1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Google LLC
4 */
5
6 #include "ufshcd.h"
7 #include "ufshcd-crypto.h"
8
9 /* Blk-crypto modes supported by UFS crypto */
10 static const struct ufs_crypto_alg_entry {
11 enum ufs_crypto_alg ufs_alg;
12 enum ufs_crypto_key_size ufs_key_size;
13 } ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
14 [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
15 .ufs_alg = UFS_CRYPTO_ALG_AES_XTS,
16 .ufs_key_size = UFS_CRYPTO_KEY_SIZE_256,
17 },
18 };
19
ufshcd_program_key(struct ufs_hba * hba,const union ufs_crypto_cfg_entry * cfg,int slot)20 static int ufshcd_program_key(struct ufs_hba *hba,
21 const union ufs_crypto_cfg_entry *cfg, int slot)
22 {
23 int i;
24 u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
25 int err = 0;
26
27 ufshcd_hold(hba, false);
28
29 if (hba->vops && hba->vops->program_key) {
30 err = hba->vops->program_key(hba, cfg, slot);
31 goto out;
32 }
33
34 /* Ensure that CFGE is cleared before programming the key */
35 ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
36 for (i = 0; i < 16; i++) {
37 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]),
38 slot_offset + i * sizeof(cfg->reg_val[0]));
39 }
40 /* Write dword 17 */
41 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]),
42 slot_offset + 17 * sizeof(cfg->reg_val[0]));
43 /* Dword 16 must be written last */
44 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
45 slot_offset + 16 * sizeof(cfg->reg_val[0]));
46 out:
47 ufshcd_release(hba);
48 return err;
49 }
50
ufshcd_crypto_keyslot_program(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)51 static int ufshcd_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
52 const struct blk_crypto_key *key,
53 unsigned int slot)
54 {
55 struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm);
56 const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
57 const struct ufs_crypto_alg_entry *alg =
58 &ufs_crypto_algs[key->crypto_cfg.crypto_mode];
59 u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
60 int i;
61 int cap_idx = -1;
62 union ufs_crypto_cfg_entry cfg = {};
63 int err;
64
65 BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
66 for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) {
67 if (ccap_array[i].algorithm_id == alg->ufs_alg &&
68 ccap_array[i].key_size == alg->ufs_key_size &&
69 (ccap_array[i].sdus_mask & data_unit_mask)) {
70 cap_idx = i;
71 break;
72 }
73 }
74
75 if (WARN_ON(cap_idx < 0))
76 return -EOPNOTSUPP;
77
78 cfg.data_unit_size = data_unit_mask;
79 cfg.crypto_cap_idx = cap_idx;
80 cfg.config_enable = UFS_CRYPTO_CONFIGURATION_ENABLE;
81
82 if (ccap_array[cap_idx].algorithm_id == UFS_CRYPTO_ALG_AES_XTS) {
83 /* In XTS mode, the blk_crypto_key's size is already doubled */
84 memcpy(cfg.crypto_key, key->raw, key->size/2);
85 memcpy(cfg.crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2,
86 key->raw + key->size/2, key->size/2);
87 } else {
88 memcpy(cfg.crypto_key, key->raw, key->size);
89 }
90
91 err = ufshcd_program_key(hba, &cfg, slot);
92
93 memzero_explicit(&cfg, sizeof(cfg));
94 return err;
95 }
96
ufshcd_clear_keyslot(struct ufs_hba * hba,int slot)97 static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
98 {
99 /*
100 * Clear the crypto cfg on the device. Clearing CFGE
101 * might not be sufficient, so just clear the entire cfg.
102 */
103 union ufs_crypto_cfg_entry cfg = {};
104
105 return ufshcd_program_key(hba, &cfg, slot);
106 }
107
ufshcd_crypto_keyslot_evict(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)108 static int ufshcd_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
109 const struct blk_crypto_key *key,
110 unsigned int slot)
111 {
112 struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm);
113
114 return ufshcd_clear_keyslot(hba, slot);
115 }
116
ufshcd_crypto_enable(struct ufs_hba * hba)117 bool ufshcd_crypto_enable(struct ufs_hba *hba)
118 {
119 if (!(hba->caps & UFSHCD_CAP_CRYPTO))
120 return false;
121
122 /* Reset might clear all keys, so reprogram all the keys. */
123 blk_ksm_reprogram_all_keys(&hba->ksm);
124 return true;
125 }
126
127 static const struct blk_ksm_ll_ops ufshcd_ksm_ops = {
128 .keyslot_program = ufshcd_crypto_keyslot_program,
129 .keyslot_evict = ufshcd_crypto_keyslot_evict,
130 };
131
132 static enum blk_crypto_mode_num
ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap)133 ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap)
134 {
135 int i;
136
137 for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) {
138 BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
139 if (ufs_crypto_algs[i].ufs_alg == cap.algorithm_id &&
140 ufs_crypto_algs[i].ufs_key_size == cap.key_size) {
141 return i;
142 }
143 }
144 return BLK_ENCRYPTION_MODE_INVALID;
145 }
146
147 /**
148 * ufshcd_hba_init_crypto_capabilities - Read crypto capabilities, init crypto
149 * fields in hba
150 * @hba: Per adapter instance
151 *
152 * Return: 0 if crypto was initialized or is not supported, else a -errno value.
153 */
ufshcd_hba_init_crypto_capabilities(struct ufs_hba * hba)154 int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
155 {
156 int cap_idx;
157 int err = 0;
158 enum blk_crypto_mode_num blk_mode_num;
159
160 /*
161 * Don't use crypto if either the hardware doesn't advertise the
162 * standard crypto capability bit *or* if the vendor specific driver
163 * hasn't advertised that crypto is supported.
164 */
165 if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) ||
166 !(hba->caps & UFSHCD_CAP_CRYPTO))
167 goto out;
168
169 hba->crypto_capabilities.reg_val =
170 cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
171 hba->crypto_cfg_register =
172 (u32)hba->crypto_capabilities.config_array_ptr * 0x100;
173 hba->crypto_cap_array =
174 devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap,
175 sizeof(hba->crypto_cap_array[0]), GFP_KERNEL);
176 if (!hba->crypto_cap_array) {
177 err = -ENOMEM;
178 goto out;
179 }
180
181 /* The actual number of configurations supported is (CFGC+1) */
182 err = blk_ksm_init(&hba->ksm,
183 hba->crypto_capabilities.config_count + 1);
184 if (err)
185 goto out_free_caps;
186
187 hba->ksm.ksm_ll_ops = ufshcd_ksm_ops;
188 /* UFS only supports 8 bytes for any DUN */
189 hba->ksm.max_dun_bytes_supported = 8;
190 hba->ksm.dev = hba->dev;
191
192 /*
193 * Cache all the UFS crypto capabilities and advertise the supported
194 * crypto modes and data unit sizes to the block layer.
195 */
196 for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
197 cap_idx++) {
198 hba->crypto_cap_array[cap_idx].reg_val =
199 cpu_to_le32(ufshcd_readl(hba,
200 REG_UFS_CRYPTOCAP +
201 cap_idx * sizeof(__le32)));
202 blk_mode_num = ufshcd_find_blk_crypto_mode(
203 hba->crypto_cap_array[cap_idx]);
204 if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID)
205 hba->ksm.crypto_modes_supported[blk_mode_num] |=
206 hba->crypto_cap_array[cap_idx].sdus_mask * 512;
207 }
208
209 return 0;
210
211 out_free_caps:
212 devm_kfree(hba->dev, hba->crypto_cap_array);
213 out:
214 /* Indicate that init failed by clearing UFSHCD_CAP_CRYPTO */
215 hba->caps &= ~UFSHCD_CAP_CRYPTO;
216 return err;
217 }
218
219 /**
220 * ufshcd_init_crypto - Initialize crypto hardware
221 * @hba: Per adapter instance
222 */
ufshcd_init_crypto(struct ufs_hba * hba)223 void ufshcd_init_crypto(struct ufs_hba *hba)
224 {
225 int slot;
226
227 if (!(hba->caps & UFSHCD_CAP_CRYPTO))
228 return;
229
230 /* Clear all keyslots - the number of keyslots is (CFGC + 1) */
231 for (slot = 0; slot < hba->crypto_capabilities.config_count + 1; slot++)
232 ufshcd_clear_keyslot(hba, slot);
233 }
234
ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba * hba,struct request_queue * q)235 void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba,
236 struct request_queue *q)
237 {
238 if (hba->caps & UFSHCD_CAP_CRYPTO)
239 blk_ksm_register(&hba->ksm, q);
240 }
241
ufshcd_crypto_destroy_keyslot_manager(struct ufs_hba * hba)242 void ufshcd_crypto_destroy_keyslot_manager(struct ufs_hba *hba)
243 {
244 blk_ksm_destroy(&hba->ksm);
245 }
246