1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34
35 /*
36 * All wire protocol details (storage protocol between the guest and the host)
37 * are consolidated here.
38 *
39 * Begin protocol definitions.
40 */
41
42 /*
43 * Version history:
44 * V1 Beta: 0.1
45 * V1 RC < 2008/1/31: 1.0
46 * V1 RC > 2008/1/31: 2.0
47 * Win7: 4.2
48 * Win8: 5.1
49 * Win8.1: 6.0
50 * Win10: 6.2
51 */
52
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \
54 (((MINOR_) & 0xff)))
55
56 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2)
61
62 /* Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64 VSTOR_OPERATION_COMPLETE_IO = 1,
65 VSTOR_OPERATION_REMOVE_DEVICE = 2,
66 VSTOR_OPERATION_EXECUTE_SRB = 3,
67 VSTOR_OPERATION_RESET_LUN = 4,
68 VSTOR_OPERATION_RESET_ADAPTER = 5,
69 VSTOR_OPERATION_RESET_BUS = 6,
70 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7,
71 VSTOR_OPERATION_END_INITIALIZATION = 8,
72 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9,
73 VSTOR_OPERATION_QUERY_PROPERTIES = 10,
74 VSTOR_OPERATION_ENUMERATE_BUS = 11,
75 VSTOR_OPERATION_FCHBA_DATA = 12,
76 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13,
77 VSTOR_OPERATION_MAXIMUM = 13
78 };
79
80 /*
81 * WWN packet for Fibre Channel HBA
82 */
83
84 struct hv_fc_wwn_packet {
85 u8 primary_active;
86 u8 reserved1[3];
87 u8 primary_port_wwn[8];
88 u8 primary_node_wwn[8];
89 u8 secondary_port_wwn[8];
90 u8 secondary_node_wwn[8];
91 };
92
93
94
95 /*
96 * SRB Flag Bits
97 */
98
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020
104 #define SRB_FLAGS_DATA_IN 0x00000040
105 #define SRB_FLAGS_DATA_OUT 0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400
111
112 /*
113 * This flag indicates the request is part of the workflow for processing a D3.
114 */
115 #define SRB_FLAGS_D3_PROCESSING 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE 0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000
126
127 #define SP_UNTAGGED ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST 0x20
129
130 /*
131 * Platform neutral description of a scsi request -
132 * this remains the same across the write regardless of 32/64 bit
133 * note: it's patterned off the SCSI_PASS_THROUGH structure
134 */
135 #define STORVSC_MAX_CMD_LEN 0x10
136
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12
139
140 #define STORVSC_SENSE_BUFFER_SIZE 0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14
142
143 /*
144 * Sense buffer size changed in win8; have a run-time
145 * variable to track the size we should use. This value will
146 * likely change during protocol negotiation but it is valid
147 * to start by assuming pre-Win8.
148 */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150
151 /*
152 * The storage protocol version is determined during the
153 * initial exchange with the host. It will indicate which
154 * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157
158 #define STORVSC_LOGGING_NONE 0
159 #define STORVSC_LOGGING_ERROR 1
160 #define STORVSC_LOGGING_WARN 2
161
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165 "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166
do_logging(int level)167 static inline bool do_logging(int level)
168 {
169 return logging_level >= level;
170 }
171
172 #define storvsc_log(dev, level, fmt, ...) \
173 do { \
174 if (do_logging(level)) \
175 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \
176 } while (0)
177
178 struct vmscsi_win8_extension {
179 /*
180 * The following were added in Windows 8
181 */
182 u16 reserve;
183 u8 queue_tag;
184 u8 queue_action;
185 u32 srb_flags;
186 u32 time_out_value;
187 u32 queue_sort_ey;
188 } __packed;
189
190 struct vmscsi_request {
191 u16 length;
192 u8 srb_status;
193 u8 scsi_status;
194
195 u8 port_number;
196 u8 path_id;
197 u8 target_id;
198 u8 lun;
199
200 u8 cdb_length;
201 u8 sense_info_length;
202 u8 data_in;
203 u8 reserved;
204
205 u32 data_transfer_length;
206
207 union {
208 u8 cdb[STORVSC_MAX_CMD_LEN];
209 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211 };
212 /*
213 * The following was added in win8.
214 */
215 struct vmscsi_win8_extension win8_extension;
216
217 } __attribute((packed));
218
219
220 /*
221 * The size of the vmscsi_request has changed in win8. The
222 * additional size is because of new elements added to the
223 * structure. These elements are valid only when we are talking
224 * to a win8 host.
225 * Track the correction to size we need to apply. This value
226 * will likely change during protocol negotiation but it is
227 * valid to start by assuming pre-Win8.
228 */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230
231 /*
232 * The list of storage protocols in order of preference.
233 */
234 struct vmstor_protocol {
235 int protocol_version;
236 int sense_buffer_size;
237 int vmscsi_size_delta;
238 };
239
240
241 static const struct vmstor_protocol vmstor_protocols[] = {
242 {
243 VMSTOR_PROTO_VERSION_WIN10,
244 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245 0
246 },
247 {
248 VMSTOR_PROTO_VERSION_WIN8_1,
249 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250 0
251 },
252 {
253 VMSTOR_PROTO_VERSION_WIN8,
254 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255 0
256 },
257 {
258 VMSTOR_PROTO_VERSION_WIN7,
259 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260 sizeof(struct vmscsi_win8_extension),
261 },
262 {
263 VMSTOR_PROTO_VERSION_WIN6,
264 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265 sizeof(struct vmscsi_win8_extension),
266 }
267 };
268
269
270 /*
271 * This structure is sent during the initialization phase to get the different
272 * properties of the channel.
273 */
274
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1
276
277 struct vmstorage_channel_properties {
278 u32 reserved;
279 u16 max_channel_cnt;
280 u16 reserved1;
281
282 u32 flags;
283 u32 max_transfer_bytes;
284
285 u64 reserved2;
286 } __packed;
287
288 /* This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290 /* Major (MSW) and minor (LSW) version numbers. */
291 u16 major_minor;
292
293 /*
294 * Revision number is auto-incremented whenever this file is changed
295 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not
296 * definitely indicate incompatibility--but it does indicate mismatched
297 * builds.
298 * This is only used on the windows side. Just set it to 0.
299 */
300 u16 revision;
301 } __packed;
302
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2
306
307 struct vstor_packet {
308 /* Requested operation type */
309 enum vstor_packet_operation operation;
310
311 /* Flags - see below for values */
312 u32 flags;
313
314 /* Status of the request returned from the server side. */
315 u32 status;
316
317 /* Data payload area */
318 union {
319 /*
320 * Structure used to forward SCSI commands from the
321 * client to the server.
322 */
323 struct vmscsi_request vm_srb;
324
325 /* Structure used to query channel properties. */
326 struct vmstorage_channel_properties storage_channel_properties;
327
328 /* Used during version negotiations. */
329 struct vmstorage_protocol_version version;
330
331 /* Fibre channel address packet */
332 struct hv_fc_wwn_packet wwn_packet;
333
334 /* Number of sub-channels to create */
335 u16 sub_channel_count;
336
337 /* This will be the maximum of the union members */
338 u8 buffer[0x34];
339 };
340 } __packed;
341
342 /*
343 * Packet Flags:
344 *
345 * This flag indicates that the server should send back a completion for this
346 * packet.
347 */
348
349 #define REQUEST_COMPLETION_FLAG 0x1
350
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353 WRITE_TYPE = 0,
354 READ_TYPE,
355 UNKNOWN_TYPE,
356 };
357
358 /*
359 * SRB status codes and masks. In the 8-bit field, the two high order bits
360 * are flags, while the remaining 6 bits are an integer status code. The
361 * definitions here include only the subset of the integer status codes that
362 * are tested for in this driver.
363 */
364 #define SRB_STATUS_AUTOSENSE_VALID 0x80
365 #define SRB_STATUS_QUEUE_FROZEN 0x40
366
367 /* SRB status integer codes */
368 #define SRB_STATUS_SUCCESS 0x01
369 #define SRB_STATUS_ABORTED 0x02
370 #define SRB_STATUS_ERROR 0x04
371 #define SRB_STATUS_INVALID_REQUEST 0x06
372 #define SRB_STATUS_DATA_OVERRUN 0x12
373 #define SRB_STATUS_INVALID_LUN 0x20
374
375 #define SRB_STATUS(status) \
376 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
377 /*
378 * This is the end of Protocol specific defines.
379 */
380
381 static int storvsc_ringbuffer_size = (128 * 1024);
382 static u32 max_outstanding_req_per_channel;
383 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
384
385 static int storvsc_vcpus_per_sub_channel = 4;
386
387 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
388 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
389
390 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
391 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
392
393 static int ring_avail_percent_lowater = 10;
394 module_param(ring_avail_percent_lowater, int, S_IRUGO);
395 MODULE_PARM_DESC(ring_avail_percent_lowater,
396 "Select a channel if available ring size > this in percent");
397
398 /*
399 * Timeout in seconds for all devices managed by this driver.
400 */
401 static int storvsc_timeout = 180;
402
403 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
404 static struct scsi_transport_template *fc_transport_template;
405 #endif
406
407 static void storvsc_on_channel_callback(void *context);
408
409 #define STORVSC_MAX_LUNS_PER_TARGET 255
410 #define STORVSC_MAX_TARGETS 2
411 #define STORVSC_MAX_CHANNELS 8
412
413 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255
414 #define STORVSC_FC_MAX_TARGETS 128
415 #define STORVSC_FC_MAX_CHANNELS 8
416
417 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64
418 #define STORVSC_IDE_MAX_TARGETS 1
419 #define STORVSC_IDE_MAX_CHANNELS 1
420
421 struct storvsc_cmd_request {
422 struct scsi_cmnd *cmd;
423
424 struct hv_device *device;
425
426 /* Synchronize the request/response if needed */
427 struct completion wait_event;
428
429 struct vmbus_channel_packet_multipage_buffer mpb;
430 struct vmbus_packet_mpb_array *payload;
431 u32 payload_sz;
432
433 struct vstor_packet vstor_packet;
434 };
435
436
437 /* A storvsc device is a device object that contains a vmbus channel */
438 struct storvsc_device {
439 struct hv_device *device;
440
441 bool destroy;
442 bool drain_notify;
443 atomic_t num_outstanding_req;
444 struct Scsi_Host *host;
445
446 wait_queue_head_t waiting_to_drain;
447
448 /*
449 * Each unique Port/Path/Target represents 1 channel ie scsi
450 * controller. In reality, the pathid, targetid is always 0
451 * and the port is set by us
452 */
453 unsigned int port_number;
454 unsigned char path_id;
455 unsigned char target_id;
456
457 /*
458 * Max I/O, the device can support.
459 */
460 u32 max_transfer_bytes;
461 /*
462 * Number of sub-channels we will open.
463 */
464 u16 num_sc;
465 struct vmbus_channel **stor_chns;
466 /*
467 * Mask of CPUs bound to subchannels.
468 */
469 struct cpumask alloced_cpus;
470 /*
471 * Serializes modifications of stor_chns[] from storvsc_do_io()
472 * and storvsc_change_target_cpu().
473 */
474 spinlock_t lock;
475 /* Used for vsc/vsp channel reset process */
476 struct storvsc_cmd_request init_request;
477 struct storvsc_cmd_request reset_request;
478 /*
479 * Currently active port and node names for FC devices.
480 */
481 u64 node_name;
482 u64 port_name;
483 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
484 struct fc_rport *rport;
485 #endif
486 };
487
488 struct hv_host_device {
489 struct hv_device *dev;
490 unsigned int port;
491 unsigned char path;
492 unsigned char target;
493 struct workqueue_struct *handle_error_wq;
494 struct work_struct host_scan_work;
495 struct Scsi_Host *host;
496 };
497
498 struct storvsc_scan_work {
499 struct work_struct work;
500 struct Scsi_Host *host;
501 u8 lun;
502 u8 tgt_id;
503 };
504
storvsc_device_scan(struct work_struct * work)505 static void storvsc_device_scan(struct work_struct *work)
506 {
507 struct storvsc_scan_work *wrk;
508 struct scsi_device *sdev;
509
510 wrk = container_of(work, struct storvsc_scan_work, work);
511
512 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
513 if (!sdev)
514 goto done;
515 scsi_rescan_device(&sdev->sdev_gendev);
516 scsi_device_put(sdev);
517
518 done:
519 kfree(wrk);
520 }
521
storvsc_host_scan(struct work_struct * work)522 static void storvsc_host_scan(struct work_struct *work)
523 {
524 struct Scsi_Host *host;
525 struct scsi_device *sdev;
526 struct hv_host_device *host_device =
527 container_of(work, struct hv_host_device, host_scan_work);
528
529 host = host_device->host;
530 /*
531 * Before scanning the host, first check to see if any of the
532 * currrently known devices have been hot removed. We issue a
533 * "unit ready" command against all currently known devices.
534 * This I/O will result in an error for devices that have been
535 * removed. As part of handling the I/O error, we remove the device.
536 *
537 * When a LUN is added or removed, the host sends us a signal to
538 * scan the host. Thus we are forced to discover the LUNs that
539 * may have been removed this way.
540 */
541 mutex_lock(&host->scan_mutex);
542 shost_for_each_device(sdev, host)
543 scsi_test_unit_ready(sdev, 1, 1, NULL);
544 mutex_unlock(&host->scan_mutex);
545 /*
546 * Now scan the host to discover LUNs that may have been added.
547 */
548 scsi_scan_host(host);
549 }
550
storvsc_remove_lun(struct work_struct * work)551 static void storvsc_remove_lun(struct work_struct *work)
552 {
553 struct storvsc_scan_work *wrk;
554 struct scsi_device *sdev;
555
556 wrk = container_of(work, struct storvsc_scan_work, work);
557 if (!scsi_host_get(wrk->host))
558 goto done;
559
560 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
561
562 if (sdev) {
563 scsi_remove_device(sdev);
564 scsi_device_put(sdev);
565 }
566 scsi_host_put(wrk->host);
567
568 done:
569 kfree(wrk);
570 }
571
572
573 /*
574 * We can get incoming messages from the host that are not in response to
575 * messages that we have sent out. An example of this would be messages
576 * received by the guest to notify dynamic addition/removal of LUNs. To
577 * deal with potential race conditions where the driver may be in the
578 * midst of being unloaded when we might receive an unsolicited message
579 * from the host, we have implemented a mechanism to gurantee sequential
580 * consistency:
581 *
582 * 1) Once the device is marked as being destroyed, we will fail all
583 * outgoing messages.
584 * 2) We permit incoming messages when the device is being destroyed,
585 * only to properly account for messages already sent out.
586 */
587
get_out_stor_device(struct hv_device * device)588 static inline struct storvsc_device *get_out_stor_device(
589 struct hv_device *device)
590 {
591 struct storvsc_device *stor_device;
592
593 stor_device = hv_get_drvdata(device);
594
595 if (stor_device && stor_device->destroy)
596 stor_device = NULL;
597
598 return stor_device;
599 }
600
601
storvsc_wait_to_drain(struct storvsc_device * dev)602 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
603 {
604 dev->drain_notify = true;
605 wait_event(dev->waiting_to_drain,
606 atomic_read(&dev->num_outstanding_req) == 0);
607 dev->drain_notify = false;
608 }
609
get_in_stor_device(struct hv_device * device)610 static inline struct storvsc_device *get_in_stor_device(
611 struct hv_device *device)
612 {
613 struct storvsc_device *stor_device;
614
615 stor_device = hv_get_drvdata(device);
616
617 if (!stor_device)
618 goto get_in_err;
619
620 /*
621 * If the device is being destroyed; allow incoming
622 * traffic only to cleanup outstanding requests.
623 */
624
625 if (stor_device->destroy &&
626 (atomic_read(&stor_device->num_outstanding_req) == 0))
627 stor_device = NULL;
628
629 get_in_err:
630 return stor_device;
631
632 }
633
storvsc_change_target_cpu(struct vmbus_channel * channel,u32 old,u32 new)634 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
635 u32 new)
636 {
637 struct storvsc_device *stor_device;
638 struct vmbus_channel *cur_chn;
639 bool old_is_alloced = false;
640 struct hv_device *device;
641 unsigned long flags;
642 int cpu;
643
644 device = channel->primary_channel ?
645 channel->primary_channel->device_obj
646 : channel->device_obj;
647 stor_device = get_out_stor_device(device);
648 if (!stor_device)
649 return;
650
651 /* See storvsc_do_io() -> get_og_chn(). */
652 spin_lock_irqsave(&stor_device->lock, flags);
653
654 /*
655 * Determines if the storvsc device has other channels assigned to
656 * the "old" CPU to update the alloced_cpus mask and the stor_chns
657 * array.
658 */
659 if (device->channel != channel && device->channel->target_cpu == old) {
660 cur_chn = device->channel;
661 old_is_alloced = true;
662 goto old_is_alloced;
663 }
664 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
665 if (cur_chn == channel)
666 continue;
667 if (cur_chn->target_cpu == old) {
668 old_is_alloced = true;
669 goto old_is_alloced;
670 }
671 }
672
673 old_is_alloced:
674 if (old_is_alloced)
675 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
676 else
677 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
678
679 /* "Flush" the stor_chns array. */
680 for_each_possible_cpu(cpu) {
681 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
682 cpu, &stor_device->alloced_cpus))
683 WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
684 }
685
686 WRITE_ONCE(stor_device->stor_chns[new], channel);
687 cpumask_set_cpu(new, &stor_device->alloced_cpus);
688
689 spin_unlock_irqrestore(&stor_device->lock, flags);
690 }
691
handle_sc_creation(struct vmbus_channel * new_sc)692 static void handle_sc_creation(struct vmbus_channel *new_sc)
693 {
694 struct hv_device *device = new_sc->primary_channel->device_obj;
695 struct device *dev = &device->device;
696 struct storvsc_device *stor_device;
697 struct vmstorage_channel_properties props;
698 int ret;
699
700 stor_device = get_out_stor_device(device);
701 if (!stor_device)
702 return;
703
704 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
705
706 ret = vmbus_open(new_sc,
707 storvsc_ringbuffer_size,
708 storvsc_ringbuffer_size,
709 (void *)&props,
710 sizeof(struct vmstorage_channel_properties),
711 storvsc_on_channel_callback, new_sc);
712
713 /* In case vmbus_open() fails, we don't use the sub-channel. */
714 if (ret != 0) {
715 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
716 return;
717 }
718
719 new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
720
721 /* Add the sub-channel to the array of available channels. */
722 stor_device->stor_chns[new_sc->target_cpu] = new_sc;
723 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
724 }
725
handle_multichannel_storage(struct hv_device * device,int max_chns)726 static void handle_multichannel_storage(struct hv_device *device, int max_chns)
727 {
728 struct device *dev = &device->device;
729 struct storvsc_device *stor_device;
730 int num_sc;
731 struct storvsc_cmd_request *request;
732 struct vstor_packet *vstor_packet;
733 int ret, t;
734
735 /*
736 * If the number of CPUs is artificially restricted, such as
737 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
738 * sub-channels >= the number of CPUs. These sub-channels
739 * should not be created. The primary channel is already created
740 * and assigned to one CPU, so check against # CPUs - 1.
741 */
742 num_sc = min((int)(num_online_cpus() - 1), max_chns);
743 if (!num_sc)
744 return;
745
746 stor_device = get_out_stor_device(device);
747 if (!stor_device)
748 return;
749
750 stor_device->num_sc = num_sc;
751 request = &stor_device->init_request;
752 vstor_packet = &request->vstor_packet;
753
754 /*
755 * Establish a handler for dealing with subchannels.
756 */
757 vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
758
759 /*
760 * Request the host to create sub-channels.
761 */
762 memset(request, 0, sizeof(struct storvsc_cmd_request));
763 init_completion(&request->wait_event);
764 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
765 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
766 vstor_packet->sub_channel_count = num_sc;
767
768 ret = vmbus_sendpacket(device->channel, vstor_packet,
769 (sizeof(struct vstor_packet) -
770 vmscsi_size_delta),
771 (unsigned long)request,
772 VM_PKT_DATA_INBAND,
773 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
774
775 if (ret != 0) {
776 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
777 return;
778 }
779
780 t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
781 if (t == 0) {
782 dev_err(dev, "Failed to create sub-channel: timed out\n");
783 return;
784 }
785
786 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
787 vstor_packet->status != 0) {
788 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
789 vstor_packet->operation, vstor_packet->status);
790 return;
791 }
792
793 /*
794 * We need to do nothing here, because vmbus_process_offer()
795 * invokes channel->sc_creation_callback, which will open and use
796 * the sub-channel(s).
797 */
798 }
799
cache_wwn(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet)800 static void cache_wwn(struct storvsc_device *stor_device,
801 struct vstor_packet *vstor_packet)
802 {
803 /*
804 * Cache the currently active port and node ww names.
805 */
806 if (vstor_packet->wwn_packet.primary_active) {
807 stor_device->node_name =
808 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
809 stor_device->port_name =
810 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
811 } else {
812 stor_device->node_name =
813 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
814 stor_device->port_name =
815 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
816 }
817 }
818
819
storvsc_execute_vstor_op(struct hv_device * device,struct storvsc_cmd_request * request,bool status_check)820 static int storvsc_execute_vstor_op(struct hv_device *device,
821 struct storvsc_cmd_request *request,
822 bool status_check)
823 {
824 struct vstor_packet *vstor_packet;
825 int ret, t;
826
827 vstor_packet = &request->vstor_packet;
828
829 init_completion(&request->wait_event);
830 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
831
832 ret = vmbus_sendpacket(device->channel, vstor_packet,
833 (sizeof(struct vstor_packet) -
834 vmscsi_size_delta),
835 (unsigned long)request,
836 VM_PKT_DATA_INBAND,
837 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
838 if (ret != 0)
839 return ret;
840
841 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
842 if (t == 0)
843 return -ETIMEDOUT;
844
845 if (!status_check)
846 return ret;
847
848 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
849 vstor_packet->status != 0)
850 return -EINVAL;
851
852 return ret;
853 }
854
storvsc_channel_init(struct hv_device * device,bool is_fc)855 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
856 {
857 struct storvsc_device *stor_device;
858 struct storvsc_cmd_request *request;
859 struct vstor_packet *vstor_packet;
860 int ret, i;
861 int max_chns;
862 bool process_sub_channels = false;
863
864 stor_device = get_out_stor_device(device);
865 if (!stor_device)
866 return -ENODEV;
867
868 request = &stor_device->init_request;
869 vstor_packet = &request->vstor_packet;
870
871 /*
872 * Now, initiate the vsc/vsp initialization protocol on the open
873 * channel
874 */
875 memset(request, 0, sizeof(struct storvsc_cmd_request));
876 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
877 ret = storvsc_execute_vstor_op(device, request, true);
878 if (ret)
879 return ret;
880 /*
881 * Query host supported protocol version.
882 */
883
884 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
885 /* reuse the packet for version range supported */
886 memset(vstor_packet, 0, sizeof(struct vstor_packet));
887 vstor_packet->operation =
888 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
889
890 vstor_packet->version.major_minor =
891 vmstor_protocols[i].protocol_version;
892
893 /*
894 * The revision number is only used in Windows; set it to 0.
895 */
896 vstor_packet->version.revision = 0;
897 ret = storvsc_execute_vstor_op(device, request, false);
898 if (ret != 0)
899 return ret;
900
901 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
902 return -EINVAL;
903
904 if (vstor_packet->status == 0) {
905 vmstor_proto_version =
906 vmstor_protocols[i].protocol_version;
907
908 sense_buffer_size =
909 vmstor_protocols[i].sense_buffer_size;
910
911 vmscsi_size_delta =
912 vmstor_protocols[i].vmscsi_size_delta;
913
914 break;
915 }
916 }
917
918 if (vstor_packet->status != 0)
919 return -EINVAL;
920
921
922 memset(vstor_packet, 0, sizeof(struct vstor_packet));
923 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
924 ret = storvsc_execute_vstor_op(device, request, true);
925 if (ret != 0)
926 return ret;
927
928 /*
929 * Check to see if multi-channel support is there.
930 * Hosts that implement protocol version of 5.1 and above
931 * support multi-channel.
932 */
933 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
934
935 /*
936 * Allocate state to manage the sub-channels.
937 * We allocate an array based on the numbers of possible CPUs
938 * (Hyper-V does not support cpu online/offline).
939 * This Array will be sparseley populated with unique
940 * channels - primary + sub-channels.
941 * We will however populate all the slots to evenly distribute
942 * the load.
943 */
944 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
945 GFP_KERNEL);
946 if (stor_device->stor_chns == NULL)
947 return -ENOMEM;
948
949 device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
950
951 stor_device->stor_chns[device->channel->target_cpu] = device->channel;
952 cpumask_set_cpu(device->channel->target_cpu,
953 &stor_device->alloced_cpus);
954
955 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
956 if (vstor_packet->storage_channel_properties.flags &
957 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
958 process_sub_channels = true;
959 }
960 stor_device->max_transfer_bytes =
961 vstor_packet->storage_channel_properties.max_transfer_bytes;
962
963 if (!is_fc)
964 goto done;
965
966 /*
967 * For FC devices retrieve FC HBA data.
968 */
969 memset(vstor_packet, 0, sizeof(struct vstor_packet));
970 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
971 ret = storvsc_execute_vstor_op(device, request, true);
972 if (ret != 0)
973 return ret;
974
975 /*
976 * Cache the currently active port and node ww names.
977 */
978 cache_wwn(stor_device, vstor_packet);
979
980 done:
981
982 memset(vstor_packet, 0, sizeof(struct vstor_packet));
983 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
984 ret = storvsc_execute_vstor_op(device, request, true);
985 if (ret != 0)
986 return ret;
987
988 if (process_sub_channels)
989 handle_multichannel_storage(device, max_chns);
990
991 return ret;
992 }
993
storvsc_handle_error(struct vmscsi_request * vm_srb,struct scsi_cmnd * scmnd,struct Scsi_Host * host,u8 asc,u8 ascq)994 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
995 struct scsi_cmnd *scmnd,
996 struct Scsi_Host *host,
997 u8 asc, u8 ascq)
998 {
999 struct storvsc_scan_work *wrk;
1000 void (*process_err_fn)(struct work_struct *work);
1001 struct hv_host_device *host_dev = shost_priv(host);
1002
1003 switch (SRB_STATUS(vm_srb->srb_status)) {
1004 case SRB_STATUS_ERROR:
1005 case SRB_STATUS_ABORTED:
1006 case SRB_STATUS_INVALID_REQUEST:
1007 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
1008 /* Check for capacity change */
1009 if ((asc == 0x2a) && (ascq == 0x9)) {
1010 process_err_fn = storvsc_device_scan;
1011 /* Retry the I/O that triggered this. */
1012 set_host_byte(scmnd, DID_REQUEUE);
1013 goto do_work;
1014 }
1015
1016 /*
1017 * Check for "Operating parameters have changed"
1018 * due to Hyper-V changing the VHD/VHDX BlockSize
1019 * when adding/removing a differencing disk. This
1020 * causes discard_granularity to change, so do a
1021 * rescan to pick up the new granularity. We don't
1022 * want scsi_report_sense() to output a message
1023 * that a sysadmin wouldn't know what to do with.
1024 */
1025 if ((asc == 0x3f) && (ascq != 0x03) &&
1026 (ascq != 0x0e)) {
1027 process_err_fn = storvsc_device_scan;
1028 set_host_byte(scmnd, DID_REQUEUE);
1029 goto do_work;
1030 }
1031
1032 /*
1033 * Otherwise, let upper layer deal with the
1034 * error when sense message is present
1035 */
1036 return;
1037 }
1038
1039 /*
1040 * If there is an error; offline the device since all
1041 * error recovery strategies would have already been
1042 * deployed on the host side. However, if the command
1043 * were a pass-through command deal with it appropriately.
1044 */
1045 switch (scmnd->cmnd[0]) {
1046 case ATA_16:
1047 case ATA_12:
1048 set_host_byte(scmnd, DID_PASSTHROUGH);
1049 break;
1050 /*
1051 * On some Hyper-V hosts TEST_UNIT_READY command can
1052 * return SRB_STATUS_ERROR. Let the upper level code
1053 * deal with it based on the sense information.
1054 */
1055 case TEST_UNIT_READY:
1056 break;
1057 default:
1058 set_host_byte(scmnd, DID_ERROR);
1059 }
1060 return;
1061
1062 case SRB_STATUS_INVALID_LUN:
1063 set_host_byte(scmnd, DID_NO_CONNECT);
1064 process_err_fn = storvsc_remove_lun;
1065 goto do_work;
1066
1067 }
1068 return;
1069
1070 do_work:
1071 /*
1072 * We need to schedule work to process this error; schedule it.
1073 */
1074 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1075 if (!wrk) {
1076 set_host_byte(scmnd, DID_TARGET_FAILURE);
1077 return;
1078 }
1079
1080 wrk->host = host;
1081 wrk->lun = vm_srb->lun;
1082 wrk->tgt_id = vm_srb->target_id;
1083 INIT_WORK(&wrk->work, process_err_fn);
1084 queue_work(host_dev->handle_error_wq, &wrk->work);
1085 }
1086
1087
storvsc_command_completion(struct storvsc_cmd_request * cmd_request,struct storvsc_device * stor_dev)1088 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1089 struct storvsc_device *stor_dev)
1090 {
1091 struct scsi_cmnd *scmnd = cmd_request->cmd;
1092 struct scsi_sense_hdr sense_hdr;
1093 struct vmscsi_request *vm_srb;
1094 u32 data_transfer_length;
1095 struct Scsi_Host *host;
1096 u32 payload_sz = cmd_request->payload_sz;
1097 void *payload = cmd_request->payload;
1098
1099 host = stor_dev->host;
1100
1101 vm_srb = &cmd_request->vstor_packet.vm_srb;
1102 data_transfer_length = vm_srb->data_transfer_length;
1103
1104 scmnd->result = vm_srb->scsi_status;
1105
1106 if (scmnd->result) {
1107 if (scsi_normalize_sense(scmnd->sense_buffer,
1108 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1109 !(sense_hdr.sense_key == NOT_READY &&
1110 sense_hdr.asc == 0x03A) &&
1111 do_logging(STORVSC_LOGGING_ERROR))
1112 scsi_print_sense_hdr(scmnd->device, "storvsc",
1113 &sense_hdr);
1114 }
1115
1116 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1117 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1118 sense_hdr.ascq);
1119 /*
1120 * The Windows driver set data_transfer_length on
1121 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1122 * is untouched. In these cases we set it to 0.
1123 */
1124 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1125 data_transfer_length = 0;
1126 }
1127
1128 /* Validate data_transfer_length (from Hyper-V) */
1129 if (data_transfer_length > cmd_request->payload->range.len)
1130 data_transfer_length = cmd_request->payload->range.len;
1131
1132 scsi_set_resid(scmnd,
1133 cmd_request->payload->range.len - data_transfer_length);
1134
1135 scmnd->scsi_done(scmnd);
1136
1137 if (payload_sz >
1138 sizeof(struct vmbus_channel_packet_multipage_buffer))
1139 kfree(payload);
1140 }
1141
storvsc_on_io_completion(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1142 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1143 struct vstor_packet *vstor_packet,
1144 struct storvsc_cmd_request *request)
1145 {
1146 struct vstor_packet *stor_pkt;
1147 struct hv_device *device = stor_device->device;
1148
1149 stor_pkt = &request->vstor_packet;
1150
1151 /*
1152 * The current SCSI handling on the host side does
1153 * not correctly handle:
1154 * INQUIRY command with page code parameter set to 0x80
1155 * MODE_SENSE command with cmd[2] == 0x1c
1156 *
1157 * Setup srb and scsi status so this won't be fatal.
1158 * We do this so we can distinguish truly fatal failues
1159 * (srb status == 0x4) and off-line the device in that case.
1160 */
1161
1162 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1163 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1164 vstor_packet->vm_srb.scsi_status = 0;
1165 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1166 }
1167
1168
1169 /* Copy over the status...etc */
1170 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1171 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1172
1173 /* Validate sense_info_length (from Hyper-V) */
1174 if (vstor_packet->vm_srb.sense_info_length > sense_buffer_size)
1175 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1176
1177 stor_pkt->vm_srb.sense_info_length =
1178 vstor_packet->vm_srb.sense_info_length;
1179
1180 if (vstor_packet->vm_srb.scsi_status != 0 ||
1181 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1182 storvsc_log(device, STORVSC_LOGGING_WARN,
1183 "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1184 stor_pkt->vm_srb.cdb[0],
1185 vstor_packet->vm_srb.scsi_status,
1186 vstor_packet->vm_srb.srb_status);
1187
1188 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1189 /* CHECK_CONDITION */
1190 if (vstor_packet->vm_srb.srb_status &
1191 SRB_STATUS_AUTOSENSE_VALID) {
1192 /* autosense data available */
1193
1194 storvsc_log(device, STORVSC_LOGGING_WARN,
1195 "stor pkt %p autosense data valid - len %d\n",
1196 request, vstor_packet->vm_srb.sense_info_length);
1197
1198 memcpy(request->cmd->sense_buffer,
1199 vstor_packet->vm_srb.sense_data,
1200 vstor_packet->vm_srb.sense_info_length);
1201
1202 }
1203 }
1204
1205 stor_pkt->vm_srb.data_transfer_length =
1206 vstor_packet->vm_srb.data_transfer_length;
1207
1208 storvsc_command_completion(request, stor_device);
1209
1210 if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1211 stor_device->drain_notify)
1212 wake_up(&stor_device->waiting_to_drain);
1213
1214
1215 }
1216
storvsc_on_receive(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1217 static void storvsc_on_receive(struct storvsc_device *stor_device,
1218 struct vstor_packet *vstor_packet,
1219 struct storvsc_cmd_request *request)
1220 {
1221 struct hv_host_device *host_dev;
1222 switch (vstor_packet->operation) {
1223 case VSTOR_OPERATION_COMPLETE_IO:
1224 storvsc_on_io_completion(stor_device, vstor_packet, request);
1225 break;
1226
1227 case VSTOR_OPERATION_REMOVE_DEVICE:
1228 case VSTOR_OPERATION_ENUMERATE_BUS:
1229 host_dev = shost_priv(stor_device->host);
1230 queue_work(
1231 host_dev->handle_error_wq, &host_dev->host_scan_work);
1232 break;
1233
1234 case VSTOR_OPERATION_FCHBA_DATA:
1235 cache_wwn(stor_device, vstor_packet);
1236 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1237 fc_host_node_name(stor_device->host) = stor_device->node_name;
1238 fc_host_port_name(stor_device->host) = stor_device->port_name;
1239 #endif
1240 break;
1241 default:
1242 break;
1243 }
1244 }
1245
storvsc_on_channel_callback(void * context)1246 static void storvsc_on_channel_callback(void *context)
1247 {
1248 struct vmbus_channel *channel = (struct vmbus_channel *)context;
1249 const struct vmpacket_descriptor *desc;
1250 struct hv_device *device;
1251 struct storvsc_device *stor_device;
1252
1253 if (channel->primary_channel != NULL)
1254 device = channel->primary_channel->device_obj;
1255 else
1256 device = channel->device_obj;
1257
1258 stor_device = get_in_stor_device(device);
1259 if (!stor_device)
1260 return;
1261
1262 foreach_vmbus_pkt(desc, channel) {
1263 void *packet = hv_pkt_data(desc);
1264 struct storvsc_cmd_request *request;
1265
1266 request = (struct storvsc_cmd_request *)
1267 ((unsigned long)desc->trans_id);
1268
1269 if (request == &stor_device->init_request ||
1270 request == &stor_device->reset_request) {
1271 memcpy(&request->vstor_packet, packet,
1272 (sizeof(struct vstor_packet) - vmscsi_size_delta));
1273 complete(&request->wait_event);
1274 } else {
1275 storvsc_on_receive(stor_device, packet, request);
1276 }
1277 }
1278 }
1279
storvsc_connect_to_vsp(struct hv_device * device,u32 ring_size,bool is_fc)1280 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1281 bool is_fc)
1282 {
1283 struct vmstorage_channel_properties props;
1284 int ret;
1285
1286 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1287
1288 ret = vmbus_open(device->channel,
1289 ring_size,
1290 ring_size,
1291 (void *)&props,
1292 sizeof(struct vmstorage_channel_properties),
1293 storvsc_on_channel_callback, device->channel);
1294
1295 if (ret != 0)
1296 return ret;
1297
1298 ret = storvsc_channel_init(device, is_fc);
1299
1300 return ret;
1301 }
1302
storvsc_dev_remove(struct hv_device * device)1303 static int storvsc_dev_remove(struct hv_device *device)
1304 {
1305 struct storvsc_device *stor_device;
1306
1307 stor_device = hv_get_drvdata(device);
1308
1309 stor_device->destroy = true;
1310
1311 /* Make sure flag is set before waiting */
1312 wmb();
1313
1314 /*
1315 * At this point, all outbound traffic should be disable. We
1316 * only allow inbound traffic (responses) to proceed so that
1317 * outstanding requests can be completed.
1318 */
1319
1320 storvsc_wait_to_drain(stor_device);
1321
1322 /*
1323 * Since we have already drained, we don't need to busy wait
1324 * as was done in final_release_stor_device()
1325 * Note that we cannot set the ext pointer to NULL until
1326 * we have drained - to drain the outgoing packets, we need to
1327 * allow incoming packets.
1328 */
1329 hv_set_drvdata(device, NULL);
1330
1331 /* Close the channel */
1332 vmbus_close(device->channel);
1333
1334 kfree(stor_device->stor_chns);
1335 kfree(stor_device);
1336 return 0;
1337 }
1338
get_og_chn(struct storvsc_device * stor_device,u16 q_num)1339 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1340 u16 q_num)
1341 {
1342 u16 slot = 0;
1343 u16 hash_qnum;
1344 const struct cpumask *node_mask;
1345 int num_channels, tgt_cpu;
1346
1347 if (stor_device->num_sc == 0) {
1348 stor_device->stor_chns[q_num] = stor_device->device->channel;
1349 return stor_device->device->channel;
1350 }
1351
1352 /*
1353 * Our channel array is sparsley populated and we
1354 * initiated I/O on a processor/hw-q that does not
1355 * currently have a designated channel. Fix this.
1356 * The strategy is simple:
1357 * I. Ensure NUMA locality
1358 * II. Distribute evenly (best effort)
1359 */
1360
1361 node_mask = cpumask_of_node(cpu_to_node(q_num));
1362
1363 num_channels = 0;
1364 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1365 if (cpumask_test_cpu(tgt_cpu, node_mask))
1366 num_channels++;
1367 }
1368 if (num_channels == 0) {
1369 stor_device->stor_chns[q_num] = stor_device->device->channel;
1370 return stor_device->device->channel;
1371 }
1372
1373 hash_qnum = q_num;
1374 while (hash_qnum >= num_channels)
1375 hash_qnum -= num_channels;
1376
1377 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1378 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1379 continue;
1380 if (slot == hash_qnum)
1381 break;
1382 slot++;
1383 }
1384
1385 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1386
1387 return stor_device->stor_chns[q_num];
1388 }
1389
1390
storvsc_do_io(struct hv_device * device,struct storvsc_cmd_request * request,u16 q_num)1391 static int storvsc_do_io(struct hv_device *device,
1392 struct storvsc_cmd_request *request, u16 q_num)
1393 {
1394 struct storvsc_device *stor_device;
1395 struct vstor_packet *vstor_packet;
1396 struct vmbus_channel *outgoing_channel, *channel;
1397 unsigned long flags;
1398 int ret = 0;
1399 const struct cpumask *node_mask;
1400 int tgt_cpu;
1401
1402 vstor_packet = &request->vstor_packet;
1403 stor_device = get_out_stor_device(device);
1404
1405 if (!stor_device)
1406 return -ENODEV;
1407
1408
1409 request->device = device;
1410 /*
1411 * Select an appropriate channel to send the request out.
1412 */
1413 /* See storvsc_change_target_cpu(). */
1414 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1415 if (outgoing_channel != NULL) {
1416 if (outgoing_channel->target_cpu == q_num) {
1417 /*
1418 * Ideally, we want to pick a different channel if
1419 * available on the same NUMA node.
1420 */
1421 node_mask = cpumask_of_node(cpu_to_node(q_num));
1422 for_each_cpu_wrap(tgt_cpu,
1423 &stor_device->alloced_cpus, q_num + 1) {
1424 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1425 continue;
1426 if (tgt_cpu == q_num)
1427 continue;
1428 channel = READ_ONCE(
1429 stor_device->stor_chns[tgt_cpu]);
1430 if (channel == NULL)
1431 continue;
1432 if (hv_get_avail_to_write_percent(
1433 &channel->outbound)
1434 > ring_avail_percent_lowater) {
1435 outgoing_channel = channel;
1436 goto found_channel;
1437 }
1438 }
1439
1440 /*
1441 * All the other channels on the same NUMA node are
1442 * busy. Try to use the channel on the current CPU
1443 */
1444 if (hv_get_avail_to_write_percent(
1445 &outgoing_channel->outbound)
1446 > ring_avail_percent_lowater)
1447 goto found_channel;
1448
1449 /*
1450 * If we reach here, all the channels on the current
1451 * NUMA node are busy. Try to find a channel in
1452 * other NUMA nodes
1453 */
1454 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1455 if (cpumask_test_cpu(tgt_cpu, node_mask))
1456 continue;
1457 channel = READ_ONCE(
1458 stor_device->stor_chns[tgt_cpu]);
1459 if (channel == NULL)
1460 continue;
1461 if (hv_get_avail_to_write_percent(
1462 &channel->outbound)
1463 > ring_avail_percent_lowater) {
1464 outgoing_channel = channel;
1465 goto found_channel;
1466 }
1467 }
1468 }
1469 } else {
1470 spin_lock_irqsave(&stor_device->lock, flags);
1471 outgoing_channel = stor_device->stor_chns[q_num];
1472 if (outgoing_channel != NULL) {
1473 spin_unlock_irqrestore(&stor_device->lock, flags);
1474 goto found_channel;
1475 }
1476 outgoing_channel = get_og_chn(stor_device, q_num);
1477 spin_unlock_irqrestore(&stor_device->lock, flags);
1478 }
1479
1480 found_channel:
1481 vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1482
1483 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1484 vmscsi_size_delta);
1485
1486
1487 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1488
1489
1490 vstor_packet->vm_srb.data_transfer_length =
1491 request->payload->range.len;
1492
1493 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1494
1495 if (request->payload->range.len) {
1496
1497 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1498 request->payload, request->payload_sz,
1499 vstor_packet,
1500 (sizeof(struct vstor_packet) -
1501 vmscsi_size_delta),
1502 (unsigned long)request);
1503 } else {
1504 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1505 (sizeof(struct vstor_packet) -
1506 vmscsi_size_delta),
1507 (unsigned long)request,
1508 VM_PKT_DATA_INBAND,
1509 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1510 }
1511
1512 if (ret != 0)
1513 return ret;
1514
1515 atomic_inc(&stor_device->num_outstanding_req);
1516
1517 return ret;
1518 }
1519
storvsc_device_alloc(struct scsi_device * sdevice)1520 static int storvsc_device_alloc(struct scsi_device *sdevice)
1521 {
1522 /*
1523 * Set blist flag to permit the reading of the VPD pages even when
1524 * the target may claim SPC-2 compliance. MSFT targets currently
1525 * claim SPC-2 compliance while they implement post SPC-2 features.
1526 * With this flag we can correctly handle WRITE_SAME_16 issues.
1527 *
1528 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1529 * still supports REPORT LUN.
1530 */
1531 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1532
1533 return 0;
1534 }
1535
storvsc_device_configure(struct scsi_device * sdevice)1536 static int storvsc_device_configure(struct scsi_device *sdevice)
1537 {
1538 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1539
1540 sdevice->no_write_same = 1;
1541
1542 /*
1543 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1544 * if the device is a MSFT virtual device. If the host is
1545 * WIN10 or newer, allow write_same.
1546 */
1547 if (!strncmp(sdevice->vendor, "Msft", 4)) {
1548 switch (vmstor_proto_version) {
1549 case VMSTOR_PROTO_VERSION_WIN8:
1550 case VMSTOR_PROTO_VERSION_WIN8_1:
1551 sdevice->scsi_level = SCSI_SPC_3;
1552 break;
1553 }
1554
1555 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1556 sdevice->no_write_same = 0;
1557 }
1558
1559 return 0;
1560 }
1561
storvsc_get_chs(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * info)1562 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1563 sector_t capacity, int *info)
1564 {
1565 sector_t nsect = capacity;
1566 sector_t cylinders = nsect;
1567 int heads, sectors_pt;
1568
1569 /*
1570 * We are making up these values; let us keep it simple.
1571 */
1572 heads = 0xff;
1573 sectors_pt = 0x3f; /* Sectors per track */
1574 sector_div(cylinders, heads * sectors_pt);
1575 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1576 cylinders = 0xffff;
1577
1578 info[0] = heads;
1579 info[1] = sectors_pt;
1580 info[2] = (int)cylinders;
1581
1582 return 0;
1583 }
1584
storvsc_host_reset_handler(struct scsi_cmnd * scmnd)1585 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1586 {
1587 struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1588 struct hv_device *device = host_dev->dev;
1589
1590 struct storvsc_device *stor_device;
1591 struct storvsc_cmd_request *request;
1592 struct vstor_packet *vstor_packet;
1593 int ret, t;
1594
1595
1596 stor_device = get_out_stor_device(device);
1597 if (!stor_device)
1598 return FAILED;
1599
1600 request = &stor_device->reset_request;
1601 vstor_packet = &request->vstor_packet;
1602 memset(vstor_packet, 0, sizeof(struct vstor_packet));
1603
1604 init_completion(&request->wait_event);
1605
1606 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1607 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1608 vstor_packet->vm_srb.path_id = stor_device->path_id;
1609
1610 ret = vmbus_sendpacket(device->channel, vstor_packet,
1611 (sizeof(struct vstor_packet) -
1612 vmscsi_size_delta),
1613 (unsigned long)&stor_device->reset_request,
1614 VM_PKT_DATA_INBAND,
1615 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1616 if (ret != 0)
1617 return FAILED;
1618
1619 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1620 if (t == 0)
1621 return TIMEOUT_ERROR;
1622
1623
1624 /*
1625 * At this point, all outstanding requests in the adapter
1626 * should have been flushed out and return to us
1627 * There is a potential race here where the host may be in
1628 * the process of responding when we return from here.
1629 * Just wait for all in-transit packets to be accounted for
1630 * before we return from here.
1631 */
1632 storvsc_wait_to_drain(stor_device);
1633
1634 return SUCCESS;
1635 }
1636
1637 /*
1638 * The host guarantees to respond to each command, although I/O latencies might
1639 * be unbounded on Azure. Reset the timer unconditionally to give the host a
1640 * chance to perform EH.
1641 */
storvsc_eh_timed_out(struct scsi_cmnd * scmnd)1642 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1643 {
1644 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1645 if (scmnd->device->host->transportt == fc_transport_template)
1646 return fc_eh_timed_out(scmnd);
1647 #endif
1648 return BLK_EH_RESET_TIMER;
1649 }
1650
storvsc_scsi_cmd_ok(struct scsi_cmnd * scmnd)1651 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1652 {
1653 bool allowed = true;
1654 u8 scsi_op = scmnd->cmnd[0];
1655
1656 switch (scsi_op) {
1657 /* the host does not handle WRITE_SAME, log accident usage */
1658 case WRITE_SAME:
1659 /*
1660 * smartd sends this command and the host does not handle
1661 * this. So, don't send it.
1662 */
1663 case SET_WINDOW:
1664 scmnd->result = ILLEGAL_REQUEST << 16;
1665 allowed = false;
1666 break;
1667 default:
1668 break;
1669 }
1670 return allowed;
1671 }
1672
storvsc_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scmnd)1673 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1674 {
1675 int ret;
1676 struct hv_host_device *host_dev = shost_priv(host);
1677 struct hv_device *dev = host_dev->dev;
1678 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1679 int i;
1680 struct scatterlist *sgl;
1681 unsigned int sg_count = 0;
1682 struct vmscsi_request *vm_srb;
1683 struct scatterlist *cur_sgl;
1684 struct vmbus_packet_mpb_array *payload;
1685 u32 payload_sz;
1686 u32 length;
1687
1688 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1689 /*
1690 * On legacy hosts filter unimplemented commands.
1691 * Future hosts are expected to correctly handle
1692 * unsupported commands. Furthermore, it is
1693 * possible that some of the currently
1694 * unsupported commands maybe supported in
1695 * future versions of the host.
1696 */
1697 if (!storvsc_scsi_cmd_ok(scmnd)) {
1698 scmnd->scsi_done(scmnd);
1699 return 0;
1700 }
1701 }
1702
1703 /* Setup the cmd request */
1704 cmd_request->cmd = scmnd;
1705
1706 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1707 vm_srb = &cmd_request->vstor_packet.vm_srb;
1708 vm_srb->win8_extension.time_out_value = 60;
1709
1710 vm_srb->win8_extension.srb_flags |=
1711 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1712
1713 if (scmnd->device->tagged_supported) {
1714 vm_srb->win8_extension.srb_flags |=
1715 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1716 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1717 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1718 }
1719
1720 /* Build the SRB */
1721 switch (scmnd->sc_data_direction) {
1722 case DMA_TO_DEVICE:
1723 vm_srb->data_in = WRITE_TYPE;
1724 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1725 break;
1726 case DMA_FROM_DEVICE:
1727 vm_srb->data_in = READ_TYPE;
1728 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1729 break;
1730 case DMA_NONE:
1731 vm_srb->data_in = UNKNOWN_TYPE;
1732 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1733 break;
1734 default:
1735 /*
1736 * This is DMA_BIDIRECTIONAL or something else we are never
1737 * supposed to see here.
1738 */
1739 WARN(1, "Unexpected data direction: %d\n",
1740 scmnd->sc_data_direction);
1741 return -EINVAL;
1742 }
1743
1744
1745 vm_srb->port_number = host_dev->port;
1746 vm_srb->path_id = scmnd->device->channel;
1747 vm_srb->target_id = scmnd->device->id;
1748 vm_srb->lun = scmnd->device->lun;
1749
1750 vm_srb->cdb_length = scmnd->cmd_len;
1751
1752 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1753
1754 sgl = (struct scatterlist *)scsi_sglist(scmnd);
1755 sg_count = scsi_sg_count(scmnd);
1756
1757 length = scsi_bufflen(scmnd);
1758 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1759 payload_sz = 0;
1760
1761 if (sg_count) {
1762 unsigned int hvpgoff = 0;
1763 unsigned long offset_in_hvpg = sgl->offset & ~HV_HYP_PAGE_MASK;
1764 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1765 u64 hvpfn;
1766
1767 payload_sz = (hvpg_count * sizeof(u64) +
1768 sizeof(struct vmbus_packet_mpb_array));
1769
1770 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1771 payload = kzalloc(payload_sz, GFP_ATOMIC);
1772 if (!payload)
1773 return SCSI_MLQUEUE_DEVICE_BUSY;
1774 }
1775
1776 /*
1777 * sgl is a list of PAGEs, and payload->range.pfn_array
1778 * expects the page number in the unit of HV_HYP_PAGE_SIZE (the
1779 * page size that Hyper-V uses, so here we need to divide PAGEs
1780 * into HV_HYP_PAGE in case that PAGE_SIZE > HV_HYP_PAGE_SIZE.
1781 * Besides, payload->range.offset should be the offset in one
1782 * HV_HYP_PAGE.
1783 */
1784 payload->range.len = length;
1785 payload->range.offset = offset_in_hvpg;
1786 hvpgoff = sgl->offset >> HV_HYP_PAGE_SHIFT;
1787
1788 cur_sgl = sgl;
1789 for (i = 0; i < hvpg_count; i++) {
1790 /*
1791 * 'i' is the index of hv pages in the payload and
1792 * 'hvpgoff' is the offset (in hv pages) of the first
1793 * hv page in the the first page. The relationship
1794 * between the sum of 'i' and 'hvpgoff' and the offset
1795 * (in hv pages) in a payload page ('hvpgoff_in_page')
1796 * is as follow:
1797 *
1798 * |------------------ PAGE -------------------|
1799 * | NR_HV_HYP_PAGES_IN_PAGE hvpgs in total |
1800 * |hvpg|hvpg| ... |hvpg|... |hvpg|
1801 * ^ ^ ^ ^
1802 * +-hvpgoff-+ +-hvpgoff_in_page-+
1803 * ^ |
1804 * +--------------------- i ---------------------------+
1805 */
1806 unsigned int hvpgoff_in_page =
1807 (i + hvpgoff) % NR_HV_HYP_PAGES_IN_PAGE;
1808
1809 /*
1810 * Two cases that we need to fetch a page:
1811 * 1) i == 0, the first step or
1812 * 2) hvpgoff_in_page == 0, when we reach the boundary
1813 * of a page.
1814 */
1815 if (hvpgoff_in_page == 0 || i == 0) {
1816 hvpfn = page_to_hvpfn(sg_page(cur_sgl));
1817 cur_sgl = sg_next(cur_sgl);
1818 }
1819
1820 payload->range.pfn_array[i] = hvpfn + hvpgoff_in_page;
1821 }
1822 }
1823
1824 cmd_request->payload = payload;
1825 cmd_request->payload_sz = payload_sz;
1826
1827 /* Invokes the vsc to start an IO */
1828 ret = storvsc_do_io(dev, cmd_request, get_cpu());
1829 put_cpu();
1830
1831 if (ret == -EAGAIN) {
1832 if (payload_sz > sizeof(cmd_request->mpb))
1833 kfree(payload);
1834 /* no more space */
1835 return SCSI_MLQUEUE_DEVICE_BUSY;
1836 }
1837
1838 return 0;
1839 }
1840
1841 static struct scsi_host_template scsi_driver = {
1842 .module = THIS_MODULE,
1843 .name = "storvsc_host_t",
1844 .cmd_size = sizeof(struct storvsc_cmd_request),
1845 .bios_param = storvsc_get_chs,
1846 .queuecommand = storvsc_queuecommand,
1847 .eh_host_reset_handler = storvsc_host_reset_handler,
1848 .proc_name = "storvsc_host",
1849 .eh_timed_out = storvsc_eh_timed_out,
1850 .slave_alloc = storvsc_device_alloc,
1851 .slave_configure = storvsc_device_configure,
1852 .cmd_per_lun = 2048,
1853 .this_id = -1,
1854 /* Make sure we dont get a sg segment crosses a page boundary */
1855 .dma_boundary = PAGE_SIZE-1,
1856 /* Ensure there are no gaps in presented sgls */
1857 .virt_boundary_mask = PAGE_SIZE-1,
1858 .no_write_same = 1,
1859 .track_queue_depth = 1,
1860 .change_queue_depth = storvsc_change_queue_depth,
1861 };
1862
1863 enum {
1864 SCSI_GUID,
1865 IDE_GUID,
1866 SFC_GUID,
1867 };
1868
1869 static const struct hv_vmbus_device_id id_table[] = {
1870 /* SCSI guid */
1871 { HV_SCSI_GUID,
1872 .driver_data = SCSI_GUID
1873 },
1874 /* IDE guid */
1875 { HV_IDE_GUID,
1876 .driver_data = IDE_GUID
1877 },
1878 /* Fibre Channel GUID */
1879 {
1880 HV_SYNTHFC_GUID,
1881 .driver_data = SFC_GUID
1882 },
1883 { },
1884 };
1885
1886 MODULE_DEVICE_TABLE(vmbus, id_table);
1887
1888 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1889
hv_dev_is_fc(struct hv_device * hv_dev)1890 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1891 {
1892 return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1893 }
1894
storvsc_probe(struct hv_device * device,const struct hv_vmbus_device_id * dev_id)1895 static int storvsc_probe(struct hv_device *device,
1896 const struct hv_vmbus_device_id *dev_id)
1897 {
1898 int ret;
1899 int num_cpus = num_online_cpus();
1900 struct Scsi_Host *host;
1901 struct hv_host_device *host_dev;
1902 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1903 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1904 int target = 0;
1905 struct storvsc_device *stor_device;
1906 int max_luns_per_target;
1907 int max_targets;
1908 int max_channels;
1909 int max_sub_channels = 0;
1910
1911 /*
1912 * Based on the windows host we are running on,
1913 * set state to properly communicate with the host.
1914 */
1915
1916 if (vmbus_proto_version < VERSION_WIN8) {
1917 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1918 max_targets = STORVSC_IDE_MAX_TARGETS;
1919 max_channels = STORVSC_IDE_MAX_CHANNELS;
1920 } else {
1921 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1922 max_targets = STORVSC_MAX_TARGETS;
1923 max_channels = STORVSC_MAX_CHANNELS;
1924 /*
1925 * On Windows8 and above, we support sub-channels for storage
1926 * on SCSI and FC controllers.
1927 * The number of sub-channels offerred is based on the number of
1928 * VCPUs in the guest.
1929 */
1930 if (!dev_is_ide)
1931 max_sub_channels =
1932 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1933 }
1934
1935 scsi_driver.can_queue = max_outstanding_req_per_channel *
1936 (max_sub_channels + 1) *
1937 (100 - ring_avail_percent_lowater) / 100;
1938
1939 host = scsi_host_alloc(&scsi_driver,
1940 sizeof(struct hv_host_device));
1941 if (!host)
1942 return -ENOMEM;
1943
1944 host_dev = shost_priv(host);
1945 memset(host_dev, 0, sizeof(struct hv_host_device));
1946
1947 host_dev->port = host->host_no;
1948 host_dev->dev = device;
1949 host_dev->host = host;
1950
1951
1952 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1953 if (!stor_device) {
1954 ret = -ENOMEM;
1955 goto err_out0;
1956 }
1957
1958 stor_device->destroy = false;
1959 init_waitqueue_head(&stor_device->waiting_to_drain);
1960 stor_device->device = device;
1961 stor_device->host = host;
1962 spin_lock_init(&stor_device->lock);
1963 hv_set_drvdata(device, stor_device);
1964
1965 stor_device->port_number = host->host_no;
1966 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1967 if (ret)
1968 goto err_out1;
1969
1970 host_dev->path = stor_device->path_id;
1971 host_dev->target = stor_device->target_id;
1972
1973 switch (dev_id->driver_data) {
1974 case SFC_GUID:
1975 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1976 host->max_id = STORVSC_FC_MAX_TARGETS;
1977 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1978 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1979 host->transportt = fc_transport_template;
1980 #endif
1981 break;
1982
1983 case SCSI_GUID:
1984 host->max_lun = max_luns_per_target;
1985 host->max_id = max_targets;
1986 host->max_channel = max_channels - 1;
1987 break;
1988
1989 default:
1990 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1991 host->max_id = STORVSC_IDE_MAX_TARGETS;
1992 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1993 break;
1994 }
1995 /* max cmd length */
1996 host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1997
1998 /*
1999 * set the table size based on the info we got
2000 * from the host.
2001 */
2002 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
2003 /*
2004 * For non-IDE disks, the host supports multiple channels.
2005 * Set the number of HW queues we are supporting.
2006 */
2007 if (!dev_is_ide)
2008 host->nr_hw_queues = num_present_cpus();
2009
2010 /*
2011 * Set the error handler work queue.
2012 */
2013 host_dev->handle_error_wq =
2014 alloc_ordered_workqueue("storvsc_error_wq_%d",
2015 0,
2016 host->host_no);
2017 if (!host_dev->handle_error_wq) {
2018 ret = -ENOMEM;
2019 goto err_out2;
2020 }
2021 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2022 /* Register the HBA and start the scsi bus scan */
2023 ret = scsi_add_host(host, &device->device);
2024 if (ret != 0)
2025 goto err_out3;
2026
2027 if (!dev_is_ide) {
2028 scsi_scan_host(host);
2029 } else {
2030 target = (device->dev_instance.b[5] << 8 |
2031 device->dev_instance.b[4]);
2032 ret = scsi_add_device(host, 0, target, 0);
2033 if (ret)
2034 goto err_out4;
2035 }
2036 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2037 if (host->transportt == fc_transport_template) {
2038 struct fc_rport_identifiers ids = {
2039 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2040 };
2041
2042 fc_host_node_name(host) = stor_device->node_name;
2043 fc_host_port_name(host) = stor_device->port_name;
2044 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2045 if (!stor_device->rport) {
2046 ret = -ENOMEM;
2047 goto err_out4;
2048 }
2049 }
2050 #endif
2051 return 0;
2052
2053 err_out4:
2054 scsi_remove_host(host);
2055
2056 err_out3:
2057 destroy_workqueue(host_dev->handle_error_wq);
2058
2059 err_out2:
2060 /*
2061 * Once we have connected with the host, we would need to
2062 * to invoke storvsc_dev_remove() to rollback this state and
2063 * this call also frees up the stor_device; hence the jump around
2064 * err_out1 label.
2065 */
2066 storvsc_dev_remove(device);
2067 goto err_out0;
2068
2069 err_out1:
2070 kfree(stor_device->stor_chns);
2071 kfree(stor_device);
2072
2073 err_out0:
2074 scsi_host_put(host);
2075 return ret;
2076 }
2077
2078 /* Change a scsi target's queue depth */
storvsc_change_queue_depth(struct scsi_device * sdev,int queue_depth)2079 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2080 {
2081 if (queue_depth > scsi_driver.can_queue)
2082 queue_depth = scsi_driver.can_queue;
2083
2084 return scsi_change_queue_depth(sdev, queue_depth);
2085 }
2086
storvsc_remove(struct hv_device * dev)2087 static int storvsc_remove(struct hv_device *dev)
2088 {
2089 struct storvsc_device *stor_device = hv_get_drvdata(dev);
2090 struct Scsi_Host *host = stor_device->host;
2091 struct hv_host_device *host_dev = shost_priv(host);
2092
2093 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2094 if (host->transportt == fc_transport_template) {
2095 fc_remote_port_delete(stor_device->rport);
2096 fc_remove_host(host);
2097 }
2098 #endif
2099 destroy_workqueue(host_dev->handle_error_wq);
2100 scsi_remove_host(host);
2101 storvsc_dev_remove(dev);
2102 scsi_host_put(host);
2103
2104 return 0;
2105 }
2106
storvsc_suspend(struct hv_device * hv_dev)2107 static int storvsc_suspend(struct hv_device *hv_dev)
2108 {
2109 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2110 struct Scsi_Host *host = stor_device->host;
2111 struct hv_host_device *host_dev = shost_priv(host);
2112
2113 storvsc_wait_to_drain(stor_device);
2114
2115 drain_workqueue(host_dev->handle_error_wq);
2116
2117 vmbus_close(hv_dev->channel);
2118
2119 kfree(stor_device->stor_chns);
2120 stor_device->stor_chns = NULL;
2121
2122 cpumask_clear(&stor_device->alloced_cpus);
2123
2124 return 0;
2125 }
2126
storvsc_resume(struct hv_device * hv_dev)2127 static int storvsc_resume(struct hv_device *hv_dev)
2128 {
2129 int ret;
2130
2131 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2132 hv_dev_is_fc(hv_dev));
2133 return ret;
2134 }
2135
2136 static struct hv_driver storvsc_drv = {
2137 .name = KBUILD_MODNAME,
2138 .id_table = id_table,
2139 .probe = storvsc_probe,
2140 .remove = storvsc_remove,
2141 .suspend = storvsc_suspend,
2142 .resume = storvsc_resume,
2143 .driver = {
2144 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2145 },
2146 };
2147
2148 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2149 static struct fc_function_template fc_transport_functions = {
2150 .show_host_node_name = 1,
2151 .show_host_port_name = 1,
2152 };
2153 #endif
2154
storvsc_drv_init(void)2155 static int __init storvsc_drv_init(void)
2156 {
2157 int ret;
2158
2159 /*
2160 * Divide the ring buffer data size (which is 1 page less
2161 * than the ring buffer size since that page is reserved for
2162 * the ring buffer indices) by the max request size (which is
2163 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2164 */
2165 max_outstanding_req_per_channel =
2166 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2167 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2168 sizeof(struct vstor_packet) + sizeof(u64) -
2169 vmscsi_size_delta,
2170 sizeof(u64)));
2171
2172 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2173 fc_transport_template = fc_attach_transport(&fc_transport_functions);
2174 if (!fc_transport_template)
2175 return -ENODEV;
2176 #endif
2177
2178 ret = vmbus_driver_register(&storvsc_drv);
2179
2180 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2181 if (ret)
2182 fc_release_transport(fc_transport_template);
2183 #endif
2184
2185 return ret;
2186 }
2187
storvsc_drv_exit(void)2188 static void __exit storvsc_drv_exit(void)
2189 {
2190 vmbus_driver_unregister(&storvsc_drv);
2191 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2192 fc_release_transport(fc_transport_template);
2193 #endif
2194 }
2195
2196 MODULE_LICENSE("GPL");
2197 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2198 module_init(storvsc_drv_init);
2199 module_exit(storvsc_drv_exit);
2200