}
2943 
2944 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2945 			REGULATOR_EVENT_DISABLE, NULL);
2946 
2947 	return 0;
2948 }
2949 
2950 /**
2951  * regulator_force_disable - force disable regulator output
2952  * @regulator: regulator source
2953  *
2954  * Forcibly disable the regulator output voltage or current.
2955  * NOTE: this *will* disable the regulator output even if other consumer
2956  * devices have it enabled. This should be used for situations when device
2957  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2958  */
regulator_force_disable(struct regulator * regulator)2959 int regulator_force_disable(struct regulator *regulator)
2960 {
2961 	struct regulator_dev *rdev = regulator->rdev;
2962 	struct ww_acquire_ctx ww_ctx;
2963 	int ret;
2964 
2965 	regulator_lock_dependent(rdev, &ww_ctx);
2966 
2967 	ret = _regulator_force_disable(regulator->rdev);
2968 
2969 	if (rdev->coupling_desc.n_coupled > 1)
2970 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2971 
2972 	if (regulator->uA_load) {
2973 		regulator->uA_load = 0;
2974 		ret = drms_uA_update(rdev);
2975 	}
2976 
2977 	if (rdev->use_count != 0 && rdev->supply)
2978 		_regulator_disable(rdev->supply);
2979 
2980 	regulator_unlock_dependent(rdev, &ww_ctx);
2981 
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_force_disable);
2985 
regulator_disable_work(struct work_struct * work)2986 static void regulator_disable_work(struct work_struct *work)
2987 {
2988 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2989 						  disable_work.work);
2990 	struct ww_acquire_ctx ww_ctx;
2991 	int count, i, ret;
2992 	struct regulator *regulator;
2993 	int total_count = 0;
2994 
2995 	regulator_lock_dependent(rdev, &ww_ctx);
2996 
2997 	/*
2998 	 * Workqueue functions queue the new work instance while the previous
2999 	 * work instance is being processed. Cancel the queued work instance
3000 	 * as the work instance under processing does the job of the queued
3001 	 * work instance.
3002 	 */
3003 	cancel_delayed_work(&rdev->disable_work);
3004 
3005 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3006 		count = regulator->deferred_disables;
3007 
3008 		if (!count)
3009 			continue;
3010 
3011 		total_count += count;
3012 		regulator->deferred_disables = 0;
3013 
3014 		for (i = 0; i < count; i++) {
3015 			ret = _regulator_disable(regulator);
3016 			if (ret != 0)
3017 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3018 					 ERR_PTR(ret));
3019 		}
3020 	}
3021 	WARN_ON(!total_count);
3022 
3023 	if (rdev->coupling_desc.n_coupled > 1)
3024 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3025 
3026 	regulator_unlock_dependent(rdev, &ww_ctx);
3027 }
3028 
3029 /**
3030  * regulator_disable_deferred - disable regulator output with delay
3031  * @regulator: regulator source
3032  * @ms: milliseconds until the regulator is disabled
3033  *
3034  * Execute regulator_disable() on the regulator after a delay.  This
3035  * is intended for use with devices that require some time to quiesce.
3036  *
3037  * NOTE: this will only disable the regulator output if no other consumer
3038  * devices have it enabled, the regulator device supports disabling and
3039  * machine constraints permit this operation.
3040  */
regulator_disable_deferred(struct regulator * regulator,int ms)3041 int regulator_disable_deferred(struct regulator *regulator, int ms)
3042 {
3043 	struct regulator_dev *rdev = regulator->rdev;
3044 
3045 	if (!ms)
3046 		return regulator_disable(regulator);
3047 
3048 	regulator_lock(rdev);
3049 	regulator->deferred_disables++;
3050 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3051 			 msecs_to_jiffies(ms));
3052 	regulator_unlock(rdev);
3053 
3054 	return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3057 
_regulator_is_enabled(struct regulator_dev * rdev)3058 static int _regulator_is_enabled(struct regulator_dev *rdev)
3059 {
3060 	/* A GPIO control always takes precedence */
3061 	if (rdev->ena_pin)
3062 		return rdev->ena_gpio_state;
3063 
3064 	/* If we don't know then assume that the regulator is always on */
3065 	if (!rdev->desc->ops->is_enabled)
3066 		return 1;
3067 
3068 	return rdev->desc->ops->is_enabled(rdev);
3069 }
3070 
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3071 static int _regulator_list_voltage(struct regulator_dev *rdev,
3072 				   unsigned selector, int lock)
3073 {
3074 	const struct regulator_ops *ops = rdev->desc->ops;
3075 	int ret;
3076 
3077 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3078 		return rdev->desc->fixed_uV;
3079 
3080 	if (ops->list_voltage) {
3081 		if (selector >= rdev->desc->n_voltages)
3082 			return -EINVAL;
3083 		if (lock)
3084 			regulator_lock(rdev);
3085 		ret = ops->list_voltage(rdev, selector);
3086 		if (lock)
3087 			regulator_unlock(rdev);
3088 	} else if (rdev->is_switch && rdev->supply) {
3089 		ret = _regulator_list_voltage(rdev->supply->rdev,
3090 					      selector, lock);
3091 	} else {
3092 		return -EINVAL;
3093 	}
3094 
3095 	if (ret > 0) {
3096 		if (ret < rdev->constraints->min_uV)
3097 			ret = 0;
3098 		else if (ret > rdev->constraints->max_uV)
3099 			ret = 0;
3100 	}
3101 
3102 	return ret;
3103 }
3104 
3105 /**
3106  * regulator_is_enabled - is the regulator output enabled
3107  * @regulator: regulator source
3108  *
3109  * Returns positive if the regulator driver backing the source/client
3110  * has requested that the device be enabled, zero if it hasn't, else a
3111  * negative errno code.
3112  *
3113  * Note that the device backing this regulator handle can have multiple
3114  * users, so it might be enabled even if regulator_enable() was never
3115  * called for this particular source.
3116  */
regulator_is_enabled(struct regulator * regulator)3117 int regulator_is_enabled(struct regulator *regulator)
3118 {
3119 	int ret;
3120 
3121 	if (regulator->always_on)
3122 		return 1;
3123 
3124 	regulator_lock(regulator->rdev);
3125 	ret = _regulator_is_enabled(regulator->rdev);
3126 	regulator_unlock(regulator->rdev);
3127 
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131 
3132 /**
3133  * regulator_count_voltages - count regulator_list_voltage() selectors
3134  * @regulator: regulator source
3135  *
3136  * Returns number of selectors, or negative errno.  Selectors are
3137  * numbered starting at zero, and typically correspond to bitfields
3138  * in hardware registers.
3139  */
regulator_count_voltages(struct regulator * regulator)3140 int regulator_count_voltages(struct regulator *regulator)
3141 {
3142 	struct regulator_dev	*rdev = regulator->rdev;
3143 
3144 	if (rdev->desc->n_voltages)
3145 		return rdev->desc->n_voltages;
3146 
3147 	if (!rdev->is_switch || !rdev->supply)
3148 		return -EINVAL;
3149 
3150 	return regulator_count_voltages(rdev->supply);
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153 
3154 /**
3155  * regulator_list_voltage - enumerate supported voltages
3156  * @regulator: regulator source
3157  * @selector: identify voltage to list
3158  * Context: can sleep
3159  *
3160  * Returns a voltage that can be passed to @regulator_set_voltage(),
3161  * zero if this selector code can't be used on this system, or a
3162  * negative errno.
3163  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3164 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165 {
3166 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3167 }
3168 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169 
3170 /**
3171  * regulator_get_regmap - get the regulator's register map
3172  * @regulator: regulator source
3173  *
3174  * Returns the register map for the given regulator, or an ERR_PTR value
3175  * if the regulator doesn't use regmap.
3176  */
regulator_get_regmap(struct regulator * regulator)3177 struct regmap *regulator_get_regmap(struct regulator *regulator)
3178 {
3179 	struct regmap *map = regulator->rdev->regmap;
3180 
3181 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3182 }
3183 
3184 /**
3185  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186  * @regulator: regulator source
3187  * @vsel_reg: voltage selector register, output parameter
3188  * @vsel_mask: mask for voltage selector bitfield, output parameter
3189  *
3190  * Returns the hardware register offset and bitmask used for setting the
3191  * regulator voltage. This might be useful when configuring voltage-scaling
3192  * hardware or firmware that can make I2C requests behind the kernel's back,
3193  * for example.
3194  *
3195  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196  * and 0 is returned, otherwise a negative errno is returned.
3197  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3198 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199 					 unsigned *vsel_reg,
3200 					 unsigned *vsel_mask)
3201 {
3202 	struct regulator_dev *rdev = regulator->rdev;
3203 	const struct regulator_ops *ops = rdev->desc->ops;
3204 
3205 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206 		return -EOPNOTSUPP;
3207 
3208 	*vsel_reg = rdev->desc->vsel_reg;
3209 	*vsel_mask = rdev->desc->vsel_mask;
3210 
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214 
3215 /**
3216  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217  * @regulator: regulator source
3218  * @selector: identify voltage to list
3219  *
3220  * Converts the selector to a hardware-specific voltage selector that can be
3221  * directly written to the regulator registers. The address of the voltage
3222  * register can be determined by calling @regulator_get_hardware_vsel_register.
3223  *
3224  * On error a negative errno is returned.
3225  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3226 int regulator_list_hardware_vsel(struct regulator *regulator,
3227 				 unsigned selector)
3228 {
3229 	struct regulator_dev *rdev = regulator->rdev;
3230 	const struct regulator_ops *ops = rdev->desc->ops;
3231 
3232 	if (selector >= rdev->desc->n_voltages)
3233 		return -EINVAL;
3234 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3235 		return -EOPNOTSUPP;
3236 
3237 	return selector;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3240 
3241 /**
3242  * regulator_get_linear_step - return the voltage step size between VSEL values
3243  * @regulator: regulator source
3244  *
3245  * Returns the voltage step size between VSEL values for linear
3246  * regulators, or return 0 if the regulator isn't a linear regulator.
3247  */
regulator_get_linear_step(struct regulator * regulator)3248 unsigned int regulator_get_linear_step(struct regulator *regulator)
3249 {
3250 	struct regulator_dev *rdev = regulator->rdev;
3251 
3252 	return rdev->desc->uV_step;
3253 }
3254 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3255 
3256 /**
3257  * regulator_is_supported_voltage - check if a voltage range can be supported
3258  *
3259  * @regulator: Regulator to check.
3260  * @min_uV: Minimum required voltage in uV.
3261  * @max_uV: Maximum required voltage in uV.
3262  *
3263  * Returns a boolean.
3264  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3265 int regulator_is_supported_voltage(struct regulator *regulator,
3266 				   int min_uV, int max_uV)
3267 {
3268 	struct regulator_dev *rdev = regulator->rdev;
3269 	int i, voltages, ret;
3270 
3271 	/* If we can't change voltage check the current voltage */
3272 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3273 		ret = regulator_get_voltage(regulator);
3274 		if (ret >= 0)
3275 			return min_uV <= ret && ret <= max_uV;
3276 		else
3277 			return ret;
3278 	}
3279 
3280 	/* Any voltage within constrains range is fine? */
3281 	if (rdev->desc->continuous_voltage_range)
3282 		return min_uV >= rdev->constraints->min_uV &&
3283 				max_uV <= rdev->constraints->max_uV;
3284 
3285 	ret = regulator_count_voltages(regulator);
3286 	if (ret < 0)
3287 		return 0;
3288 	voltages = ret;
3289 
3290 	for (i = 0; i < voltages; i++) {
3291 		ret = regulator_list_voltage(regulator, i);
3292 
3293 		if (ret >= min_uV && ret <= max_uV)
3294 			return 1;
3295 	}
3296 
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3300 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3301 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3302 				 int max_uV)
3303 {
3304 	const struct regulator_desc *desc = rdev->desc;
3305 
3306 	if (desc->ops->map_voltage)
3307 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3308 
3309 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3310 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3311 
3312 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3313 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3314 
3315 	if (desc->ops->list_voltage ==
3316 		regulator_list_voltage_pickable_linear_range)
3317 		return regulator_map_voltage_pickable_linear_range(rdev,
3318 							min_uV, max_uV);
3319 
3320 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3321 }
3322 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3323 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3324 				       int min_uV, int max_uV,
3325 				       unsigned *selector)
3326 {
3327 	struct pre_voltage_change_data data;
3328 	int ret;
3329 
3330 	data.old_uV = regulator_get_voltage_rdev(rdev);
3331 	data.min_uV = min_uV;
3332 	data.max_uV = max_uV;
3333 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3334 				   &data);
3335 	if (ret & NOTIFY_STOP_MASK)
3336 		return -EINVAL;
3337 
3338 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3339 	if (ret >= 0)
3340 		return ret;
3341 
3342 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3343 			     (void *)data.old_uV);
3344 
3345 	return ret;
3346 }
3347 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3348 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3349 					   int uV, unsigned selector)
3350 {
3351 	struct pre_voltage_change_data data;
3352 	int ret;
3353 
3354 	data.old_uV = regulator_get_voltage_rdev(rdev);
3355 	data.min_uV = uV;
3356 	data.max_uV = uV;
3357 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3358 				   &data);
3359 	if (ret & NOTIFY_STOP_MASK)
3360 		return -EINVAL;
3361 
3362 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3363 	if (ret >= 0)
3364 		return ret;
3365 
3366 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3367 			     (void *)data.old_uV);
3368 
3369 	return ret;
3370 }
3371 
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3372 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3373 					   int uV, int new_selector)
3374 {
3375 	const struct regulator_ops *ops = rdev->desc->ops;
3376 	int diff, old_sel, curr_sel, ret;
3377 
3378 	/* Stepping is only needed if the regulator is enabled. */
3379 	if (!_regulator_is_enabled(rdev))
3380 		goto final_set;
3381 
3382 	if (!ops->get_voltage_sel)
3383 		return -EINVAL;
3384 
3385 	old_sel = ops->get_voltage_sel(rdev);
3386 	if (old_sel < 0)
3387 		return old_sel;
3388 
3389 	diff = new_selector - old_sel;
3390 	if (diff == 0)
3391 		return 0; /* No change needed. */
3392 
3393 	if (diff > 0) {
3394 		/* Stepping up. */
3395 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3396 		     curr_sel < new_selector;
3397 		     curr_sel += rdev->desc->vsel_step) {
3398 			/*
3399 			 * Call the callback directly instead of using
3400 			 * _regulator_call_set_voltage_sel() as we don't
3401 			 * want to notify anyone yet. Same in the branch
3402 			 * below.
3403 			 */
3404 			ret = ops->set_voltage_sel(rdev, curr_sel);
3405 			if (ret)
3406 				goto try_revert;
3407 		}
3408 	} else {
3409 		/* Stepping down. */
3410 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3411 		     curr_sel > new_selector;
3412 		     curr_sel -= rdev->desc->vsel_step) {
3413 			ret = ops->set_voltage_sel(rdev, curr_sel);
3414 			if (ret)
3415 				goto try_revert;
3416 		}
3417 	}
3418 
3419 final_set:
3420 	/* The final selector will trigger the notifiers. */
3421 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3422 
3423 try_revert:
3424 	/*
3425 	 * At least try to return to the previous voltage if setting a new
3426 	 * one failed.
3427 	 */
3428 	(void)ops->set_voltage_sel(rdev, old_sel);
3429 	return ret;
3430 }
3431 
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3432 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3433 				       int old_uV, int new_uV)
3434 {
3435 	unsigned int ramp_delay = 0;
3436 
3437 	if (rdev->constraints->ramp_delay)
3438 		ramp_delay = rdev->constraints->ramp_delay;
3439 	else if (rdev->desc->ramp_delay)
3440 		ramp_delay = rdev->desc->ramp_delay;
3441 	else if (rdev->constraints->settling_time)
3442 		return rdev->constraints->settling_time;
3443 	else if (rdev->constraints->settling_time_up &&
3444 		 (new_uV > old_uV))
3445 		return rdev->constraints->settling_time_up;
3446 	else if (rdev->constraints->settling_time_down &&
3447 		 (new_uV < old_uV))
3448 		return rdev->constraints->settling_time_down;
3449 
3450 	if (ramp_delay == 0) {
3451 		rdev_dbg(rdev, "ramp_delay not set\n");
3452 		return 0;
3453 	}
3454 
3455 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3456 }
3457 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3458 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3459 				     int min_uV, int max_uV)
3460 {
3461 	int ret;
3462 	int delay = 0;
3463 	int best_val = 0;
3464 	unsigned int selector;
3465 	int old_selector = -1;
3466 	const struct regulator_ops *ops = rdev->desc->ops;
3467 	int old_uV = regulator_get_voltage_rdev(rdev);
3468 
3469 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3470 
3471 	min_uV += rdev->constraints->uV_offset;
3472 	max_uV += rdev->constraints->uV_offset;
3473 
3474 	/*
3475 	 * If we can't obtain the old selector there is not enough
3476 	 * info to call set_voltage_time_sel().
3477 	 */
3478 	if (_regulator_is_enabled(rdev) &&
3479 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3480 		old_selector = ops->get_voltage_sel(rdev);
3481 		if (old_selector < 0)
3482 			return old_selector;
3483 	}
3484 
3485 	if (ops->set_voltage) {
3486 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3487 						  &selector);
3488 
3489 		if (ret >= 0) {
3490 			if (ops->list_voltage)
3491 				best_val = ops->list_voltage(rdev,
3492 							     selector);
3493 			else
3494 				best_val = regulator_get_voltage_rdev(rdev);
3495 		}
3496 
3497 	} else if (ops->set_voltage_sel) {
3498 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3499 		if (ret >= 0) {
3500 			best_val = ops->list_voltage(rdev, ret);
3501 			if (min_uV <= best_val && max_uV >= best_val) {
3502 				selector = ret;
3503 				if (old_selector == selector)
3504 					ret = 0;
3505 				else if (rdev->desc->vsel_step)
3506 					ret = _regulator_set_voltage_sel_step(
3507 						rdev, best_val, selector);
3508 				else
3509 					ret = _regulator_call_set_voltage_sel(
3510 						rdev, best_val, selector);
3511 			} else {
3512 				ret = -EINVAL;
3513 			}
3514 		}
3515 	} else {
3516 		ret = -EINVAL;
3517 	}
3518 
3519 	if (ret)
3520 		goto out;
3521 
3522 	if (ops->set_voltage_time_sel) {
3523 		/*
3524 		 * Call set_voltage_time_sel if successfully obtained
3525 		 * old_selector
3526 		 */
3527 		if (old_selector >= 0 && old_selector != selector)
3528 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3529 							  selector);
3530 	} else {
3531 		if (old_uV != best_val) {
3532 			if (ops->set_voltage_time)
3533 				delay = ops->set_voltage_time(rdev, old_uV,
3534 							      best_val);
3535 			else
3536 				delay = _regulator_set_voltage_time(rdev,
3537 								    old_uV,
3538 								    best_val);
3539 		}
3540 	}
3541 
3542 	if (delay < 0) {
3543 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3544 		delay = 0;
3545 	}
3546 
3547 	/* Insert any necessary delays */
3548 	if (delay >= 1000) {
3549 		mdelay(delay / 1000);
3550 		udelay(delay % 1000);
3551 	} else if (delay) {
3552 		udelay(delay);
3553 	}
3554 
3555 	if (best_val >= 0) {
3556 		unsigned long data = best_val;
3557 
3558 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3559 				     (void *)data);
3560 	}
3561 
3562 out:
3563 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3564 
3565 	return ret;
3566 }
3567 
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3568 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3569 				  int min_uV, int max_uV, suspend_state_t state)
3570 {
3571 	struct regulator_state *rstate;
3572 	int uV, sel;
3573 
3574 	rstate = regulator_get_suspend_state(rdev, state);
3575 	if (rstate == NULL)
3576 		return -EINVAL;
3577 
3578 	if (min_uV < rstate->min_uV)
3579 		min_uV = rstate->min_uV;
3580 	if (max_uV > rstate->max_uV)
3581 		max_uV = rstate->max_uV;
3582 
3583 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3584 	if (sel < 0)
3585 		return sel;
3586 
3587 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3588 	if (uV >= min_uV && uV <= max_uV)
3589 		rstate->uV = uV;
3590 
3591 	return 0;
3592 }
3593 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3594 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3595 					  int min_uV, int max_uV,
3596 					  suspend_state_t state)
3597 {
3598 	struct regulator_dev *rdev = regulator->rdev;
3599 	struct regulator_voltage *voltage = &regulator->voltage[state];
3600 	int ret = 0;
3601 	int old_min_uV, old_max_uV;
3602 	int current_uV;
3603 
3604 	/* If we're setting the same range as last time the change
3605 	 * should be a noop (some cpufreq implementations use the same
3606 	 * voltage for multiple frequencies, for example).
3607 	 */
3608 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3609 		goto out;
3610 
3611 	/* If we're trying to set a range that overlaps the current voltage,
3612 	 * return successfully even though the regulator does not support
3613 	 * changing the voltage.
3614 	 */
3615 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3616 		current_uV = regulator_get_voltage_rdev(rdev);
3617 		if (min_uV <= current_uV && current_uV <= max_uV) {
3618 			voltage->min_uV = min_uV;
3619 			voltage->max_uV = max_uV;
3620 			goto out;
3621 		}
3622 	}
3623 
3624 	/* sanity check */
3625 	if (!rdev->desc->ops->set_voltage &&
3626 	    !rdev->desc->ops->set_voltage_sel) {
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	/* constraints check */
3632 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3633 	if (ret < 0)
3634 		goto out;
3635 
3636 	/* restore original values in case of error */
3637 	old_min_uV = voltage->min_uV;
3638 	old_max_uV = voltage->max_uV;
3639 	voltage->min_uV = min_uV;
3640 	voltage->max_uV = max_uV;
3641 
3642 	/* for not coupled regulators this will just set the voltage */
3643 	ret = regulator_balance_voltage(rdev, state);
3644 	if (ret < 0) {
3645 		voltage->min_uV = old_min_uV;
3646 		voltage->max_uV = old_max_uV;
3647 	}
3648 
3649 out:
3650 	return ret;
3651 }
3652 
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3653 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3654 			       int max_uV, suspend_state_t state)
3655 {
3656 	int best_supply_uV = 0;
3657 	int supply_change_uV = 0;
3658 	int ret;
3659 
3660 	if (rdev->supply &&
3661 	    regulator_ops_is_valid(rdev->supply->rdev,
3662 				   REGULATOR_CHANGE_VOLTAGE) &&
3663 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3664 					   rdev->desc->ops->get_voltage_sel))) {
3665 		int current_supply_uV;
3666 		int selector;
3667 
3668 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3669 		if (selector < 0) {
3670 			ret = selector;
3671 			goto out;
3672 		}
3673 
3674 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3675 		if (best_supply_uV < 0) {
3676 			ret = best_supply_uV;
3677 			goto out;
3678 		}
3679 
3680 		best_supply_uV += rdev->desc->min_dropout_uV;
3681 
3682 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3683 		if (current_supply_uV < 0) {
3684 			ret = current_supply_uV;
3685 			goto out;
3686 		}
3687 
3688 		supply_change_uV = best_supply_uV - current_supply_uV;
3689 	}
3690 
3691 	if (supply_change_uV > 0) {
3692 		ret = regulator_set_voltage_unlocked(rdev->supply,
3693 				best_supply_uV, INT_MAX, state);
3694 		if (ret) {
3695 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3696 				ERR_PTR(ret));
3697 			goto out;
3698 		}
3699 	}
3700 
3701 	if (state == PM_SUSPEND_ON)
3702 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3703 	else
3704 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3705 							max_uV, state);
3706 	if (ret < 0)
3707 		goto out;
3708 
3709 	if (supply_change_uV < 0) {
3710 		ret = regulator_set_voltage_unlocked(rdev->supply,
3711 				best_supply_uV, INT_MAX, state);
3712 		if (ret)
3713 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3714 				 ERR_PTR(ret));
3715 		/* No need to fail here */
3716 		ret = 0;
3717 	}
3718 
3719 out:
3720 	return ret;
3721 }
3722 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3723 
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3724 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3725 					int *current_uV, int *min_uV)
3726 {
3727 	struct regulation_constraints *constraints = rdev->constraints;
3728 
3729 	/* Limit voltage change only if necessary */
3730 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3731 		return 1;
3732 
3733 	if (*current_uV < 0) {
3734 		*current_uV = regulator_get_voltage_rdev(rdev);
3735 
3736 		if (*current_uV < 0)
3737 			return *current_uV;
3738 	}
3739 
3740 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3741 		return 1;
3742 
3743 	/* Clamp target voltage within the given step */
3744 	if (*current_uV < *min_uV)
3745 		*min_uV = min(*current_uV + constraints->max_uV_step,
3746 			      *min_uV);
3747 	else
3748 		*min_uV = max(*current_uV - constraints->max_uV_step,
3749 			      *min_uV);
3750 
3751 	return 0;
3752 }
3753 
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3754 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3755 					 int *current_uV,
3756 					 int *min_uV, int *max_uV,
3757 					 suspend_state_t state,
3758 					 int n_coupled)
3759 {
3760 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3761 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3762 	struct regulation_constraints *constraints = rdev->constraints;
3763 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3764 	int max_current_uV = 0, min_current_uV = INT_MAX;
3765 	int highest_min_uV = 0, target_uV, possible_uV;
3766 	int i, ret, max_spread;
3767 	bool done;
3768 
3769 	*current_uV = -1;
3770 
3771 	/*
3772 	 * If there are no coupled regulators, simply set the voltage
3773 	 * demanded by consumers.
3774 	 */
3775 	if (n_coupled == 1) {
3776 		/*
3777 		 * If consumers don't provide any demands, set voltage
3778 		 * to min_uV
3779 		 */
3780 		desired_min_uV = constraints->min_uV;
3781 		desired_max_uV = constraints->max_uV;
3782 
3783 		ret = regulator_check_consumers(rdev,
3784 						&desired_min_uV,
3785 						&desired_max_uV, state);
3786 		if (ret < 0)
3787 			return ret;
3788 
3789 		possible_uV = desired_min_uV;
3790 		done = true;
3791 
3792 		goto finish;
3793 	}
3794 
3795 	/* Find highest min desired voltage */
3796 	for (i = 0; i < n_coupled; i++) {
3797 		int tmp_min = 0;
3798 		int tmp_max = INT_MAX;
3799 
3800 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3801 
3802 		ret = regulator_check_consumers(c_rdevs[i],
3803 						&tmp_min,
3804 						&tmp_max, state);
3805 		if (ret < 0)
3806 			return ret;
3807 
3808 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3809 		if (ret < 0)
3810 			return ret;
3811 
3812 		highest_min_uV = max(highest_min_uV, tmp_min);
3813 
3814 		if (i == 0) {
3815 			desired_min_uV = tmp_min;
3816 			desired_max_uV = tmp_max;
3817 		}
3818 	}
3819 
3820 	max_spread = constraints->max_spread[0];
3821 
3822 	/*
3823 	 * Let target_uV be equal to the desired one if possible.
3824 	 * If not, set it to minimum voltage, allowed by other coupled
3825 	 * regulators.
3826 	 */
3827 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3828 
3829 	/*
3830 	 * Find min and max voltages, which currently aren't violating
3831 	 * max_spread.
3832 	 */
3833 	for (i = 1; i < n_coupled; i++) {
3834 		int tmp_act;
3835 
3836 		if (!_regulator_is_enabled(c_rdevs[i]))
3837 			continue;
3838 
3839 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3840 		if (tmp_act < 0)
3841 			return tmp_act;
3842 
3843 		min_current_uV = min(tmp_act, min_current_uV);
3844 		max_current_uV = max(tmp_act, max_current_uV);
3845 	}
3846 
3847 	/* There aren't any other regulators enabled */
3848 	if (max_current_uV == 0) {
3849 		possible_uV = target_uV;
3850 	} else {
3851 		/*
3852 		 * Correct target voltage, so as it currently isn't
3853 		 * violating max_spread
3854 		 */
3855 		possible_uV = max(target_uV, max_current_uV - max_spread);
3856 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3857 	}
3858 
3859 	if (possible_uV > desired_max_uV)
3860 		return -EINVAL;
3861 
3862 	done = (possible_uV == target_uV);
3863 	desired_min_uV = possible_uV;
3864 
3865 finish:
3866 	/* Apply max_uV_step constraint if necessary */
3867 	if (state == PM_SUSPEND_ON) {
3868 		ret = regulator_limit_voltage_step(rdev, current_uV,
3869 						   &desired_min_uV);
3870 		if (ret < 0)
3871 			return ret;
3872 
3873 		if (ret == 0)
3874 			done = false;
3875 	}
3876 
3877 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3878 	if (n_coupled > 1 && *current_uV == -1) {
3879 
3880 		if (_regulator_is_enabled(rdev)) {
3881 			ret = regulator_get_voltage_rdev(rdev);
3882 			if (ret < 0)
3883 				return ret;
3884 
3885 			*current_uV = ret;
3886 		} else {
3887 			*current_uV = desired_min_uV;
3888 		}
3889 	}
3890 
3891 	*min_uV = desired_min_uV;
3892 	*max_uV = desired_max_uV;
3893 
3894 	return done;
3895 }
3896 
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3897 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3898 				 suspend_state_t state, bool skip_coupled)
3899 {
3900 	struct regulator_dev **c_rdevs;
3901 	struct regulator_dev *best_rdev;
3902 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3904 	unsigned int delta, best_delta;
3905 	unsigned long c_rdev_done = 0;
3906 	bool best_c_rdev_done;
3907 
3908 	c_rdevs = c_desc->coupled_rdevs;
3909 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3910 
3911 	/*
3912 	 * Find the best possible voltage change on each loop. Leave the loop
3913 	 * if there isn't any possible change.
3914 	 */
3915 	do {
3916 		best_c_rdev_done = false;
3917 		best_delta = 0;
3918 		best_min_uV = 0;
3919 		best_max_uV = 0;
3920 		best_c_rdev = 0;
3921 		best_rdev = NULL;
3922 
3923 		/*
3924 		 * Find highest difference between optimal voltage
3925 		 * and current voltage.
3926 		 */
3927 		for (i = 0; i < n_coupled; i++) {
3928 			/*
3929 			 * optimal_uV is the best voltage that can be set for
3930 			 * i-th regulator at the moment without violating
3931 			 * max_spread constraint in order to balance
3932 			 * the coupled voltages.
3933 			 */
3934 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3935 
3936 			if (test_bit(i, &c_rdev_done))
3937 				continue;
3938 
3939 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3940 							    &current_uV,
3941 							    &optimal_uV,
3942 							    &optimal_max_uV,
3943 							    state, n_coupled);
3944 			if (ret < 0)
3945 				goto out;
3946 
3947 			delta = abs(optimal_uV - current_uV);
3948 
3949 			if (delta && best_delta <= delta) {
3950 				best_c_rdev_done = ret;
3951 				best_delta = delta;
3952 				best_rdev = c_rdevs[i];
3953 				best_min_uV = optimal_uV;
3954 				best_max_uV = optimal_max_uV;
3955 				best_c_rdev = i;
3956 			}
3957 		}
3958 
3959 		/* Nothing to change, return successfully */
3960 		if (!best_rdev) {
3961 			ret = 0;
3962 			goto out;
3963 		}
3964 
3965 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3966 						 best_max_uV, state);
3967 
3968 		if (ret < 0)
3969 			goto out;
3970 
3971 		if (best_c_rdev_done)
3972 			set_bit(best_c_rdev, &c_rdev_done);
3973 
3974 	} while (n_coupled > 1);
3975 
3976 out:
3977 	return ret;
3978 }
3979 
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3980 static int regulator_balance_voltage(struct regulator_dev *rdev,
3981 				     suspend_state_t state)
3982 {
3983 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3984 	struct regulator_coupler *coupler = c_desc->coupler;
3985 	bool skip_coupled = false;
3986 
3987 	/*
3988 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3989 	 * other coupled regulators.
3990 	 */
3991 	if (state != PM_SUSPEND_ON)
3992 		skip_coupled = true;
3993 
3994 	if (c_desc->n_resolved < c_desc->n_coupled) {
3995 		rdev_err(rdev, "Not all coupled regulators registered\n");
3996 		return -EPERM;
3997 	}
3998 
3999 	/* Invoke custom balancer for customized couplers */
4000 	if (coupler && coupler->balance_voltage)
4001 		return coupler->balance_voltage(coupler, rdev, state);
4002 
4003 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4004 }
4005 
4006 /**
4007  * regulator_set_voltage - set regulator output voltage
4008  * @regulator: regulator source
4009  * @min_uV: Minimum required voltage in uV
4010  * @max_uV: Maximum acceptable voltage in uV
4011  *
4012  * Sets a voltage regulator to the desired output voltage. This can be set
4013  * during any regulator state. IOW, regulator can be disabled or enabled.
4014  *
4015  * If the regulator is enabled then the voltage will change to the new value
4016  * immediately otherwise if the regulator is disabled the regulator will
4017  * output at the new voltage when enabled.
4018  *
4019  * NOTE: If the regulator is shared between several devices then the lowest
4020  * request voltage that meets the system constraints will be used.
4021  * Regulator system constraints must be set for this regulator before
4022  * calling this function otherwise this call will fail.
4023  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4024 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4025 {
4026 	struct ww_acquire_ctx ww_ctx;
4027 	int ret;
4028 
4029 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4030 
4031 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4032 					     PM_SUSPEND_ON);
4033 
4034 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4035 
4036 	return ret;
4037 }
4038 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4039 
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4040 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4041 					   suspend_state_t state, bool en)
4042 {
4043 	struct regulator_state *rstate;
4044 
4045 	rstate = regulator_get_suspend_state(rdev, state);
4046 	if (rstate == NULL)
4047 		return -EINVAL;
4048 
4049 	if (!rstate->changeable)
4050 		return -EPERM;
4051 
4052 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4053 
4054 	return 0;
4055 }
4056 
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4057 int regulator_suspend_enable(struct regulator_dev *rdev,
4058 				    suspend_state_t state)
4059 {
4060 	return regulator_suspend_toggle(rdev, state, true);
4061 }
4062 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4063 
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4064 int regulator_suspend_disable(struct regulator_dev *rdev,
4065 				     suspend_state_t state)
4066 {
4067 	struct regulator *regulator;
4068 	struct regulator_voltage *voltage;
4069 
4070 	/*
4071 	 * if any consumer wants this regulator device keeping on in
4072 	 * suspend states, don't set it as disabled.
4073 	 */
4074 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4075 		voltage = &regulator->voltage[state];
4076 		if (voltage->min_uV || voltage->max_uV)
4077 			return 0;
4078 	}
4079 
4080 	return regulator_suspend_toggle(rdev, state, false);
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4083 
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4084 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4085 					  int min_uV, int max_uV,
4086 					  suspend_state_t state)
4087 {
4088 	struct regulator_dev *rdev = regulator->rdev;
4089 	struct regulator_state *rstate;
4090 
4091 	rstate = regulator_get_suspend_state(rdev, state);
4092 	if (rstate == NULL)
4093 		return -EINVAL;
4094 
4095 	if (rstate->min_uV == rstate->max_uV) {
4096 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4097 		return -EPERM;
4098 	}
4099 
4100 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4101 }
4102 
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4103 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4104 				  int max_uV, suspend_state_t state)
4105 {
4106 	struct ww_acquire_ctx ww_ctx;
4107 	int ret;
4108 
4109 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4110 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4111 		return -EINVAL;
4112 
4113 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4114 
4115 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4116 					     max_uV, state);
4117 
4118 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4119 
4120 	return ret;
4121 }
4122 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4123 
4124 /**
4125  * regulator_set_voltage_time - get raise/fall time
4126  * @regulator: regulator source
4127  * @old_uV: starting voltage in microvolts
4128  * @new_uV: target voltage in microvolts
4129  *
4130  * Provided with the starting and ending voltage, this function attempts to
4131  * calculate the time in microseconds required to rise or fall to this new
4132  * voltage.
4133  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4134 int regulator_set_voltage_time(struct regulator *regulator,
4135 			       int old_uV, int new_uV)
4136 {
4137 	struct regulator_dev *rdev = regulator->rdev;
4138 	const struct regulator_ops *ops = rdev->desc->ops;
4139 	int old_sel = -1;
4140 	int new_sel = -1;
4141 	int voltage;
4142 	int i;
4143 
4144 	if (ops->set_voltage_time)
4145 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4146 	else if (!ops->set_voltage_time_sel)
4147 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4148 
4149 	/* Currently requires operations to do this */
4150 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4151 		return -EINVAL;
4152 
4153 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4154 		/* We only look for exact voltage matches here */
4155 
4156 		if (old_sel >= 0 && new_sel >= 0)
4157 			break;
4158 
4159 		voltage = regulator_list_voltage(regulator, i);
4160 		if (voltage < 0)
4161 			return -EINVAL;
4162 		if (voltage == 0)
4163 			continue;
4164 		if (voltage == old_uV)
4165 			old_sel = i;
4166 		if (voltage == new_uV)
4167 			new_sel = i;
4168 	}
4169 
4170 	if (old_sel < 0 || new_sel < 0)
4171 		return -EINVAL;
4172 
4173 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4174 }
4175 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4176 
4177 /**
4178  * regulator_set_voltage_time_sel - get raise/fall time
4179  * @rdev: regulator source device
4180  * @old_selector: selector for starting voltage
4181  * @new_selector: selector for target voltage
4182  *
4183  * Provided with the starting and target voltage selectors, this function
4184  * returns time in microseconds required to rise or fall to this new voltage
4185  *
4186  * Drivers providing ramp_delay in regulation_constraints can use this as their
4187  * set_voltage_time_sel() operation.
4188  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4189 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4190 				   unsigned int old_selector,
4191 				   unsigned int new_selector)
4192 {
4193 	int old_volt, new_volt;
4194 
4195 	/* sanity check */
4196 	if (!rdev->desc->ops->list_voltage)
4197 		return -EINVAL;
4198 
4199 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4200 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4201 
4202 	if (rdev->desc->ops->set_voltage_time)
4203 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4204 							 new_volt);
4205 	else
4206 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4207 }
4208 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4209 
4210 /**
4211  * regulator_sync_voltage - re-apply last regulator output voltage
4212  * @regulator: regulator source
4213  *
4214  * Re-apply the last configured voltage.  This is intended to be used
4215  * where some external control source the consumer is cooperating with
4216  * has caused the configured voltage to change.
4217  */
regulator_sync_voltage(struct regulator * regulator)4218 int regulator_sync_voltage(struct regulator *regulator)
4219 {
4220 	struct regulator_dev *rdev = regulator->rdev;
4221 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4222 	int ret, min_uV, max_uV;
4223 
4224 	regulator_lock(rdev);
4225 
4226 	if (!rdev->desc->ops->set_voltage &&
4227 	    !rdev->desc->ops->set_voltage_sel) {
4228 		ret = -EINVAL;
4229 		goto out;
4230 	}
4231 
4232 	/* This is only going to work if we've had a voltage configured. */
4233 	if (!voltage->min_uV && !voltage->max_uV) {
4234 		ret = -EINVAL;
4235 		goto out;
4236 	}
4237 
4238 	min_uV = voltage->min_uV;
4239 	max_uV = voltage->max_uV;
4240 
4241 	/* This should be a paranoia check... */
4242 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4243 	if (ret < 0)
4244 		goto out;
4245 
4246 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4247 	if (ret < 0)
4248 		goto out;
4249 
4250 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4251 
4252 out:
4253 	regulator_unlock(rdev);
4254 	return ret;
4255 }
4256 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4257 
regulator_get_voltage_rdev(struct regulator_dev * rdev)4258 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4259 {
4260 	int sel, ret;
4261 	bool bypassed;
4262 
4263 	if (rdev->desc->ops->get_bypass) {
4264 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4265 		if (ret < 0)
4266 			return ret;
4267 		if (bypassed) {
4268 			/* if bypassed the regulator must have a supply */
4269 			if (!rdev->supply) {
4270 				rdev_err(rdev,
4271 					 "bypassed regulator has no supply!\n");
4272 				return -EPROBE_DEFER;
4273 			}
4274 
4275 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4276 		}
4277 	}
4278 
4279 	if (rdev->desc->ops->get_voltage_sel) {
4280 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4281 		if (sel < 0)
4282 			return sel;
4283 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4284 	} else if (rdev->desc->ops->get_voltage) {
4285 		ret = rdev->desc->ops->get_voltage(rdev);
4286 	} else if (rdev->desc->ops->list_voltage) {
4287 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4288 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4289 		ret = rdev->desc->fixed_uV;
4290 	} else if (rdev->supply) {
4291 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4292 	} else if (rdev->supply_name) {
4293 		return -EPROBE_DEFER;
4294 	} else {
4295 		return -EINVAL;
4296 	}
4297 
4298 	if (ret < 0)
4299 		return ret;
4300 	return ret - rdev->constraints->uV_offset;
4301 }
4302 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4303 
4304 /**
4305  * regulator_get_voltage - get regulator output voltage
4306  * @regulator: regulator source
4307  *
4308  * This returns the current regulator voltage in uV.
4309  *
4310  * NOTE: If the regulator is disabled it will return the voltage value. This
4311  * function should not be used to determine regulator state.
4312  */
regulator_get_voltage(struct regulator * regulator)4313 int regulator_get_voltage(struct regulator *regulator)
4314 {
4315 	struct ww_acquire_ctx ww_ctx;
4316 	int ret;
4317 
4318 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4319 	ret = regulator_get_voltage_rdev(regulator->rdev);
4320 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4321 
4322 	return ret;
4323 }
4324 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4325 
4326 /**
4327  * regulator_set_current_limit - set regulator output current limit
4328  * @regulator: regulator source
4329  * @min_uA: Minimum supported current in uA
4330  * @max_uA: Maximum supported current in uA
4331  *
4332  * Sets current sink to the desired output current. This can be set during
4333  * any regulator state. IOW, regulator can be disabled or enabled.
4334  *
4335  * If the regulator is enabled then the current will change to the new value
4336  * immediately otherwise if the regulator is disabled the regulator will
4337  * output at the new current when enabled.
4338  *
4339  * NOTE: Regulator system constraints must be set for this regulator before
4340  * calling this function otherwise this call will fail.
4341  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4342 int regulator_set_current_limit(struct regulator *regulator,
4343 			       int min_uA, int max_uA)
4344 {
4345 	struct regulator_dev *rdev = regulator->rdev;
4346 	int ret;
4347 
4348 	regulator_lock(rdev);
4349 
4350 	/* sanity check */
4351 	if (!rdev->desc->ops->set_current_limit) {
4352 		ret = -EINVAL;
4353 		goto out;
4354 	}
4355 
4356 	/* constraints check */
4357 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4358 	if (ret < 0)
4359 		goto out;
4360 
4361 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4362 out:
4363 	regulator_unlock(rdev);
4364 	return ret;
4365 }
4366 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4367 
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4368 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4369 {
4370 	/* sanity check */
4371 	if (!rdev->desc->ops->get_current_limit)
4372 		return -EINVAL;
4373 
4374 	return rdev->desc->ops->get_current_limit(rdev);
4375 }
4376 
_regulator_get_current_limit(struct regulator_dev * rdev)4377 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4378 {
4379 	int ret;
4380 
4381 	regulator_lock(rdev);
4382 	ret = _regulator_get_current_limit_unlocked(rdev);
4383 	regulator_unlock(rdev);
4384 
4385 	return ret;
4386 }
4387 
4388 /**
4389  * regulator_get_current_limit - get regulator output current
4390  * @regulator: regulator source
4391  *
4392  * This returns the current supplied by the specified current sink in uA.
4393  *
4394  * NOTE: If the regulator is disabled it will return the current value. This
4395  * function should not be used to determine regulator state.
4396  */
regulator_get_current_limit(struct regulator * regulator)4397 int regulator_get_current_limit(struct regulator *regulator)
4398 {
4399 	return _regulator_get_current_limit(regulator->rdev);
4400 }
4401 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4402 
4403 /**
4404  * regulator_set_mode - set regulator operating mode
4405  * @regulator: regulator source
4406  * @mode: operating mode - one of the REGULATOR_MODE constants
4407  *
4408  * Set regulator operating mode to increase regulator efficiency or improve
4409  * regulation performance.
4410  *
4411  * NOTE: Regulator system constraints must be set for this regulator before
4412  * calling this function otherwise this call will fail.
4413  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4414 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4415 {
4416 	struct regulator_dev *rdev = regulator->rdev;
4417 	int ret;
4418 	int regulator_curr_mode;
4419 
4420 	regulator_lock(rdev);
4421 
4422 	/* sanity check */
4423 	if (!rdev->desc->ops->set_mode) {
4424 		ret = -EINVAL;
4425 		goto out;
4426 	}
4427 
4428 	/* return if the same mode is requested */
4429 	if (rdev->desc->ops->get_mode) {
4430 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4431 		if (regulator_curr_mode == mode) {
4432 			ret = 0;
4433 			goto out;
4434 		}
4435 	}
4436 
4437 	/* constraints check */
4438 	ret = regulator_mode_constrain(rdev, &mode);
4439 	if (ret < 0)
4440 		goto out;
4441 
4442 	ret = rdev->desc->ops->set_mode(rdev, mode);
4443 out:
4444 	regulator_unlock(rdev);
4445 	return ret;
4446 }
4447 EXPORT_SYMBOL_GPL(regulator_set_mode);
4448 
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4449 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4450 {
4451 	/* sanity check */
4452 	if (!rdev->desc->ops->get_mode)
4453 		return -EINVAL;
4454 
4455 	return rdev->desc->ops->get_mode(rdev);
4456 }
4457 
_regulator_get_mode(struct regulator_dev * rdev)4458 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4459 {
4460 	int ret;
4461 
4462 	regulator_lock(rdev);
4463 	ret = _regulator_get_mode_unlocked(rdev);
4464 	regulator_unlock(rdev);
4465 
4466 	return ret;
4467 }
4468 
4469 /**
4470  * regulator_get_mode - get regulator operating mode
4471  * @regulator: regulator source
4472  *
4473  * Get the current regulator operating mode.
4474  */
regulator_get_mode(struct regulator * regulator)4475 unsigned int regulator_get_mode(struct regulator *regulator)
4476 {
4477 	return _regulator_get_mode(regulator->rdev);
4478 }
4479 EXPORT_SYMBOL_GPL(regulator_get_mode);
4480 
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4481 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4482 					unsigned int *flags)
4483 {
4484 	int ret;
4485 
4486 	regulator_lock(rdev);
4487 
4488 	/* sanity check */
4489 	if (!rdev->desc->ops->get_error_flags) {
4490 		ret = -EINVAL;
4491 		goto out;
4492 	}
4493 
4494 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4495 out:
4496 	regulator_unlock(rdev);
4497 	return ret;
4498 }
4499 
4500 /**
4501  * regulator_get_error_flags - get regulator error information
4502  * @regulator: regulator source
4503  * @flags: pointer to store error flags
4504  *
4505  * Get the current regulator error information.
4506  */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4507 int regulator_get_error_flags(struct regulator *regulator,
4508 				unsigned int *flags)
4509 {
4510 	return _regulator_get_error_flags(regulator->rdev, flags);
4511 }
4512 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4513 
4514 /**
4515  * regulator_set_load - set regulator load
4516  * @regulator: regulator source
4517  * @uA_load: load current
4518  *
4519  * Notifies the regulator core of a new device load. This is then used by
4520  * DRMS (if enabled by constraints) to set the most efficient regulator
4521  * operating mode for the new regulator loading.
4522  *
4523  * Consumer devices notify their supply regulator of the maximum power
4524  * they will require (can be taken from device datasheet in the power
4525  * consumption tables) when they change operational status and hence power
4526  * state. Examples of operational state changes that can affect power
4527  * consumption are :-
4528  *
4529  *    o Device is opened / closed.
4530  *    o Device I/O is about to begin or has just finished.
4531  *    o Device is idling in between work.
4532  *
4533  * This information is also exported via sysfs to userspace.
4534  *
4535  * DRMS will sum the total requested load on the regulator and change
4536  * to the most efficient operating mode if platform constraints allow.
4537  *
4538  * NOTE: when a regulator consumer requests to have a regulator
4539  * disabled then any load that consumer requested no longer counts
4540  * toward the total requested load.  If the regulator is re-enabled
4541  * then the previously requested load will start counting again.
4542  *
4543  * If a regulator is an always-on regulator then an individual consumer's
4544  * load will still be removed if that consumer is fully disabled.
4545  *
4546  * On error a negative errno is returned.
4547  */
regulator_set_load(struct regulator * regulator,int uA_load)4548 int regulator_set_load(struct regulator *regulator, int uA_load)
4549 {
4550 	struct regulator_dev *rdev = regulator->rdev;
4551 	int old_uA_load;
4552 	int ret = 0;
4553 
4554 	regulator_lock(rdev);
4555 	old_uA_load = regulator->uA_load;
4556 	regulator->uA_load = uA_load;
4557 	if (regulator->enable_count && old_uA_load != uA_load) {
4558 		ret = drms_uA_update(rdev);
4559 		if (ret < 0)
4560 			regulator->uA_load = old_uA_load;
4561 	}
4562 	regulator_unlock(rdev);
4563 
4564 	return ret;
4565 }
4566 EXPORT_SYMBOL_GPL(regulator_set_load);
4567 
4568 /**
4569  * regulator_allow_bypass - allow the regulator to go into bypass mode
4570  *
4571  * @regulator: Regulator to configure
4572  * @enable: enable or disable bypass mode
4573  *
4574  * Allow the regulator to go into bypass mode if all other consumers
4575  * for the regulator also enable bypass mode and the machine
4576  * constraints allow this.  Bypass mode means that the regulator is
4577  * simply passing the input directly to the output with no regulation.
4578  */
regulator_allow_bypass(struct regulator * regulator,bool enable)4579 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4580 {
4581 	struct regulator_dev *rdev = regulator->rdev;
4582 	const char *name = rdev_get_name(rdev);
4583 	int ret = 0;
4584 
4585 	if (!rdev->desc->ops->set_bypass)
4586 		return 0;
4587 
4588 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4589 		return 0;
4590 
4591 	regulator_lock(rdev);
4592 
4593 	if (enable && !regulator->bypass) {
4594 		rdev->bypass_count++;
4595 
4596 		if (rdev->bypass_count == rdev->open_count) {
4597 			trace_regulator_bypass_enable(name);
4598 
4599 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4600 			if (ret != 0)
4601 				rdev->bypass_count--;
4602 			else
4603 				trace_regulator_bypass_enable_complete(name);
4604 		}
4605 
4606 	} else if (!enable && regulator->bypass) {
4607 		rdev->bypass_count--;
4608 
4609 		if (rdev->bypass_count != rdev->open_count) {
4610 			trace_regulator_bypass_disable(name);
4611 
4612 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4613 			if (ret != 0)
4614 				rdev->bypass_count++;
4615 			else
4616 				trace_regulator_bypass_disable_complete(name);
4617 		}
4618 	}
4619 
4620 	if (ret == 0)
4621 		regulator->bypass = enable;
4622 
4623 	regulator_unlock(rdev);
4624 
4625 	return ret;
4626 }
4627 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4628 
4629 /**
4630  * regulator_register_notifier - register regulator event notifier
4631  * @regulator: regulator source
4632  * @nb: notifier block
4633  *
4634  * Register notifier block to receive regulator events.
4635  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4636 int regulator_register_notifier(struct regulator *regulator,
4637 			      struct notifier_block *nb)
4638 {
4639 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4640 						nb);
4641 }
4642 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4643 
4644 /**
4645  * regulator_unregister_notifier - unregister regulator event notifier
4646  * @regulator: regulator source
4647  * @nb: notifier block
4648  *
4649  * Unregister regulator event notifier block.
4650  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4651 int regulator_unregister_notifier(struct regulator *regulator,
4652 				struct notifier_block *nb)
4653 {
4654 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4655 						  nb);
4656 }
4657 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4658 
4659 /* notify regulator consumers and downstream regulator consumers.
4660  * Note mutex must be held by caller.
4661  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4662 static int _notifier_call_chain(struct regulator_dev *rdev,
4663 				  unsigned long event, void *data)
4664 {
4665 	/* call rdev chain first */
4666 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4667 }
4668 
4669 /**
4670  * regulator_bulk_get - get multiple regulator consumers
4671  *
4672  * @dev:           Device to supply
4673  * @num_consumers: Number of consumers to register
4674  * @consumers:     Configuration of consumers; clients are stored here.
4675  *
4676  * @return 0 on success, an errno on failure.
4677  *
4678  * This helper function allows drivers to get several regulator
4679  * consumers in one operation.  If any of the regulators cannot be
4680  * acquired then any regulators that were allocated will be freed
4681  * before returning to the caller.
4682  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4683 int regulator_bulk_get(struct device *dev, int num_consumers,
4684 		       struct regulator_bulk_data *consumers)
4685 {
4686 	int i;
4687 	int ret;
4688 
4689 	for (i = 0; i < num_consumers; i++)
4690 		consumers[i].consumer = NULL;
4691 
4692 	for (i = 0; i < num_consumers; i++) {
4693 		consumers[i].consumer = regulator_get(dev,
4694 						      consumers[i].supply);
4695 		if (IS_ERR(consumers[i].consumer)) {
4696 			ret = PTR_ERR(consumers[i].consumer);
4697 			consumers[i].consumer = NULL;
4698 			goto err;
4699 		}
4700 	}
4701 
4702 	return 0;
4703 
4704 err:
4705 	if (ret != -EPROBE_DEFER)
4706 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4707 			consumers[i].supply, ERR_PTR(ret));
4708 	else
4709 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4710 			consumers[i].supply);
4711 
4712 	while (--i >= 0)
4713 		regulator_put(consumers[i].consumer);
4714 
4715 	return ret;
4716 }
4717 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4718 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4719 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4720 {
4721 	struct regulator_bulk_data *bulk = data;
4722 
4723 	bulk->ret = regulator_enable(bulk->consumer);
4724 }
4725 
4726 /**
4727  * regulator_bulk_enable - enable multiple regulator consumers
4728  *
4729  * @num_consumers: Number of consumers
4730  * @consumers:     Consumer data; clients are stored here.
4731  * @return         0 on success, an errno on failure
4732  *
4733  * This convenience API allows consumers to enable multiple regulator
4734  * clients in a single API call.  If any consumers cannot be enabled
4735  * then any others that were enabled will be disabled again prior to
4736  * return.
4737  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4738 int regulator_bulk_enable(int num_consumers,
4739 			  struct regulator_bulk_data *consumers)
4740 {
4741 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4742 	int i;
4743 	int ret = 0;
4744 
4745 	for (i = 0; i < num_consumers; i++) {
4746 		async_schedule_domain(regulator_bulk_enable_async,
4747 				      &consumers[i], &async_domain);
4748 	}
4749 
4750 	async_synchronize_full_domain(&async_domain);
4751 
4752 	/* If any consumer failed we need to unwind any that succeeded */
4753 	for (i = 0; i < num_consumers; i++) {
4754 		if (consumers[i].ret != 0) {
4755 			ret = consumers[i].ret;
4756 			goto err;
4757 		}
4758 	}
4759 
4760 	return 0;
4761 
4762 err:
4763 	for (i = 0; i < num_consumers; i++) {
4764 		if (consumers[i].ret < 0)
4765 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4766 			       ERR_PTR(consumers[i].ret));
4767 		else
4768 			regulator_disable(consumers[i].consumer);
4769 	}
4770 
4771 	return ret;
4772 }
4773 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4774 
4775 /**
4776  * regulator_bulk_disable - disable multiple regulator consumers
4777  *
4778  * @num_consumers: Number of consumers
4779  * @consumers:     Consumer data; clients are stored here.
4780  * @return         0 on success, an errno on failure
4781  *
4782  * This convenience API allows consumers to disable multiple regulator
4783  * clients in a single API call.  If any consumers cannot be disabled
4784  * then any others that were disabled will be enabled again prior to
4785  * return.
4786  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4787 int regulator_bulk_disable(int num_consumers,
4788 			   struct regulator_bulk_data *consumers)
4789 {
4790 	int i;
4791 	int ret, r;
4792 
4793 	for (i = num_consumers - 1; i >= 0; --i) {
4794 		ret = regulator_disable(consumers[i].consumer);
4795 		if (ret != 0)
4796 			goto err;
4797 	}
4798 
4799 	return 0;
4800 
4801 err:
4802 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4803 	for (++i; i < num_consumers; ++i) {
4804 		r = regulator_enable(consumers[i].consumer);
4805 		if (r != 0)
4806 			pr_err("Failed to re-enable %s: %pe\n",
4807 			       consumers[i].supply, ERR_PTR(r));
4808 	}
4809 
4810 	return ret;
4811 }
4812 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4813 
4814 /**
4815  * regulator_bulk_force_disable - force disable multiple regulator consumers
4816  *
4817  * @num_consumers: Number of consumers
4818  * @consumers:     Consumer data; clients are stored here.
4819  * @return         0 on success, an errno on failure
4820  *
4821  * This convenience API allows consumers to forcibly disable multiple regulator
4822  * clients in a single API call.
4823  * NOTE: This should be used for situations when device damage will
4824  * likely occur if the regulators are not disabled (e.g. over temp).
4825  * Although regulator_force_disable function call for some consumers can
4826  * return error numbers, the function is called for all consumers.
4827  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4828 int regulator_bulk_force_disable(int num_consumers,
4829 			   struct regulator_bulk_data *consumers)
4830 {
4831 	int i;
4832 	int ret = 0;
4833 
4834 	for (i = 0; i < num_consumers; i++) {
4835 		consumers[i].ret =
4836 			    regulator_force_disable(consumers[i].consumer);
4837 
4838 		/* Store first error for reporting */
4839 		if (consumers[i].ret && !ret)
4840 			ret = consumers[i].ret;
4841 	}
4842 
4843 	return ret;
4844 }
4845 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4846 
4847 /**
4848  * regulator_bulk_free - free multiple regulator consumers
4849  *
4850  * @num_consumers: Number of consumers
4851  * @consumers:     Consumer data; clients are stored here.
4852  *
4853  * This convenience API allows consumers to free multiple regulator
4854  * clients in a single API call.
4855  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4856 void regulator_bulk_free(int num_consumers,
4857 			 struct regulator_bulk_data *consumers)
4858 {
4859 	int i;
4860 
4861 	for (i = 0; i < num_consumers; i++) {
4862 		regulator_put(consumers[i].consumer);
4863 		consumers[i].consumer = NULL;
4864 	}
4865 }
4866 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4867 
4868 /**
4869  * regulator_notifier_call_chain - call regulator event notifier
4870  * @rdev: regulator source
4871  * @event: notifier block
4872  * @data: callback-specific data.
4873  *
4874  * Called by regulator drivers to notify clients a regulator event has
4875  * occurred.
4876  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4877 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4878 				  unsigned long event, void *data)
4879 {
4880 	_notifier_call_chain(rdev, event, data);
4881 	return NOTIFY_DONE;
4882 
4883 }
4884 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4885 
4886 /**
4887  * regulator_mode_to_status - convert a regulator mode into a status
4888  *
4889  * @mode: Mode to convert
4890  *
4891  * Convert a regulator mode into a status.
4892  */
regulator_mode_to_status(unsigned int mode)4893 int regulator_mode_to_status(unsigned int mode)
4894 {
4895 	switch (mode) {
4896 	case REGULATOR_MODE_FAST:
4897 		return REGULATOR_STATUS_FAST;
4898 	case REGULATOR_MODE_NORMAL:
4899 		return REGULATOR_STATUS_NORMAL;
4900 	case REGULATOR_MODE_IDLE:
4901 		return REGULATOR_STATUS_IDLE;
4902 	case REGULATOR_MODE_STANDBY:
4903 		return REGULATOR_STATUS_STANDBY;
4904 	default:
4905 		return REGULATOR_STATUS_UNDEFINED;
4906 	}
4907 }
4908 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4909 
4910 static struct attribute *regulator_dev_attrs[] = {
4911 	&dev_attr_name.attr,
4912 	&dev_attr_num_users.attr,
4913 	&dev_attr_type.attr,
4914 	&dev_attr_microvolts.attr,
4915 	&dev_attr_microamps.attr,
4916 	&dev_attr_opmode.attr,
4917 	&dev_attr_state.attr,
4918 	&dev_attr_status.attr,
4919 	&dev_attr_bypass.attr,
4920 	&dev_attr_requested_microamps.attr,
4921 	&dev_attr_min_microvolts.attr,
4922 	&dev_attr_max_microvolts.attr,
4923 	&dev_attr_min_microamps.attr,
4924 	&dev_attr_max_microamps.attr,
4925 	&dev_attr_suspend_standby_state.attr,
4926 	&dev_attr_suspend_mem_state.attr,
4927 	&dev_attr_suspend_disk_state.attr,
4928 	&dev_attr_suspend_standby_microvolts.attr,
4929 	&dev_attr_suspend_mem_microvolts.attr,
4930 	&dev_attr_suspend_disk_microvolts.attr,
4931 	&dev_attr_suspend_standby_mode.attr,
4932 	&dev_attr_suspend_mem_mode.attr,
4933 	&dev_attr_suspend_disk_mode.attr,
4934 	NULL
4935 };
4936 
4937 /*
4938  * To avoid cluttering sysfs (and memory) with useless state, only
4939  * create attributes that can be meaningfully displayed.
4940  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4941 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4942 					 struct attribute *attr, int idx)
4943 {
4944 	struct device *dev = kobj_to_dev(kobj);
4945 	struct regulator_dev *rdev = dev_to_rdev(dev);
4946 	const struct regulator_ops *ops = rdev->desc->ops;
4947 	umode_t mode = attr->mode;
4948 
4949 	/* these three are always present */
4950 	if (attr == &dev_attr_name.attr ||
4951 	    attr == &dev_attr_num_users.attr ||
4952 	    attr == &dev_attr_type.attr)
4953 		return mode;
4954 
4955 	/* some attributes need specific methods to be displayed */
4956 	if (attr == &dev_attr_microvolts.attr) {
4957 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4958 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4959 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4960 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4961 			return mode;
4962 		return 0;
4963 	}
4964 
4965 	if (attr == &dev_attr_microamps.attr)
4966 		return ops->get_current_limit ? mode : 0;
4967 
4968 	if (attr == &dev_attr_opmode.attr)
4969 		return ops->get_mode ? mode : 0;
4970 
4971 	if (attr == &dev_attr_state.attr)
4972 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4973 
4974 	if (attr == &dev_attr_status.attr)
4975 		return ops->get_status ? mode : 0;
4976 
4977 	if (attr == &dev_attr_bypass.attr)
4978 		return ops->get_bypass ? mode : 0;
4979 
4980 	/* constraints need specific supporting methods */
4981 	if (attr == &dev_attr_min_microvolts.attr ||
4982 	    attr == &dev_attr_max_microvolts.attr)
4983 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4984 
4985 	if (attr == &dev_attr_min_microamps.attr ||
4986 	    attr == &dev_attr_max_microamps.attr)
4987 		return ops->set_current_limit ? mode : 0;
4988 
4989 	if (attr == &dev_attr_suspend_standby_state.attr ||
4990 	    attr == &dev_attr_suspend_mem_state.attr ||
4991 	    attr == &dev_attr_suspend_disk_state.attr)
4992 		return mode;
4993 
4994 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4995 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4996 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4997 		return ops->set_suspend_voltage ? mode : 0;
4998 
4999 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5000 	    attr == &dev_attr_suspend_mem_mode.attr ||
5001 	    attr == &dev_attr_suspend_disk_mode.attr)
5002 		return ops->set_suspend_mode ? mode : 0;
5003 
5004 	return mode;
5005 }
5006 
5007 static const struct attribute_group regulator_dev_group = {
5008 	.attrs = regulator_dev_attrs,
5009 	.is_visible = regulator_attr_is_visible,
5010 };
5011 
5012 static const struct attribute_group *regulator_dev_groups[] = {
5013 	&regulator_dev_group,
5014 	NULL
5015 };
5016 
regulator_dev_release(struct device * dev)5017 static void regulator_dev_release(struct device *dev)
5018 {
5019 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5020 
5021 	debugfs_remove_recursive(rdev->debugfs);
5022 	kfree(rdev->constraints);
5023 	of_node_put(rdev->dev.of_node);
5024 	kfree(rdev);
5025 }
5026 
rdev_init_debugfs(struct regulator_dev * rdev)5027 static void rdev_init_debugfs(struct regulator_dev *rdev)
5028 {
5029 	struct device *parent = rdev->dev.parent;
5030 	const char *rname = rdev_get_name(rdev);
5031 	char name[NAME_MAX];
5032 
5033 	/* Avoid duplicate debugfs directory names */
5034 	if (parent && rname == rdev->desc->name) {
5035 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5036 			 rname);
5037 		rname = name;
5038 	}
5039 
5040 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5041 	if (!rdev->debugfs) {
5042 		rdev_warn(rdev, "Failed to create debugfs directory\n");
5043 		return;
5044 	}
5045 
5046 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5047 			   &rdev->use_count);
5048 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5049 			   &rdev->open_count);
5050 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5051 			   &rdev->bypass_count);
5052 }
5053 
regulator_register_resolve_supply(struct device * dev,void * data)5054 static int regulator_register_resolve_supply(struct device *dev, void *data)
5055 {
5056 	struct regulator_dev *rdev = dev_to_rdev(dev);
5057 
5058 	if (regulator_resolve_supply(rdev))
5059 		rdev_dbg(rdev, "unable to resolve supply\n");
5060 
5061 	return 0;
5062 }
5063 
regulator_coupler_register(struct regulator_coupler * coupler)5064 int regulator_coupler_register(struct regulator_coupler *coupler)
5065 {
5066 	mutex_lock(&regulator_list_mutex);
5067 	list_add_tail(&coupler->list, &regulator_coupler_list);
5068 	mutex_unlock(&regulator_list_mutex);
5069 
5070 	return 0;
5071 }
5072 
5073 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5074 regulator_find_coupler(struct regulator_dev *rdev)
5075 {
5076 	struct regulator_coupler *coupler;
5077 	int err;
5078 
5079 	/*
5080 	 * Note that regulators are appended to the list and the generic
5081 	 * coupler is registered first, hence it will be attached at last
5082 	 * if nobody cared.
5083 	 */
5084 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5085 		err = coupler->attach_regulator(coupler, rdev);
5086 		if (!err) {
5087 			if (!coupler->balance_voltage &&
5088 			    rdev->coupling_desc.n_coupled > 2)
5089 				goto err_unsupported;
5090 
5091 			return coupler;
5092 		}
5093 
5094 		if (err < 0)
5095 			return ERR_PTR(err);
5096 
5097 		if (err == 1)
5098 			continue;
5099 
5100 		break;
5101 	}
5102 
5103 	return ERR_PTR(-EINVAL);
5104 
5105 err_unsupported:
5106 	if (coupler->detach_regulator)
5107 		coupler->detach_regulator(coupler, rdev);
5108 
5109 	rdev_err(rdev,
5110 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5111 
5112 	return ERR_PTR(-EPERM);
5113 }
5114 
regulator_resolve_coupling(struct regulator_dev * rdev)5115 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5116 {
5117 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5118 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5119 	int n_coupled = c_desc->n_coupled;
5120 	struct regulator_dev *c_rdev;
5121 	int i;
5122 
5123 	for (i = 1; i < n_coupled; i++) {
5124 		/* already resolved */
5125 		if (c_desc->coupled_rdevs[i])
5126 			continue;
5127 
5128 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5129 
5130 		if (!c_rdev)
5131 			continue;
5132 
5133 		if (c_rdev->coupling_desc.coupler != coupler) {
5134 			rdev_err(rdev, "coupler mismatch with %s\n",
5135 				 rdev_get_name(c_rdev));
5136 			return;
5137 		}
5138 
5139 		c_desc->coupled_rdevs[i] = c_rdev;
5140 		c_desc->n_resolved++;
5141 
5142 		regulator_resolve_coupling(c_rdev);
5143 	}
5144 }
5145 
regulator_remove_coupling(struct regulator_dev * rdev)5146 static void regulator_remove_coupling(struct regulator_dev *rdev)
5147 {
5148 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5149 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5150 	struct regulator_dev *__c_rdev, *c_rdev;
5151 	unsigned int __n_coupled, n_coupled;
5152 	int i, k;
5153 	int err;
5154 
5155 	n_coupled = c_desc->n_coupled;
5156 
5157 	for (i = 1; i < n_coupled; i++) {
5158 		c_rdev = c_desc->coupled_rdevs[i];
5159 
5160 		if (!c_rdev)
5161 			continue;
5162 
5163 		regulator_lock(c_rdev);
5164 
5165 		__c_desc = &c_rdev->coupling_desc;
5166 		__n_coupled = __c_desc->n_coupled;
5167 
5168 		for (k = 1; k < __n_coupled; k++) {
5169 			__c_rdev = __c_desc->coupled_rdevs[k];
5170 
5171 			if (__c_rdev == rdev) {
5172 				__c_desc->coupled_rdevs[k] = NULL;
5173 				__c_desc->n_resolved--;
5174 				break;
5175 			}
5176 		}
5177 
5178 		regulator_unlock(c_rdev);
5179 
5180 		c_desc->coupled_rdevs[i] = NULL;
5181 		c_desc->n_resolved--;
5182 	}
5183 
5184 	if (coupler && coupler->detach_regulator) {
5185 		err = coupler->detach_regulator(coupler, rdev);
5186 		if (err)
5187 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5188 				 ERR_PTR(err));
5189 	}
5190 
5191 	kfree(rdev->coupling_desc.coupled_rdevs);
5192 	rdev->coupling_desc.coupled_rdevs = NULL;
5193 }
5194 
regulator_init_coupling(struct regulator_dev * rdev)5195 static int regulator_init_coupling(struct regulator_dev *rdev)
5196 {
5197 	struct regulator_dev **coupled;
5198 	int err, n_phandles;
5199 
5200 	if (!IS_ENABLED(CONFIG_OF))
5201 		n_phandles = 0;
5202 	else
5203 		n_phandles = of_get_n_coupled(rdev);
5204 
5205 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5206 	if (!coupled)
5207 		return -ENOMEM;
5208 
5209 	rdev->coupling_desc.coupled_rdevs = coupled;
5210 
5211 	/*
5212 	 * Every regulator should always have coupling descriptor filled with
5213 	 * at least pointer to itself.
5214 	 */
5215 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5216 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5217 	rdev->coupling_desc.n_resolved++;
5218 
5219 	/* regulator isn't coupled */
5220 	if (n_phandles == 0)
5221 		return 0;
5222 
5223 	if (!of_check_coupling_data(rdev))
5224 		return -EPERM;
5225 
5226 	mutex_lock(&regulator_list_mutex);
5227 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5228 	mutex_unlock(&regulator_list_mutex);
5229 
5230 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5231 		err = PTR_ERR(rdev->coupling_desc.coupler);
5232 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5233 		return err;
5234 	}
5235 
5236 	return 0;
5237 }
5238 
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5239 static int generic_coupler_attach(struct regulator_coupler *coupler,
5240 				  struct regulator_dev *rdev)
5241 {
5242 	if (rdev->coupling_desc.n_coupled > 2) {
5243 		rdev_err(rdev,
5244 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5245 		return -EPERM;
5246 	}
5247 
5248 	if (!rdev->constraints->always_on) {
5249 		rdev_err(rdev,
5250 			 "Coupling of a non always-on regulator is unimplemented\n");
5251 		return -ENOTSUPP;
5252 	}
5253 
5254 	return 0;
5255 }
5256 
5257 static struct regulator_coupler generic_regulator_coupler = {
5258 	.attach_regulator = generic_coupler_attach,
5259 };
5260 
5261 /**
5262  * regulator_register - register regulator
5263  * @regulator_desc: regulator to register
5264  * @cfg: runtime configuration for regulator
5265  *
5266  * Called by regulator drivers to register a regulator.
5267  * Returns a valid pointer to struct regulator_dev on success
5268  * or an ERR_PTR() on error.
5269  */
5270 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5271 regulator_register(const struct regulator_desc *regulator_desc,
5272 		   const struct regulator_config *cfg)
5273 {
5274 	const struct regulator_init_data *init_data;
5275 	struct regulator_config *config = NULL;
5276 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5277 	struct regulator_dev *rdev;
5278 	bool dangling_cfg_gpiod = false;
5279 	bool dangling_of_gpiod = false;
5280 	struct device *dev;
5281 	int ret, i;
5282 
5283 	if (cfg == NULL)
5284 		return ERR_PTR(-EINVAL);
5285 	if (cfg->ena_gpiod)
5286 		dangling_cfg_gpiod = true;
5287 	if (regulator_desc == NULL) {
5288 		ret = -EINVAL;
5289 		goto rinse;
5290 	}
5291 
5292 	dev = cfg->dev;
5293 	WARN_ON(!dev);
5294 
5295 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5296 		ret = -EINVAL;
5297 		goto rinse;
5298 	}
5299 
5300 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5301 	    regulator_desc->type != REGULATOR_CURRENT) {
5302 		ret = -EINVAL;
5303 		goto rinse;
5304 	}
5305 
5306 	/* Only one of each should be implemented */
5307 	WARN_ON(regulator_desc->ops->get_voltage &&
5308 		regulator_desc->ops->get_voltage_sel);
5309 	WARN_ON(regulator_desc->ops->set_voltage &&
5310 		regulator_desc->ops->set_voltage_sel);
5311 
5312 	/* If we're using selectors we must implement list_voltage. */
5313 	if (regulator_desc->ops->get_voltage_sel &&
5314 	    !regulator_desc->ops->list_voltage) {
5315 		ret = -EINVAL;
5316 		goto rinse;
5317 	}
5318 	if (regulator_desc->ops->set_voltage_sel &&
5319 	    !regulator_desc->ops->list_voltage) {
5320 		ret = -EINVAL;
5321 		goto rinse;
5322 	}
5323 
5324 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5325 	if (rdev == NULL) {
5326 		ret = -ENOMEM;
5327 		goto rinse;
5328 	}
5329 	device_initialize(&rdev->dev);
5330 
5331 	/*
5332 	 * Duplicate the config so the driver could override it after
5333 	 * parsing init data.
5334 	 */
5335 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5336 	if (config == NULL) {
5337 		ret = -ENOMEM;
5338 		goto clean;
5339 	}
5340 
5341 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5342 					       &rdev->dev.of_node);
5343 
5344 	/*
5345 	 * Sometimes not all resources are probed already so we need to take
5346 	 * that into account. This happens most the time if the ena_gpiod comes
5347 	 * from a gpio extender or something else.
5348 	 */
5349 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5350 		ret = -EPROBE_DEFER;
5351 		goto clean;
5352 	}
5353 
5354 	/*
5355 	 * We need to keep track of any GPIO descriptor coming from the
5356 	 * device tree until we have handled it over to the core. If the
5357 	 * config that was passed in to this function DOES NOT contain
5358 	 * a descriptor, and the config after this call DOES contain
5359 	 * a descriptor, we definitely got one from parsing the device
5360 	 * tree.
5361 	 */
5362 	if (!cfg->ena_gpiod && config->ena_gpiod)
5363 		dangling_of_gpiod = true;
5364 	if (!init_data) {
5365 		init_data = config->init_data;
5366 		rdev->dev.of_node = of_node_get(config->of_node);
5367 	}
5368 
5369 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5370 	rdev->reg_data = config->driver_data;
5371 	rdev->owner = regulator_desc->owner;
5372 	rdev->desc = regulator_desc;
5373 	if (config->regmap)
5374 		rdev->regmap = config->regmap;
5375 	else if (dev_get_regmap(dev, NULL))
5376 		rdev->regmap = dev_get_regmap(dev, NULL);
5377 	else if (dev->parent)
5378 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5379 	INIT_LIST_HEAD(&rdev->consumer_list);
5380 	INIT_LIST_HEAD(&rdev->list);
5381 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5382 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5383 
5384 	/* preform any regulator specific init */
5385 	if (init_data && init_data->regulator_init) {
5386 		ret = init_data->regulator_init(rdev->reg_data);
5387 		if (ret < 0)
5388 			goto clean;
5389 	}
5390 
5391 	if (config->ena_gpiod) {
5392 		ret = regulator_ena_gpio_request(rdev, config);
5393 		if (ret != 0) {
5394 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5395 				 ERR_PTR(ret));
5396 			goto clean;
5397 		}
5398 		/* The regulator core took over the GPIO descriptor */
5399 		dangling_cfg_gpiod = false;
5400 		dangling_of_gpiod = false;
5401 	}
5402 
5403 	/* register with sysfs */
5404 	rdev->dev.class = &regulator_class;
5405 	rdev->dev.parent = dev;
5406 	dev_set_name(&rdev->dev, "regulator.%lu",
5407 		    (unsigned long) atomic_inc_return(&regulator_no));
5408 	dev_set_drvdata(&rdev->dev, rdev);
5409 
5410 	/* set regulator constraints */
5411 	if (init_data)
5412 		rdev->constraints = kmemdup(&init_data->constraints,
5413 					    sizeof(*rdev->constraints),
5414 					    GFP_KERNEL);
5415 	else
5416 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5417 					    GFP_KERNEL);
5418 	if (!rdev->constraints) {
5419 		ret = -ENOMEM;
5420 		goto wash;
5421 	}
5422 
5423 	if (init_data && init_data->supply_regulator)
5424 		rdev->supply_name = init_data->supply_regulator;
5425 	else if (regulator_desc->supply_name)
5426 		rdev->supply_name = regulator_desc->supply_name;
5427 
5428 	ret = set_machine_constraints(rdev);
5429 	if (ret == -EPROBE_DEFER) {
5430 		/* Regulator might be in bypass mode and so needs its supply
5431 		 * to set the constraints */
5432 		/* FIXME: this currently triggers a chicken-and-egg problem
5433 		 * when creating -SUPPLY symlink in sysfs to a regulator
5434 		 * that is just being created */
5435 		ret = regulator_resolve_supply(rdev);
5436 		if (!ret)
5437 			ret = set_machine_constraints(rdev);
5438 		else
5439 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5440 				 ERR_PTR(ret));
5441 	}
5442 	if (ret < 0)
5443 		goto wash;
5444 
5445 	ret = regulator_init_coupling(rdev);
5446 	if (ret < 0)
5447 		goto wash;
5448 
5449 	/* add consumers devices */
5450 	if (init_data) {
5451 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5452 			ret = set_consumer_device_supply(rdev,
5453 				init_data->consumer_supplies[i].dev_name,
5454 				init_data->consumer_supplies[i].supply);
5455 			if (ret < 0) {
5456 				dev_err(dev, "Failed to set supply %s\n",
5457 					init_data->consumer_supplies[i].supply);
5458 				goto unset_supplies;
5459 			}
5460 		}
5461 	}
5462 
5463 	if (!rdev->desc->ops->get_voltage &&
5464 	    !rdev->desc->ops->list_voltage &&
5465 	    !rdev->desc->fixed_uV)
5466 		rdev->is_switch = true;
5467 
5468 	ret = device_add(&rdev->dev);
5469 	if (ret != 0)
5470 		goto unset_supplies;
5471 
5472 	rdev_init_debugfs(rdev);
5473 
5474 	/* try to resolve regulators coupling since a new one was registered */
5475 	mutex_lock(&regulator_list_mutex);
5476 	regulator_resolve_coupling(rdev);
5477 	mutex_unlock(&regulator_list_mutex);
5478 
5479 	/* try to resolve regulators supply since a new one was registered */
5480 	class_for_each_device(&regulator_class, NULL, NULL,
5481 			      regulator_register_resolve_supply);
5482 	kfree(config);
5483 	return rdev;
5484 
5485 unset_supplies:
5486 	mutex_lock(&regulator_list_mutex);
5487 	unset_regulator_supplies(rdev);
5488 	regulator_remove_coupling(rdev);
5489 	mutex_unlock(&regulator_list_mutex);
5490 wash:
5491 	regulator_put(rdev->supply);
5492 	kfree(rdev->coupling_desc.coupled_rdevs);
5493 	mutex_lock(&regulator_list_mutex);
5494 	regulator_ena_gpio_free(rdev);
5495 	mutex_unlock(&regulator_list_mutex);
5496 	put_device(&rdev->dev);
5497 	rdev = NULL;
5498 clean:
5499 	if (dangling_of_gpiod)
5500 		gpiod_put(config->ena_gpiod);
5501 	if (rdev && rdev->dev.of_node)
5502 		of_node_put(rdev->dev.of_node);
5503 	kfree(rdev);
5504 	kfree(config);
5505 rinse:
5506 	if (dangling_cfg_gpiod)
5507 		gpiod_put(cfg->ena_gpiod);
5508 	return ERR_PTR(ret);
5509 }
5510 EXPORT_SYMBOL_GPL(regulator_register);
5511 
5512 /**
5513  * regulator_unregister - unregister regulator
5514  * @rdev: regulator to unregister
5515  *
5516  * Called by regulator drivers to unregister a regulator.
5517  */
regulator_unregister(struct regulator_dev * rdev)5518 void regulator_unregister(struct regulator_dev *rdev)
5519 {
5520 	if (rdev == NULL)
5521 		return;
5522 
5523 	if (rdev->supply) {
5524 		while (rdev->use_count--)
5525 			regulator_disable(rdev->supply);
5526 		regulator_put(rdev->supply);
5527 	}
5528 
5529 	flush_work(&rdev->disable_work.work);
5530 
5531 	mutex_lock(&regulator_list_mutex);
5532 
5533 	WARN_ON(rdev->open_count);
5534 	regulator_remove_coupling(rdev);
5535 	unset_regulator_supplies(rdev);
5536 	list_del(&rdev->list);
5537 	regulator_ena_gpio_free(rdev);
5538 	device_unregister(&rdev->dev);
5539 
5540 	mutex_unlock(&regulator_list_mutex);
5541 }
5542 EXPORT_SYMBOL_GPL(regulator_unregister);
5543 
5544 #ifdef CONFIG_SUSPEND
5545 /**
5546  * regulator_suspend - prepare regulators for system wide suspend
5547  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5548  *
5549  * Configure each regulator with it's suspend operating parameters for state.
5550  */
regulator_suspend(struct device * dev)5551 static int regulator_suspend(struct device *dev)
5552 {
5553 	struct regulator_dev *rdev = dev_to_rdev(dev);
5554 	suspend_state_t state = pm_suspend_target_state;
5555 	int ret;
5556 	const struct regulator_state *rstate;
5557 
5558 	rstate = regulator_get_suspend_state_check(rdev, state);
5559 	if (!rstate)
5560 		return 0;
5561 
5562 	regulator_lock(rdev);
5563 	ret = __suspend_set_state(rdev, rstate);
5564 	regulator_unlock(rdev);
5565 
5566 	return ret;
5567 }
5568 
regulator_resume(struct device * dev)5569 static int regulator_resume(struct device *dev)
5570 {
5571 	suspend_state_t state = pm_suspend_target_state;
5572 	struct regulator_dev *rdev = dev_to_rdev(dev);
5573 	struct regulator_state *rstate;
5574 	int ret = 0;
5575 
5576 	rstate = regulator_get_suspend_state(rdev, state);
5577 	if (rstate == NULL)
5578 		return 0;
5579 
5580 	/* Avoid grabbing the lock if we don't need to */
5581 	if (!rdev->desc->ops->resume)
5582 		return 0;
5583 
5584 	regulator_lock(rdev);
5585 
5586 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5587 	    rstate->enabled == DISABLE_IN_SUSPEND)
5588 		ret = rdev->desc->ops->resume(rdev);
5589 
5590 	regulator_unlock(rdev);
5591 
5592 	return ret;
5593 }
5594 #else /* !CONFIG_SUSPEND */
5595 
5596 #define regulator_suspend	NULL
5597 #define regulator_resume	NULL
5598 
5599 #endif /* !CONFIG_SUSPEND */
5600 
5601 #ifdef CONFIG_PM
5602 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5603 	.suspend	= regulator_suspend,
5604 	.resume		= regulator_resume,
5605 };
5606 #endif
5607 
5608 struct class regulator_class = {
5609 	.name = "regulator",
5610 	.dev_release = regulator_dev_release,
5611 	.dev_groups = regulator_dev_groups,
5612 #ifdef CONFIG_PM
5613 	.pm = &regulator_pm_ops,
5614 #endif
5615 };
5616 /**
5617  * regulator_has_full_constraints - the system has fully specified constraints
5618  *
5619  * Calling this function will cause the regulator API to disable all
5620  * regulators which have a zero use count and don't have an always_on
5621  * constraint in a late_initcall.
5622  *
5623  * The intention is that this will become the default behaviour in a
5624  * future kernel release so users are encouraged to use this facility
5625  * now.
5626  */
regulator_has_full_constraints(void)5627 void regulator_has_full_constraints(void)
5628 {
5629 	has_full_constraints = 1;
5630 }
5631 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5632 
5633 /**
5634  * rdev_get_drvdata - get rdev regulator driver data
5635  * @rdev: regulator
5636  *
5637  * Get rdev regulator driver private data. This call can be used in the
5638  * regulator driver context.
5639  */
rdev_get_drvdata(struct regulator_dev * rdev)5640 void *rdev_get_drvdata(struct regulator_dev *rdev)
5641 {
5642 	return rdev->reg_data;
5643 }
5644 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5645 
5646 /**
5647  * regulator_get_drvdata - get regulator driver data
5648  * @regulator: regulator
5649  *
5650  * Get regulator driver private data. This call can be used in the consumer
5651  * driver context when non API regulator specific functions need to be called.
5652  */
regulator_get_drvdata(struct regulator * regulator)5653 void *regulator_get_drvdata(struct regulator *regulator)
5654 {
5655 	return regulator->rdev->reg_data;
5656 }
5657 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5658 
5659 /**
5660  * regulator_set_drvdata - set regulator driver data
5661  * @regulator: regulator
5662  * @data: data
5663  */
regulator_set_drvdata(struct regulator * regulator,void * data)5664 void regulator_set_drvdata(struct regulator *regulator, void *data)
5665 {
5666 	regulator->rdev->reg_data = data;
5667 }
5668 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5669 
5670 /**
5671  * regulator_get_id - get regulator ID
5672  * @rdev: regulator
5673  */
rdev_get_id(struct regulator_dev * rdev)5674 int rdev_get_id(struct regulator_dev *rdev)
5675 {
5676 	return rdev->desc->id;
5677 }
5678 EXPORT_SYMBOL_GPL(rdev_get_id);
5679 
rdev_get_dev(struct regulator_dev * rdev)5680 struct device *rdev_get_dev(struct regulator_dev *rdev)
5681 {
5682 	return &rdev->dev;
5683 }
5684 EXPORT_SYMBOL_GPL(rdev_get_dev);
5685 
rdev_get_regmap(struct regulator_dev * rdev)5686 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5687 {
5688 	return rdev->regmap;
5689 }
5690 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5691 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5692 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5693 {
5694 	return reg_init_data->driver_data;
5695 }
5696 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5697 
5698 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5699 static int supply_map_show(struct seq_file *sf, void *data)
5700 {
5701 	struct regulator_map *map;
5702 
5703 	list_for_each_entry(map, &regulator_map_list, list) {
5704 		seq_printf(sf, "%s -> %s.%s\n",
5705 				rdev_get_name(map->regulator), map->dev_name,
5706 				map->supply);
5707 	}
5708 
5709 	return 0;
5710 }
5711 DEFINE_SHOW_ATTRIBUTE(supply_map);
5712 
5713 struct summary_data {
5714 	struct seq_file *s;
5715 	struct regulator_dev *parent;
5716 	int level;
5717 };
5718 
5719 static void regulator_summary_show_subtree(struct seq_file *s,
5720 					   struct regulator_dev *rdev,
5721 					   int level);
5722 
regulator_summary_show_children(struct device * dev,void * data)5723 static int regulator_summary_show_children(struct device *dev, void *data)
5724 {
5725 	struct regulator_dev *rdev = dev_to_rdev(dev);
5726 	struct summary_data *summary_data = data;
5727 
5728 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5729 		regulator_summary_show_subtree(summary_data->s, rdev,
5730 					       summary_data->level + 1);
5731 
5732 	return 0;
5733 }
5734 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5735 static void regulator_summary_show_subtree(struct seq_file *s,
5736 					   struct regulator_dev *rdev,
5737 					   int level)
5738 {
5739 	struct regulation_constraints *c;
5740 	struct regulator *consumer;
5741 	struct summary_data summary_data;
5742 	unsigned int opmode;
5743 
5744 	if (!rdev)
5745 		return;
5746 
5747 	opmode = _regulator_get_mode_unlocked(rdev);
5748 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5749 		   level * 3 + 1, "",
5750 		   30 - level * 3, rdev_get_name(rdev),
5751 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5752 		   regulator_opmode_to_str(opmode));
5753 
5754 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5755 	seq_printf(s, "%5dmA ",
5756 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5757 
5758 	c = rdev->constraints;
5759 	if (c) {
5760 		switch (rdev->desc->type) {
5761 		case REGULATOR_VOLTAGE:
5762 			seq_printf(s, "%5dmV %5dmV ",
5763 				   c->min_uV / 1000, c->max_uV / 1000);
5764 			break;
5765 		case REGULATOR_CURRENT:
5766 			seq_printf(s, "%5dmA %5dmA ",
5767 				   c->min_uA / 1000, c->max_uA / 1000);
5768 			break;
5769 		}
5770 	}
5771 
5772 	seq_puts(s, "\n");
5773 
5774 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5775 		if (consumer->dev && consumer->dev->class == &regulator_class)
5776 			continue;
5777 
5778 		seq_printf(s, "%*s%-*s ",
5779 			   (level + 1) * 3 + 1, "",
5780 			   30 - (level + 1) * 3,
5781 			   consumer->supply_name ? consumer->supply_name :
5782 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5783 
5784 		switch (rdev->desc->type) {
5785 		case REGULATOR_VOLTAGE:
5786 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5787 				   consumer->enable_count,
5788 				   consumer->uA_load / 1000,
5789 				   consumer->uA_load && !consumer->enable_count ?
5790 				   '*' : ' ',
5791 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5792 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5793 			break;
5794 		case REGULATOR_CURRENT:
5795 			break;
5796 		}
5797 
5798 		seq_puts(s, "\n");
5799 	}
5800 
5801 	summary_data.s = s;
5802 	summary_data.level = level;
5803 	summary_data.parent = rdev;
5804 
5805 	class_for_each_device(&regulator_class, NULL, &summary_data,
5806 			      regulator_summary_show_children);
5807 }
5808 
5809 struct summary_lock_data {
5810 	struct ww_acquire_ctx *ww_ctx;
5811 	struct regulator_dev **new_contended_rdev;
5812 	struct regulator_dev **old_contended_rdev;
5813 };
5814 
regulator_summary_lock_one(struct device * dev,void * data)5815 static int regulator_summary_lock_one(struct device *dev, void *data)
5816 {
5817 	struct regulator_dev *rdev = dev_to_rdev(dev);
5818 	struct summary_lock_data *lock_data = data;
5819 	int ret = 0;
5820 
5821 	if (rdev != *lock_data->old_contended_rdev) {
5822 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5823 
5824 		if (ret == -EDEADLK)
5825 			*lock_data->new_contended_rdev = rdev;
5826 		else
5827 			WARN_ON_ONCE(ret);
5828 	} else {
5829 		*lock_data->old_contended_rdev = NULL;
5830 	}
5831 
5832 	return ret;
5833 }
5834 
regulator_summary_unlock_one(struct device * dev,void * data)5835 static int regulator_summary_unlock_one(struct device *dev, void *data)
5836 {
5837 	struct regulator_dev *rdev = dev_to_rdev(dev);
5838 	struct summary_lock_data *lock_data = data;
5839 
5840 	if (lock_data) {
5841 		if (rdev == *lock_data->new_contended_rdev)
5842 			return -EDEADLK;
5843 	}
5844 
5845 	regulator_unlock(rdev);
5846 
5847 	return 0;
5848 }
5849 
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5850 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5851 				      struct regulator_dev **new_contended_rdev,
5852 				      struct regulator_dev **old_contended_rdev)
5853 {
5854 	struct summary_lock_data lock_data;
5855 	int ret;
5856 
5857 	lock_data.ww_ctx = ww_ctx;
5858 	lock_data.new_contended_rdev = new_contended_rdev;
5859 	lock_data.old_contended_rdev = old_contended_rdev;
5860 
5861 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5862 				    regulator_summary_lock_one);
5863 	if (ret)
5864 		class_for_each_device(&regulator_class, NULL, &lock_data,
5865 				      regulator_summary_unlock_one);
5866 
5867 	return ret;
5868 }
5869 
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5870 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5871 {
5872 	struct regulator_dev *new_contended_rdev = NULL;
5873 	struct regulator_dev *old_contended_rdev = NULL;
5874 	int err;
5875 
5876 	mutex_lock(&regulator_list_mutex);
5877 
5878 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5879 
5880 	do {
5881 		if (new_contended_rdev) {
5882 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5883 			old_contended_rdev = new_contended_rdev;
5884 			old_contended_rdev->ref_cnt++;
5885 			old_contended_rdev->mutex_owner = current;
5886 		}
5887 
5888 		err = regulator_summary_lock_all(ww_ctx,
5889 						 &new_contended_rdev,
5890 						 &old_contended_rdev);
5891 
5892 		if (old_contended_rdev)
5893 			regulator_unlock(old_contended_rdev);
5894 
5895 	} while (err == -EDEADLK);
5896 
5897 	ww_acquire_done(ww_ctx);
5898 }
5899 
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5900 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5901 {
5902 	class_for_each_device(&regulator_class, NULL, NULL,
5903 			      regulator_summary_unlock_one);
5904 	ww_acquire_fini(ww_ctx);
5905 
5906 	mutex_unlock(&regulator_list_mutex);
5907 }
5908 
regulator_summary_show_roots(struct device * dev,void * data)5909 static int regulator_summary_show_roots(struct device *dev, void *data)
5910 {
5911 	struct regulator_dev *rdev = dev_to_rdev(dev);
5912 	struct seq_file *s = data;
5913 
5914 	if (!rdev->supply)
5915 		regulator_summary_show_subtree(s, rdev, 0);
5916 
5917 	return 0;
5918 }
5919 
regulator_summary_show(struct seq_file * s,void * data)5920 static int regulator_summary_show(struct seq_file *s, void *data)
5921 {
5922 	struct ww_acquire_ctx ww_ctx;
5923 
5924 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5925 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5926 
5927 	regulator_summary_lock(&ww_ctx);
5928 
5929 	class_for_each_device(&regulator_class, NULL, s,
5930 			      regulator_summary_show_roots);
5931 
5932 	regulator_summary_unlock(&ww_ctx);
5933 
5934 	return 0;
5935 }
5936 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5937 #endif /* CONFIG_DEBUG_FS */
5938 
regulator_init(void)5939 static int __init regulator_init(void)
5940 {
5941 	int ret;
5942 
5943 	ret = class_register(&regulator_class);
5944 
5945 	debugfs_root = debugfs_create_dir("regulator", NULL);
5946 	if (!debugfs_root)
5947 		pr_warn("regulator: Failed to create debugfs directory\n");
5948 
5949 #ifdef CONFIG_DEBUG_FS
5950 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5951 			    &supply_map_fops);
5952 
5953 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5954 			    NULL, &regulator_summary_fops);
5955 #endif
5956 	regulator_dummy_init();
5957 
5958 	regulator_coupler_register(&generic_regulator_coupler);
5959 
5960 	return ret;
5961 }
5962 
5963 /* init early to allow our consumers to complete system booting */
5964 core_initcall(regulator_init);
5965 
regulator_late_cleanup(struct device * dev,void * data)5966 static int regulator_late_cleanup(struct device *dev, void *data)
5967 {
5968 	struct regulator_dev *rdev = dev_to_rdev(dev);
5969 	struct regulation_constraints *c = rdev->constraints;
5970 	int ret;
5971 
5972 	if (c && c->always_on)
5973 		return 0;
5974 
5975 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5976 		return 0;
5977 
5978 	regulator_lock(rdev);
5979 
5980 	if (rdev->use_count)
5981 		goto unlock;
5982 
5983 	/* If reading the status failed, assume that it's off. */
5984 	if (_regulator_is_enabled(rdev) <= 0)
5985 		goto unlock;
5986 
5987 	if (have_full_constraints()) {
5988 		/* We log since this may kill the system if it goes
5989 		 * wrong. */
5990 		rdev_info(rdev, "disabling\n");
5991 		ret = _regulator_do_disable(rdev);
5992 		if (ret != 0)
5993 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5994 	} else {
5995 		/* The intention is that in future we will
5996 		 * assume that full constraints are provided
5997 		 * so warn even if we aren't going to do
5998 		 * anything here.
5999 		 */
6000 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6001 	}
6002 
6003 unlock:
6004 	regulator_unlock(rdev);
6005 
6006 	return 0;
6007 }
6008 
regulator_init_complete_work_function(struct work_struct * work)6009 static void regulator_init_complete_work_function(struct work_struct *work)
6010 {
6011 	/*
6012 	 * Regulators may had failed to resolve their input supplies
6013 	 * when were registered, either because the input supply was
6014 	 * not registered yet or because its parent device was not
6015 	 * bound yet. So attempt to resolve the input supplies for
6016 	 * pending regulators before trying to disable unused ones.
6017 	 */
6018 	class_for_each_device(&regulator_class, NULL, NULL,
6019 			      regulator_register_resolve_supply);
6020 
6021 	/* If we have a full configuration then disable any regulators
6022 	 * we have permission to change the status for and which are
6023 	 * not in use or always_on.  This is effectively the default
6024 	 * for DT and ACPI as they have full constraints.
6025 	 */
6026 	class_for_each_device(&regulator_class, NULL, NULL,
6027 			      regulator_late_cleanup);
6028 }
6029 
6030 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6031 			    regulator_init_complete_work_function);
6032 
regulator_init_complete(void)6033 static int __init regulator_init_complete(void)
6034 {
6035 	/*
6036 	 * Since DT doesn't provide an idiomatic mechanism for
6037 	 * enabling full constraints and since it's much more natural
6038 	 * with DT to provide them just assume that a DT enabled
6039 	 * system has full constraints.
6040 	 */
6041 	if (of_have_populated_dt())
6042 		has_full_constraints = true;
6043 
6044 	/*
6045 	 * We punt completion for an arbitrary amount of time since
6046 	 * systems like distros will load many drivers from userspace
6047 	 * so consumers might not always be ready yet, this is
6048 	 * particularly an issue with laptops where this might bounce
6049 	 * the display off then on.  Ideally we'd get a notification
6050 	 * from userspace when this happens but we don't so just wait
6051 	 * a bit and hope we waited long enough.  It'd be better if
6052 	 * we'd only do this on systems that need it, and a kernel
6053 	 * command line option might be useful.
6054 	 */
6055 	schedule_delayed_work(&regulator_init_complete_work,
6056 			      msecs_to_jiffies(30000));
6057 
6058 	return 0;
6059 }
6060 late_initcall_sync(regulator_init_complete);
6061