1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
27 #include <linux/spinlock.h>
28
29 #define RSPI_SPCR 0x00 /* Control Register */
30 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31 #define RSPI_SPPCR 0x02 /* Pin Control Register */
32 #define RSPI_SPSR 0x03 /* Status Register */
33 #define RSPI_SPDR 0x04 /* Data Register */
34 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
35 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
36 #define RSPI_SPBR 0x0a /* Bit Rate Register */
37 #define RSPI_SPDCR 0x0b /* Data Control Register */
38 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
39 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
41 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
43 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
44 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
45 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
46 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
47 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
48 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
49 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
50 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD 8
52 #define RSPI_RZ_NUM_SPCMD 4
53 #define QSPI_NUM_SPCMD 4
54
55 /* RSPI on RZ only */
56 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
58
59 /* QSPI only */
60 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70 #define SPCR_SPE 0x40 /* Function Enable */
71 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75 /* RSPI on SH only */
76 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
84
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
91
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
103
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
106
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
110
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
126
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
129
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
132
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
135
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
141
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_BRDV(brdv) ((brdv) << 2)
165 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
166 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167
168 /* SPBFCR - Buffer Control Register */
169 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
170 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
171 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
172 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
173 /* QSPI on R-Car Gen2 */
174 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
175 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
176 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
177 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178
179 #define QSPI_BUFFER_SIZE 32u
180
181 struct rspi_data {
182 void __iomem *addr;
183 u32 speed_hz;
184 struct spi_controller *ctlr;
185 struct platform_device *pdev;
186 wait_queue_head_t wait;
187 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
188 struct clk *clk;
189 u16 spcmd;
190 u8 spsr;
191 u8 sppcr;
192 int rx_irq, tx_irq;
193 const struct spi_ops *ops;
194
195 unsigned dma_callbacked:1;
196 unsigned byte_access:1;
197 };
198
rspi_write8(const struct rspi_data * rspi,u8 data,u16 offset)199 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
200 {
201 iowrite8(data, rspi->addr + offset);
202 }
203
rspi_write16(const struct rspi_data * rspi,u16 data,u16 offset)204 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
205 {
206 iowrite16(data, rspi->addr + offset);
207 }
208
rspi_write32(const struct rspi_data * rspi,u32 data,u16 offset)209 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
210 {
211 iowrite32(data, rspi->addr + offset);
212 }
213
rspi_read8(const struct rspi_data * rspi,u16 offset)214 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
215 {
216 return ioread8(rspi->addr + offset);
217 }
218
rspi_read16(const struct rspi_data * rspi,u16 offset)219 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
220 {
221 return ioread16(rspi->addr + offset);
222 }
223
rspi_write_data(const struct rspi_data * rspi,u16 data)224 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
225 {
226 if (rspi->byte_access)
227 rspi_write8(rspi, data, RSPI_SPDR);
228 else /* 16 bit */
229 rspi_write16(rspi, data, RSPI_SPDR);
230 }
231
rspi_read_data(const struct rspi_data * rspi)232 static u16 rspi_read_data(const struct rspi_data *rspi)
233 {
234 if (rspi->byte_access)
235 return rspi_read8(rspi, RSPI_SPDR);
236 else /* 16 bit */
237 return rspi_read16(rspi, RSPI_SPDR);
238 }
239
240 /* optional functions */
241 struct spi_ops {
242 int (*set_config_register)(struct rspi_data *rspi, int access_size);
243 int (*transfer_one)(struct spi_controller *ctlr,
244 struct spi_device *spi, struct spi_transfer *xfer);
245 u16 extra_mode_bits;
246 u16 min_div;
247 u16 max_div;
248 u16 flags;
249 u16 fifo_size;
250 u8 num_hw_ss;
251 };
252
rspi_set_rate(struct rspi_data * rspi)253 static void rspi_set_rate(struct rspi_data *rspi)
254 {
255 unsigned long clksrc;
256 int brdv = 0, spbr;
257
258 clksrc = clk_get_rate(rspi->clk);
259 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
260 while (spbr > 255 && brdv < 3) {
261 brdv++;
262 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
263 }
264
265 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
266 rspi->spcmd |= SPCMD_BRDV(brdv);
267 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
268 }
269
270 /*
271 * functions for RSPI on legacy SH
272 */
rspi_set_config_register(struct rspi_data * rspi,int access_size)273 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
274 {
275 /* Sets output mode, MOSI signal, and (optionally) loopback */
276 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
277
278 /* Sets transfer bit rate */
279 rspi_set_rate(rspi);
280
281 /* Disable dummy transmission, set 16-bit word access, 1 frame */
282 rspi_write8(rspi, 0, RSPI_SPDCR);
283 rspi->byte_access = 0;
284
285 /* Sets RSPCK, SSL, next-access delay value */
286 rspi_write8(rspi, 0x00, RSPI_SPCKD);
287 rspi_write8(rspi, 0x00, RSPI_SSLND);
288 rspi_write8(rspi, 0x00, RSPI_SPND);
289
290 /* Sets parity, interrupt mask */
291 rspi_write8(rspi, 0x00, RSPI_SPCR2);
292
293 /* Resets sequencer */
294 rspi_write8(rspi, 0, RSPI_SPSCR);
295 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
296 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
297
298 /* Sets RSPI mode */
299 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
300
301 return 0;
302 }
303
304 /*
305 * functions for RSPI on RZ
306 */
rspi_rz_set_config_register(struct rspi_data * rspi,int access_size)307 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
308 {
309 /* Sets output mode, MOSI signal, and (optionally) loopback */
310 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
311
312 /* Sets transfer bit rate */
313 rspi_set_rate(rspi);
314
315 /* Disable dummy transmission, set byte access */
316 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
317 rspi->byte_access = 1;
318
319 /* Sets RSPCK, SSL, next-access delay value */
320 rspi_write8(rspi, 0x00, RSPI_SPCKD);
321 rspi_write8(rspi, 0x00, RSPI_SSLND);
322 rspi_write8(rspi, 0x00, RSPI_SPND);
323
324 /* Resets sequencer */
325 rspi_write8(rspi, 0, RSPI_SPSCR);
326 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
327 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
328
329 /* Sets RSPI mode */
330 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
331
332 return 0;
333 }
334
335 /*
336 * functions for QSPI
337 */
qspi_set_config_register(struct rspi_data * rspi,int access_size)338 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
339 {
340 unsigned long clksrc;
341 int brdv = 0, spbr;
342
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345
346 /* Sets transfer bit rate */
347 clksrc = clk_get_rate(rspi->clk);
348 if (rspi->speed_hz >= clksrc) {
349 spbr = 0;
350 rspi->speed_hz = clksrc;
351 } else {
352 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
353 while (spbr > 255 && brdv < 3) {
354 brdv++;
355 spbr = DIV_ROUND_UP(spbr, 2);
356 }
357 spbr = clamp(spbr, 0, 255);
358 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
359 }
360 rspi_write8(rspi, spbr, RSPI_SPBR);
361 rspi->spcmd |= SPCMD_BRDV(brdv);
362
363 /* Disable dummy transmission, set byte access */
364 rspi_write8(rspi, 0, RSPI_SPDCR);
365 rspi->byte_access = 1;
366
367 /* Sets RSPCK, SSL, next-access delay value */
368 rspi_write8(rspi, 0x00, RSPI_SPCKD);
369 rspi_write8(rspi, 0x00, RSPI_SSLND);
370 rspi_write8(rspi, 0x00, RSPI_SPND);
371
372 /* Data Length Setting */
373 if (access_size == 8)
374 rspi->spcmd |= SPCMD_SPB_8BIT;
375 else if (access_size == 16)
376 rspi->spcmd |= SPCMD_SPB_16BIT;
377 else
378 rspi->spcmd |= SPCMD_SPB_32BIT;
379
380 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
381
382 /* Resets transfer data length */
383 rspi_write32(rspi, 0, QSPI_SPBMUL0);
384
385 /* Resets transmit and receive buffer */
386 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
387 /* Sets buffer to allow normal operation */
388 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
389
390 /* Resets sequencer */
391 rspi_write8(rspi, 0, RSPI_SPSCR);
392 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
393
394 /* Sets RSPI mode */
395 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
396
397 return 0;
398 }
399
qspi_update(const struct rspi_data * rspi,u8 mask,u8 val,u8 reg)400 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
401 {
402 u8 data;
403
404 data = rspi_read8(rspi, reg);
405 data &= ~mask;
406 data |= (val & mask);
407 rspi_write8(rspi, data, reg);
408 }
409
qspi_set_send_trigger(struct rspi_data * rspi,unsigned int len)410 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
411 unsigned int len)
412 {
413 unsigned int n;
414
415 n = min(len, QSPI_BUFFER_SIZE);
416
417 if (len >= QSPI_BUFFER_SIZE) {
418 /* sets triggering number to 32 bytes */
419 qspi_update(rspi, SPBFCR_TXTRG_MASK,
420 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
421 } else {
422 /* sets triggering number to 1 byte */
423 qspi_update(rspi, SPBFCR_TXTRG_MASK,
424 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
425 }
426
427 return n;
428 }
429
qspi_set_receive_trigger(struct rspi_data * rspi,unsigned int len)430 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
431 {
432 unsigned int n;
433
434 n = min(len, QSPI_BUFFER_SIZE);
435
436 if (len >= QSPI_BUFFER_SIZE) {
437 /* sets triggering number to 32 bytes */
438 qspi_update(rspi, SPBFCR_RXTRG_MASK,
439 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
440 } else {
441 /* sets triggering number to 1 byte */
442 qspi_update(rspi, SPBFCR_RXTRG_MASK,
443 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
444 }
445 return n;
446 }
447
rspi_enable_irq(const struct rspi_data * rspi,u8 enable)448 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
449 {
450 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
451 }
452
rspi_disable_irq(const struct rspi_data * rspi,u8 disable)453 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
454 {
455 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
456 }
457
rspi_wait_for_interrupt(struct rspi_data * rspi,u8 wait_mask,u8 enable_bit)458 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
459 u8 enable_bit)
460 {
461 int ret;
462
463 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
464 if (rspi->spsr & wait_mask)
465 return 0;
466
467 rspi_enable_irq(rspi, enable_bit);
468 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
469 if (ret == 0 && !(rspi->spsr & wait_mask))
470 return -ETIMEDOUT;
471
472 return 0;
473 }
474
rspi_wait_for_tx_empty(struct rspi_data * rspi)475 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
476 {
477 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
478 }
479
rspi_wait_for_rx_full(struct rspi_data * rspi)480 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
481 {
482 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
483 }
484
rspi_data_out(struct rspi_data * rspi,u8 data)485 static int rspi_data_out(struct rspi_data *rspi, u8 data)
486 {
487 int error = rspi_wait_for_tx_empty(rspi);
488 if (error < 0) {
489 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
490 return error;
491 }
492 rspi_write_data(rspi, data);
493 return 0;
494 }
495
rspi_data_in(struct rspi_data * rspi)496 static int rspi_data_in(struct rspi_data *rspi)
497 {
498 int error;
499 u8 data;
500
501 error = rspi_wait_for_rx_full(rspi);
502 if (error < 0) {
503 dev_err(&rspi->ctlr->dev, "receive timeout\n");
504 return error;
505 }
506 data = rspi_read_data(rspi);
507 return data;
508 }
509
rspi_pio_transfer(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int n)510 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
511 unsigned int n)
512 {
513 while (n-- > 0) {
514 if (tx) {
515 int ret = rspi_data_out(rspi, *tx++);
516 if (ret < 0)
517 return ret;
518 }
519 if (rx) {
520 int ret = rspi_data_in(rspi);
521 if (ret < 0)
522 return ret;
523 *rx++ = ret;
524 }
525 }
526
527 return 0;
528 }
529
rspi_dma_complete(void * arg)530 static void rspi_dma_complete(void *arg)
531 {
532 struct rspi_data *rspi = arg;
533
534 rspi->dma_callbacked = 1;
535 wake_up_interruptible(&rspi->wait);
536 }
537
rspi_dma_transfer(struct rspi_data * rspi,struct sg_table * tx,struct sg_table * rx)538 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
539 struct sg_table *rx)
540 {
541 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
542 u8 irq_mask = 0;
543 unsigned int other_irq = 0;
544 dma_cookie_t cookie;
545 int ret;
546
547 /* First prepare and submit the DMA request(s), as this may fail */
548 if (rx) {
549 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
550 rx->nents, DMA_DEV_TO_MEM,
551 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
552 if (!desc_rx) {
553 ret = -EAGAIN;
554 goto no_dma_rx;
555 }
556
557 desc_rx->callback = rspi_dma_complete;
558 desc_rx->callback_param = rspi;
559 cookie = dmaengine_submit(desc_rx);
560 if (dma_submit_error(cookie)) {
561 ret = cookie;
562 goto no_dma_rx;
563 }
564
565 irq_mask |= SPCR_SPRIE;
566 }
567
568 if (tx) {
569 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
570 tx->nents, DMA_MEM_TO_DEV,
571 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
572 if (!desc_tx) {
573 ret = -EAGAIN;
574 goto no_dma_tx;
575 }
576
577 if (rx) {
578 /* No callback */
579 desc_tx->callback = NULL;
580 } else {
581 desc_tx->callback = rspi_dma_complete;
582 desc_tx->callback_param = rspi;
583 }
584 cookie = dmaengine_submit(desc_tx);
585 if (dma_submit_error(cookie)) {
586 ret = cookie;
587 goto no_dma_tx;
588 }
589
590 irq_mask |= SPCR_SPTIE;
591 }
592
593 /*
594 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
595 * called. So, this driver disables the IRQ while DMA transfer.
596 */
597 if (tx)
598 disable_irq(other_irq = rspi->tx_irq);
599 if (rx && rspi->rx_irq != other_irq)
600 disable_irq(rspi->rx_irq);
601
602 rspi_enable_irq(rspi, irq_mask);
603 rspi->dma_callbacked = 0;
604
605 /* Now start DMA */
606 if (rx)
607 dma_async_issue_pending(rspi->ctlr->dma_rx);
608 if (tx)
609 dma_async_issue_pending(rspi->ctlr->dma_tx);
610
611 ret = wait_event_interruptible_timeout(rspi->wait,
612 rspi->dma_callbacked, HZ);
613 if (ret > 0 && rspi->dma_callbacked) {
614 ret = 0;
615 if (tx)
616 dmaengine_synchronize(rspi->ctlr->dma_tx);
617 if (rx)
618 dmaengine_synchronize(rspi->ctlr->dma_rx);
619 } else {
620 if (!ret) {
621 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
622 ret = -ETIMEDOUT;
623 }
624 if (tx)
625 dmaengine_terminate_all(rspi->ctlr->dma_tx);
626 if (rx)
627 dmaengine_terminate_all(rspi->ctlr->dma_rx);
628 }
629
630 rspi_disable_irq(rspi, irq_mask);
631
632 if (tx)
633 enable_irq(rspi->tx_irq);
634 if (rx && rspi->rx_irq != other_irq)
635 enable_irq(rspi->rx_irq);
636
637 return ret;
638
639 no_dma_tx:
640 if (rx)
641 dmaengine_terminate_all(rspi->ctlr->dma_rx);
642 no_dma_rx:
643 if (ret == -EAGAIN) {
644 dev_warn_once(&rspi->ctlr->dev,
645 "DMA not available, falling back to PIO\n");
646 }
647 return ret;
648 }
649
rspi_receive_init(const struct rspi_data * rspi)650 static void rspi_receive_init(const struct rspi_data *rspi)
651 {
652 u8 spsr;
653
654 spsr = rspi_read8(rspi, RSPI_SPSR);
655 if (spsr & SPSR_SPRF)
656 rspi_read_data(rspi); /* dummy read */
657 if (spsr & SPSR_OVRF)
658 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
659 RSPI_SPSR);
660 }
661
rspi_rz_receive_init(const struct rspi_data * rspi)662 static void rspi_rz_receive_init(const struct rspi_data *rspi)
663 {
664 rspi_receive_init(rspi);
665 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
666 rspi_write8(rspi, 0, RSPI_SPBFCR);
667 }
668
qspi_receive_init(const struct rspi_data * rspi)669 static void qspi_receive_init(const struct rspi_data *rspi)
670 {
671 u8 spsr;
672
673 spsr = rspi_read8(rspi, RSPI_SPSR);
674 if (spsr & SPSR_SPRF)
675 rspi_read_data(rspi); /* dummy read */
676 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
677 rspi_write8(rspi, 0, QSPI_SPBFCR);
678 }
679
__rspi_can_dma(const struct rspi_data * rspi,const struct spi_transfer * xfer)680 static bool __rspi_can_dma(const struct rspi_data *rspi,
681 const struct spi_transfer *xfer)
682 {
683 return xfer->len > rspi->ops->fifo_size;
684 }
685
rspi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)686 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
687 struct spi_transfer *xfer)
688 {
689 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
690
691 return __rspi_can_dma(rspi, xfer);
692 }
693
rspi_dma_check_then_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)694 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
695 struct spi_transfer *xfer)
696 {
697 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
698 return -EAGAIN;
699
700 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
701 return rspi_dma_transfer(rspi, &xfer->tx_sg,
702 xfer->rx_buf ? &xfer->rx_sg : NULL);
703 }
704
rspi_common_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)705 static int rspi_common_transfer(struct rspi_data *rspi,
706 struct spi_transfer *xfer)
707 {
708 int ret;
709
710 xfer->effective_speed_hz = rspi->speed_hz;
711
712 ret = rspi_dma_check_then_transfer(rspi, xfer);
713 if (ret != -EAGAIN)
714 return ret;
715
716 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
717 if (ret < 0)
718 return ret;
719
720 /* Wait for the last transmission */
721 rspi_wait_for_tx_empty(rspi);
722
723 return 0;
724 }
725
rspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)726 static int rspi_transfer_one(struct spi_controller *ctlr,
727 struct spi_device *spi, struct spi_transfer *xfer)
728 {
729 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
730 u8 spcr;
731
732 spcr = rspi_read8(rspi, RSPI_SPCR);
733 if (xfer->rx_buf) {
734 rspi_receive_init(rspi);
735 spcr &= ~SPCR_TXMD;
736 } else {
737 spcr |= SPCR_TXMD;
738 }
739 rspi_write8(rspi, spcr, RSPI_SPCR);
740
741 return rspi_common_transfer(rspi, xfer);
742 }
743
rspi_rz_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)744 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
745 struct spi_device *spi,
746 struct spi_transfer *xfer)
747 {
748 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
749
750 rspi_rz_receive_init(rspi);
751
752 return rspi_common_transfer(rspi, xfer);
753 }
754
qspi_trigger_transfer_out_in(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int len)755 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
756 u8 *rx, unsigned int len)
757 {
758 unsigned int i, n;
759 int ret;
760
761 while (len > 0) {
762 n = qspi_set_send_trigger(rspi, len);
763 qspi_set_receive_trigger(rspi, len);
764 ret = rspi_wait_for_tx_empty(rspi);
765 if (ret < 0) {
766 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
767 return ret;
768 }
769 for (i = 0; i < n; i++)
770 rspi_write_data(rspi, *tx++);
771
772 ret = rspi_wait_for_rx_full(rspi);
773 if (ret < 0) {
774 dev_err(&rspi->ctlr->dev, "receive timeout\n");
775 return ret;
776 }
777 for (i = 0; i < n; i++)
778 *rx++ = rspi_read_data(rspi);
779
780 len -= n;
781 }
782
783 return 0;
784 }
785
qspi_transfer_out_in(struct rspi_data * rspi,struct spi_transfer * xfer)786 static int qspi_transfer_out_in(struct rspi_data *rspi,
787 struct spi_transfer *xfer)
788 {
789 int ret;
790
791 qspi_receive_init(rspi);
792
793 ret = rspi_dma_check_then_transfer(rspi, xfer);
794 if (ret != -EAGAIN)
795 return ret;
796
797 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
798 xfer->rx_buf, xfer->len);
799 }
800
qspi_transfer_out(struct rspi_data * rspi,struct spi_transfer * xfer)801 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
802 {
803 const u8 *tx = xfer->tx_buf;
804 unsigned int n = xfer->len;
805 unsigned int i, len;
806 int ret;
807
808 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
809 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
810 if (ret != -EAGAIN)
811 return ret;
812 }
813
814 while (n > 0) {
815 len = qspi_set_send_trigger(rspi, n);
816 ret = rspi_wait_for_tx_empty(rspi);
817 if (ret < 0) {
818 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
819 return ret;
820 }
821 for (i = 0; i < len; i++)
822 rspi_write_data(rspi, *tx++);
823
824 n -= len;
825 }
826
827 /* Wait for the last transmission */
828 rspi_wait_for_tx_empty(rspi);
829
830 return 0;
831 }
832
qspi_transfer_in(struct rspi_data * rspi,struct spi_transfer * xfer)833 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
834 {
835 u8 *rx = xfer->rx_buf;
836 unsigned int n = xfer->len;
837 unsigned int i, len;
838 int ret;
839
840 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
841 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
842 if (ret != -EAGAIN)
843 return ret;
844 }
845
846 while (n > 0) {
847 len = qspi_set_receive_trigger(rspi, n);
848 ret = rspi_wait_for_rx_full(rspi);
849 if (ret < 0) {
850 dev_err(&rspi->ctlr->dev, "receive timeout\n");
851 return ret;
852 }
853 for (i = 0; i < len; i++)
854 *rx++ = rspi_read_data(rspi);
855
856 n -= len;
857 }
858
859 return 0;
860 }
861
qspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)862 static int qspi_transfer_one(struct spi_controller *ctlr,
863 struct spi_device *spi, struct spi_transfer *xfer)
864 {
865 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
866
867 xfer->effective_speed_hz = rspi->speed_hz;
868 if (spi->mode & SPI_LOOP) {
869 return qspi_transfer_out_in(rspi, xfer);
870 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
871 /* Quad or Dual SPI Write */
872 return qspi_transfer_out(rspi, xfer);
873 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
874 /* Quad or Dual SPI Read */
875 return qspi_transfer_in(rspi, xfer);
876 } else {
877 /* Single SPI Transfer */
878 return qspi_transfer_out_in(rspi, xfer);
879 }
880 }
881
qspi_transfer_mode(const struct spi_transfer * xfer)882 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
883 {
884 if (xfer->tx_buf)
885 switch (xfer->tx_nbits) {
886 case SPI_NBITS_QUAD:
887 return SPCMD_SPIMOD_QUAD;
888 case SPI_NBITS_DUAL:
889 return SPCMD_SPIMOD_DUAL;
890 default:
891 return 0;
892 }
893 if (xfer->rx_buf)
894 switch (xfer->rx_nbits) {
895 case SPI_NBITS_QUAD:
896 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
897 case SPI_NBITS_DUAL:
898 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
899 default:
900 return 0;
901 }
902
903 return 0;
904 }
905
qspi_setup_sequencer(struct rspi_data * rspi,const struct spi_message * msg)906 static int qspi_setup_sequencer(struct rspi_data *rspi,
907 const struct spi_message *msg)
908 {
909 const struct spi_transfer *xfer;
910 unsigned int i = 0, len = 0;
911 u16 current_mode = 0xffff, mode;
912
913 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
914 mode = qspi_transfer_mode(xfer);
915 if (mode == current_mode) {
916 len += xfer->len;
917 continue;
918 }
919
920 /* Transfer mode change */
921 if (i) {
922 /* Set transfer data length of previous transfer */
923 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
924 }
925
926 if (i >= QSPI_NUM_SPCMD) {
927 dev_err(&msg->spi->dev,
928 "Too many different transfer modes");
929 return -EINVAL;
930 }
931
932 /* Program transfer mode for this transfer */
933 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
934 current_mode = mode;
935 len = xfer->len;
936 i++;
937 }
938 if (i) {
939 /* Set final transfer data length and sequence length */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 rspi_write8(rspi, i - 1, RSPI_SPSCR);
942 }
943
944 return 0;
945 }
946
rspi_setup(struct spi_device * spi)947 static int rspi_setup(struct spi_device *spi)
948 {
949 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
950 u8 sslp;
951
952 if (spi->cs_gpiod)
953 return 0;
954
955 pm_runtime_get_sync(&rspi->pdev->dev);
956 spin_lock_irq(&rspi->lock);
957
958 sslp = rspi_read8(rspi, RSPI_SSLP);
959 if (spi->mode & SPI_CS_HIGH)
960 sslp |= SSLP_SSLP(spi->chip_select);
961 else
962 sslp &= ~SSLP_SSLP(spi->chip_select);
963 rspi_write8(rspi, sslp, RSPI_SSLP);
964
965 spin_unlock_irq(&rspi->lock);
966 pm_runtime_put(&rspi->pdev->dev);
967 return 0;
968 }
969
rspi_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)970 static int rspi_prepare_message(struct spi_controller *ctlr,
971 struct spi_message *msg)
972 {
973 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
974 struct spi_device *spi = msg->spi;
975 const struct spi_transfer *xfer;
976 int ret;
977
978 /*
979 * As the Bit Rate Register must not be changed while the device is
980 * active, all transfers in a message must use the same bit rate.
981 * In theory, the sequencer could be enabled, and each Command Register
982 * could divide the base bit rate by a different value.
983 * However, most RSPI variants do not have Transfer Data Length
984 * Multiplier Setting Registers, so each sequence step would be limited
985 * to a single word, making this feature unsuitable for large
986 * transfers, which would gain most from it.
987 */
988 rspi->speed_hz = spi->max_speed_hz;
989 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
990 if (xfer->speed_hz < rspi->speed_hz)
991 rspi->speed_hz = xfer->speed_hz;
992 }
993
994 rspi->spcmd = SPCMD_SSLKP;
995 if (spi->mode & SPI_CPOL)
996 rspi->spcmd |= SPCMD_CPOL;
997 if (spi->mode & SPI_CPHA)
998 rspi->spcmd |= SPCMD_CPHA;
999 if (spi->mode & SPI_LSB_FIRST)
1000 rspi->spcmd |= SPCMD_LSBF;
1001
1002 /* Configure slave signal to assert */
1003 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1004 : spi->chip_select);
1005
1006 /* CMOS output mode and MOSI signal from previous transfer */
1007 rspi->sppcr = 0;
1008 if (spi->mode & SPI_LOOP)
1009 rspi->sppcr |= SPPCR_SPLP;
1010
1011 rspi->ops->set_config_register(rspi, 8);
1012
1013 if (msg->spi->mode &
1014 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1015 /* Setup sequencer for messages with multiple transfer modes */
1016 ret = qspi_setup_sequencer(rspi, msg);
1017 if (ret < 0)
1018 return ret;
1019 }
1020
1021 /* Enable SPI function in master mode */
1022 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1023 return 0;
1024 }
1025
rspi_unprepare_message(struct spi_controller * ctlr,struct spi_message * msg)1026 static int rspi_unprepare_message(struct spi_controller *ctlr,
1027 struct spi_message *msg)
1028 {
1029 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1030
1031 /* Disable SPI function */
1032 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1033
1034 /* Reset sequencer for Single SPI Transfers */
1035 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1036 rspi_write8(rspi, 0, RSPI_SPSCR);
1037 return 0;
1038 }
1039
rspi_irq_mux(int irq,void * _sr)1040 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1041 {
1042 struct rspi_data *rspi = _sr;
1043 u8 spsr;
1044 irqreturn_t ret = IRQ_NONE;
1045 u8 disable_irq = 0;
1046
1047 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1048 if (spsr & SPSR_SPRF)
1049 disable_irq |= SPCR_SPRIE;
1050 if (spsr & SPSR_SPTEF)
1051 disable_irq |= SPCR_SPTIE;
1052
1053 if (disable_irq) {
1054 ret = IRQ_HANDLED;
1055 rspi_disable_irq(rspi, disable_irq);
1056 wake_up(&rspi->wait);
1057 }
1058
1059 return ret;
1060 }
1061
rspi_irq_rx(int irq,void * _sr)1062 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1063 {
1064 struct rspi_data *rspi = _sr;
1065 u8 spsr;
1066
1067 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1068 if (spsr & SPSR_SPRF) {
1069 rspi_disable_irq(rspi, SPCR_SPRIE);
1070 wake_up(&rspi->wait);
1071 return IRQ_HANDLED;
1072 }
1073
1074 return 0;
1075 }
1076
rspi_irq_tx(int irq,void * _sr)1077 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1078 {
1079 struct rspi_data *rspi = _sr;
1080 u8 spsr;
1081
1082 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1083 if (spsr & SPSR_SPTEF) {
1084 rspi_disable_irq(rspi, SPCR_SPTIE);
1085 wake_up(&rspi->wait);
1086 return IRQ_HANDLED;
1087 }
1088
1089 return 0;
1090 }
1091
rspi_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1092 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1093 enum dma_transfer_direction dir,
1094 unsigned int id,
1095 dma_addr_t port_addr)
1096 {
1097 dma_cap_mask_t mask;
1098 struct dma_chan *chan;
1099 struct dma_slave_config cfg;
1100 int ret;
1101
1102 dma_cap_zero(mask);
1103 dma_cap_set(DMA_SLAVE, mask);
1104
1105 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1106 (void *)(unsigned long)id, dev,
1107 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1108 if (!chan) {
1109 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1110 return NULL;
1111 }
1112
1113 memset(&cfg, 0, sizeof(cfg));
1114 cfg.dst_addr = port_addr + RSPI_SPDR;
1115 cfg.src_addr = port_addr + RSPI_SPDR;
1116 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118 cfg.direction = dir;
1119
1120 ret = dmaengine_slave_config(chan, &cfg);
1121 if (ret) {
1122 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1123 dma_release_channel(chan);
1124 return NULL;
1125 }
1126
1127 return chan;
1128 }
1129
rspi_request_dma(struct device * dev,struct spi_controller * ctlr,const struct resource * res)1130 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1131 const struct resource *res)
1132 {
1133 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1134 unsigned int dma_tx_id, dma_rx_id;
1135
1136 if (dev->of_node) {
1137 /* In the OF case we will get the slave IDs from the DT */
1138 dma_tx_id = 0;
1139 dma_rx_id = 0;
1140 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1141 dma_tx_id = rspi_pd->dma_tx_id;
1142 dma_rx_id = rspi_pd->dma_rx_id;
1143 } else {
1144 /* The driver assumes no error. */
1145 return 0;
1146 }
1147
1148 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1149 res->start);
1150 if (!ctlr->dma_tx)
1151 return -ENODEV;
1152
1153 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1154 res->start);
1155 if (!ctlr->dma_rx) {
1156 dma_release_channel(ctlr->dma_tx);
1157 ctlr->dma_tx = NULL;
1158 return -ENODEV;
1159 }
1160
1161 ctlr->can_dma = rspi_can_dma;
1162 dev_info(dev, "DMA available");
1163 return 0;
1164 }
1165
rspi_release_dma(struct spi_controller * ctlr)1166 static void rspi_release_dma(struct spi_controller *ctlr)
1167 {
1168 if (ctlr->dma_tx)
1169 dma_release_channel(ctlr->dma_tx);
1170 if (ctlr->dma_rx)
1171 dma_release_channel(ctlr->dma_rx);
1172 }
1173
rspi_remove(struct platform_device * pdev)1174 static int rspi_remove(struct platform_device *pdev)
1175 {
1176 struct rspi_data *rspi = platform_get_drvdata(pdev);
1177
1178 rspi_release_dma(rspi->ctlr);
1179 pm_runtime_disable(&pdev->dev);
1180
1181 return 0;
1182 }
1183
1184 static const struct spi_ops rspi_ops = {
1185 .set_config_register = rspi_set_config_register,
1186 .transfer_one = rspi_transfer_one,
1187 .min_div = 2,
1188 .max_div = 4096,
1189 .flags = SPI_CONTROLLER_MUST_TX,
1190 .fifo_size = 8,
1191 .num_hw_ss = 2,
1192 };
1193
1194 static const struct spi_ops rspi_rz_ops = {
1195 .set_config_register = rspi_rz_set_config_register,
1196 .transfer_one = rspi_rz_transfer_one,
1197 .min_div = 2,
1198 .max_div = 4096,
1199 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1200 .fifo_size = 8, /* 8 for TX, 32 for RX */
1201 .num_hw_ss = 1,
1202 };
1203
1204 static const struct spi_ops qspi_ops = {
1205 .set_config_register = qspi_set_config_register,
1206 .transfer_one = qspi_transfer_one,
1207 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1208 SPI_RX_DUAL | SPI_RX_QUAD,
1209 .min_div = 1,
1210 .max_div = 4080,
1211 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1212 .fifo_size = 32,
1213 .num_hw_ss = 1,
1214 };
1215
1216 #ifdef CONFIG_OF
1217 static const struct of_device_id rspi_of_match[] = {
1218 /* RSPI on legacy SH */
1219 { .compatible = "renesas,rspi", .data = &rspi_ops },
1220 /* RSPI on RZ/A1H */
1221 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1222 /* QSPI on R-Car Gen2 */
1223 { .compatible = "renesas,qspi", .data = &qspi_ops },
1224 { /* sentinel */ }
1225 };
1226
1227 MODULE_DEVICE_TABLE(of, rspi_of_match);
1228
rspi_parse_dt(struct device * dev,struct spi_controller * ctlr)1229 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1230 {
1231 u32 num_cs;
1232 int error;
1233
1234 /* Parse DT properties */
1235 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1236 if (error) {
1237 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1238 return error;
1239 }
1240
1241 ctlr->num_chipselect = num_cs;
1242 return 0;
1243 }
1244 #else
1245 #define rspi_of_match NULL
rspi_parse_dt(struct device * dev,struct spi_controller * ctlr)1246 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1247 {
1248 return -EINVAL;
1249 }
1250 #endif /* CONFIG_OF */
1251
rspi_request_irq(struct device * dev,unsigned int irq,irq_handler_t handler,const char * suffix,void * dev_id)1252 static int rspi_request_irq(struct device *dev, unsigned int irq,
1253 irq_handler_t handler, const char *suffix,
1254 void *dev_id)
1255 {
1256 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1257 dev_name(dev), suffix);
1258 if (!name)
1259 return -ENOMEM;
1260
1261 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1262 }
1263
rspi_probe(struct platform_device * pdev)1264 static int rspi_probe(struct platform_device *pdev)
1265 {
1266 struct resource *res;
1267 struct spi_controller *ctlr;
1268 struct rspi_data *rspi;
1269 int ret;
1270 const struct rspi_plat_data *rspi_pd;
1271 const struct spi_ops *ops;
1272 unsigned long clksrc;
1273
1274 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1275 if (ctlr == NULL)
1276 return -ENOMEM;
1277
1278 ops = of_device_get_match_data(&pdev->dev);
1279 if (ops) {
1280 ret = rspi_parse_dt(&pdev->dev, ctlr);
1281 if (ret)
1282 goto error1;
1283 } else {
1284 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1285 rspi_pd = dev_get_platdata(&pdev->dev);
1286 if (rspi_pd && rspi_pd->num_chipselect)
1287 ctlr->num_chipselect = rspi_pd->num_chipselect;
1288 else
1289 ctlr->num_chipselect = 2; /* default */
1290 }
1291
1292 rspi = spi_controller_get_devdata(ctlr);
1293 platform_set_drvdata(pdev, rspi);
1294 rspi->ops = ops;
1295 rspi->ctlr = ctlr;
1296
1297 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1299 if (IS_ERR(rspi->addr)) {
1300 ret = PTR_ERR(rspi->addr);
1301 goto error1;
1302 }
1303
1304 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1305 if (IS_ERR(rspi->clk)) {
1306 dev_err(&pdev->dev, "cannot get clock\n");
1307 ret = PTR_ERR(rspi->clk);
1308 goto error1;
1309 }
1310
1311 rspi->pdev = pdev;
1312 pm_runtime_enable(&pdev->dev);
1313
1314 init_waitqueue_head(&rspi->wait);
1315 spin_lock_init(&rspi->lock);
1316
1317 ctlr->bus_num = pdev->id;
1318 ctlr->setup = rspi_setup;
1319 ctlr->auto_runtime_pm = true;
1320 ctlr->transfer_one = ops->transfer_one;
1321 ctlr->prepare_message = rspi_prepare_message;
1322 ctlr->unprepare_message = rspi_unprepare_message;
1323 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1324 SPI_LOOP | ops->extra_mode_bits;
1325 clksrc = clk_get_rate(rspi->clk);
1326 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1327 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1328 ctlr->flags = ops->flags;
1329 ctlr->dev.of_node = pdev->dev.of_node;
1330 ctlr->use_gpio_descriptors = true;
1331 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1332
1333 ret = platform_get_irq_byname_optional(pdev, "rx");
1334 if (ret < 0) {
1335 ret = platform_get_irq_byname_optional(pdev, "mux");
1336 if (ret < 0)
1337 ret = platform_get_irq(pdev, 0);
1338 if (ret >= 0)
1339 rspi->rx_irq = rspi->tx_irq = ret;
1340 } else {
1341 rspi->rx_irq = ret;
1342 ret = platform_get_irq_byname(pdev, "tx");
1343 if (ret >= 0)
1344 rspi->tx_irq = ret;
1345 }
1346
1347 if (rspi->rx_irq == rspi->tx_irq) {
1348 /* Single multiplexed interrupt */
1349 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1350 "mux", rspi);
1351 } else {
1352 /* Multi-interrupt mode, only SPRI and SPTI are used */
1353 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1354 "rx", rspi);
1355 if (!ret)
1356 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1357 rspi_irq_tx, "tx", rspi);
1358 }
1359 if (ret < 0) {
1360 dev_err(&pdev->dev, "request_irq error\n");
1361 goto error2;
1362 }
1363
1364 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1365 if (ret < 0)
1366 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1367
1368 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1369 if (ret < 0) {
1370 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1371 goto error3;
1372 }
1373
1374 dev_info(&pdev->dev, "probed\n");
1375
1376 return 0;
1377
1378 error3:
1379 rspi_release_dma(ctlr);
1380 error2:
1381 pm_runtime_disable(&pdev->dev);
1382 error1:
1383 spi_controller_put(ctlr);
1384
1385 return ret;
1386 }
1387
1388 static const struct platform_device_id spi_driver_ids[] = {
1389 { "rspi", (kernel_ulong_t)&rspi_ops },
1390 {},
1391 };
1392
1393 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1394
1395 #ifdef CONFIG_PM_SLEEP
rspi_suspend(struct device * dev)1396 static int rspi_suspend(struct device *dev)
1397 {
1398 struct rspi_data *rspi = dev_get_drvdata(dev);
1399
1400 return spi_controller_suspend(rspi->ctlr);
1401 }
1402
rspi_resume(struct device * dev)1403 static int rspi_resume(struct device *dev)
1404 {
1405 struct rspi_data *rspi = dev_get_drvdata(dev);
1406
1407 return spi_controller_resume(rspi->ctlr);
1408 }
1409
1410 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1411 #define DEV_PM_OPS &rspi_pm_ops
1412 #else
1413 #define DEV_PM_OPS NULL
1414 #endif /* CONFIG_PM_SLEEP */
1415
1416 static struct platform_driver rspi_driver = {
1417 .probe = rspi_probe,
1418 .remove = rspi_remove,
1419 .id_table = spi_driver_ids,
1420 .driver = {
1421 .name = "renesas_spi",
1422 .pm = DEV_PM_OPS,
1423 .of_match_table = of_match_ptr(rspi_of_match),
1424 },
1425 };
1426 module_platform_driver(rspi_driver);
1427
1428 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1429 MODULE_LICENSE("GPL v2");
1430 MODULE_AUTHOR("Yoshihiro Shimoda");
1431 MODULE_ALIAS("platform:rspi");
1432