1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9 /*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 return 0;
131 }
132
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 return 0;
136 }
137
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 return 0;
141 }
142
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 return 0;
147 }
148
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 return 0;
152 }
153
hpet_rtc_dropped_irq(void)154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 return 0;
157 }
158
hpet_rtc_timer_init(void)159 static inline int hpet_rtc_timer_init(void)
160 {
161 return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
hpet_register_irq_handler(irq_handler_t handler)166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 return 0;
169 }
170
hpet_unregister_irq_handler(irq_handler_t handler)171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)179 static inline int use_hpet_alarm(void)
180 {
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192 #define can_bank2 true
193
cmos_read_bank2(unsigned char addr)194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198 }
199
cmos_write_bank2(unsigned char val,unsigned char addr)200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2 false
209
cmos_read_bank2(unsigned char addr)210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 return 0;
213 }
214
cmos_write_bank2(unsigned char val,unsigned char addr)215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
cmos_read_time(struct device * dev,struct rtc_time * t)223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 int ret;
226
227 /*
228 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 * which tells the caller that this RTC value is unusable.
230 */
231 if (!pm_trace_rtc_valid())
232 return -EIO;
233
234 ret = mc146818_get_time(t);
235 if (ret < 0) {
236 dev_err_ratelimited(dev, "unable to read current time\n");
237 return ret;
238 }
239
240 return 0;
241 }
242
cmos_set_time(struct device * dev,struct rtc_time * t)243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245 /* NOTE: this ignores the issue whereby updating the seconds
246 * takes effect exactly 500ms after we write the register.
247 * (Also queueing and other delays before we get this far.)
248 */
249 return mc146818_set_time(t);
250 }
251
252 struct cmos_read_alarm_callback_param {
253 struct cmos_rtc *cmos;
254 struct rtc_time *time;
255 unsigned char rtc_control;
256 };
257
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 void *param_in)
260 {
261 struct cmos_read_alarm_callback_param *p =
262 (struct cmos_read_alarm_callback_param *)param_in;
263 struct rtc_time *time = p->time;
264
265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269 if (p->cmos->day_alrm) {
270 /* ignore upper bits on readback per ACPI spec */
271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 if (!time->tm_mday)
273 time->tm_mday = -1;
274
275 if (p->cmos->mon_alrm) {
276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 if (!time->tm_mon)
278 time->tm_mon = -1;
279 }
280 }
281
282 p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
288 struct cmos_read_alarm_callback_param p = {
289 .cmos = cmos,
290 .time = &t->time,
291 };
292
293 /* This not only a rtc_op, but also called directly */
294 if (!is_valid_irq(cmos->irq))
295 return -EIO;
296
297 /* Basic alarms only support hour, minute, and seconds fields.
298 * Some also support day and month, for alarms up to a year in
299 * the future.
300 */
301
302 /* Some Intel chipsets disconnect the alarm registers when the clock
303 * update is in progress - during this time reads return bogus values
304 * and writes may fail silently. See for example "7th Generation Intel®
305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 * 27.7.1
307 *
308 * Use the mc146818_avoid_UIP() function to avoid this.
309 */
310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
311 return -EIO;
312
313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 if (((unsigned)t->time.tm_sec) < 0x60)
315 t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 else
317 t->time.tm_sec = -1;
318 if (((unsigned)t->time.tm_min) < 0x60)
319 t->time.tm_min = bcd2bin(t->time.tm_min);
320 else
321 t->time.tm_min = -1;
322 if (((unsigned)t->time.tm_hour) < 0x24)
323 t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 else
325 t->time.tm_hour = -1;
326
327 if (cmos->day_alrm) {
328 if (((unsigned)t->time.tm_mday) <= 0x31)
329 t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 else
331 t->time.tm_mday = -1;
332
333 if (cmos->mon_alrm) {
334 if (((unsigned)t->time.tm_mon) <= 0x12)
335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 else
337 t->time.tm_mon = -1;
338 }
339 }
340 }
341
342 t->enabled = !!(p.rtc_control & RTC_AIE);
343 t->pending = 0;
344
345 return 0;
346 }
347
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350 unsigned char rtc_intr;
351
352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 * allegedly some older rtcs need that to handle irqs properly
354 */
355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357 if (use_hpet_alarm())
358 return;
359
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 unsigned char rtc_control;
368
369 /* flush any pending IRQ status, notably for update irqs,
370 * before we enable new IRQs
371 */
372 rtc_control = CMOS_READ(RTC_CONTROL);
373 cmos_checkintr(cmos, rtc_control);
374
375 rtc_control |= mask;
376 CMOS_WRITE(rtc_control, RTC_CONTROL);
377 if (use_hpet_alarm())
378 hpet_set_rtc_irq_bit(mask);
379
380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 if (cmos->wake_on)
382 cmos->wake_on(cmos->dev);
383 }
384
385 cmos_checkintr(cmos, rtc_control);
386 }
387
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390 unsigned char rtc_control;
391
392 rtc_control = CMOS_READ(RTC_CONTROL);
393 rtc_control &= ~mask;
394 CMOS_WRITE(rtc_control, RTC_CONTROL);
395 if (use_hpet_alarm())
396 hpet_mask_rtc_irq_bit(mask);
397
398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 if (cmos->wake_off)
400 cmos->wake_off(cmos->dev);
401 }
402
403 cmos_checkintr(cmos, rtc_control);
404 }
405
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 struct rtc_time now;
410
411 cmos_read_time(dev, &now);
412
413 if (!cmos->day_alrm) {
414 time64_t t_max_date;
415 time64_t t_alrm;
416
417 t_max_date = rtc_tm_to_time64(&now);
418 t_max_date += 24 * 60 * 60 - 1;
419 t_alrm = rtc_tm_to_time64(&t->time);
420 if (t_alrm > t_max_date) {
421 dev_err(dev,
422 "Alarms can be up to one day in the future\n");
423 return -EINVAL;
424 }
425 } else if (!cmos->mon_alrm) {
426 struct rtc_time max_date = now;
427 time64_t t_max_date;
428 time64_t t_alrm;
429 int max_mday;
430
431 if (max_date.tm_mon == 11) {
432 max_date.tm_mon = 0;
433 max_date.tm_year += 1;
434 } else {
435 max_date.tm_mon += 1;
436 }
437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 if (max_date.tm_mday > max_mday)
439 max_date.tm_mday = max_mday;
440
441 t_max_date = rtc_tm_to_time64(&max_date);
442 t_max_date -= 1;
443 t_alrm = rtc_tm_to_time64(&t->time);
444 if (t_alrm > t_max_date) {
445 dev_err(dev,
446 "Alarms can be up to one month in the future\n");
447 return -EINVAL;
448 }
449 } else {
450 struct rtc_time max_date = now;
451 time64_t t_max_date;
452 time64_t t_alrm;
453 int max_mday;
454
455 max_date.tm_year += 1;
456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 if (max_date.tm_mday > max_mday)
458 max_date.tm_mday = max_mday;
459
460 t_max_date = rtc_tm_to_time64(&max_date);
461 t_max_date -= 1;
462 t_alrm = rtc_tm_to_time64(&t->time);
463 if (t_alrm > t_max_date) {
464 dev_err(dev,
465 "Alarms can be up to one year in the future\n");
466 return -EINVAL;
467 }
468 }
469
470 return 0;
471 }
472
473 struct cmos_set_alarm_callback_param {
474 struct cmos_rtc *cmos;
475 unsigned char mon, mday, hrs, min, sec;
476 struct rtc_wkalrm *t;
477 };
478
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480 * once
481 */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 void *param_in)
484 {
485 struct cmos_set_alarm_callback_param *p =
486 (struct cmos_set_alarm_callback_param *)param_in;
487
488 /* next rtc irq must not be from previous alarm setting */
489 cmos_irq_disable(p->cmos, RTC_AIE);
490
491 /* update alarm */
492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496 /* the system may support an "enhanced" alarm */
497 if (p->cmos->day_alrm) {
498 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 if (p->cmos->mon_alrm)
500 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 }
502
503 if (use_hpet_alarm()) {
504 /*
505 * FIXME the HPET alarm glue currently ignores day_alrm
506 * and mon_alrm ...
507 */
508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509 p->t->time.tm_sec);
510 }
511
512 if (p->t->enabled)
513 cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 struct cmos_set_alarm_callback_param p = {
520 .cmos = cmos,
521 .t = t
522 };
523 unsigned char rtc_control;
524 int ret;
525
526 /* This not only a rtc_op, but also called directly */
527 if (!is_valid_irq(cmos->irq))
528 return -EIO;
529
530 ret = cmos_validate_alarm(dev, t);
531 if (ret < 0)
532 return ret;
533
534 p.mon = t->time.tm_mon + 1;
535 p.mday = t->time.tm_mday;
536 p.hrs = t->time.tm_hour;
537 p.min = t->time.tm_min;
538 p.sec = t->time.tm_sec;
539
540 spin_lock_irq(&rtc_lock);
541 rtc_control = CMOS_READ(RTC_CONTROL);
542 spin_unlock_irq(&rtc_lock);
543
544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 /* Writing 0xff means "don't care" or "match all". */
546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 }
552
553 /*
554 * Some Intel chipsets disconnect the alarm registers when the clock
555 * update is in progress - during this time writes fail silently.
556 *
557 * Use mc146818_avoid_UIP() to avoid this.
558 */
559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
560 return -EIO;
561
562 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563
564 return 0;
565 }
566
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569 struct cmos_rtc *cmos = dev_get_drvdata(dev);
570 unsigned long flags;
571
572 spin_lock_irqsave(&rtc_lock, flags);
573
574 if (enabled)
575 cmos_irq_enable(cmos, RTC_AIE);
576 else
577 cmos_irq_disable(cmos, RTC_AIE);
578
579 spin_unlock_irqrestore(&rtc_lock, flags);
580 return 0;
581 }
582
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
cmos_procfs(struct device * dev,struct seq_file * seq)585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587 struct cmos_rtc *cmos = dev_get_drvdata(dev);
588 unsigned char rtc_control, valid;
589
590 spin_lock_irq(&rtc_lock);
591 rtc_control = CMOS_READ(RTC_CONTROL);
592 valid = CMOS_READ(RTC_VALID);
593 spin_unlock_irq(&rtc_lock);
594
595 /* NOTE: at least ICH6 reports battery status using a different
596 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 */
598 seq_printf(seq,
599 "periodic_IRQ\t: %s\n"
600 "update_IRQ\t: %s\n"
601 "HPET_emulated\t: %s\n"
602 // "square_wave\t: %s\n"
603 "BCD\t\t: %s\n"
604 "DST_enable\t: %s\n"
605 "periodic_freq\t: %d\n"
606 "batt_status\t: %s\n",
607 (rtc_control & RTC_PIE) ? "yes" : "no",
608 (rtc_control & RTC_UIE) ? "yes" : "no",
609 use_hpet_alarm() ? "yes" : "no",
610 // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 cmos->rtc->irq_freq,
614 (valid & RTC_VRT) ? "okay" : "dead");
615
616 return 0;
617 }
618
619 #else
620 #define cmos_procfs NULL
621 #endif
622
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 .read_time = cmos_read_time,
625 .set_time = cmos_set_time,
626 .read_alarm = cmos_read_alarm,
627 .set_alarm = cmos_set_alarm,
628 .proc = cmos_procfs,
629 .alarm_irq_enable = cmos_alarm_irq_enable,
630 };
631
632 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
633 .read_time = cmos_read_time,
634 .set_time = cmos_set_time,
635 .proc = cmos_procfs,
636 };
637
638 /*----------------------------------------------------------------*/
639
640 /*
641 * All these chips have at least 64 bytes of address space, shared by
642 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
643 * by boot firmware. Modern chips have 128 or 256 bytes.
644 */
645
646 #define NVRAM_OFFSET (RTC_REG_D + 1)
647
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)648 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
649 size_t count)
650 {
651 unsigned char *buf = val;
652 int retval;
653
654 off += NVRAM_OFFSET;
655 spin_lock_irq(&rtc_lock);
656 for (retval = 0; count; count--, off++, retval++) {
657 if (off < 128)
658 *buf++ = CMOS_READ(off);
659 else if (can_bank2)
660 *buf++ = cmos_read_bank2(off);
661 else
662 break;
663 }
664 spin_unlock_irq(&rtc_lock);
665
666 return retval;
667 }
668
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)669 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
670 size_t count)
671 {
672 struct cmos_rtc *cmos = priv;
673 unsigned char *buf = val;
674 int retval;
675
676 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
677 * checksum on part of the NVRAM data. That's currently ignored
678 * here. If userspace is smart enough to know what fields of
679 * NVRAM to update, updating checksums is also part of its job.
680 */
681 off += NVRAM_OFFSET;
682 spin_lock_irq(&rtc_lock);
683 for (retval = 0; count; count--, off++, retval++) {
684 /* don't trash RTC registers */
685 if (off == cmos->day_alrm
686 || off == cmos->mon_alrm
687 || off == cmos->century)
688 buf++;
689 else if (off < 128)
690 CMOS_WRITE(*buf++, off);
691 else if (can_bank2)
692 cmos_write_bank2(*buf++, off);
693 else
694 break;
695 }
696 spin_unlock_irq(&rtc_lock);
697
698 return retval;
699 }
700
701 /*----------------------------------------------------------------*/
702
703 static struct cmos_rtc cmos_rtc;
704
cmos_interrupt(int irq,void * p)705 static irqreturn_t cmos_interrupt(int irq, void *p)
706 {
707 u8 irqstat;
708 u8 rtc_control;
709
710 spin_lock(&rtc_lock);
711
712 /* When the HPET interrupt handler calls us, the interrupt
713 * status is passed as arg1 instead of the irq number. But
714 * always clear irq status, even when HPET is in the way.
715 *
716 * Note that HPET and RTC are almost certainly out of phase,
717 * giving different IRQ status ...
718 */
719 irqstat = CMOS_READ(RTC_INTR_FLAGS);
720 rtc_control = CMOS_READ(RTC_CONTROL);
721 if (use_hpet_alarm())
722 irqstat = (unsigned long)irq & 0xF0;
723
724 /* If we were suspended, RTC_CONTROL may not be accurate since the
725 * bios may have cleared it.
726 */
727 if (!cmos_rtc.suspend_ctrl)
728 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
729 else
730 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
731
732 /* All Linux RTC alarms should be treated as if they were oneshot.
733 * Similar code may be needed in system wakeup paths, in case the
734 * alarm woke the system.
735 */
736 if (irqstat & RTC_AIE) {
737 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
738 rtc_control &= ~RTC_AIE;
739 CMOS_WRITE(rtc_control, RTC_CONTROL);
740 if (use_hpet_alarm())
741 hpet_mask_rtc_irq_bit(RTC_AIE);
742 CMOS_READ(RTC_INTR_FLAGS);
743 }
744 spin_unlock(&rtc_lock);
745
746 if (is_intr(irqstat)) {
747 rtc_update_irq(p, 1, irqstat);
748 return IRQ_HANDLED;
749 } else
750 return IRQ_NONE;
751 }
752
753 #ifdef CONFIG_ACPI
754
755 #include <linux/acpi.h>
756
rtc_handler(void * context)757 static u32 rtc_handler(void *context)
758 {
759 struct device *dev = context;
760 struct cmos_rtc *cmos = dev_get_drvdata(dev);
761 unsigned char rtc_control = 0;
762 unsigned char rtc_intr;
763 unsigned long flags;
764
765
766 /*
767 * Always update rtc irq when ACPI is used as RTC Alarm.
768 * Or else, ACPI SCI is enabled during suspend/resume only,
769 * update rtc irq in that case.
770 */
771 if (cmos_use_acpi_alarm())
772 cmos_interrupt(0, (void *)cmos->rtc);
773 else {
774 /* Fix me: can we use cmos_interrupt() here as well? */
775 spin_lock_irqsave(&rtc_lock, flags);
776 if (cmos_rtc.suspend_ctrl)
777 rtc_control = CMOS_READ(RTC_CONTROL);
778 if (rtc_control & RTC_AIE) {
779 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
780 CMOS_WRITE(rtc_control, RTC_CONTROL);
781 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
782 rtc_update_irq(cmos->rtc, 1, rtc_intr);
783 }
784 spin_unlock_irqrestore(&rtc_lock, flags);
785 }
786
787 pm_wakeup_hard_event(dev);
788 acpi_clear_event(ACPI_EVENT_RTC);
789 acpi_disable_event(ACPI_EVENT_RTC, 0);
790 return ACPI_INTERRUPT_HANDLED;
791 }
792
acpi_rtc_event_setup(struct device * dev)793 static void acpi_rtc_event_setup(struct device *dev)
794 {
795 if (acpi_disabled)
796 return;
797
798 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
799 /*
800 * After the RTC handler is installed, the Fixed_RTC event should
801 * be disabled. Only when the RTC alarm is set will it be enabled.
802 */
803 acpi_clear_event(ACPI_EVENT_RTC);
804 acpi_disable_event(ACPI_EVENT_RTC, 0);
805 }
806
acpi_rtc_event_cleanup(void)807 static void acpi_rtc_event_cleanup(void)
808 {
809 if (acpi_disabled)
810 return;
811
812 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
813 }
814
rtc_wake_on(struct device * dev)815 static void rtc_wake_on(struct device *dev)
816 {
817 acpi_clear_event(ACPI_EVENT_RTC);
818 acpi_enable_event(ACPI_EVENT_RTC, 0);
819 }
820
rtc_wake_off(struct device * dev)821 static void rtc_wake_off(struct device *dev)
822 {
823 acpi_disable_event(ACPI_EVENT_RTC, 0);
824 }
825
826 #ifdef CONFIG_X86
827 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
use_acpi_alarm_quirks(void)828 static void use_acpi_alarm_quirks(void)
829 {
830 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
831 return;
832
833 if (!is_hpet_enabled())
834 return;
835
836 if (dmi_get_bios_year() < 2015)
837 return;
838
839 use_acpi_alarm = true;
840 }
841 #else
use_acpi_alarm_quirks(void)842 static inline void use_acpi_alarm_quirks(void) { }
843 #endif
844
acpi_cmos_wake_setup(struct device * dev)845 static void acpi_cmos_wake_setup(struct device *dev)
846 {
847 if (acpi_disabled)
848 return;
849
850 use_acpi_alarm_quirks();
851
852 cmos_rtc.wake_on = rtc_wake_on;
853 cmos_rtc.wake_off = rtc_wake_off;
854
855 /* ACPI tables bug workaround. */
856 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
857 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
858 acpi_gbl_FADT.month_alarm);
859 acpi_gbl_FADT.month_alarm = 0;
860 }
861
862 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
863 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
864 cmos_rtc.century = acpi_gbl_FADT.century;
865
866 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
867 dev_info(dev, "RTC can wake from S4\n");
868
869 /* RTC always wakes from S1/S2/S3, and often S4/STD */
870 device_init_wakeup(dev, 1);
871 }
872
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)873 static void cmos_check_acpi_rtc_status(struct device *dev,
874 unsigned char *rtc_control)
875 {
876 struct cmos_rtc *cmos = dev_get_drvdata(dev);
877 acpi_event_status rtc_status;
878 acpi_status status;
879
880 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
881 return;
882
883 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
884 if (ACPI_FAILURE(status)) {
885 dev_err(dev, "Could not get RTC status\n");
886 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
887 unsigned char mask;
888 *rtc_control &= ~RTC_AIE;
889 CMOS_WRITE(*rtc_control, RTC_CONTROL);
890 mask = CMOS_READ(RTC_INTR_FLAGS);
891 rtc_update_irq(cmos->rtc, 1, mask);
892 }
893 }
894
895 #else /* !CONFIG_ACPI */
896
acpi_rtc_event_setup(struct device * dev)897 static inline void acpi_rtc_event_setup(struct device *dev)
898 {
899 }
900
acpi_rtc_event_cleanup(void)901 static inline void acpi_rtc_event_cleanup(void)
902 {
903 }
904
acpi_cmos_wake_setup(struct device * dev)905 static inline void acpi_cmos_wake_setup(struct device *dev)
906 {
907 }
908
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)909 static inline void cmos_check_acpi_rtc_status(struct device *dev,
910 unsigned char *rtc_control)
911 {
912 }
913 #endif /* CONFIG_ACPI */
914
915 #ifdef CONFIG_PNP
916 #define INITSECTION
917
918 #else
919 #define INITSECTION __init
920 #endif
921
922 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)923 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
924 {
925 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
926 int retval = 0;
927 unsigned char rtc_control;
928 unsigned address_space;
929 u32 flags = 0;
930 struct nvmem_config nvmem_cfg = {
931 .name = "cmos_nvram",
932 .word_size = 1,
933 .stride = 1,
934 .reg_read = cmos_nvram_read,
935 .reg_write = cmos_nvram_write,
936 .priv = &cmos_rtc,
937 };
938
939 /* there can be only one ... */
940 if (cmos_rtc.dev)
941 return -EBUSY;
942
943 if (!ports)
944 return -ENODEV;
945
946 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
947 *
948 * REVISIT non-x86 systems may instead use memory space resources
949 * (needing ioremap etc), not i/o space resources like this ...
950 */
951 if (RTC_IOMAPPED)
952 ports = request_region(ports->start, resource_size(ports),
953 driver_name);
954 else
955 ports = request_mem_region(ports->start, resource_size(ports),
956 driver_name);
957 if (!ports) {
958 dev_dbg(dev, "i/o registers already in use\n");
959 return -EBUSY;
960 }
961
962 cmos_rtc.irq = rtc_irq;
963 cmos_rtc.iomem = ports;
964
965 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
966 * driver did, but don't reject unknown configs. Old hardware
967 * won't address 128 bytes. Newer chips have multiple banks,
968 * though they may not be listed in one I/O resource.
969 */
970 #if defined(CONFIG_ATARI)
971 address_space = 64;
972 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
973 || defined(__sparc__) || defined(__mips__) \
974 || defined(__powerpc__)
975 address_space = 128;
976 #else
977 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
978 address_space = 128;
979 #endif
980 if (can_bank2 && ports->end > (ports->start + 1))
981 address_space = 256;
982
983 /* For ACPI systems extension info comes from the FADT. On others,
984 * board specific setup provides it as appropriate. Systems where
985 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
986 * some almost-clones) can provide hooks to make that behave.
987 *
988 * Note that ACPI doesn't preclude putting these registers into
989 * "extended" areas of the chip, including some that we won't yet
990 * expect CMOS_READ and friends to handle.
991 */
992 if (info) {
993 if (info->flags)
994 flags = info->flags;
995 if (info->address_space)
996 address_space = info->address_space;
997
998 cmos_rtc.day_alrm = info->rtc_day_alarm;
999 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1000 cmos_rtc.century = info->rtc_century;
1001
1002 if (info->wake_on && info->wake_off) {
1003 cmos_rtc.wake_on = info->wake_on;
1004 cmos_rtc.wake_off = info->wake_off;
1005 }
1006 } else {
1007 acpi_cmos_wake_setup(dev);
1008 }
1009
1010 if (cmos_rtc.day_alrm >= 128)
1011 cmos_rtc.day_alrm = 0;
1012
1013 if (cmos_rtc.mon_alrm >= 128)
1014 cmos_rtc.mon_alrm = 0;
1015
1016 if (cmos_rtc.century >= 128)
1017 cmos_rtc.century = 0;
1018
1019 cmos_rtc.dev = dev;
1020 dev_set_drvdata(dev, &cmos_rtc);
1021
1022 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1023 if (IS_ERR(cmos_rtc.rtc)) {
1024 retval = PTR_ERR(cmos_rtc.rtc);
1025 goto cleanup0;
1026 }
1027
1028 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1029
1030 if (!mc146818_does_rtc_work()) {
1031 dev_warn(dev, "broken or not accessible\n");
1032 retval = -ENXIO;
1033 goto cleanup1;
1034 }
1035
1036 spin_lock_irq(&rtc_lock);
1037
1038 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1039 /* force periodic irq to CMOS reset default of 1024Hz;
1040 *
1041 * REVISIT it's been reported that at least one x86_64 ALI
1042 * mobo doesn't use 32KHz here ... for portability we might
1043 * need to do something about other clock frequencies.
1044 */
1045 cmos_rtc.rtc->irq_freq = 1024;
1046 if (use_hpet_alarm())
1047 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1048 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1049 }
1050
1051 /* disable irqs */
1052 if (is_valid_irq(rtc_irq))
1053 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1054
1055 rtc_control = CMOS_READ(RTC_CONTROL);
1056
1057 spin_unlock_irq(&rtc_lock);
1058
1059 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1060 dev_warn(dev, "only 24-hr supported\n");
1061 retval = -ENXIO;
1062 goto cleanup1;
1063 }
1064
1065 if (use_hpet_alarm())
1066 hpet_rtc_timer_init();
1067
1068 if (is_valid_irq(rtc_irq)) {
1069 irq_handler_t rtc_cmos_int_handler;
1070
1071 if (use_hpet_alarm()) {
1072 rtc_cmos_int_handler = hpet_rtc_interrupt;
1073 retval = hpet_register_irq_handler(cmos_interrupt);
1074 if (retval) {
1075 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1076 dev_warn(dev, "hpet_register_irq_handler "
1077 " failed in rtc_init().");
1078 goto cleanup1;
1079 }
1080 } else
1081 rtc_cmos_int_handler = cmos_interrupt;
1082
1083 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1084 0, dev_name(&cmos_rtc.rtc->dev),
1085 cmos_rtc.rtc);
1086 if (retval < 0) {
1087 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1088 goto cleanup1;
1089 }
1090
1091 cmos_rtc.rtc->ops = &cmos_rtc_ops;
1092 } else {
1093 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
1094 }
1095
1096 cmos_rtc.rtc->nvram_old_abi = true;
1097 retval = rtc_register_device(cmos_rtc.rtc);
1098 if (retval)
1099 goto cleanup2;
1100
1101 /* export at least the first block of NVRAM */
1102 nvmem_cfg.size = address_space - NVRAM_OFFSET;
1103 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
1104 dev_err(dev, "nvmem registration failed\n");
1105
1106 /*
1107 * Everything has gone well so far, so by default register a handler for
1108 * the ACPI RTC fixed event.
1109 */
1110 if (!info)
1111 acpi_rtc_event_setup(dev);
1112
1113 dev_info(dev, "%s%s, %d bytes nvram%s\n",
1114 !is_valid_irq(rtc_irq) ? "no alarms" :
1115 cmos_rtc.mon_alrm ? "alarms up to one year" :
1116 cmos_rtc.day_alrm ? "alarms up to one month" :
1117 "alarms up to one day",
1118 cmos_rtc.century ? ", y3k" : "",
1119 nvmem_cfg.size,
1120 use_hpet_alarm() ? ", hpet irqs" : "");
1121
1122 return 0;
1123
1124 cleanup2:
1125 if (is_valid_irq(rtc_irq))
1126 free_irq(rtc_irq, cmos_rtc.rtc);
1127 cleanup1:
1128 cmos_rtc.dev = NULL;
1129 cleanup0:
1130 if (RTC_IOMAPPED)
1131 release_region(ports->start, resource_size(ports));
1132 else
1133 release_mem_region(ports->start, resource_size(ports));
1134 return retval;
1135 }
1136
cmos_do_shutdown(int rtc_irq)1137 static void cmos_do_shutdown(int rtc_irq)
1138 {
1139 spin_lock_irq(&rtc_lock);
1140 if (is_valid_irq(rtc_irq))
1141 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1142 spin_unlock_irq(&rtc_lock);
1143 }
1144
cmos_do_remove(struct device * dev)1145 static void cmos_do_remove(struct device *dev)
1146 {
1147 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1148 struct resource *ports;
1149
1150 cmos_do_shutdown(cmos->irq);
1151
1152 if (is_valid_irq(cmos->irq)) {
1153 free_irq(cmos->irq, cmos->rtc);
1154 if (use_hpet_alarm())
1155 hpet_unregister_irq_handler(cmos_interrupt);
1156 }
1157
1158 if (!dev_get_platdata(dev))
1159 acpi_rtc_event_cleanup();
1160
1161 cmos->rtc = NULL;
1162
1163 ports = cmos->iomem;
1164 if (RTC_IOMAPPED)
1165 release_region(ports->start, resource_size(ports));
1166 else
1167 release_mem_region(ports->start, resource_size(ports));
1168 cmos->iomem = NULL;
1169
1170 cmos->dev = NULL;
1171 }
1172
cmos_aie_poweroff(struct device * dev)1173 static int cmos_aie_poweroff(struct device *dev)
1174 {
1175 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1176 struct rtc_time now;
1177 time64_t t_now;
1178 int retval = 0;
1179 unsigned char rtc_control;
1180
1181 if (!cmos->alarm_expires)
1182 return -EINVAL;
1183
1184 spin_lock_irq(&rtc_lock);
1185 rtc_control = CMOS_READ(RTC_CONTROL);
1186 spin_unlock_irq(&rtc_lock);
1187
1188 /* We only care about the situation where AIE is disabled. */
1189 if (rtc_control & RTC_AIE)
1190 return -EBUSY;
1191
1192 cmos_read_time(dev, &now);
1193 t_now = rtc_tm_to_time64(&now);
1194
1195 /*
1196 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1197 * automatically right after shutdown on some buggy boxes.
1198 * This automatic rebooting issue won't happen when the alarm
1199 * time is larger than now+1 seconds.
1200 *
1201 * If the alarm time is equal to now+1 seconds, the issue can be
1202 * prevented by cancelling the alarm.
1203 */
1204 if (cmos->alarm_expires == t_now + 1) {
1205 struct rtc_wkalrm alarm;
1206
1207 /* Cancel the AIE timer by configuring the past time. */
1208 rtc_time64_to_tm(t_now - 1, &alarm.time);
1209 alarm.enabled = 0;
1210 retval = cmos_set_alarm(dev, &alarm);
1211 } else if (cmos->alarm_expires > t_now + 1) {
1212 retval = -EBUSY;
1213 }
1214
1215 return retval;
1216 }
1217
cmos_suspend(struct device * dev)1218 static int cmos_suspend(struct device *dev)
1219 {
1220 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1221 unsigned char tmp;
1222
1223 /* only the alarm might be a wakeup event source */
1224 spin_lock_irq(&rtc_lock);
1225 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1226 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1227 unsigned char mask;
1228
1229 if (device_may_wakeup(dev))
1230 mask = RTC_IRQMASK & ~RTC_AIE;
1231 else
1232 mask = RTC_IRQMASK;
1233 tmp &= ~mask;
1234 CMOS_WRITE(tmp, RTC_CONTROL);
1235 if (use_hpet_alarm())
1236 hpet_mask_rtc_irq_bit(mask);
1237 cmos_checkintr(cmos, tmp);
1238 }
1239 spin_unlock_irq(&rtc_lock);
1240
1241 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1242 cmos->enabled_wake = 1;
1243 if (cmos->wake_on)
1244 cmos->wake_on(dev);
1245 else
1246 enable_irq_wake(cmos->irq);
1247 }
1248
1249 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1250 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1251
1252 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1253 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1254 tmp);
1255
1256 return 0;
1257 }
1258
1259 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1260 * after a detour through G3 "mechanical off", although the ACPI spec
1261 * says wakeup should only work from G1/S4 "hibernate". To most users,
1262 * distinctions between S4 and S5 are pointless. So when the hardware
1263 * allows, don't draw that distinction.
1264 */
cmos_poweroff(struct device * dev)1265 static inline int cmos_poweroff(struct device *dev)
1266 {
1267 if (!IS_ENABLED(CONFIG_PM))
1268 return -ENOSYS;
1269
1270 return cmos_suspend(dev);
1271 }
1272
cmos_check_wkalrm(struct device * dev)1273 static void cmos_check_wkalrm(struct device *dev)
1274 {
1275 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1276 struct rtc_wkalrm current_alarm;
1277 time64_t t_now;
1278 time64_t t_current_expires;
1279 time64_t t_saved_expires;
1280 struct rtc_time now;
1281
1282 /* Check if we have RTC Alarm armed */
1283 if (!(cmos->suspend_ctrl & RTC_AIE))
1284 return;
1285
1286 cmos_read_time(dev, &now);
1287 t_now = rtc_tm_to_time64(&now);
1288
1289 /*
1290 * ACPI RTC wake event is cleared after resume from STR,
1291 * ACK the rtc irq here
1292 */
1293 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1294 local_irq_disable();
1295 cmos_interrupt(0, (void *)cmos->rtc);
1296 local_irq_enable();
1297 return;
1298 }
1299
1300 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1301 cmos_read_alarm(dev, ¤t_alarm);
1302 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1303 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1304 if (t_current_expires != t_saved_expires ||
1305 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1306 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1307 }
1308 }
1309
cmos_resume(struct device * dev)1310 static int __maybe_unused cmos_resume(struct device *dev)
1311 {
1312 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1313 unsigned char tmp;
1314
1315 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1316 if (cmos->wake_off)
1317 cmos->wake_off(dev);
1318 else
1319 disable_irq_wake(cmos->irq);
1320 cmos->enabled_wake = 0;
1321 }
1322
1323 /* The BIOS might have changed the alarm, restore it */
1324 cmos_check_wkalrm(dev);
1325
1326 spin_lock_irq(&rtc_lock);
1327 tmp = cmos->suspend_ctrl;
1328 cmos->suspend_ctrl = 0;
1329 /* re-enable any irqs previously active */
1330 if (tmp & RTC_IRQMASK) {
1331 unsigned char mask;
1332
1333 if (device_may_wakeup(dev) && use_hpet_alarm())
1334 hpet_rtc_timer_init();
1335
1336 do {
1337 CMOS_WRITE(tmp, RTC_CONTROL);
1338 if (use_hpet_alarm())
1339 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1340
1341 mask = CMOS_READ(RTC_INTR_FLAGS);
1342 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1343 if (!use_hpet_alarm() || !is_intr(mask))
1344 break;
1345
1346 /* force one-shot behavior if HPET blocked
1347 * the wake alarm's irq
1348 */
1349 rtc_update_irq(cmos->rtc, 1, mask);
1350 tmp &= ~RTC_AIE;
1351 hpet_mask_rtc_irq_bit(RTC_AIE);
1352 } while (mask & RTC_AIE);
1353
1354 if (tmp & RTC_AIE)
1355 cmos_check_acpi_rtc_status(dev, &tmp);
1356 }
1357 spin_unlock_irq(&rtc_lock);
1358
1359 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1360
1361 return 0;
1362 }
1363
1364 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1365
1366 /*----------------------------------------------------------------*/
1367
1368 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1369 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1370 * probably list them in similar PNPBIOS tables; so PNP is more common.
1371 *
1372 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1373 * predate even PNPBIOS should set up platform_bus devices.
1374 */
1375
1376 #ifdef CONFIG_PNP
1377
1378 #include <linux/pnp.h>
1379
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1380 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1381 {
1382 int irq;
1383
1384 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1385 irq = 0;
1386 #ifdef CONFIG_X86
1387 /* Some machines contain a PNP entry for the RTC, but
1388 * don't define the IRQ. It should always be safe to
1389 * hardcode it on systems with a legacy PIC.
1390 */
1391 if (nr_legacy_irqs())
1392 irq = RTC_IRQ;
1393 #endif
1394 } else {
1395 irq = pnp_irq(pnp, 0);
1396 }
1397
1398 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1399 }
1400
cmos_pnp_remove(struct pnp_dev * pnp)1401 static void cmos_pnp_remove(struct pnp_dev *pnp)
1402 {
1403 cmos_do_remove(&pnp->dev);
1404 }
1405
cmos_pnp_shutdown(struct pnp_dev * pnp)1406 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1407 {
1408 struct device *dev = &pnp->dev;
1409 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1410
1411 if (system_state == SYSTEM_POWER_OFF) {
1412 int retval = cmos_poweroff(dev);
1413
1414 if (cmos_aie_poweroff(dev) < 0 && !retval)
1415 return;
1416 }
1417
1418 cmos_do_shutdown(cmos->irq);
1419 }
1420
1421 static const struct pnp_device_id rtc_ids[] = {
1422 { .id = "PNP0b00", },
1423 { .id = "PNP0b01", },
1424 { .id = "PNP0b02", },
1425 { },
1426 };
1427 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1428
1429 static struct pnp_driver cmos_pnp_driver = {
1430 .name = driver_name,
1431 .id_table = rtc_ids,
1432 .probe = cmos_pnp_probe,
1433 .remove = cmos_pnp_remove,
1434 .shutdown = cmos_pnp_shutdown,
1435
1436 /* flag ensures resume() gets called, and stops syslog spam */
1437 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1438 .driver = {
1439 .pm = &cmos_pm_ops,
1440 },
1441 };
1442
1443 #endif /* CONFIG_PNP */
1444
1445 #ifdef CONFIG_OF
1446 static const struct of_device_id of_cmos_match[] = {
1447 {
1448 .compatible = "motorola,mc146818",
1449 },
1450 { },
1451 };
1452 MODULE_DEVICE_TABLE(of, of_cmos_match);
1453
cmos_of_init(struct platform_device * pdev)1454 static __init void cmos_of_init(struct platform_device *pdev)
1455 {
1456 struct device_node *node = pdev->dev.of_node;
1457 const __be32 *val;
1458
1459 if (!node)
1460 return;
1461
1462 val = of_get_property(node, "ctrl-reg", NULL);
1463 if (val)
1464 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1465
1466 val = of_get_property(node, "freq-reg", NULL);
1467 if (val)
1468 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1469 }
1470 #else
cmos_of_init(struct platform_device * pdev)1471 static inline void cmos_of_init(struct platform_device *pdev) {}
1472 #endif
1473 /*----------------------------------------------------------------*/
1474
1475 /* Platform setup should have set up an RTC device, when PNP is
1476 * unavailable ... this could happen even on (older) PCs.
1477 */
1478
cmos_platform_probe(struct platform_device * pdev)1479 static int __init cmos_platform_probe(struct platform_device *pdev)
1480 {
1481 struct resource *resource;
1482 int irq;
1483
1484 cmos_of_init(pdev);
1485
1486 if (RTC_IOMAPPED)
1487 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1488 else
1489 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1490 irq = platform_get_irq(pdev, 0);
1491 if (irq < 0)
1492 irq = -1;
1493
1494 return cmos_do_probe(&pdev->dev, resource, irq);
1495 }
1496
cmos_platform_remove(struct platform_device * pdev)1497 static int cmos_platform_remove(struct platform_device *pdev)
1498 {
1499 cmos_do_remove(&pdev->dev);
1500 return 0;
1501 }
1502
cmos_platform_shutdown(struct platform_device * pdev)1503 static void cmos_platform_shutdown(struct platform_device *pdev)
1504 {
1505 struct device *dev = &pdev->dev;
1506 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1507
1508 if (system_state == SYSTEM_POWER_OFF) {
1509 int retval = cmos_poweroff(dev);
1510
1511 if (cmos_aie_poweroff(dev) < 0 && !retval)
1512 return;
1513 }
1514
1515 cmos_do_shutdown(cmos->irq);
1516 }
1517
1518 /* work with hotplug and coldplug */
1519 MODULE_ALIAS("platform:rtc_cmos");
1520
1521 static struct platform_driver cmos_platform_driver = {
1522 .remove = cmos_platform_remove,
1523 .shutdown = cmos_platform_shutdown,
1524 .driver = {
1525 .name = driver_name,
1526 .pm = &cmos_pm_ops,
1527 .of_match_table = of_match_ptr(of_cmos_match),
1528 }
1529 };
1530
1531 #ifdef CONFIG_PNP
1532 static bool pnp_driver_registered;
1533 #endif
1534 static bool platform_driver_registered;
1535
cmos_init(void)1536 static int __init cmos_init(void)
1537 {
1538 int retval = 0;
1539
1540 #ifdef CONFIG_PNP
1541 retval = pnp_register_driver(&cmos_pnp_driver);
1542 if (retval == 0)
1543 pnp_driver_registered = true;
1544 #endif
1545
1546 if (!cmos_rtc.dev) {
1547 retval = platform_driver_probe(&cmos_platform_driver,
1548 cmos_platform_probe);
1549 if (retval == 0)
1550 platform_driver_registered = true;
1551 }
1552
1553 if (retval == 0)
1554 return 0;
1555
1556 #ifdef CONFIG_PNP
1557 if (pnp_driver_registered)
1558 pnp_unregister_driver(&cmos_pnp_driver);
1559 #endif
1560 return retval;
1561 }
1562 module_init(cmos_init);
1563
cmos_exit(void)1564 static void __exit cmos_exit(void)
1565 {
1566 #ifdef CONFIG_PNP
1567 if (pnp_driver_registered)
1568 pnp_unregister_driver(&cmos_pnp_driver);
1569 #endif
1570 if (platform_driver_registered)
1571 platform_driver_unregister(&cmos_platform_driver);
1572 }
1573 module_exit(cmos_exit);
1574
1575
1576 MODULE_AUTHOR("David Brownell");
1577 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1578 MODULE_LICENSE("GPL");
1579