• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/platform_device.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 };
161 
162 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163 
164 static struct sci_port sci_ports[SCI_NPORTS];
165 static unsigned long sci_ports_in_use;
166 static struct uart_driver sci_uart_driver;
167 
168 static inline struct sci_port *
to_sci_port(struct uart_port * uart)169 to_sci_port(struct uart_port *uart)
170 {
171 	return container_of(uart, struct sci_port, port);
172 }
173 
174 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
175 	/*
176 	 * Common SCI definitions, dependent on the port's regshift
177 	 * value.
178 	 */
179 	[SCIx_SCI_REGTYPE] = {
180 		.regs = {
181 			[SCSMR]		= { 0x00,  8 },
182 			[SCBRR]		= { 0x01,  8 },
183 			[SCSCR]		= { 0x02,  8 },
184 			[SCxTDR]	= { 0x03,  8 },
185 			[SCxSR]		= { 0x04,  8 },
186 			[SCxRDR]	= { 0x05,  8 },
187 		},
188 		.fifosize = 1,
189 		.overrun_reg = SCxSR,
190 		.overrun_mask = SCI_ORER,
191 		.sampling_rate_mask = SCI_SR(32),
192 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
194 	},
195 
196 	/*
197 	 * Common definitions for legacy IrDA ports.
198 	 */
199 	[SCIx_IRDA_REGTYPE] = {
200 		.regs = {
201 			[SCSMR]		= { 0x00,  8 },
202 			[SCBRR]		= { 0x02,  8 },
203 			[SCSCR]		= { 0x04,  8 },
204 			[SCxTDR]	= { 0x06,  8 },
205 			[SCxSR]		= { 0x08, 16 },
206 			[SCxRDR]	= { 0x0a,  8 },
207 			[SCFCR]		= { 0x0c,  8 },
208 			[SCFDR]		= { 0x0e, 16 },
209 		},
210 		.fifosize = 1,
211 		.overrun_reg = SCxSR,
212 		.overrun_mask = SCI_ORER,
213 		.sampling_rate_mask = SCI_SR(32),
214 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
216 	},
217 
218 	/*
219 	 * Common SCIFA definitions.
220 	 */
221 	[SCIx_SCIFA_REGTYPE] = {
222 		.regs = {
223 			[SCSMR]		= { 0x00, 16 },
224 			[SCBRR]		= { 0x04,  8 },
225 			[SCSCR]		= { 0x08, 16 },
226 			[SCxTDR]	= { 0x20,  8 },
227 			[SCxSR]		= { 0x14, 16 },
228 			[SCxRDR]	= { 0x24,  8 },
229 			[SCFCR]		= { 0x18, 16 },
230 			[SCFDR]		= { 0x1c, 16 },
231 			[SCPCR]		= { 0x30, 16 },
232 			[SCPDR]		= { 0x34, 16 },
233 		},
234 		.fifosize = 64,
235 		.overrun_reg = SCxSR,
236 		.overrun_mask = SCIFA_ORER,
237 		.sampling_rate_mask = SCI_SR_SCIFAB,
238 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
240 	},
241 
242 	/*
243 	 * Common SCIFB definitions.
244 	 */
245 	[SCIx_SCIFB_REGTYPE] = {
246 		.regs = {
247 			[SCSMR]		= { 0x00, 16 },
248 			[SCBRR]		= { 0x04,  8 },
249 			[SCSCR]		= { 0x08, 16 },
250 			[SCxTDR]	= { 0x40,  8 },
251 			[SCxSR]		= { 0x14, 16 },
252 			[SCxRDR]	= { 0x60,  8 },
253 			[SCFCR]		= { 0x18, 16 },
254 			[SCTFDR]	= { 0x38, 16 },
255 			[SCRFDR]	= { 0x3c, 16 },
256 			[SCPCR]		= { 0x30, 16 },
257 			[SCPDR]		= { 0x34, 16 },
258 		},
259 		.fifosize = 256,
260 		.overrun_reg = SCxSR,
261 		.overrun_mask = SCIFA_ORER,
262 		.sampling_rate_mask = SCI_SR_SCIFAB,
263 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
265 	},
266 
267 	/*
268 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
269 	 * count registers.
270 	 */
271 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272 		.regs = {
273 			[SCSMR]		= { 0x00, 16 },
274 			[SCBRR]		= { 0x04,  8 },
275 			[SCSCR]		= { 0x08, 16 },
276 			[SCxTDR]	= { 0x0c,  8 },
277 			[SCxSR]		= { 0x10, 16 },
278 			[SCxRDR]	= { 0x14,  8 },
279 			[SCFCR]		= { 0x18, 16 },
280 			[SCFDR]		= { 0x1c, 16 },
281 			[SCSPTR]	= { 0x20, 16 },
282 			[SCLSR]		= { 0x24, 16 },
283 		},
284 		.fifosize = 16,
285 		.overrun_reg = SCLSR,
286 		.overrun_mask = SCLSR_ORER,
287 		.sampling_rate_mask = SCI_SR(32),
288 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
289 		.error_clear = SCIF_ERROR_CLEAR,
290 	},
291 
292 	/*
293 	 * The "SCIFA" that is in RZ/T and RZ/A2.
294 	 * It looks like a normal SCIF with FIFO data, but with a
295 	 * compressed address space. Also, the break out of interrupts
296 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
297 	 */
298 	[SCIx_RZ_SCIFA_REGTYPE] = {
299 		.regs = {
300 			[SCSMR]		= { 0x00, 16 },
301 			[SCBRR]		= { 0x02,  8 },
302 			[SCSCR]		= { 0x04, 16 },
303 			[SCxTDR]	= { 0x06,  8 },
304 			[SCxSR]		= { 0x08, 16 },
305 			[SCxRDR]	= { 0x0A,  8 },
306 			[SCFCR]		= { 0x0C, 16 },
307 			[SCFDR]		= { 0x0E, 16 },
308 			[SCSPTR]	= { 0x10, 16 },
309 			[SCLSR]		= { 0x12, 16 },
310 		},
311 		.fifosize = 16,
312 		.overrun_reg = SCLSR,
313 		.overrun_mask = SCLSR_ORER,
314 		.sampling_rate_mask = SCI_SR(32),
315 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
316 		.error_clear = SCIF_ERROR_CLEAR,
317 	},
318 
319 	/*
320 	 * Common SH-3 SCIF definitions.
321 	 */
322 	[SCIx_SH3_SCIF_REGTYPE] = {
323 		.regs = {
324 			[SCSMR]		= { 0x00,  8 },
325 			[SCBRR]		= { 0x02,  8 },
326 			[SCSCR]		= { 0x04,  8 },
327 			[SCxTDR]	= { 0x06,  8 },
328 			[SCxSR]		= { 0x08, 16 },
329 			[SCxRDR]	= { 0x0a,  8 },
330 			[SCFCR]		= { 0x0c,  8 },
331 			[SCFDR]		= { 0x0e, 16 },
332 		},
333 		.fifosize = 16,
334 		.overrun_reg = SCLSR,
335 		.overrun_mask = SCLSR_ORER,
336 		.sampling_rate_mask = SCI_SR(32),
337 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
338 		.error_clear = SCIF_ERROR_CLEAR,
339 	},
340 
341 	/*
342 	 * Common SH-4(A) SCIF(B) definitions.
343 	 */
344 	[SCIx_SH4_SCIF_REGTYPE] = {
345 		.regs = {
346 			[SCSMR]		= { 0x00, 16 },
347 			[SCBRR]		= { 0x04,  8 },
348 			[SCSCR]		= { 0x08, 16 },
349 			[SCxTDR]	= { 0x0c,  8 },
350 			[SCxSR]		= { 0x10, 16 },
351 			[SCxRDR]	= { 0x14,  8 },
352 			[SCFCR]		= { 0x18, 16 },
353 			[SCFDR]		= { 0x1c, 16 },
354 			[SCSPTR]	= { 0x20, 16 },
355 			[SCLSR]		= { 0x24, 16 },
356 		},
357 		.fifosize = 16,
358 		.overrun_reg = SCLSR,
359 		.overrun_mask = SCLSR_ORER,
360 		.sampling_rate_mask = SCI_SR(32),
361 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
362 		.error_clear = SCIF_ERROR_CLEAR,
363 	},
364 
365 	/*
366 	 * Common SCIF definitions for ports with a Baud Rate Generator for
367 	 * External Clock (BRG).
368 	 */
369 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
370 		.regs = {
371 			[SCSMR]		= { 0x00, 16 },
372 			[SCBRR]		= { 0x04,  8 },
373 			[SCSCR]		= { 0x08, 16 },
374 			[SCxTDR]	= { 0x0c,  8 },
375 			[SCxSR]		= { 0x10, 16 },
376 			[SCxRDR]	= { 0x14,  8 },
377 			[SCFCR]		= { 0x18, 16 },
378 			[SCFDR]		= { 0x1c, 16 },
379 			[SCSPTR]	= { 0x20, 16 },
380 			[SCLSR]		= { 0x24, 16 },
381 			[SCDL]		= { 0x30, 16 },
382 			[SCCKS]		= { 0x34, 16 },
383 		},
384 		.fifosize = 16,
385 		.overrun_reg = SCLSR,
386 		.overrun_mask = SCLSR_ORER,
387 		.sampling_rate_mask = SCI_SR(32),
388 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
389 		.error_clear = SCIF_ERROR_CLEAR,
390 	},
391 
392 	/*
393 	 * Common HSCIF definitions.
394 	 */
395 	[SCIx_HSCIF_REGTYPE] = {
396 		.regs = {
397 			[SCSMR]		= { 0x00, 16 },
398 			[SCBRR]		= { 0x04,  8 },
399 			[SCSCR]		= { 0x08, 16 },
400 			[SCxTDR]	= { 0x0c,  8 },
401 			[SCxSR]		= { 0x10, 16 },
402 			[SCxRDR]	= { 0x14,  8 },
403 			[SCFCR]		= { 0x18, 16 },
404 			[SCFDR]		= { 0x1c, 16 },
405 			[SCSPTR]	= { 0x20, 16 },
406 			[SCLSR]		= { 0x24, 16 },
407 			[HSSRR]		= { 0x40, 16 },
408 			[SCDL]		= { 0x30, 16 },
409 			[SCCKS]		= { 0x34, 16 },
410 			[HSRTRGR]	= { 0x54, 16 },
411 			[HSTTRGR]	= { 0x58, 16 },
412 		},
413 		.fifosize = 128,
414 		.overrun_reg = SCLSR,
415 		.overrun_mask = SCLSR_ORER,
416 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
417 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
418 		.error_clear = SCIF_ERROR_CLEAR,
419 	},
420 
421 	/*
422 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
423 	 * register.
424 	 */
425 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
426 		.regs = {
427 			[SCSMR]		= { 0x00, 16 },
428 			[SCBRR]		= { 0x04,  8 },
429 			[SCSCR]		= { 0x08, 16 },
430 			[SCxTDR]	= { 0x0c,  8 },
431 			[SCxSR]		= { 0x10, 16 },
432 			[SCxRDR]	= { 0x14,  8 },
433 			[SCFCR]		= { 0x18, 16 },
434 			[SCFDR]		= { 0x1c, 16 },
435 			[SCLSR]		= { 0x24, 16 },
436 		},
437 		.fifosize = 16,
438 		.overrun_reg = SCLSR,
439 		.overrun_mask = SCLSR_ORER,
440 		.sampling_rate_mask = SCI_SR(32),
441 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
442 		.error_clear = SCIF_ERROR_CLEAR,
443 	},
444 
445 	/*
446 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
447 	 * count registers.
448 	 */
449 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
450 		.regs = {
451 			[SCSMR]		= { 0x00, 16 },
452 			[SCBRR]		= { 0x04,  8 },
453 			[SCSCR]		= { 0x08, 16 },
454 			[SCxTDR]	= { 0x0c,  8 },
455 			[SCxSR]		= { 0x10, 16 },
456 			[SCxRDR]	= { 0x14,  8 },
457 			[SCFCR]		= { 0x18, 16 },
458 			[SCFDR]		= { 0x1c, 16 },
459 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
460 			[SCRFDR]	= { 0x20, 16 },
461 			[SCSPTR]	= { 0x24, 16 },
462 			[SCLSR]		= { 0x28, 16 },
463 		},
464 		.fifosize = 16,
465 		.overrun_reg = SCLSR,
466 		.overrun_mask = SCLSR_ORER,
467 		.sampling_rate_mask = SCI_SR(32),
468 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
469 		.error_clear = SCIF_ERROR_CLEAR,
470 	},
471 
472 	/*
473 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
474 	 * registers.
475 	 */
476 	[SCIx_SH7705_SCIF_REGTYPE] = {
477 		.regs = {
478 			[SCSMR]		= { 0x00, 16 },
479 			[SCBRR]		= { 0x04,  8 },
480 			[SCSCR]		= { 0x08, 16 },
481 			[SCxTDR]	= { 0x20,  8 },
482 			[SCxSR]		= { 0x14, 16 },
483 			[SCxRDR]	= { 0x24,  8 },
484 			[SCFCR]		= { 0x18, 16 },
485 			[SCFDR]		= { 0x1c, 16 },
486 		},
487 		.fifosize = 64,
488 		.overrun_reg = SCxSR,
489 		.overrun_mask = SCIFA_ORER,
490 		.sampling_rate_mask = SCI_SR(16),
491 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
492 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
493 	},
494 };
495 
496 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
497 
498 /*
499  * The "offset" here is rather misleading, in that it refers to an enum
500  * value relative to the port mapping rather than the fixed offset
501  * itself, which needs to be manually retrieved from the platform's
502  * register map for the given port.
503  */
sci_serial_in(struct uart_port * p,int offset)504 static unsigned int sci_serial_in(struct uart_port *p, int offset)
505 {
506 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
507 
508 	if (reg->size == 8)
509 		return ioread8(p->membase + (reg->offset << p->regshift));
510 	else if (reg->size == 16)
511 		return ioread16(p->membase + (reg->offset << p->regshift));
512 	else
513 		WARN(1, "Invalid register access\n");
514 
515 	return 0;
516 }
517 
sci_serial_out(struct uart_port * p,int offset,int value)518 static void sci_serial_out(struct uart_port *p, int offset, int value)
519 {
520 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
521 
522 	if (reg->size == 8)
523 		iowrite8(value, p->membase + (reg->offset << p->regshift));
524 	else if (reg->size == 16)
525 		iowrite16(value, p->membase + (reg->offset << p->regshift));
526 	else
527 		WARN(1, "Invalid register access\n");
528 }
529 
sci_port_enable(struct sci_port * sci_port)530 static void sci_port_enable(struct sci_port *sci_port)
531 {
532 	unsigned int i;
533 
534 	if (!sci_port->port.dev)
535 		return;
536 
537 	pm_runtime_get_sync(sci_port->port.dev);
538 
539 	for (i = 0; i < SCI_NUM_CLKS; i++) {
540 		clk_prepare_enable(sci_port->clks[i]);
541 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
542 	}
543 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
544 }
545 
sci_port_disable(struct sci_port * sci_port)546 static void sci_port_disable(struct sci_port *sci_port)
547 {
548 	unsigned int i;
549 
550 	if (!sci_port->port.dev)
551 		return;
552 
553 	for (i = SCI_NUM_CLKS; i-- > 0; )
554 		clk_disable_unprepare(sci_port->clks[i]);
555 
556 	pm_runtime_put_sync(sci_port->port.dev);
557 }
558 
port_rx_irq_mask(struct uart_port * port)559 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
560 {
561 	/*
562 	 * Not all ports (such as SCIFA) will support REIE. Rather than
563 	 * special-casing the port type, we check the port initialization
564 	 * IRQ enable mask to see whether the IRQ is desired at all. If
565 	 * it's unset, it's logically inferred that there's no point in
566 	 * testing for it.
567 	 */
568 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
569 }
570 
sci_start_tx(struct uart_port * port)571 static void sci_start_tx(struct uart_port *port)
572 {
573 	struct sci_port *s = to_sci_port(port);
574 	unsigned short ctrl;
575 
576 #ifdef CONFIG_SERIAL_SH_SCI_DMA
577 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
578 		u16 new, scr = serial_port_in(port, SCSCR);
579 		if (s->chan_tx)
580 			new = scr | SCSCR_TDRQE;
581 		else
582 			new = scr & ~SCSCR_TDRQE;
583 		if (new != scr)
584 			serial_port_out(port, SCSCR, new);
585 	}
586 
587 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
588 	    dma_submit_error(s->cookie_tx)) {
589 		s->cookie_tx = 0;
590 		schedule_work(&s->work_tx);
591 	}
592 #endif
593 
594 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
595 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
596 		ctrl = serial_port_in(port, SCSCR);
597 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
598 	}
599 }
600 
sci_stop_tx(struct uart_port * port)601 static void sci_stop_tx(struct uart_port *port)
602 {
603 	unsigned short ctrl;
604 
605 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
606 	ctrl = serial_port_in(port, SCSCR);
607 
608 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
609 		ctrl &= ~SCSCR_TDRQE;
610 
611 	ctrl &= ~SCSCR_TIE;
612 
613 	serial_port_out(port, SCSCR, ctrl);
614 
615 #ifdef CONFIG_SERIAL_SH_SCI_DMA
616 	if (to_sci_port(port)->chan_tx &&
617 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
618 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
619 		to_sci_port(port)->cookie_tx = -EINVAL;
620 	}
621 #endif
622 }
623 
sci_start_rx(struct uart_port * port)624 static void sci_start_rx(struct uart_port *port)
625 {
626 	unsigned short ctrl;
627 
628 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
629 
630 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
631 		ctrl &= ~SCSCR_RDRQE;
632 
633 	serial_port_out(port, SCSCR, ctrl);
634 }
635 
sci_stop_rx(struct uart_port * port)636 static void sci_stop_rx(struct uart_port *port)
637 {
638 	unsigned short ctrl;
639 
640 	ctrl = serial_port_in(port, SCSCR);
641 
642 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
643 		ctrl &= ~SCSCR_RDRQE;
644 
645 	ctrl &= ~port_rx_irq_mask(port);
646 
647 	serial_port_out(port, SCSCR, ctrl);
648 }
649 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)650 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
651 {
652 	if (port->type == PORT_SCI) {
653 		/* Just store the mask */
654 		serial_port_out(port, SCxSR, mask);
655 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
656 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
657 		/* Only clear the status bits we want to clear */
658 		serial_port_out(port, SCxSR,
659 				serial_port_in(port, SCxSR) & mask);
660 	} else {
661 		/* Store the mask, clear parity/framing errors */
662 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
663 	}
664 }
665 
666 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
667     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
668 
669 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)670 static int sci_poll_get_char(struct uart_port *port)
671 {
672 	unsigned short status;
673 	int c;
674 
675 	do {
676 		status = serial_port_in(port, SCxSR);
677 		if (status & SCxSR_ERRORS(port)) {
678 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
679 			continue;
680 		}
681 		break;
682 	} while (1);
683 
684 	if (!(status & SCxSR_RDxF(port)))
685 		return NO_POLL_CHAR;
686 
687 	c = serial_port_in(port, SCxRDR);
688 
689 	/* Dummy read */
690 	serial_port_in(port, SCxSR);
691 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
692 
693 	return c;
694 }
695 #endif
696 
sci_poll_put_char(struct uart_port * port,unsigned char c)697 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
698 {
699 	unsigned short status;
700 
701 	do {
702 		status = serial_port_in(port, SCxSR);
703 	} while (!(status & SCxSR_TDxE(port)));
704 
705 	serial_port_out(port, SCxTDR, c);
706 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
707 }
708 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
709 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
710 
sci_init_pins(struct uart_port * port,unsigned int cflag)711 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
712 {
713 	struct sci_port *s = to_sci_port(port);
714 
715 	/*
716 	 * Use port-specific handler if provided.
717 	 */
718 	if (s->cfg->ops && s->cfg->ops->init_pins) {
719 		s->cfg->ops->init_pins(port, cflag);
720 		return;
721 	}
722 
723 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
724 		u16 data = serial_port_in(port, SCPDR);
725 		u16 ctrl = serial_port_in(port, SCPCR);
726 
727 		/* Enable RXD and TXD pin functions */
728 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
729 		if (to_sci_port(port)->has_rtscts) {
730 			/* RTS# is output, active low, unless autorts */
731 			if (!(port->mctrl & TIOCM_RTS)) {
732 				ctrl |= SCPCR_RTSC;
733 				data |= SCPDR_RTSD;
734 			} else if (!s->autorts) {
735 				ctrl |= SCPCR_RTSC;
736 				data &= ~SCPDR_RTSD;
737 			} else {
738 				/* Enable RTS# pin function */
739 				ctrl &= ~SCPCR_RTSC;
740 			}
741 			/* Enable CTS# pin function */
742 			ctrl &= ~SCPCR_CTSC;
743 		}
744 		serial_port_out(port, SCPDR, data);
745 		serial_port_out(port, SCPCR, ctrl);
746 	} else if (sci_getreg(port, SCSPTR)->size) {
747 		u16 status = serial_port_in(port, SCSPTR);
748 
749 		/* RTS# is always output; and active low, unless autorts */
750 		status |= SCSPTR_RTSIO;
751 		if (!(port->mctrl & TIOCM_RTS))
752 			status |= SCSPTR_RTSDT;
753 		else if (!s->autorts)
754 			status &= ~SCSPTR_RTSDT;
755 		/* CTS# and SCK are inputs */
756 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
757 		serial_port_out(port, SCSPTR, status);
758 	}
759 }
760 
sci_txfill(struct uart_port * port)761 static int sci_txfill(struct uart_port *port)
762 {
763 	struct sci_port *s = to_sci_port(port);
764 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
765 	const struct plat_sci_reg *reg;
766 
767 	reg = sci_getreg(port, SCTFDR);
768 	if (reg->size)
769 		return serial_port_in(port, SCTFDR) & fifo_mask;
770 
771 	reg = sci_getreg(port, SCFDR);
772 	if (reg->size)
773 		return serial_port_in(port, SCFDR) >> 8;
774 
775 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
776 }
777 
sci_txroom(struct uart_port * port)778 static int sci_txroom(struct uart_port *port)
779 {
780 	return port->fifosize - sci_txfill(port);
781 }
782 
sci_rxfill(struct uart_port * port)783 static int sci_rxfill(struct uart_port *port)
784 {
785 	struct sci_port *s = to_sci_port(port);
786 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
787 	const struct plat_sci_reg *reg;
788 
789 	reg = sci_getreg(port, SCRFDR);
790 	if (reg->size)
791 		return serial_port_in(port, SCRFDR) & fifo_mask;
792 
793 	reg = sci_getreg(port, SCFDR);
794 	if (reg->size)
795 		return serial_port_in(port, SCFDR) & fifo_mask;
796 
797 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
798 }
799 
800 /* ********************************************************************** *
801  *                   the interrupt related routines                       *
802  * ********************************************************************** */
803 
sci_transmit_chars(struct uart_port * port)804 static void sci_transmit_chars(struct uart_port *port)
805 {
806 	struct circ_buf *xmit = &port->state->xmit;
807 	unsigned int stopped = uart_tx_stopped(port);
808 	unsigned short status;
809 	unsigned short ctrl;
810 	int count;
811 
812 	status = serial_port_in(port, SCxSR);
813 	if (!(status & SCxSR_TDxE(port))) {
814 		ctrl = serial_port_in(port, SCSCR);
815 		if (uart_circ_empty(xmit))
816 			ctrl &= ~SCSCR_TIE;
817 		else
818 			ctrl |= SCSCR_TIE;
819 		serial_port_out(port, SCSCR, ctrl);
820 		return;
821 	}
822 
823 	count = sci_txroom(port);
824 
825 	do {
826 		unsigned char c;
827 
828 		if (port->x_char) {
829 			c = port->x_char;
830 			port->x_char = 0;
831 		} else if (!uart_circ_empty(xmit) && !stopped) {
832 			c = xmit->buf[xmit->tail];
833 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
834 		} else {
835 			break;
836 		}
837 
838 		serial_port_out(port, SCxTDR, c);
839 
840 		port->icount.tx++;
841 	} while (--count > 0);
842 
843 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
844 
845 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
846 		uart_write_wakeup(port);
847 	if (uart_circ_empty(xmit))
848 		sci_stop_tx(port);
849 
850 }
851 
852 /* On SH3, SCIF may read end-of-break as a space->mark char */
853 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
854 
sci_receive_chars(struct uart_port * port)855 static void sci_receive_chars(struct uart_port *port)
856 {
857 	struct tty_port *tport = &port->state->port;
858 	int i, count, copied = 0;
859 	unsigned short status;
860 	unsigned char flag;
861 
862 	status = serial_port_in(port, SCxSR);
863 	if (!(status & SCxSR_RDxF(port)))
864 		return;
865 
866 	while (1) {
867 		/* Don't copy more bytes than there is room for in the buffer */
868 		count = tty_buffer_request_room(tport, sci_rxfill(port));
869 
870 		/* If for any reason we can't copy more data, we're done! */
871 		if (count == 0)
872 			break;
873 
874 		if (port->type == PORT_SCI) {
875 			char c = serial_port_in(port, SCxRDR);
876 			if (uart_handle_sysrq_char(port, c))
877 				count = 0;
878 			else
879 				tty_insert_flip_char(tport, c, TTY_NORMAL);
880 		} else {
881 			for (i = 0; i < count; i++) {
882 				char c;
883 
884 				if (port->type == PORT_SCIF ||
885 				    port->type == PORT_HSCIF) {
886 					status = serial_port_in(port, SCxSR);
887 					c = serial_port_in(port, SCxRDR);
888 				} else {
889 					c = serial_port_in(port, SCxRDR);
890 					status = serial_port_in(port, SCxSR);
891 				}
892 				if (uart_handle_sysrq_char(port, c)) {
893 					count--; i--;
894 					continue;
895 				}
896 
897 				/* Store data and status */
898 				if (status & SCxSR_FER(port)) {
899 					flag = TTY_FRAME;
900 					port->icount.frame++;
901 					dev_notice(port->dev, "frame error\n");
902 				} else if (status & SCxSR_PER(port)) {
903 					flag = TTY_PARITY;
904 					port->icount.parity++;
905 					dev_notice(port->dev, "parity error\n");
906 				} else
907 					flag = TTY_NORMAL;
908 
909 				tty_insert_flip_char(tport, c, flag);
910 			}
911 		}
912 
913 		serial_port_in(port, SCxSR); /* dummy read */
914 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
915 
916 		copied += count;
917 		port->icount.rx += count;
918 	}
919 
920 	if (copied) {
921 		/* Tell the rest of the system the news. New characters! */
922 		tty_flip_buffer_push(tport);
923 	} else {
924 		/* TTY buffers full; read from RX reg to prevent lockup */
925 		serial_port_in(port, SCxRDR);
926 		serial_port_in(port, SCxSR); /* dummy read */
927 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
928 	}
929 }
930 
sci_handle_errors(struct uart_port * port)931 static int sci_handle_errors(struct uart_port *port)
932 {
933 	int copied = 0;
934 	unsigned short status = serial_port_in(port, SCxSR);
935 	struct tty_port *tport = &port->state->port;
936 	struct sci_port *s = to_sci_port(port);
937 
938 	/* Handle overruns */
939 	if (status & s->params->overrun_mask) {
940 		port->icount.overrun++;
941 
942 		/* overrun error */
943 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
944 			copied++;
945 
946 		dev_notice(port->dev, "overrun error\n");
947 	}
948 
949 	if (status & SCxSR_FER(port)) {
950 		/* frame error */
951 		port->icount.frame++;
952 
953 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
954 			copied++;
955 
956 		dev_notice(port->dev, "frame error\n");
957 	}
958 
959 	if (status & SCxSR_PER(port)) {
960 		/* parity error */
961 		port->icount.parity++;
962 
963 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
964 			copied++;
965 
966 		dev_notice(port->dev, "parity error\n");
967 	}
968 
969 	if (copied)
970 		tty_flip_buffer_push(tport);
971 
972 	return copied;
973 }
974 
sci_handle_fifo_overrun(struct uart_port * port)975 static int sci_handle_fifo_overrun(struct uart_port *port)
976 {
977 	struct tty_port *tport = &port->state->port;
978 	struct sci_port *s = to_sci_port(port);
979 	const struct plat_sci_reg *reg;
980 	int copied = 0;
981 	u16 status;
982 
983 	reg = sci_getreg(port, s->params->overrun_reg);
984 	if (!reg->size)
985 		return 0;
986 
987 	status = serial_port_in(port, s->params->overrun_reg);
988 	if (status & s->params->overrun_mask) {
989 		status &= ~s->params->overrun_mask;
990 		serial_port_out(port, s->params->overrun_reg, status);
991 
992 		port->icount.overrun++;
993 
994 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
995 		tty_flip_buffer_push(tport);
996 
997 		dev_dbg(port->dev, "overrun error\n");
998 		copied++;
999 	}
1000 
1001 	return copied;
1002 }
1003 
sci_handle_breaks(struct uart_port * port)1004 static int sci_handle_breaks(struct uart_port *port)
1005 {
1006 	int copied = 0;
1007 	unsigned short status = serial_port_in(port, SCxSR);
1008 	struct tty_port *tport = &port->state->port;
1009 
1010 	if (uart_handle_break(port))
1011 		return 0;
1012 
1013 	if (status & SCxSR_BRK(port)) {
1014 		port->icount.brk++;
1015 
1016 		/* Notify of BREAK */
1017 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1018 			copied++;
1019 
1020 		dev_dbg(port->dev, "BREAK detected\n");
1021 	}
1022 
1023 	if (copied)
1024 		tty_flip_buffer_push(tport);
1025 
1026 	copied += sci_handle_fifo_overrun(port);
1027 
1028 	return copied;
1029 }
1030 
scif_set_rtrg(struct uart_port * port,int rx_trig)1031 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1032 {
1033 	unsigned int bits;
1034 
1035 	if (rx_trig >= port->fifosize)
1036 		rx_trig = port->fifosize - 1;
1037 	if (rx_trig < 1)
1038 		rx_trig = 1;
1039 
1040 	/* HSCIF can be set to an arbitrary level. */
1041 	if (sci_getreg(port, HSRTRGR)->size) {
1042 		serial_port_out(port, HSRTRGR, rx_trig);
1043 		return rx_trig;
1044 	}
1045 
1046 	switch (port->type) {
1047 	case PORT_SCIF:
1048 		if (rx_trig < 4) {
1049 			bits = 0;
1050 			rx_trig = 1;
1051 		} else if (rx_trig < 8) {
1052 			bits = SCFCR_RTRG0;
1053 			rx_trig = 4;
1054 		} else if (rx_trig < 14) {
1055 			bits = SCFCR_RTRG1;
1056 			rx_trig = 8;
1057 		} else {
1058 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1059 			rx_trig = 14;
1060 		}
1061 		break;
1062 	case PORT_SCIFA:
1063 	case PORT_SCIFB:
1064 		if (rx_trig < 16) {
1065 			bits = 0;
1066 			rx_trig = 1;
1067 		} else if (rx_trig < 32) {
1068 			bits = SCFCR_RTRG0;
1069 			rx_trig = 16;
1070 		} else if (rx_trig < 48) {
1071 			bits = SCFCR_RTRG1;
1072 			rx_trig = 32;
1073 		} else {
1074 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1075 			rx_trig = 48;
1076 		}
1077 		break;
1078 	default:
1079 		WARN(1, "unknown FIFO configuration");
1080 		return 1;
1081 	}
1082 
1083 	serial_port_out(port, SCFCR,
1084 		(serial_port_in(port, SCFCR) &
1085 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1086 
1087 	return rx_trig;
1088 }
1089 
scif_rtrg_enabled(struct uart_port * port)1090 static int scif_rtrg_enabled(struct uart_port *port)
1091 {
1092 	if (sci_getreg(port, HSRTRGR)->size)
1093 		return serial_port_in(port, HSRTRGR) != 0;
1094 	else
1095 		return (serial_port_in(port, SCFCR) &
1096 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1097 }
1098 
rx_fifo_timer_fn(struct timer_list * t)1099 static void rx_fifo_timer_fn(struct timer_list *t)
1100 {
1101 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1102 	struct uart_port *port = &s->port;
1103 
1104 	dev_dbg(port->dev, "Rx timed out\n");
1105 	scif_set_rtrg(port, 1);
1106 }
1107 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1108 static ssize_t rx_fifo_trigger_show(struct device *dev,
1109 				    struct device_attribute *attr, char *buf)
1110 {
1111 	struct uart_port *port = dev_get_drvdata(dev);
1112 	struct sci_port *sci = to_sci_port(port);
1113 
1114 	return sprintf(buf, "%d\n", sci->rx_trigger);
1115 }
1116 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1117 static ssize_t rx_fifo_trigger_store(struct device *dev,
1118 				     struct device_attribute *attr,
1119 				     const char *buf, size_t count)
1120 {
1121 	struct uart_port *port = dev_get_drvdata(dev);
1122 	struct sci_port *sci = to_sci_port(port);
1123 	int ret;
1124 	long r;
1125 
1126 	ret = kstrtol(buf, 0, &r);
1127 	if (ret)
1128 		return ret;
1129 
1130 	sci->rx_trigger = scif_set_rtrg(port, r);
1131 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1132 		scif_set_rtrg(port, 1);
1133 
1134 	return count;
1135 }
1136 
1137 static DEVICE_ATTR_RW(rx_fifo_trigger);
1138 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1139 static ssize_t rx_fifo_timeout_show(struct device *dev,
1140 			       struct device_attribute *attr,
1141 			       char *buf)
1142 {
1143 	struct uart_port *port = dev_get_drvdata(dev);
1144 	struct sci_port *sci = to_sci_port(port);
1145 	int v;
1146 
1147 	if (port->type == PORT_HSCIF)
1148 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1149 	else
1150 		v = sci->rx_fifo_timeout;
1151 
1152 	return sprintf(buf, "%d\n", v);
1153 }
1154 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1155 static ssize_t rx_fifo_timeout_store(struct device *dev,
1156 				struct device_attribute *attr,
1157 				const char *buf,
1158 				size_t count)
1159 {
1160 	struct uart_port *port = dev_get_drvdata(dev);
1161 	struct sci_port *sci = to_sci_port(port);
1162 	int ret;
1163 	long r;
1164 
1165 	ret = kstrtol(buf, 0, &r);
1166 	if (ret)
1167 		return ret;
1168 
1169 	if (port->type == PORT_HSCIF) {
1170 		if (r < 0 || r > 3)
1171 			return -EINVAL;
1172 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1173 	} else {
1174 		sci->rx_fifo_timeout = r;
1175 		scif_set_rtrg(port, 1);
1176 		if (r > 0)
1177 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1178 	}
1179 
1180 	return count;
1181 }
1182 
1183 static DEVICE_ATTR_RW(rx_fifo_timeout);
1184 
1185 
1186 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1187 static void sci_dma_tx_complete(void *arg)
1188 {
1189 	struct sci_port *s = arg;
1190 	struct uart_port *port = &s->port;
1191 	struct circ_buf *xmit = &port->state->xmit;
1192 	unsigned long flags;
1193 
1194 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1195 
1196 	spin_lock_irqsave(&port->lock, flags);
1197 
1198 	xmit->tail += s->tx_dma_len;
1199 	xmit->tail &= UART_XMIT_SIZE - 1;
1200 
1201 	port->icount.tx += s->tx_dma_len;
1202 
1203 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1204 		uart_write_wakeup(port);
1205 
1206 	if (!uart_circ_empty(xmit)) {
1207 		s->cookie_tx = 0;
1208 		schedule_work(&s->work_tx);
1209 	} else {
1210 		s->cookie_tx = -EINVAL;
1211 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1212 			u16 ctrl = serial_port_in(port, SCSCR);
1213 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1214 		}
1215 	}
1216 
1217 	spin_unlock_irqrestore(&port->lock, flags);
1218 }
1219 
1220 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1221 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1222 {
1223 	struct uart_port *port = &s->port;
1224 	struct tty_port *tport = &port->state->port;
1225 	int copied;
1226 
1227 	copied = tty_insert_flip_string(tport, buf, count);
1228 	if (copied < count)
1229 		port->icount.buf_overrun++;
1230 
1231 	port->icount.rx += copied;
1232 
1233 	return copied;
1234 }
1235 
sci_dma_rx_find_active(struct sci_port * s)1236 static int sci_dma_rx_find_active(struct sci_port *s)
1237 {
1238 	unsigned int i;
1239 
1240 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1241 		if (s->active_rx == s->cookie_rx[i])
1242 			return i;
1243 
1244 	return -1;
1245 }
1246 
sci_dma_rx_chan_invalidate(struct sci_port * s)1247 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1248 {
1249 	unsigned int i;
1250 
1251 	s->chan_rx = NULL;
1252 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1253 		s->cookie_rx[i] = -EINVAL;
1254 	s->active_rx = 0;
1255 }
1256 
sci_dma_rx_release(struct sci_port * s)1257 static void sci_dma_rx_release(struct sci_port *s)
1258 {
1259 	struct dma_chan *chan = s->chan_rx_saved;
1260 
1261 	s->chan_rx_saved = NULL;
1262 	sci_dma_rx_chan_invalidate(s);
1263 	dmaengine_terminate_sync(chan);
1264 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1265 			  sg_dma_address(&s->sg_rx[0]));
1266 	dma_release_channel(chan);
1267 }
1268 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1269 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1270 {
1271 	long sec = usec / 1000000;
1272 	long nsec = (usec % 1000000) * 1000;
1273 	ktime_t t = ktime_set(sec, nsec);
1274 
1275 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1276 }
1277 
sci_dma_rx_reenable_irq(struct sci_port * s)1278 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1279 {
1280 	struct uart_port *port = &s->port;
1281 	u16 scr;
1282 
1283 	/* Direct new serial port interrupts back to CPU */
1284 	scr = serial_port_in(port, SCSCR);
1285 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1286 		scr &= ~SCSCR_RDRQE;
1287 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1288 	}
1289 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1290 }
1291 
sci_dma_rx_complete(void * arg)1292 static void sci_dma_rx_complete(void *arg)
1293 {
1294 	struct sci_port *s = arg;
1295 	struct dma_chan *chan = s->chan_rx;
1296 	struct uart_port *port = &s->port;
1297 	struct dma_async_tx_descriptor *desc;
1298 	unsigned long flags;
1299 	int active, count = 0;
1300 
1301 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1302 		s->active_rx);
1303 
1304 	spin_lock_irqsave(&port->lock, flags);
1305 
1306 	active = sci_dma_rx_find_active(s);
1307 	if (active >= 0)
1308 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1309 
1310 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1311 
1312 	if (count)
1313 		tty_flip_buffer_push(&port->state->port);
1314 
1315 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1316 				       DMA_DEV_TO_MEM,
1317 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1318 	if (!desc)
1319 		goto fail;
1320 
1321 	desc->callback = sci_dma_rx_complete;
1322 	desc->callback_param = s;
1323 	s->cookie_rx[active] = dmaengine_submit(desc);
1324 	if (dma_submit_error(s->cookie_rx[active]))
1325 		goto fail;
1326 
1327 	s->active_rx = s->cookie_rx[!active];
1328 
1329 	dma_async_issue_pending(chan);
1330 
1331 	spin_unlock_irqrestore(&port->lock, flags);
1332 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1333 		__func__, s->cookie_rx[active], active, s->active_rx);
1334 	return;
1335 
1336 fail:
1337 	spin_unlock_irqrestore(&port->lock, flags);
1338 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1339 	/* Switch to PIO */
1340 	spin_lock_irqsave(&port->lock, flags);
1341 	dmaengine_terminate_async(chan);
1342 	sci_dma_rx_chan_invalidate(s);
1343 	sci_dma_rx_reenable_irq(s);
1344 	spin_unlock_irqrestore(&port->lock, flags);
1345 }
1346 
sci_dma_tx_release(struct sci_port * s)1347 static void sci_dma_tx_release(struct sci_port *s)
1348 {
1349 	struct dma_chan *chan = s->chan_tx_saved;
1350 
1351 	cancel_work_sync(&s->work_tx);
1352 	s->chan_tx_saved = s->chan_tx = NULL;
1353 	s->cookie_tx = -EINVAL;
1354 	dmaengine_terminate_sync(chan);
1355 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1356 			 DMA_TO_DEVICE);
1357 	dma_release_channel(chan);
1358 }
1359 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1360 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1361 {
1362 	struct dma_chan *chan = s->chan_rx;
1363 	struct uart_port *port = &s->port;
1364 	unsigned long flags;
1365 	int i;
1366 
1367 	for (i = 0; i < 2; i++) {
1368 		struct scatterlist *sg = &s->sg_rx[i];
1369 		struct dma_async_tx_descriptor *desc;
1370 
1371 		desc = dmaengine_prep_slave_sg(chan,
1372 			sg, 1, DMA_DEV_TO_MEM,
1373 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1374 		if (!desc)
1375 			goto fail;
1376 
1377 		desc->callback = sci_dma_rx_complete;
1378 		desc->callback_param = s;
1379 		s->cookie_rx[i] = dmaengine_submit(desc);
1380 		if (dma_submit_error(s->cookie_rx[i]))
1381 			goto fail;
1382 
1383 	}
1384 
1385 	s->active_rx = s->cookie_rx[0];
1386 
1387 	dma_async_issue_pending(chan);
1388 	return 0;
1389 
1390 fail:
1391 	/* Switch to PIO */
1392 	if (!port_lock_held)
1393 		spin_lock_irqsave(&port->lock, flags);
1394 	if (i)
1395 		dmaengine_terminate_async(chan);
1396 	sci_dma_rx_chan_invalidate(s);
1397 	sci_start_rx(port);
1398 	if (!port_lock_held)
1399 		spin_unlock_irqrestore(&port->lock, flags);
1400 	return -EAGAIN;
1401 }
1402 
sci_dma_tx_work_fn(struct work_struct * work)1403 static void sci_dma_tx_work_fn(struct work_struct *work)
1404 {
1405 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1406 	struct dma_async_tx_descriptor *desc;
1407 	struct dma_chan *chan = s->chan_tx;
1408 	struct uart_port *port = &s->port;
1409 	struct circ_buf *xmit = &port->state->xmit;
1410 	unsigned long flags;
1411 	dma_addr_t buf;
1412 	int head, tail;
1413 
1414 	/*
1415 	 * DMA is idle now.
1416 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1417 	 * offsets and lengths. Since it is a circular buffer, we have to
1418 	 * transmit till the end, and then the rest. Take the port lock to get a
1419 	 * consistent xmit buffer state.
1420 	 */
1421 	spin_lock_irq(&port->lock);
1422 	head = xmit->head;
1423 	tail = xmit->tail;
1424 	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1425 	s->tx_dma_len = min_t(unsigned int,
1426 		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1427 		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1428 	if (!s->tx_dma_len) {
1429 		/* Transmit buffer has been flushed */
1430 		spin_unlock_irq(&port->lock);
1431 		return;
1432 	}
1433 
1434 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1435 					   DMA_MEM_TO_DEV,
1436 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1437 	if (!desc) {
1438 		spin_unlock_irq(&port->lock);
1439 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1440 		goto switch_to_pio;
1441 	}
1442 
1443 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1444 				   DMA_TO_DEVICE);
1445 
1446 	desc->callback = sci_dma_tx_complete;
1447 	desc->callback_param = s;
1448 	s->cookie_tx = dmaengine_submit(desc);
1449 	if (dma_submit_error(s->cookie_tx)) {
1450 		spin_unlock_irq(&port->lock);
1451 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1452 		goto switch_to_pio;
1453 	}
1454 
1455 	spin_unlock_irq(&port->lock);
1456 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1457 		__func__, xmit->buf, tail, head, s->cookie_tx);
1458 
1459 	dma_async_issue_pending(chan);
1460 	return;
1461 
1462 switch_to_pio:
1463 	spin_lock_irqsave(&port->lock, flags);
1464 	s->chan_tx = NULL;
1465 	sci_start_tx(port);
1466 	spin_unlock_irqrestore(&port->lock, flags);
1467 	return;
1468 }
1469 
sci_dma_rx_timer_fn(struct hrtimer * t)1470 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1471 {
1472 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1473 	struct dma_chan *chan = s->chan_rx;
1474 	struct uart_port *port = &s->port;
1475 	struct dma_tx_state state;
1476 	enum dma_status status;
1477 	unsigned long flags;
1478 	unsigned int read;
1479 	int active, count;
1480 
1481 	dev_dbg(port->dev, "DMA Rx timed out\n");
1482 
1483 	spin_lock_irqsave(&port->lock, flags);
1484 
1485 	active = sci_dma_rx_find_active(s);
1486 	if (active < 0) {
1487 		spin_unlock_irqrestore(&port->lock, flags);
1488 		return HRTIMER_NORESTART;
1489 	}
1490 
1491 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1492 	if (status == DMA_COMPLETE) {
1493 		spin_unlock_irqrestore(&port->lock, flags);
1494 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1495 			s->active_rx, active);
1496 
1497 		/* Let packet complete handler take care of the packet */
1498 		return HRTIMER_NORESTART;
1499 	}
1500 
1501 	dmaengine_pause(chan);
1502 
1503 	/*
1504 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1505 	 * data keeps on coming until transaction is complete so check
1506 	 * for DMA_COMPLETE again
1507 	 * Let packet complete handler take care of the packet
1508 	 */
1509 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1510 	if (status == DMA_COMPLETE) {
1511 		spin_unlock_irqrestore(&port->lock, flags);
1512 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1513 		return HRTIMER_NORESTART;
1514 	}
1515 
1516 	/* Handle incomplete DMA receive */
1517 	dmaengine_terminate_async(s->chan_rx);
1518 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1519 
1520 	if (read) {
1521 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1522 		if (count)
1523 			tty_flip_buffer_push(&port->state->port);
1524 	}
1525 
1526 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1527 		sci_dma_rx_submit(s, true);
1528 
1529 	sci_dma_rx_reenable_irq(s);
1530 
1531 	spin_unlock_irqrestore(&port->lock, flags);
1532 
1533 	return HRTIMER_NORESTART;
1534 }
1535 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1536 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1537 					     enum dma_transfer_direction dir)
1538 {
1539 	struct dma_chan *chan;
1540 	struct dma_slave_config cfg;
1541 	int ret;
1542 
1543 	chan = dma_request_slave_channel(port->dev,
1544 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1545 	if (!chan) {
1546 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1547 		return NULL;
1548 	}
1549 
1550 	memset(&cfg, 0, sizeof(cfg));
1551 	cfg.direction = dir;
1552 	if (dir == DMA_MEM_TO_DEV) {
1553 		cfg.dst_addr = port->mapbase +
1554 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1555 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1556 	} else {
1557 		cfg.src_addr = port->mapbase +
1558 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1559 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1560 	}
1561 
1562 	ret = dmaengine_slave_config(chan, &cfg);
1563 	if (ret) {
1564 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1565 		dma_release_channel(chan);
1566 		return NULL;
1567 	}
1568 
1569 	return chan;
1570 }
1571 
sci_request_dma(struct uart_port * port)1572 static void sci_request_dma(struct uart_port *port)
1573 {
1574 	struct sci_port *s = to_sci_port(port);
1575 	struct dma_chan *chan;
1576 
1577 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1578 
1579 	/*
1580 	 * DMA on console may interfere with Kernel log messages which use
1581 	 * plain putchar(). So, simply don't use it with a console.
1582 	 */
1583 	if (uart_console(port))
1584 		return;
1585 
1586 	if (!port->dev->of_node)
1587 		return;
1588 
1589 	s->cookie_tx = -EINVAL;
1590 
1591 	/*
1592 	 * Don't request a dma channel if no channel was specified
1593 	 * in the device tree.
1594 	 */
1595 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1596 		return;
1597 
1598 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1599 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1600 	if (chan) {
1601 		/* UART circular tx buffer is an aligned page. */
1602 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1603 						port->state->xmit.buf,
1604 						UART_XMIT_SIZE,
1605 						DMA_TO_DEVICE);
1606 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1607 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1608 			dma_release_channel(chan);
1609 		} else {
1610 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1611 				__func__, UART_XMIT_SIZE,
1612 				port->state->xmit.buf, &s->tx_dma_addr);
1613 
1614 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1615 			s->chan_tx_saved = s->chan_tx = chan;
1616 		}
1617 	}
1618 
1619 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1620 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1621 	if (chan) {
1622 		unsigned int i;
1623 		dma_addr_t dma;
1624 		void *buf;
1625 
1626 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1627 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1628 					 &dma, GFP_KERNEL);
1629 		if (!buf) {
1630 			dev_warn(port->dev,
1631 				 "Failed to allocate Rx dma buffer, using PIO\n");
1632 			dma_release_channel(chan);
1633 			return;
1634 		}
1635 
1636 		for (i = 0; i < 2; i++) {
1637 			struct scatterlist *sg = &s->sg_rx[i];
1638 
1639 			sg_init_table(sg, 1);
1640 			s->rx_buf[i] = buf;
1641 			sg_dma_address(sg) = dma;
1642 			sg_dma_len(sg) = s->buf_len_rx;
1643 
1644 			buf += s->buf_len_rx;
1645 			dma += s->buf_len_rx;
1646 		}
1647 
1648 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1649 		s->rx_timer.function = sci_dma_rx_timer_fn;
1650 
1651 		s->chan_rx_saved = s->chan_rx = chan;
1652 
1653 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1654 			sci_dma_rx_submit(s, false);
1655 	}
1656 }
1657 
sci_free_dma(struct uart_port * port)1658 static void sci_free_dma(struct uart_port *port)
1659 {
1660 	struct sci_port *s = to_sci_port(port);
1661 
1662 	if (s->chan_tx_saved)
1663 		sci_dma_tx_release(s);
1664 	if (s->chan_rx_saved)
1665 		sci_dma_rx_release(s);
1666 }
1667 
sci_flush_buffer(struct uart_port * port)1668 static void sci_flush_buffer(struct uart_port *port)
1669 {
1670 	struct sci_port *s = to_sci_port(port);
1671 
1672 	/*
1673 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1674 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1675 	 * pending transfers
1676 	 */
1677 	s->tx_dma_len = 0;
1678 	if (s->chan_tx) {
1679 		dmaengine_terminate_async(s->chan_tx);
1680 		s->cookie_tx = -EINVAL;
1681 	}
1682 }
1683 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1684 static inline void sci_request_dma(struct uart_port *port)
1685 {
1686 }
1687 
sci_free_dma(struct uart_port * port)1688 static inline void sci_free_dma(struct uart_port *port)
1689 {
1690 }
1691 
1692 #define sci_flush_buffer	NULL
1693 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1694 
sci_rx_interrupt(int irq,void * ptr)1695 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1696 {
1697 	struct uart_port *port = ptr;
1698 	struct sci_port *s = to_sci_port(port);
1699 
1700 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1701 	if (s->chan_rx) {
1702 		u16 scr = serial_port_in(port, SCSCR);
1703 		u16 ssr = serial_port_in(port, SCxSR);
1704 
1705 		/* Disable future Rx interrupts */
1706 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1707 			disable_irq_nosync(irq);
1708 			scr |= SCSCR_RDRQE;
1709 		} else {
1710 			if (sci_dma_rx_submit(s, false) < 0)
1711 				goto handle_pio;
1712 
1713 			scr &= ~SCSCR_RIE;
1714 		}
1715 		serial_port_out(port, SCSCR, scr);
1716 		/* Clear current interrupt */
1717 		serial_port_out(port, SCxSR,
1718 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1719 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1720 			jiffies, s->rx_timeout);
1721 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1722 
1723 		return IRQ_HANDLED;
1724 	}
1725 
1726 handle_pio:
1727 #endif
1728 
1729 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1730 		if (!scif_rtrg_enabled(port))
1731 			scif_set_rtrg(port, s->rx_trigger);
1732 
1733 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1734 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1735 	}
1736 
1737 	/* I think sci_receive_chars has to be called irrespective
1738 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1739 	 * to be disabled?
1740 	 */
1741 	sci_receive_chars(port);
1742 
1743 	return IRQ_HANDLED;
1744 }
1745 
sci_tx_interrupt(int irq,void * ptr)1746 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1747 {
1748 	struct uart_port *port = ptr;
1749 	unsigned long flags;
1750 
1751 	spin_lock_irqsave(&port->lock, flags);
1752 	sci_transmit_chars(port);
1753 	spin_unlock_irqrestore(&port->lock, flags);
1754 
1755 	return IRQ_HANDLED;
1756 }
1757 
sci_br_interrupt(int irq,void * ptr)1758 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1759 {
1760 	struct uart_port *port = ptr;
1761 
1762 	/* Handle BREAKs */
1763 	sci_handle_breaks(port);
1764 
1765 	/* drop invalid character received before break was detected */
1766 	serial_port_in(port, SCxRDR);
1767 
1768 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1769 
1770 	return IRQ_HANDLED;
1771 }
1772 
sci_er_interrupt(int irq,void * ptr)1773 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1774 {
1775 	struct uart_port *port = ptr;
1776 	struct sci_port *s = to_sci_port(port);
1777 
1778 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1779 		/* Break and Error interrupts are muxed */
1780 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1781 
1782 		/* Break Interrupt */
1783 		if (ssr_status & SCxSR_BRK(port))
1784 			sci_br_interrupt(irq, ptr);
1785 
1786 		/* Break only? */
1787 		if (!(ssr_status & SCxSR_ERRORS(port)))
1788 			return IRQ_HANDLED;
1789 	}
1790 
1791 	/* Handle errors */
1792 	if (port->type == PORT_SCI) {
1793 		if (sci_handle_errors(port)) {
1794 			/* discard character in rx buffer */
1795 			serial_port_in(port, SCxSR);
1796 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1797 		}
1798 	} else {
1799 		sci_handle_fifo_overrun(port);
1800 		if (!s->chan_rx)
1801 			sci_receive_chars(port);
1802 	}
1803 
1804 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1805 
1806 	/* Kick the transmission */
1807 	if (!s->chan_tx)
1808 		sci_tx_interrupt(irq, ptr);
1809 
1810 	return IRQ_HANDLED;
1811 }
1812 
sci_mpxed_interrupt(int irq,void * ptr)1813 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1814 {
1815 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1816 	struct uart_port *port = ptr;
1817 	struct sci_port *s = to_sci_port(port);
1818 	irqreturn_t ret = IRQ_NONE;
1819 
1820 	ssr_status = serial_port_in(port, SCxSR);
1821 	scr_status = serial_port_in(port, SCSCR);
1822 	if (s->params->overrun_reg == SCxSR)
1823 		orer_status = ssr_status;
1824 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1825 		orer_status = serial_port_in(port, s->params->overrun_reg);
1826 
1827 	err_enabled = scr_status & port_rx_irq_mask(port);
1828 
1829 	/* Tx Interrupt */
1830 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1831 	    !s->chan_tx)
1832 		ret = sci_tx_interrupt(irq, ptr);
1833 
1834 	/*
1835 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1836 	 * DR flags
1837 	 */
1838 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1839 	    (scr_status & SCSCR_RIE))
1840 		ret = sci_rx_interrupt(irq, ptr);
1841 
1842 	/* Error Interrupt */
1843 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1844 		ret = sci_er_interrupt(irq, ptr);
1845 
1846 	/* Break Interrupt */
1847 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1848 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1849 		ret = sci_br_interrupt(irq, ptr);
1850 
1851 	/* Overrun Interrupt */
1852 	if (orer_status & s->params->overrun_mask) {
1853 		sci_handle_fifo_overrun(port);
1854 		ret = IRQ_HANDLED;
1855 	}
1856 
1857 	return ret;
1858 }
1859 
1860 static const struct sci_irq_desc {
1861 	const char	*desc;
1862 	irq_handler_t	handler;
1863 } sci_irq_desc[] = {
1864 	/*
1865 	 * Split out handlers, the default case.
1866 	 */
1867 	[SCIx_ERI_IRQ] = {
1868 		.desc = "rx err",
1869 		.handler = sci_er_interrupt,
1870 	},
1871 
1872 	[SCIx_RXI_IRQ] = {
1873 		.desc = "rx full",
1874 		.handler = sci_rx_interrupt,
1875 	},
1876 
1877 	[SCIx_TXI_IRQ] = {
1878 		.desc = "tx empty",
1879 		.handler = sci_tx_interrupt,
1880 	},
1881 
1882 	[SCIx_BRI_IRQ] = {
1883 		.desc = "break",
1884 		.handler = sci_br_interrupt,
1885 	},
1886 
1887 	[SCIx_DRI_IRQ] = {
1888 		.desc = "rx ready",
1889 		.handler = sci_rx_interrupt,
1890 	},
1891 
1892 	[SCIx_TEI_IRQ] = {
1893 		.desc = "tx end",
1894 		.handler = sci_tx_interrupt,
1895 	},
1896 
1897 	/*
1898 	 * Special muxed handler.
1899 	 */
1900 	[SCIx_MUX_IRQ] = {
1901 		.desc = "mux",
1902 		.handler = sci_mpxed_interrupt,
1903 	},
1904 };
1905 
sci_request_irq(struct sci_port * port)1906 static int sci_request_irq(struct sci_port *port)
1907 {
1908 	struct uart_port *up = &port->port;
1909 	int i, j, w, ret = 0;
1910 
1911 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1912 		const struct sci_irq_desc *desc;
1913 		int irq;
1914 
1915 		/* Check if already registered (muxed) */
1916 		for (w = 0; w < i; w++)
1917 			if (port->irqs[w] == port->irqs[i])
1918 				w = i + 1;
1919 		if (w > i)
1920 			continue;
1921 
1922 		if (SCIx_IRQ_IS_MUXED(port)) {
1923 			i = SCIx_MUX_IRQ;
1924 			irq = up->irq;
1925 		} else {
1926 			irq = port->irqs[i];
1927 
1928 			/*
1929 			 * Certain port types won't support all of the
1930 			 * available interrupt sources.
1931 			 */
1932 			if (unlikely(irq < 0))
1933 				continue;
1934 		}
1935 
1936 		desc = sci_irq_desc + i;
1937 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1938 					    dev_name(up->dev), desc->desc);
1939 		if (!port->irqstr[j]) {
1940 			ret = -ENOMEM;
1941 			goto out_nomem;
1942 		}
1943 
1944 		ret = request_irq(irq, desc->handler, up->irqflags,
1945 				  port->irqstr[j], port);
1946 		if (unlikely(ret)) {
1947 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1948 			goto out_noirq;
1949 		}
1950 	}
1951 
1952 	return 0;
1953 
1954 out_noirq:
1955 	while (--i >= 0)
1956 		free_irq(port->irqs[i], port);
1957 
1958 out_nomem:
1959 	while (--j >= 0)
1960 		kfree(port->irqstr[j]);
1961 
1962 	return ret;
1963 }
1964 
sci_free_irq(struct sci_port * port)1965 static void sci_free_irq(struct sci_port *port)
1966 {
1967 	int i, j;
1968 
1969 	/*
1970 	 * Intentionally in reverse order so we iterate over the muxed
1971 	 * IRQ first.
1972 	 */
1973 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1974 		int irq = port->irqs[i];
1975 
1976 		/*
1977 		 * Certain port types won't support all of the available
1978 		 * interrupt sources.
1979 		 */
1980 		if (unlikely(irq < 0))
1981 			continue;
1982 
1983 		/* Check if already freed (irq was muxed) */
1984 		for (j = 0; j < i; j++)
1985 			if (port->irqs[j] == irq)
1986 				j = i + 1;
1987 		if (j > i)
1988 			continue;
1989 
1990 		free_irq(port->irqs[i], port);
1991 		kfree(port->irqstr[i]);
1992 
1993 		if (SCIx_IRQ_IS_MUXED(port)) {
1994 			/* If there's only one IRQ, we're done. */
1995 			return;
1996 		}
1997 	}
1998 }
1999 
sci_tx_empty(struct uart_port * port)2000 static unsigned int sci_tx_empty(struct uart_port *port)
2001 {
2002 	unsigned short status = serial_port_in(port, SCxSR);
2003 	unsigned short in_tx_fifo = sci_txfill(port);
2004 
2005 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2006 }
2007 
sci_set_rts(struct uart_port * port,bool state)2008 static void sci_set_rts(struct uart_port *port, bool state)
2009 {
2010 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2011 		u16 data = serial_port_in(port, SCPDR);
2012 
2013 		/* Active low */
2014 		if (state)
2015 			data &= ~SCPDR_RTSD;
2016 		else
2017 			data |= SCPDR_RTSD;
2018 		serial_port_out(port, SCPDR, data);
2019 
2020 		/* RTS# is output */
2021 		serial_port_out(port, SCPCR,
2022 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2023 	} else if (sci_getreg(port, SCSPTR)->size) {
2024 		u16 ctrl = serial_port_in(port, SCSPTR);
2025 
2026 		/* Active low */
2027 		if (state)
2028 			ctrl &= ~SCSPTR_RTSDT;
2029 		else
2030 			ctrl |= SCSPTR_RTSDT;
2031 		serial_port_out(port, SCSPTR, ctrl);
2032 	}
2033 }
2034 
sci_get_cts(struct uart_port * port)2035 static bool sci_get_cts(struct uart_port *port)
2036 {
2037 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2038 		/* Active low */
2039 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2040 	} else if (sci_getreg(port, SCSPTR)->size) {
2041 		/* Active low */
2042 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2043 	}
2044 
2045 	return true;
2046 }
2047 
2048 /*
2049  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2050  * CTS/RTS is supported in hardware by at least one port and controlled
2051  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2052  * handled via the ->init_pins() op, which is a bit of a one-way street,
2053  * lacking any ability to defer pin control -- this will later be
2054  * converted over to the GPIO framework).
2055  *
2056  * Other modes (such as loopback) are supported generically on certain
2057  * port types, but not others. For these it's sufficient to test for the
2058  * existence of the support register and simply ignore the port type.
2059  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2060 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2061 {
2062 	struct sci_port *s = to_sci_port(port);
2063 
2064 	if (mctrl & TIOCM_LOOP) {
2065 		const struct plat_sci_reg *reg;
2066 
2067 		/*
2068 		 * Standard loopback mode for SCFCR ports.
2069 		 */
2070 		reg = sci_getreg(port, SCFCR);
2071 		if (reg->size)
2072 			serial_port_out(port, SCFCR,
2073 					serial_port_in(port, SCFCR) |
2074 					SCFCR_LOOP);
2075 	}
2076 
2077 	mctrl_gpio_set(s->gpios, mctrl);
2078 
2079 	if (!s->has_rtscts)
2080 		return;
2081 
2082 	if (!(mctrl & TIOCM_RTS)) {
2083 		/* Disable Auto RTS */
2084 		serial_port_out(port, SCFCR,
2085 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2086 
2087 		/* Clear RTS */
2088 		sci_set_rts(port, 0);
2089 	} else if (s->autorts) {
2090 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2091 			/* Enable RTS# pin function */
2092 			serial_port_out(port, SCPCR,
2093 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2094 		}
2095 
2096 		/* Enable Auto RTS */
2097 		serial_port_out(port, SCFCR,
2098 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2099 	} else {
2100 		/* Set RTS */
2101 		sci_set_rts(port, 1);
2102 	}
2103 }
2104 
sci_get_mctrl(struct uart_port * port)2105 static unsigned int sci_get_mctrl(struct uart_port *port)
2106 {
2107 	struct sci_port *s = to_sci_port(port);
2108 	struct mctrl_gpios *gpios = s->gpios;
2109 	unsigned int mctrl = 0;
2110 
2111 	mctrl_gpio_get(gpios, &mctrl);
2112 
2113 	/*
2114 	 * CTS/RTS is handled in hardware when supported, while nothing
2115 	 * else is wired up.
2116 	 */
2117 	if (s->autorts) {
2118 		if (sci_get_cts(port))
2119 			mctrl |= TIOCM_CTS;
2120 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2121 		mctrl |= TIOCM_CTS;
2122 	}
2123 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2124 		mctrl |= TIOCM_DSR;
2125 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2126 		mctrl |= TIOCM_CAR;
2127 
2128 	return mctrl;
2129 }
2130 
sci_enable_ms(struct uart_port * port)2131 static void sci_enable_ms(struct uart_port *port)
2132 {
2133 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2134 }
2135 
sci_break_ctl(struct uart_port * port,int break_state)2136 static void sci_break_ctl(struct uart_port *port, int break_state)
2137 {
2138 	unsigned short scscr, scsptr;
2139 	unsigned long flags;
2140 
2141 	/* check wheter the port has SCSPTR */
2142 	if (!sci_getreg(port, SCSPTR)->size) {
2143 		/*
2144 		 * Not supported by hardware. Most parts couple break and rx
2145 		 * interrupts together, with break detection always enabled.
2146 		 */
2147 		return;
2148 	}
2149 
2150 	spin_lock_irqsave(&port->lock, flags);
2151 	scsptr = serial_port_in(port, SCSPTR);
2152 	scscr = serial_port_in(port, SCSCR);
2153 
2154 	if (break_state == -1) {
2155 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2156 		scscr &= ~SCSCR_TE;
2157 	} else {
2158 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2159 		scscr |= SCSCR_TE;
2160 	}
2161 
2162 	serial_port_out(port, SCSPTR, scsptr);
2163 	serial_port_out(port, SCSCR, scscr);
2164 	spin_unlock_irqrestore(&port->lock, flags);
2165 }
2166 
sci_startup(struct uart_port * port)2167 static int sci_startup(struct uart_port *port)
2168 {
2169 	struct sci_port *s = to_sci_port(port);
2170 	int ret;
2171 
2172 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2173 
2174 	sci_request_dma(port);
2175 
2176 	ret = sci_request_irq(s);
2177 	if (unlikely(ret < 0)) {
2178 		sci_free_dma(port);
2179 		return ret;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
sci_shutdown(struct uart_port * port)2185 static void sci_shutdown(struct uart_port *port)
2186 {
2187 	struct sci_port *s = to_sci_port(port);
2188 	unsigned long flags;
2189 	u16 scr;
2190 
2191 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2192 
2193 	s->autorts = false;
2194 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2195 
2196 	spin_lock_irqsave(&port->lock, flags);
2197 	sci_stop_rx(port);
2198 	sci_stop_tx(port);
2199 	/*
2200 	 * Stop RX and TX, disable related interrupts, keep clock source
2201 	 * and HSCIF TOT bits
2202 	 */
2203 	scr = serial_port_in(port, SCSCR);
2204 	serial_port_out(port, SCSCR, scr &
2205 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2206 	spin_unlock_irqrestore(&port->lock, flags);
2207 
2208 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2209 	if (s->chan_rx_saved) {
2210 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2211 			port->line);
2212 		hrtimer_cancel(&s->rx_timer);
2213 	}
2214 #endif
2215 
2216 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2217 		del_timer_sync(&s->rx_fifo_timer);
2218 	sci_free_irq(s);
2219 	sci_free_dma(port);
2220 }
2221 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2222 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2223 			unsigned int *srr)
2224 {
2225 	unsigned long freq = s->clk_rates[SCI_SCK];
2226 	int err, min_err = INT_MAX;
2227 	unsigned int sr;
2228 
2229 	if (s->port.type != PORT_HSCIF)
2230 		freq *= 2;
2231 
2232 	for_each_sr(sr, s) {
2233 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2234 		if (abs(err) >= abs(min_err))
2235 			continue;
2236 
2237 		min_err = err;
2238 		*srr = sr - 1;
2239 
2240 		if (!err)
2241 			break;
2242 	}
2243 
2244 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2245 		*srr + 1);
2246 	return min_err;
2247 }
2248 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2249 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2250 			unsigned long freq, unsigned int *dlr,
2251 			unsigned int *srr)
2252 {
2253 	int err, min_err = INT_MAX;
2254 	unsigned int sr, dl;
2255 
2256 	if (s->port.type != PORT_HSCIF)
2257 		freq *= 2;
2258 
2259 	for_each_sr(sr, s) {
2260 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2261 		dl = clamp(dl, 1U, 65535U);
2262 
2263 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2264 		if (abs(err) >= abs(min_err))
2265 			continue;
2266 
2267 		min_err = err;
2268 		*dlr = dl;
2269 		*srr = sr - 1;
2270 
2271 		if (!err)
2272 			break;
2273 	}
2274 
2275 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2276 		min_err, *dlr, *srr + 1);
2277 	return min_err;
2278 }
2279 
2280 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2281 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2282 			  unsigned int *brr, unsigned int *srr,
2283 			  unsigned int *cks)
2284 {
2285 	unsigned long freq = s->clk_rates[SCI_FCK];
2286 	unsigned int sr, br, prediv, scrate, c;
2287 	int err, min_err = INT_MAX;
2288 
2289 	if (s->port.type != PORT_HSCIF)
2290 		freq *= 2;
2291 
2292 	/*
2293 	 * Find the combination of sample rate and clock select with the
2294 	 * smallest deviation from the desired baud rate.
2295 	 * Prefer high sample rates to maximise the receive margin.
2296 	 *
2297 	 * M: Receive margin (%)
2298 	 * N: Ratio of bit rate to clock (N = sampling rate)
2299 	 * D: Clock duty (D = 0 to 1.0)
2300 	 * L: Frame length (L = 9 to 12)
2301 	 * F: Absolute value of clock frequency deviation
2302 	 *
2303 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2304 	 *      (|D - 0.5| / N * (1 + F))|
2305 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2306 	 */
2307 	for_each_sr(sr, s) {
2308 		for (c = 0; c <= 3; c++) {
2309 			/* integerized formulas from HSCIF documentation */
2310 			prediv = sr * (1 << (2 * c + 1));
2311 
2312 			/*
2313 			 * We need to calculate:
2314 			 *
2315 			 *     br = freq / (prediv * bps) clamped to [1..256]
2316 			 *     err = freq / (br * prediv) - bps
2317 			 *
2318 			 * Watch out for overflow when calculating the desired
2319 			 * sampling clock rate!
2320 			 */
2321 			if (bps > UINT_MAX / prediv)
2322 				break;
2323 
2324 			scrate = prediv * bps;
2325 			br = DIV_ROUND_CLOSEST(freq, scrate);
2326 			br = clamp(br, 1U, 256U);
2327 
2328 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2329 			if (abs(err) >= abs(min_err))
2330 				continue;
2331 
2332 			min_err = err;
2333 			*brr = br - 1;
2334 			*srr = sr - 1;
2335 			*cks = c;
2336 
2337 			if (!err)
2338 				goto found;
2339 		}
2340 	}
2341 
2342 found:
2343 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2344 		min_err, *brr, *srr + 1, *cks);
2345 	return min_err;
2346 }
2347 
sci_reset(struct uart_port * port)2348 static void sci_reset(struct uart_port *port)
2349 {
2350 	const struct plat_sci_reg *reg;
2351 	unsigned int status;
2352 	struct sci_port *s = to_sci_port(port);
2353 
2354 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2355 
2356 	reg = sci_getreg(port, SCFCR);
2357 	if (reg->size)
2358 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2359 
2360 	sci_clear_SCxSR(port,
2361 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2362 			SCxSR_BREAK_CLEAR(port));
2363 	if (sci_getreg(port, SCLSR)->size) {
2364 		status = serial_port_in(port, SCLSR);
2365 		status &= ~(SCLSR_TO | SCLSR_ORER);
2366 		serial_port_out(port, SCLSR, status);
2367 	}
2368 
2369 	if (s->rx_trigger > 1) {
2370 		if (s->rx_fifo_timeout) {
2371 			scif_set_rtrg(port, 1);
2372 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2373 		} else {
2374 			if (port->type == PORT_SCIFA ||
2375 			    port->type == PORT_SCIFB)
2376 				scif_set_rtrg(port, 1);
2377 			else
2378 				scif_set_rtrg(port, s->rx_trigger);
2379 		}
2380 	}
2381 }
2382 
sci_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)2383 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2384 			    struct ktermios *old)
2385 {
2386 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2387 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2388 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2389 	struct sci_port *s = to_sci_port(port);
2390 	const struct plat_sci_reg *reg;
2391 	int min_err = INT_MAX, err;
2392 	unsigned long max_freq = 0;
2393 	int best_clk = -1;
2394 	unsigned long flags;
2395 
2396 	if ((termios->c_cflag & CSIZE) == CS7) {
2397 		smr_val |= SCSMR_CHR;
2398 	} else {
2399 		termios->c_cflag &= ~CSIZE;
2400 		termios->c_cflag |= CS8;
2401 	}
2402 	if (termios->c_cflag & PARENB)
2403 		smr_val |= SCSMR_PE;
2404 	if (termios->c_cflag & PARODD)
2405 		smr_val |= SCSMR_PE | SCSMR_ODD;
2406 	if (termios->c_cflag & CSTOPB)
2407 		smr_val |= SCSMR_STOP;
2408 
2409 	/*
2410 	 * earlyprintk comes here early on with port->uartclk set to zero.
2411 	 * the clock framework is not up and running at this point so here
2412 	 * we assume that 115200 is the maximum baud rate. please note that
2413 	 * the baud rate is not programmed during earlyprintk - it is assumed
2414 	 * that the previous boot loader has enabled required clocks and
2415 	 * setup the baud rate generator hardware for us already.
2416 	 */
2417 	if (!port->uartclk) {
2418 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2419 		goto done;
2420 	}
2421 
2422 	for (i = 0; i < SCI_NUM_CLKS; i++)
2423 		max_freq = max(max_freq, s->clk_rates[i]);
2424 
2425 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2426 	if (!baud)
2427 		goto done;
2428 
2429 	/*
2430 	 * There can be multiple sources for the sampling clock.  Find the one
2431 	 * that gives us the smallest deviation from the desired baud rate.
2432 	 */
2433 
2434 	/* Optional Undivided External Clock */
2435 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2436 	    port->type != PORT_SCIFB) {
2437 		err = sci_sck_calc(s, baud, &srr1);
2438 		if (abs(err) < abs(min_err)) {
2439 			best_clk = SCI_SCK;
2440 			scr_val = SCSCR_CKE1;
2441 			sccks = SCCKS_CKS;
2442 			min_err = err;
2443 			srr = srr1;
2444 			if (!err)
2445 				goto done;
2446 		}
2447 	}
2448 
2449 	/* Optional BRG Frequency Divided External Clock */
2450 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2451 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2452 				   &srr1);
2453 		if (abs(err) < abs(min_err)) {
2454 			best_clk = SCI_SCIF_CLK;
2455 			scr_val = SCSCR_CKE1;
2456 			sccks = 0;
2457 			min_err = err;
2458 			dl = dl1;
2459 			srr = srr1;
2460 			if (!err)
2461 				goto done;
2462 		}
2463 	}
2464 
2465 	/* Optional BRG Frequency Divided Internal Clock */
2466 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2467 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2468 				   &srr1);
2469 		if (abs(err) < abs(min_err)) {
2470 			best_clk = SCI_BRG_INT;
2471 			scr_val = SCSCR_CKE1;
2472 			sccks = SCCKS_XIN;
2473 			min_err = err;
2474 			dl = dl1;
2475 			srr = srr1;
2476 			if (!min_err)
2477 				goto done;
2478 		}
2479 	}
2480 
2481 	/* Divided Functional Clock using standard Bit Rate Register */
2482 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2483 	if (abs(err) < abs(min_err)) {
2484 		best_clk = SCI_FCK;
2485 		scr_val = 0;
2486 		min_err = err;
2487 		brr = brr1;
2488 		srr = srr1;
2489 		cks = cks1;
2490 	}
2491 
2492 done:
2493 	if (best_clk >= 0)
2494 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2495 			s->clks[best_clk], baud, min_err);
2496 
2497 	sci_port_enable(s);
2498 
2499 	/*
2500 	 * Program the optional External Baud Rate Generator (BRG) first.
2501 	 * It controls the mux to select (H)SCK or frequency divided clock.
2502 	 */
2503 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2504 		serial_port_out(port, SCDL, dl);
2505 		serial_port_out(port, SCCKS, sccks);
2506 	}
2507 
2508 	spin_lock_irqsave(&port->lock, flags);
2509 
2510 	sci_reset(port);
2511 
2512 	uart_update_timeout(port, termios->c_cflag, baud);
2513 
2514 	/* byte size and parity */
2515 	switch (termios->c_cflag & CSIZE) {
2516 	case CS5:
2517 		bits = 7;
2518 		break;
2519 	case CS6:
2520 		bits = 8;
2521 		break;
2522 	case CS7:
2523 		bits = 9;
2524 		break;
2525 	default:
2526 		bits = 10;
2527 		break;
2528 	}
2529 
2530 	if (termios->c_cflag & CSTOPB)
2531 		bits++;
2532 	if (termios->c_cflag & PARENB)
2533 		bits++;
2534 
2535 	if (best_clk >= 0) {
2536 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2537 			switch (srr + 1) {
2538 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2539 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2540 			case 11: smr_val |= SCSMR_SRC_11; break;
2541 			case 13: smr_val |= SCSMR_SRC_13; break;
2542 			case 16: smr_val |= SCSMR_SRC_16; break;
2543 			case 17: smr_val |= SCSMR_SRC_17; break;
2544 			case 19: smr_val |= SCSMR_SRC_19; break;
2545 			case 27: smr_val |= SCSMR_SRC_27; break;
2546 			}
2547 		smr_val |= cks;
2548 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2549 		serial_port_out(port, SCSMR, smr_val);
2550 		serial_port_out(port, SCBRR, brr);
2551 		if (sci_getreg(port, HSSRR)->size) {
2552 			unsigned int hssrr = srr | HSCIF_SRE;
2553 			/* Calculate deviation from intended rate at the
2554 			 * center of the last stop bit in sampling clocks.
2555 			 */
2556 			int last_stop = bits * 2 - 1;
2557 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2558 							  (int)(srr + 1),
2559 							  2 * (int)baud);
2560 
2561 			if (abs(deviation) >= 2) {
2562 				/* At least two sampling clocks off at the
2563 				 * last stop bit; we can increase the error
2564 				 * margin by shifting the sampling point.
2565 				 */
2566 				int shift = clamp(deviation / 2, -8, 7);
2567 
2568 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2569 					 HSCIF_SRHP_MASK;
2570 				hssrr |= HSCIF_SRDE;
2571 			}
2572 			serial_port_out(port, HSSRR, hssrr);
2573 		}
2574 
2575 		/* Wait one bit interval */
2576 		udelay((1000000 + (baud - 1)) / baud);
2577 	} else {
2578 		/* Don't touch the bit rate configuration */
2579 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2580 		smr_val |= serial_port_in(port, SCSMR) &
2581 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2582 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2583 		serial_port_out(port, SCSMR, smr_val);
2584 	}
2585 
2586 	sci_init_pins(port, termios->c_cflag);
2587 
2588 	port->status &= ~UPSTAT_AUTOCTS;
2589 	s->autorts = false;
2590 	reg = sci_getreg(port, SCFCR);
2591 	if (reg->size) {
2592 		unsigned short ctrl = serial_port_in(port, SCFCR);
2593 
2594 		if ((port->flags & UPF_HARD_FLOW) &&
2595 		    (termios->c_cflag & CRTSCTS)) {
2596 			/* There is no CTS interrupt to restart the hardware */
2597 			port->status |= UPSTAT_AUTOCTS;
2598 			/* MCE is enabled when RTS is raised */
2599 			s->autorts = true;
2600 		}
2601 
2602 		/*
2603 		 * As we've done a sci_reset() above, ensure we don't
2604 		 * interfere with the FIFOs while toggling MCE. As the
2605 		 * reset values could still be set, simply mask them out.
2606 		 */
2607 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2608 
2609 		serial_port_out(port, SCFCR, ctrl);
2610 	}
2611 	if (port->flags & UPF_HARD_FLOW) {
2612 		/* Refresh (Auto) RTS */
2613 		sci_set_mctrl(port, port->mctrl);
2614 	}
2615 
2616 	scr_val |= SCSCR_RE | SCSCR_TE |
2617 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2618 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2619 	if ((srr + 1 == 5) &&
2620 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2621 		/*
2622 		 * In asynchronous mode, when the sampling rate is 1/5, first
2623 		 * received data may become invalid on some SCIFA and SCIFB.
2624 		 * To avoid this problem wait more than 1 serial data time (1
2625 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2626 		 */
2627 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2628 	}
2629 
2630 	/*
2631 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2632 	 * See serial_core.c::uart_update_timeout().
2633 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2634 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2635 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2636 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2637 	 * value obtained by this formula is too small. Therefore, if the value
2638 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2639 	 */
2640 	s->rx_frame = (10000 * bits) / (baud / 100);
2641 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2642 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2643 	if (s->rx_timeout < 20)
2644 		s->rx_timeout = 20;
2645 #endif
2646 
2647 	if ((termios->c_cflag & CREAD) != 0)
2648 		sci_start_rx(port);
2649 
2650 	spin_unlock_irqrestore(&port->lock, flags);
2651 
2652 	sci_port_disable(s);
2653 
2654 	if (UART_ENABLE_MS(port, termios->c_cflag))
2655 		sci_enable_ms(port);
2656 }
2657 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2658 static void sci_pm(struct uart_port *port, unsigned int state,
2659 		   unsigned int oldstate)
2660 {
2661 	struct sci_port *sci_port = to_sci_port(port);
2662 
2663 	switch (state) {
2664 	case UART_PM_STATE_OFF:
2665 		sci_port_disable(sci_port);
2666 		break;
2667 	default:
2668 		sci_port_enable(sci_port);
2669 		break;
2670 	}
2671 }
2672 
sci_type(struct uart_port * port)2673 static const char *sci_type(struct uart_port *port)
2674 {
2675 	switch (port->type) {
2676 	case PORT_IRDA:
2677 		return "irda";
2678 	case PORT_SCI:
2679 		return "sci";
2680 	case PORT_SCIF:
2681 		return "scif";
2682 	case PORT_SCIFA:
2683 		return "scifa";
2684 	case PORT_SCIFB:
2685 		return "scifb";
2686 	case PORT_HSCIF:
2687 		return "hscif";
2688 	}
2689 
2690 	return NULL;
2691 }
2692 
sci_remap_port(struct uart_port * port)2693 static int sci_remap_port(struct uart_port *port)
2694 {
2695 	struct sci_port *sport = to_sci_port(port);
2696 
2697 	/*
2698 	 * Nothing to do if there's already an established membase.
2699 	 */
2700 	if (port->membase)
2701 		return 0;
2702 
2703 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2704 		port->membase = ioremap(port->mapbase, sport->reg_size);
2705 		if (unlikely(!port->membase)) {
2706 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2707 			return -ENXIO;
2708 		}
2709 	} else {
2710 		/*
2711 		 * For the simple (and majority of) cases where we don't
2712 		 * need to do any remapping, just cast the cookie
2713 		 * directly.
2714 		 */
2715 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
sci_release_port(struct uart_port * port)2721 static void sci_release_port(struct uart_port *port)
2722 {
2723 	struct sci_port *sport = to_sci_port(port);
2724 
2725 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2726 		iounmap(port->membase);
2727 		port->membase = NULL;
2728 	}
2729 
2730 	release_mem_region(port->mapbase, sport->reg_size);
2731 }
2732 
sci_request_port(struct uart_port * port)2733 static int sci_request_port(struct uart_port *port)
2734 {
2735 	struct resource *res;
2736 	struct sci_port *sport = to_sci_port(port);
2737 	int ret;
2738 
2739 	res = request_mem_region(port->mapbase, sport->reg_size,
2740 				 dev_name(port->dev));
2741 	if (unlikely(res == NULL)) {
2742 		dev_err(port->dev, "request_mem_region failed.");
2743 		return -EBUSY;
2744 	}
2745 
2746 	ret = sci_remap_port(port);
2747 	if (unlikely(ret != 0)) {
2748 		release_resource(res);
2749 		return ret;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
sci_config_port(struct uart_port * port,int flags)2755 static void sci_config_port(struct uart_port *port, int flags)
2756 {
2757 	if (flags & UART_CONFIG_TYPE) {
2758 		struct sci_port *sport = to_sci_port(port);
2759 
2760 		port->type = sport->cfg->type;
2761 		sci_request_port(port);
2762 	}
2763 }
2764 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2765 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2766 {
2767 	if (ser->baud_base < 2400)
2768 		/* No paper tape reader for Mitch.. */
2769 		return -EINVAL;
2770 
2771 	return 0;
2772 }
2773 
2774 static const struct uart_ops sci_uart_ops = {
2775 	.tx_empty	= sci_tx_empty,
2776 	.set_mctrl	= sci_set_mctrl,
2777 	.get_mctrl	= sci_get_mctrl,
2778 	.start_tx	= sci_start_tx,
2779 	.stop_tx	= sci_stop_tx,
2780 	.stop_rx	= sci_stop_rx,
2781 	.enable_ms	= sci_enable_ms,
2782 	.break_ctl	= sci_break_ctl,
2783 	.startup	= sci_startup,
2784 	.shutdown	= sci_shutdown,
2785 	.flush_buffer	= sci_flush_buffer,
2786 	.set_termios	= sci_set_termios,
2787 	.pm		= sci_pm,
2788 	.type		= sci_type,
2789 	.release_port	= sci_release_port,
2790 	.request_port	= sci_request_port,
2791 	.config_port	= sci_config_port,
2792 	.verify_port	= sci_verify_port,
2793 #ifdef CONFIG_CONSOLE_POLL
2794 	.poll_get_char	= sci_poll_get_char,
2795 	.poll_put_char	= sci_poll_put_char,
2796 #endif
2797 };
2798 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2799 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2800 {
2801 	const char *clk_names[] = {
2802 		[SCI_FCK] = "fck",
2803 		[SCI_SCK] = "sck",
2804 		[SCI_BRG_INT] = "brg_int",
2805 		[SCI_SCIF_CLK] = "scif_clk",
2806 	};
2807 	struct clk *clk;
2808 	unsigned int i;
2809 
2810 	if (sci_port->cfg->type == PORT_HSCIF)
2811 		clk_names[SCI_SCK] = "hsck";
2812 
2813 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2814 		clk = devm_clk_get(dev, clk_names[i]);
2815 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2816 			return -EPROBE_DEFER;
2817 
2818 		if (IS_ERR(clk) && i == SCI_FCK) {
2819 			/*
2820 			 * "fck" used to be called "sci_ick", and we need to
2821 			 * maintain DT backward compatibility.
2822 			 */
2823 			clk = devm_clk_get(dev, "sci_ick");
2824 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2825 				return -EPROBE_DEFER;
2826 
2827 			if (!IS_ERR(clk))
2828 				goto found;
2829 
2830 			/*
2831 			 * Not all SH platforms declare a clock lookup entry
2832 			 * for SCI devices, in which case we need to get the
2833 			 * global "peripheral_clk" clock.
2834 			 */
2835 			clk = devm_clk_get(dev, "peripheral_clk");
2836 			if (!IS_ERR(clk))
2837 				goto found;
2838 
2839 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2840 				PTR_ERR(clk));
2841 			return PTR_ERR(clk);
2842 		}
2843 
2844 found:
2845 		if (IS_ERR(clk))
2846 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2847 				PTR_ERR(clk));
2848 		else
2849 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2850 				clk, clk_get_rate(clk));
2851 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2852 	}
2853 	return 0;
2854 }
2855 
2856 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg)2857 sci_probe_regmap(const struct plat_sci_port *cfg)
2858 {
2859 	unsigned int regtype;
2860 
2861 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2862 		return &sci_port_params[cfg->regtype];
2863 
2864 	switch (cfg->type) {
2865 	case PORT_SCI:
2866 		regtype = SCIx_SCI_REGTYPE;
2867 		break;
2868 	case PORT_IRDA:
2869 		regtype = SCIx_IRDA_REGTYPE;
2870 		break;
2871 	case PORT_SCIFA:
2872 		regtype = SCIx_SCIFA_REGTYPE;
2873 		break;
2874 	case PORT_SCIFB:
2875 		regtype = SCIx_SCIFB_REGTYPE;
2876 		break;
2877 	case PORT_SCIF:
2878 		/*
2879 		 * The SH-4 is a bit of a misnomer here, although that's
2880 		 * where this particular port layout originated. This
2881 		 * configuration (or some slight variation thereof)
2882 		 * remains the dominant model for all SCIFs.
2883 		 */
2884 		regtype = SCIx_SH4_SCIF_REGTYPE;
2885 		break;
2886 	case PORT_HSCIF:
2887 		regtype = SCIx_HSCIF_REGTYPE;
2888 		break;
2889 	default:
2890 		pr_err("Can't probe register map for given port\n");
2891 		return NULL;
2892 	}
2893 
2894 	return &sci_port_params[regtype];
2895 }
2896 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)2897 static int sci_init_single(struct platform_device *dev,
2898 			   struct sci_port *sci_port, unsigned int index,
2899 			   const struct plat_sci_port *p, bool early)
2900 {
2901 	struct uart_port *port = &sci_port->port;
2902 	const struct resource *res;
2903 	unsigned int i;
2904 	int ret;
2905 
2906 	sci_port->cfg	= p;
2907 
2908 	port->ops	= &sci_uart_ops;
2909 	port->iotype	= UPIO_MEM;
2910 	port->line	= index;
2911 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2912 
2913 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2914 	if (res == NULL)
2915 		return -ENOMEM;
2916 
2917 	port->mapbase = res->start;
2918 	sci_port->reg_size = resource_size(res);
2919 
2920 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2921 		if (i)
2922 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2923 		else
2924 			sci_port->irqs[i] = platform_get_irq(dev, i);
2925 	}
2926 
2927 	/*
2928 	 * The fourth interrupt on SCI port is transmit end interrupt, so
2929 	 * shuffle the interrupts.
2930 	 */
2931 	if (p->type == PORT_SCI)
2932 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2933 
2934 	/* The SCI generates several interrupts. They can be muxed together or
2935 	 * connected to different interrupt lines. In the muxed case only one
2936 	 * interrupt resource is specified as there is only one interrupt ID.
2937 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2938 	 * from the SCI, however those signals might have their own individual
2939 	 * interrupt ID numbers, or muxed together with another interrupt.
2940 	 */
2941 	if (sci_port->irqs[0] < 0)
2942 		return -ENXIO;
2943 
2944 	if (sci_port->irqs[1] < 0)
2945 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2946 			sci_port->irqs[i] = sci_port->irqs[0];
2947 
2948 	sci_port->params = sci_probe_regmap(p);
2949 	if (unlikely(sci_port->params == NULL))
2950 		return -EINVAL;
2951 
2952 	switch (p->type) {
2953 	case PORT_SCIFB:
2954 		sci_port->rx_trigger = 48;
2955 		break;
2956 	case PORT_HSCIF:
2957 		sci_port->rx_trigger = 64;
2958 		break;
2959 	case PORT_SCIFA:
2960 		sci_port->rx_trigger = 32;
2961 		break;
2962 	case PORT_SCIF:
2963 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2964 			/* RX triggering not implemented for this IP */
2965 			sci_port->rx_trigger = 1;
2966 		else
2967 			sci_port->rx_trigger = 8;
2968 		break;
2969 	default:
2970 		sci_port->rx_trigger = 1;
2971 		break;
2972 	}
2973 
2974 	sci_port->rx_fifo_timeout = 0;
2975 	sci_port->hscif_tot = 0;
2976 
2977 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2978 	 * match the SoC datasheet, this should be investigated. Let platform
2979 	 * data override the sampling rate for now.
2980 	 */
2981 	sci_port->sampling_rate_mask = p->sampling_rate
2982 				     ? SCI_SR(p->sampling_rate)
2983 				     : sci_port->params->sampling_rate_mask;
2984 
2985 	if (!early) {
2986 		ret = sci_init_clocks(sci_port, &dev->dev);
2987 		if (ret < 0)
2988 			return ret;
2989 
2990 		port->dev = &dev->dev;
2991 
2992 		pm_runtime_enable(&dev->dev);
2993 	}
2994 
2995 	port->type		= p->type;
2996 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2997 	port->fifosize		= sci_port->params->fifosize;
2998 
2999 	if (port->type == PORT_SCI && !dev->dev.of_node) {
3000 		if (sci_port->reg_size >= 0x20)
3001 			port->regshift = 2;
3002 		else
3003 			port->regshift = 1;
3004 	}
3005 
3006 	/*
3007 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3008 	 * for the multi-IRQ ports, which is where we are primarily
3009 	 * concerned with the shutdown path synchronization.
3010 	 *
3011 	 * For the muxed case there's nothing more to do.
3012 	 */
3013 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3014 	port->irqflags		= 0;
3015 
3016 	port->serial_in		= sci_serial_in;
3017 	port->serial_out	= sci_serial_out;
3018 
3019 	return 0;
3020 }
3021 
sci_cleanup_single(struct sci_port * port)3022 static void sci_cleanup_single(struct sci_port *port)
3023 {
3024 	pm_runtime_disable(port->port.dev);
3025 }
3026 
3027 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3028     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,int ch)3029 static void serial_console_putchar(struct uart_port *port, int ch)
3030 {
3031 	sci_poll_put_char(port, ch);
3032 }
3033 
3034 /*
3035  *	Print a string to the serial port trying not to disturb
3036  *	any possible real use of the port...
3037  */
serial_console_write(struct console * co,const char * s,unsigned count)3038 static void serial_console_write(struct console *co, const char *s,
3039 				 unsigned count)
3040 {
3041 	struct sci_port *sci_port = &sci_ports[co->index];
3042 	struct uart_port *port = &sci_port->port;
3043 	unsigned short bits, ctrl, ctrl_temp;
3044 	unsigned long flags;
3045 	int locked = 1;
3046 
3047 	if (port->sysrq)
3048 		locked = 0;
3049 	else if (oops_in_progress)
3050 		locked = spin_trylock_irqsave(&port->lock, flags);
3051 	else
3052 		spin_lock_irqsave(&port->lock, flags);
3053 
3054 	/* first save SCSCR then disable interrupts, keep clock source */
3055 	ctrl = serial_port_in(port, SCSCR);
3056 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3057 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3058 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3059 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3060 
3061 	uart_console_write(port, s, count, serial_console_putchar);
3062 
3063 	/* wait until fifo is empty and last bit has been transmitted */
3064 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3065 	while ((serial_port_in(port, SCxSR) & bits) != bits)
3066 		cpu_relax();
3067 
3068 	/* restore the SCSCR */
3069 	serial_port_out(port, SCSCR, ctrl);
3070 
3071 	if (locked)
3072 		spin_unlock_irqrestore(&port->lock, flags);
3073 }
3074 
serial_console_setup(struct console * co,char * options)3075 static int serial_console_setup(struct console *co, char *options)
3076 {
3077 	struct sci_port *sci_port;
3078 	struct uart_port *port;
3079 	int baud = 115200;
3080 	int bits = 8;
3081 	int parity = 'n';
3082 	int flow = 'n';
3083 	int ret;
3084 
3085 	/*
3086 	 * Refuse to handle any bogus ports.
3087 	 */
3088 	if (co->index < 0 || co->index >= SCI_NPORTS)
3089 		return -ENODEV;
3090 
3091 	sci_port = &sci_ports[co->index];
3092 	port = &sci_port->port;
3093 
3094 	/*
3095 	 * Refuse to handle uninitialized ports.
3096 	 */
3097 	if (!port->ops)
3098 		return -ENODEV;
3099 
3100 	ret = sci_remap_port(port);
3101 	if (unlikely(ret != 0))
3102 		return ret;
3103 
3104 	if (options)
3105 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3106 
3107 	return uart_set_options(port, co, baud, parity, bits, flow);
3108 }
3109 
3110 static struct console serial_console = {
3111 	.name		= "ttySC",
3112 	.device		= uart_console_device,
3113 	.write		= serial_console_write,
3114 	.setup		= serial_console_setup,
3115 	.flags		= CON_PRINTBUFFER,
3116 	.index		= -1,
3117 	.data		= &sci_uart_driver,
3118 };
3119 
3120 #ifdef CONFIG_SUPERH
3121 static struct console early_serial_console = {
3122 	.name           = "early_ttySC",
3123 	.write          = serial_console_write,
3124 	.flags          = CON_PRINTBUFFER,
3125 	.index		= -1,
3126 };
3127 
3128 static char early_serial_buf[32];
3129 
sci_probe_earlyprintk(struct platform_device * pdev)3130 static int sci_probe_earlyprintk(struct platform_device *pdev)
3131 {
3132 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3133 
3134 	if (early_serial_console.data)
3135 		return -EEXIST;
3136 
3137 	early_serial_console.index = pdev->id;
3138 
3139 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3140 
3141 	serial_console_setup(&early_serial_console, early_serial_buf);
3142 
3143 	if (!strstr(early_serial_buf, "keep"))
3144 		early_serial_console.flags |= CON_BOOT;
3145 
3146 	register_console(&early_serial_console);
3147 	return 0;
3148 }
3149 #endif
3150 
3151 #define SCI_CONSOLE	(&serial_console)
3152 
3153 #else
sci_probe_earlyprintk(struct platform_device * pdev)3154 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3155 {
3156 	return -EINVAL;
3157 }
3158 
3159 #define SCI_CONSOLE	NULL
3160 
3161 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3162 
3163 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3164 
3165 static DEFINE_MUTEX(sci_uart_registration_lock);
3166 static struct uart_driver sci_uart_driver = {
3167 	.owner		= THIS_MODULE,
3168 	.driver_name	= "sci",
3169 	.dev_name	= "ttySC",
3170 	.major		= SCI_MAJOR,
3171 	.minor		= SCI_MINOR_START,
3172 	.nr		= SCI_NPORTS,
3173 	.cons		= SCI_CONSOLE,
3174 };
3175 
sci_remove(struct platform_device * dev)3176 static int sci_remove(struct platform_device *dev)
3177 {
3178 	struct sci_port *port = platform_get_drvdata(dev);
3179 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3180 
3181 	sci_ports_in_use &= ~BIT(port->port.line);
3182 	uart_remove_one_port(&sci_uart_driver, &port->port);
3183 
3184 	sci_cleanup_single(port);
3185 
3186 	if (port->port.fifosize > 1)
3187 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3188 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3189 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3190 
3191 	return 0;
3192 }
3193 
3194 
3195 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3196 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3197 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3198 
3199 static const struct of_device_id of_sci_match[] = {
3200 	/* SoC-specific types */
3201 	{
3202 		.compatible = "renesas,scif-r7s72100",
3203 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3204 	},
3205 	{
3206 		.compatible = "renesas,scif-r7s9210",
3207 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3208 	},
3209 	/* Family-specific types */
3210 	{
3211 		.compatible = "renesas,rcar-gen1-scif",
3212 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3213 	}, {
3214 		.compatible = "renesas,rcar-gen2-scif",
3215 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3216 	}, {
3217 		.compatible = "renesas,rcar-gen3-scif",
3218 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3219 	},
3220 	/* Generic types */
3221 	{
3222 		.compatible = "renesas,scif",
3223 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3224 	}, {
3225 		.compatible = "renesas,scifa",
3226 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3227 	}, {
3228 		.compatible = "renesas,scifb",
3229 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3230 	}, {
3231 		.compatible = "renesas,hscif",
3232 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3233 	}, {
3234 		.compatible = "renesas,sci",
3235 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3236 	}, {
3237 		/* Terminator */
3238 	},
3239 };
3240 MODULE_DEVICE_TABLE(of, of_sci_match);
3241 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3242 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3243 					  unsigned int *dev_id)
3244 {
3245 	struct device_node *np = pdev->dev.of_node;
3246 	struct plat_sci_port *p;
3247 	struct sci_port *sp;
3248 	const void *data;
3249 	int id;
3250 
3251 	if (!IS_ENABLED(CONFIG_OF) || !np)
3252 		return NULL;
3253 
3254 	data = of_device_get_match_data(&pdev->dev);
3255 
3256 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3257 	if (!p)
3258 		return NULL;
3259 
3260 	/* Get the line number from the aliases node. */
3261 	id = of_alias_get_id(np, "serial");
3262 	if (id < 0 && ~sci_ports_in_use)
3263 		id = ffz(sci_ports_in_use);
3264 	if (id < 0) {
3265 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3266 		return NULL;
3267 	}
3268 	if (id >= ARRAY_SIZE(sci_ports)) {
3269 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3270 		return NULL;
3271 	}
3272 
3273 	sp = &sci_ports[id];
3274 	*dev_id = id;
3275 
3276 	p->type = SCI_OF_TYPE(data);
3277 	p->regtype = SCI_OF_REGTYPE(data);
3278 
3279 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3280 
3281 	return p;
3282 }
3283 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport)3284 static int sci_probe_single(struct platform_device *dev,
3285 				      unsigned int index,
3286 				      struct plat_sci_port *p,
3287 				      struct sci_port *sciport)
3288 {
3289 	int ret;
3290 
3291 	/* Sanity check */
3292 	if (unlikely(index >= SCI_NPORTS)) {
3293 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3294 			   index+1, SCI_NPORTS);
3295 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3296 		return -EINVAL;
3297 	}
3298 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3299 	if (sci_ports_in_use & BIT(index))
3300 		return -EBUSY;
3301 
3302 	mutex_lock(&sci_uart_registration_lock);
3303 	if (!sci_uart_driver.state) {
3304 		ret = uart_register_driver(&sci_uart_driver);
3305 		if (ret) {
3306 			mutex_unlock(&sci_uart_registration_lock);
3307 			return ret;
3308 		}
3309 	}
3310 	mutex_unlock(&sci_uart_registration_lock);
3311 
3312 	ret = sci_init_single(dev, sciport, index, p, false);
3313 	if (ret)
3314 		return ret;
3315 
3316 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3317 	if (IS_ERR(sciport->gpios))
3318 		return PTR_ERR(sciport->gpios);
3319 
3320 	if (sciport->has_rtscts) {
3321 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3322 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3323 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3324 			return -EINVAL;
3325 		}
3326 		sciport->port.flags |= UPF_HARD_FLOW;
3327 	}
3328 
3329 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3330 	if (ret) {
3331 		sci_cleanup_single(sciport);
3332 		return ret;
3333 	}
3334 
3335 	return 0;
3336 }
3337 
sci_probe(struct platform_device * dev)3338 static int sci_probe(struct platform_device *dev)
3339 {
3340 	struct plat_sci_port *p;
3341 	struct sci_port *sp;
3342 	unsigned int dev_id;
3343 	int ret;
3344 
3345 	/*
3346 	 * If we've come here via earlyprintk initialization, head off to
3347 	 * the special early probe. We don't have sufficient device state
3348 	 * to make it beyond this yet.
3349 	 */
3350 #ifdef CONFIG_SUPERH
3351 	if (is_sh_early_platform_device(dev))
3352 		return sci_probe_earlyprintk(dev);
3353 #endif
3354 
3355 	if (dev->dev.of_node) {
3356 		p = sci_parse_dt(dev, &dev_id);
3357 		if (p == NULL)
3358 			return -EINVAL;
3359 	} else {
3360 		p = dev->dev.platform_data;
3361 		if (p == NULL) {
3362 			dev_err(&dev->dev, "no platform data supplied\n");
3363 			return -EINVAL;
3364 		}
3365 
3366 		dev_id = dev->id;
3367 	}
3368 
3369 	sp = &sci_ports[dev_id];
3370 	platform_set_drvdata(dev, sp);
3371 
3372 	ret = sci_probe_single(dev, dev_id, p, sp);
3373 	if (ret)
3374 		return ret;
3375 
3376 	if (sp->port.fifosize > 1) {
3377 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3378 		if (ret)
3379 			return ret;
3380 	}
3381 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3382 	    sp->port.type == PORT_HSCIF) {
3383 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3384 		if (ret) {
3385 			if (sp->port.fifosize > 1) {
3386 				device_remove_file(&dev->dev,
3387 						   &dev_attr_rx_fifo_trigger);
3388 			}
3389 			return ret;
3390 		}
3391 	}
3392 
3393 #ifdef CONFIG_SH_STANDARD_BIOS
3394 	sh_bios_gdb_detach();
3395 #endif
3396 
3397 	sci_ports_in_use |= BIT(dev_id);
3398 	return 0;
3399 }
3400 
sci_suspend(struct device * dev)3401 static __maybe_unused int sci_suspend(struct device *dev)
3402 {
3403 	struct sci_port *sport = dev_get_drvdata(dev);
3404 
3405 	if (sport)
3406 		uart_suspend_port(&sci_uart_driver, &sport->port);
3407 
3408 	return 0;
3409 }
3410 
sci_resume(struct device * dev)3411 static __maybe_unused int sci_resume(struct device *dev)
3412 {
3413 	struct sci_port *sport = dev_get_drvdata(dev);
3414 
3415 	if (sport)
3416 		uart_resume_port(&sci_uart_driver, &sport->port);
3417 
3418 	return 0;
3419 }
3420 
3421 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3422 
3423 static struct platform_driver sci_driver = {
3424 	.probe		= sci_probe,
3425 	.remove		= sci_remove,
3426 	.driver		= {
3427 		.name	= "sh-sci",
3428 		.pm	= &sci_dev_pm_ops,
3429 		.of_match_table = of_match_ptr(of_sci_match),
3430 	},
3431 };
3432 
sci_init(void)3433 static int __init sci_init(void)
3434 {
3435 	pr_info("%s\n", banner);
3436 
3437 	return platform_driver_register(&sci_driver);
3438 }
3439 
sci_exit(void)3440 static void __exit sci_exit(void)
3441 {
3442 	platform_driver_unregister(&sci_driver);
3443 
3444 	if (sci_uart_driver.state)
3445 		uart_unregister_driver(&sci_uart_driver);
3446 }
3447 
3448 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3449 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3450 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3451 #endif
3452 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3453 static struct plat_sci_port port_cfg __initdata;
3454 
early_console_setup(struct earlycon_device * device,int type)3455 static int __init early_console_setup(struct earlycon_device *device,
3456 				      int type)
3457 {
3458 	if (!device->port.membase)
3459 		return -ENODEV;
3460 
3461 	device->port.serial_in = sci_serial_in;
3462 	device->port.serial_out	= sci_serial_out;
3463 	device->port.type = type;
3464 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3465 	port_cfg.type = type;
3466 	sci_ports[0].cfg = &port_cfg;
3467 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3468 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3469 	sci_serial_out(&sci_ports[0].port, SCSCR,
3470 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3471 
3472 	device->con->write = serial_console_write;
3473 	return 0;
3474 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3475 static int __init sci_early_console_setup(struct earlycon_device *device,
3476 					  const char *opt)
3477 {
3478 	return early_console_setup(device, PORT_SCI);
3479 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3480 static int __init scif_early_console_setup(struct earlycon_device *device,
3481 					  const char *opt)
3482 {
3483 	return early_console_setup(device, PORT_SCIF);
3484 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3485 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3486 					  const char *opt)
3487 {
3488 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3489 	return early_console_setup(device, PORT_SCIF);
3490 }
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3491 static int __init scifa_early_console_setup(struct earlycon_device *device,
3492 					  const char *opt)
3493 {
3494 	return early_console_setup(device, PORT_SCIFA);
3495 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3496 static int __init scifb_early_console_setup(struct earlycon_device *device,
3497 					  const char *opt)
3498 {
3499 	return early_console_setup(device, PORT_SCIFB);
3500 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3501 static int __init hscif_early_console_setup(struct earlycon_device *device,
3502 					  const char *opt)
3503 {
3504 	return early_console_setup(device, PORT_HSCIF);
3505 }
3506 
3507 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3508 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3509 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3510 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3511 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3512 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3513 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3514 
3515 module_init(sci_init);
3516 module_exit(sci_exit);
3517 
3518 MODULE_LICENSE("GPL");
3519 MODULE_ALIAS("platform:sh-sci");
3520 MODULE_AUTHOR("Paul Mundt");
3521 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3522