• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
4 
5 #include <linux/init.h>
6 #include <linux/io.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_device.h>
11 #include <linux/pm_wakeirq.h>
12 #include <linux/rtc.h>
13 #include <linux/clk.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/regmap.h>
16 
17 #define SNVS_LPREGISTER_OFFSET	0x34
18 
19 /* These register offsets are relative to LP (Low Power) range */
20 #define SNVS_LPCR		0x04
21 #define SNVS_LPSR		0x18
22 #define SNVS_LPSRTCMR		0x1c
23 #define SNVS_LPSRTCLR		0x20
24 #define SNVS_LPTAR		0x24
25 #define SNVS_LPPGDR		0x30
26 
27 #define SNVS_LPCR_SRTC_ENV	(1 << 0)
28 #define SNVS_LPCR_LPTA_EN	(1 << 1)
29 #define SNVS_LPCR_LPWUI_EN	(1 << 3)
30 #define SNVS_LPSR_LPTA		(1 << 0)
31 
32 #define SNVS_LPPGDR_INIT	0x41736166
33 #define CNTR_TO_SECS_SH		15
34 
35 /* The maximum RTC clock cycles that are allowed to pass between two
36  * consecutive clock counter register reads. If the values are corrupted a
37  * bigger difference is expected. The RTC frequency is 32kHz. With 320 cycles
38  * we end at 10ms which should be enough for most cases. If it once takes
39  * longer than expected we do a retry.
40  */
41 #define MAX_RTC_READ_DIFF_CYCLES	320
42 
43 struct snvs_rtc_data {
44 	struct rtc_device *rtc;
45 	struct regmap *regmap;
46 	int offset;
47 	int irq;
48 	struct clk *clk;
49 };
50 
51 /* Read 64 bit timer register, which could be in inconsistent state */
rtc_read_lpsrt(struct snvs_rtc_data * data)52 static u64 rtc_read_lpsrt(struct snvs_rtc_data *data)
53 {
54 	u32 msb, lsb;
55 
56 	regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &msb);
57 	regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &lsb);
58 	return (u64)msb << 32 | lsb;
59 }
60 
61 /* Read the secure real time counter, taking care to deal with the cases of the
62  * counter updating while being read.
63  */
rtc_read_lp_counter(struct snvs_rtc_data * data)64 static u32 rtc_read_lp_counter(struct snvs_rtc_data *data)
65 {
66 	u64 read1, read2;
67 	s64 diff;
68 	unsigned int timeout = 100;
69 
70 	/* As expected, the registers might update between the read of the LSB
71 	 * reg and the MSB reg.  It's also possible that one register might be
72 	 * in partially modified state as well.
73 	 */
74 	read1 = rtc_read_lpsrt(data);
75 	do {
76 		read2 = read1;
77 		read1 = rtc_read_lpsrt(data);
78 		diff = read1 - read2;
79 	} while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
80 	if (!timeout)
81 		dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
82 
83 	/* Convert 47-bit counter to 32-bit raw second count */
84 	return (u32) (read1 >> CNTR_TO_SECS_SH);
85 }
86 
87 /* Just read the lsb from the counter, dealing with inconsistent state */
rtc_read_lp_counter_lsb(struct snvs_rtc_data * data,u32 * lsb)88 static int rtc_read_lp_counter_lsb(struct snvs_rtc_data *data, u32 *lsb)
89 {
90 	u32 count1, count2;
91 	s32 diff;
92 	unsigned int timeout = 100;
93 
94 	regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
95 	do {
96 		count2 = count1;
97 		regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
98 		diff = count1 - count2;
99 	} while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
100 	if (!timeout) {
101 		dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
102 		return -ETIMEDOUT;
103 	}
104 
105 	*lsb = count1;
106 	return 0;
107 }
108 
rtc_write_sync_lp(struct snvs_rtc_data * data)109 static int rtc_write_sync_lp(struct snvs_rtc_data *data)
110 {
111 	u32 count1, count2;
112 	u32 elapsed;
113 	unsigned int timeout = 1000;
114 	int ret;
115 
116 	ret = rtc_read_lp_counter_lsb(data, &count1);
117 	if (ret)
118 		return ret;
119 
120 	/* Wait for 3 CKIL cycles, about 61.0-91.5 µs */
121 	do {
122 		ret = rtc_read_lp_counter_lsb(data, &count2);
123 		if (ret)
124 			return ret;
125 		elapsed = count2 - count1; /* wrap around _is_ handled! */
126 	} while (elapsed < 3 && --timeout);
127 	if (!timeout) {
128 		dev_err(&data->rtc->dev, "Timeout waiting for LPSRT Counter to change\n");
129 		return -ETIMEDOUT;
130 	}
131 	return 0;
132 }
133 
snvs_rtc_enable(struct snvs_rtc_data * data,bool enable)134 static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
135 {
136 	int timeout = 1000;
137 	u32 lpcr;
138 
139 	regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_SRTC_ENV,
140 			   enable ? SNVS_LPCR_SRTC_ENV : 0);
141 
142 	while (--timeout) {
143 		regmap_read(data->regmap, data->offset + SNVS_LPCR, &lpcr);
144 
145 		if (enable) {
146 			if (lpcr & SNVS_LPCR_SRTC_ENV)
147 				break;
148 		} else {
149 			if (!(lpcr & SNVS_LPCR_SRTC_ENV))
150 				break;
151 		}
152 	}
153 
154 	if (!timeout)
155 		return -ETIMEDOUT;
156 
157 	return 0;
158 }
159 
snvs_rtc_read_time(struct device * dev,struct rtc_time * tm)160 static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
161 {
162 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
163 	unsigned long time;
164 	int ret;
165 
166 	if (data->clk) {
167 		ret = clk_enable(data->clk);
168 		if (ret)
169 			return ret;
170 	}
171 
172 	time = rtc_read_lp_counter(data);
173 	rtc_time64_to_tm(time, tm);
174 
175 	if (data->clk)
176 		clk_disable(data->clk);
177 
178 	return 0;
179 }
180 
snvs_rtc_set_time(struct device * dev,struct rtc_time * tm)181 static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
182 {
183 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
184 	unsigned long time = rtc_tm_to_time64(tm);
185 	int ret;
186 
187 	if (data->clk) {
188 		ret = clk_enable(data->clk);
189 		if (ret)
190 			return ret;
191 	}
192 
193 	/* Disable RTC first */
194 	ret = snvs_rtc_enable(data, false);
195 	if (ret)
196 		return ret;
197 
198 	/* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
199 	regmap_write(data->regmap, data->offset + SNVS_LPSRTCLR, time << CNTR_TO_SECS_SH);
200 	regmap_write(data->regmap, data->offset + SNVS_LPSRTCMR, time >> (32 - CNTR_TO_SECS_SH));
201 
202 	/* Enable RTC again */
203 	ret = snvs_rtc_enable(data, true);
204 
205 	if (data->clk)
206 		clk_disable(data->clk);
207 
208 	return ret;
209 }
210 
snvs_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)211 static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
212 {
213 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
214 	u32 lptar, lpsr;
215 	int ret;
216 
217 	if (data->clk) {
218 		ret = clk_enable(data->clk);
219 		if (ret)
220 			return ret;
221 	}
222 
223 	regmap_read(data->regmap, data->offset + SNVS_LPTAR, &lptar);
224 	rtc_time64_to_tm(lptar, &alrm->time);
225 
226 	regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
227 	alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
228 
229 	if (data->clk)
230 		clk_disable(data->clk);
231 
232 	return 0;
233 }
234 
snvs_rtc_alarm_irq_enable(struct device * dev,unsigned int enable)235 static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
236 {
237 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
238 	int ret;
239 
240 	if (data->clk) {
241 		ret = clk_enable(data->clk);
242 		if (ret)
243 			return ret;
244 	}
245 
246 	regmap_update_bits(data->regmap, data->offset + SNVS_LPCR,
247 			   (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN),
248 			   enable ? (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN) : 0);
249 
250 	ret = rtc_write_sync_lp(data);
251 
252 	if (data->clk)
253 		clk_disable(data->clk);
254 
255 	return ret;
256 }
257 
snvs_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)258 static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259 {
260 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
261 	unsigned long time = rtc_tm_to_time64(&alrm->time);
262 	int ret;
263 
264 	if (data->clk) {
265 		ret = clk_enable(data->clk);
266 		if (ret)
267 			return ret;
268 	}
269 
270 	regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_LPTA_EN, 0);
271 	ret = rtc_write_sync_lp(data);
272 	if (ret)
273 		return ret;
274 	regmap_write(data->regmap, data->offset + SNVS_LPTAR, time);
275 
276 	/* Clear alarm interrupt status bit */
277 	regmap_write(data->regmap, data->offset + SNVS_LPSR, SNVS_LPSR_LPTA);
278 
279 	if (data->clk)
280 		clk_disable(data->clk);
281 
282 	return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
283 }
284 
285 static const struct rtc_class_ops snvs_rtc_ops = {
286 	.read_time = snvs_rtc_read_time,
287 	.set_time = snvs_rtc_set_time,
288 	.read_alarm = snvs_rtc_read_alarm,
289 	.set_alarm = snvs_rtc_set_alarm,
290 	.alarm_irq_enable = snvs_rtc_alarm_irq_enable,
291 };
292 
snvs_rtc_irq_handler(int irq,void * dev_id)293 static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
294 {
295 	struct device *dev = dev_id;
296 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
297 	u32 lpsr;
298 	u32 events = 0;
299 
300 	if (data->clk)
301 		clk_enable(data->clk);
302 
303 	regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
304 
305 	if (lpsr & SNVS_LPSR_LPTA) {
306 		events |= (RTC_AF | RTC_IRQF);
307 
308 		/* RTC alarm should be one-shot */
309 		snvs_rtc_alarm_irq_enable(dev, 0);
310 
311 		rtc_update_irq(data->rtc, 1, events);
312 	}
313 
314 	/* clear interrupt status */
315 	regmap_write(data->regmap, data->offset + SNVS_LPSR, lpsr);
316 
317 	if (data->clk)
318 		clk_disable(data->clk);
319 
320 	return events ? IRQ_HANDLED : IRQ_NONE;
321 }
322 
323 static const struct regmap_config snvs_rtc_config = {
324 	.reg_bits = 32,
325 	.val_bits = 32,
326 	.reg_stride = 4,
327 };
328 
snvs_rtc_action(void * data)329 static void snvs_rtc_action(void *data)
330 {
331 	if (data)
332 		clk_disable_unprepare(data);
333 }
334 
snvs_rtc_probe(struct platform_device * pdev)335 static int snvs_rtc_probe(struct platform_device *pdev)
336 {
337 	struct snvs_rtc_data *data;
338 	int ret;
339 	void __iomem *mmio;
340 
341 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
342 	if (!data)
343 		return -ENOMEM;
344 
345 	data->rtc = devm_rtc_allocate_device(&pdev->dev);
346 	if (IS_ERR(data->rtc))
347 		return PTR_ERR(data->rtc);
348 
349 	data->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
350 
351 	if (IS_ERR(data->regmap)) {
352 		dev_warn(&pdev->dev, "snvs rtc: you use old dts file, please update it\n");
353 
354 		mmio = devm_platform_ioremap_resource(pdev, 0);
355 		if (IS_ERR(mmio))
356 			return PTR_ERR(mmio);
357 
358 		data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio, &snvs_rtc_config);
359 	} else {
360 		data->offset = SNVS_LPREGISTER_OFFSET;
361 		of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
362 	}
363 
364 	if (IS_ERR(data->regmap)) {
365 		dev_err(&pdev->dev, "Can't find snvs syscon\n");
366 		return -ENODEV;
367 	}
368 
369 	data->irq = platform_get_irq(pdev, 0);
370 	if (data->irq < 0)
371 		return data->irq;
372 
373 	data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
374 	if (IS_ERR(data->clk)) {
375 		data->clk = NULL;
376 	} else {
377 		ret = clk_prepare_enable(data->clk);
378 		if (ret) {
379 			dev_err(&pdev->dev,
380 				"Could not prepare or enable the snvs clock\n");
381 			return ret;
382 		}
383 	}
384 
385 	ret = devm_add_action_or_reset(&pdev->dev, snvs_rtc_action, data->clk);
386 	if (ret)
387 		return ret;
388 
389 	platform_set_drvdata(pdev, data);
390 
391 	/* Initialize glitch detect */
392 	regmap_write(data->regmap, data->offset + SNVS_LPPGDR, SNVS_LPPGDR_INIT);
393 
394 	/* Clear interrupt status */
395 	regmap_write(data->regmap, data->offset + SNVS_LPSR, 0xffffffff);
396 
397 	/* Enable RTC */
398 	ret = snvs_rtc_enable(data, true);
399 	if (ret) {
400 		dev_err(&pdev->dev, "failed to enable rtc %d\n", ret);
401 		return ret;
402 	}
403 
404 	device_init_wakeup(&pdev->dev, true);
405 	ret = dev_pm_set_wake_irq(&pdev->dev, data->irq);
406 	if (ret)
407 		dev_err(&pdev->dev, "failed to enable irq wake\n");
408 
409 	ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
410 			       IRQF_SHARED, "rtc alarm", &pdev->dev);
411 	if (ret) {
412 		dev_err(&pdev->dev, "failed to request irq %d: %d\n",
413 			data->irq, ret);
414 		return ret;
415 	}
416 
417 	data->rtc->ops = &snvs_rtc_ops;
418 	data->rtc->range_max = U32_MAX;
419 
420 	return rtc_register_device(data->rtc);
421 }
422 
snvs_rtc_suspend_noirq(struct device * dev)423 static int __maybe_unused snvs_rtc_suspend_noirq(struct device *dev)
424 {
425 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
426 
427 	if (data->clk)
428 		clk_disable(data->clk);
429 
430 	return 0;
431 }
432 
snvs_rtc_resume_noirq(struct device * dev)433 static int __maybe_unused snvs_rtc_resume_noirq(struct device *dev)
434 {
435 	struct snvs_rtc_data *data = dev_get_drvdata(dev);
436 
437 	if (data->clk)
438 		return clk_enable(data->clk);
439 
440 	return 0;
441 }
442 
443 static const struct dev_pm_ops snvs_rtc_pm_ops = {
444 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(snvs_rtc_suspend_noirq, snvs_rtc_resume_noirq)
445 };
446 
447 static const struct of_device_id snvs_dt_ids[] = {
448 	{ .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
449 	{ /* sentinel */ }
450 };
451 MODULE_DEVICE_TABLE(of, snvs_dt_ids);
452 
453 static struct platform_driver snvs_rtc_driver = {
454 	.driver = {
455 		.name	= "snvs_rtc",
456 		.pm	= &snvs_rtc_pm_ops,
457 		.of_match_table = snvs_dt_ids,
458 	},
459 	.probe		= snvs_rtc_probe,
460 };
461 module_platform_driver(snvs_rtc_driver);
462 
463 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
464 MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
465 MODULE_LICENSE("GPL");
466