• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/clk.h>
37 
38 #include <asm/byteorder.h>
39 #include <asm/irq.h>
40 #include <asm/unaligned.h>
41 
42 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
43 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
44 static const char hcd_name[] = "fotg210_hcd";
45 
46 #undef FOTG210_URB_TRACE
47 #define FOTG210_STATS
48 
49 /* magic numbers that can affect system performance */
50 #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
51 #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
52 #define FOTG210_TUNE_RL_TT	0
53 #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
54 #define FOTG210_TUNE_MULT_TT	1
55 
56 /* Some drivers think it's safe to schedule isochronous transfers more than 256
57  * ms into the future (partly as a result of an old bug in the scheduling
58  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
59  * length of 512 frames instead of 256.
60  */
61 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62 
63 /* Initial IRQ latency:  faster than hw default */
64 static int log2_irq_thresh; /* 0 to 6 */
65 module_param(log2_irq_thresh, int, S_IRUGO);
66 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
67 
68 /* initial park setting:  slower than hw default */
69 static unsigned park;
70 module_param(park, uint, S_IRUGO);
71 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
72 
73 /* for link power management(LPM) feature */
74 static unsigned int hird;
75 module_param(hird, int, S_IRUGO);
76 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
77 
78 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79 
80 #include "fotg210.h"
81 
82 #define fotg210_dbg(fotg210, fmt, args...) \
83 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_err(fotg210, fmt, args...) \
85 	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_info(fotg210, fmt, args...) \
87 	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 #define fotg210_warn(fotg210, fmt, args...) \
89 	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90 
91 /* check the values in the HCSPARAMS register (host controller _Structural_
92  * parameters) see EHCI spec, Table 2-4 for each value
93  */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)94 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
95 {
96 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
97 
98 	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
99 			HCS_N_PORTS(params));
100 }
101 
102 /* check the values in the HCCPARAMS register (host controller _Capability_
103  * parameters) see EHCI Spec, Table 2-5 for each value
104  */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)105 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
106 {
107 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
108 
109 	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
110 			params,
111 			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
112 			HCC_CANPARK(params) ? " park" : "");
113 }
114 
115 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)116 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
117 {
118 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
119 			hc32_to_cpup(fotg210, &qtd->hw_next),
120 			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
121 			hc32_to_cpup(fotg210, &qtd->hw_token),
122 			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
123 	if (qtd->hw_buf[1])
124 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
125 				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
126 				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
127 				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
128 				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
129 }
130 
131 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)132 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
133 {
134 	struct fotg210_qh_hw *hw = qh->hw;
135 
136 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
137 			hw->hw_next, hw->hw_info1, hw->hw_info2,
138 			hw->hw_current);
139 
140 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
141 }
142 
143 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)144 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
145 {
146 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
147 			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
148 			itd->urb);
149 
150 	fotg210_dbg(fotg210,
151 			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
152 			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
153 			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
154 			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
155 			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
156 			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
157 			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
158 			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
159 			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
160 
161 	fotg210_dbg(fotg210,
162 			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
163 			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
164 			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
165 			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
166 			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
167 			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
168 			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
169 			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
170 
171 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
172 			itd->index[0], itd->index[1], itd->index[2],
173 			itd->index[3], itd->index[4], itd->index[5],
174 			itd->index[6], itd->index[7]);
175 }
176 
177 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)178 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
179 {
180 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
181 			label, label[0] ? " " : "", status,
182 			(status & STS_ASS) ? " Async" : "",
183 			(status & STS_PSS) ? " Periodic" : "",
184 			(status & STS_RECL) ? " Recl" : "",
185 			(status & STS_HALT) ? " Halt" : "",
186 			(status & STS_IAA) ? " IAA" : "",
187 			(status & STS_FATAL) ? " FATAL" : "",
188 			(status & STS_FLR) ? " FLR" : "",
189 			(status & STS_PCD) ? " PCD" : "",
190 			(status & STS_ERR) ? " ERR" : "",
191 			(status & STS_INT) ? " INT" : "");
192 }
193 
194 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 {
197 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
198 			label, label[0] ? " " : "", enable,
199 			(enable & STS_IAA) ? " IAA" : "",
200 			(enable & STS_FATAL) ? " FATAL" : "",
201 			(enable & STS_FLR) ? " FLR" : "",
202 			(enable & STS_PCD) ? " PCD" : "",
203 			(enable & STS_ERR) ? " ERR" : "",
204 			(enable & STS_INT) ? " INT" : "");
205 }
206 
207 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
208 
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)209 static int dbg_command_buf(char *buf, unsigned len, const char *label,
210 		u32 command)
211 {
212 	return scnprintf(buf, len,
213 			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
214 			label, label[0] ? " " : "", command,
215 			(command & CMD_PARK) ? " park" : "(park)",
216 			CMD_PARK_CNT(command),
217 			(command >> 16) & 0x3f,
218 			(command & CMD_IAAD) ? " IAAD" : "",
219 			(command & CMD_ASE) ? " Async" : "",
220 			(command & CMD_PSE) ? " Periodic" : "",
221 			fls_strings[(command >> 2) & 0x3],
222 			(command & CMD_RESET) ? " Reset" : "",
223 			(command & CMD_RUN) ? "RUN" : "HALT");
224 }
225 
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)226 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
227 		u32 status)
228 {
229 	char *sig;
230 
231 	/* signaling state */
232 	switch (status & (3 << 10)) {
233 	case 0 << 10:
234 		sig = "se0";
235 		break;
236 	case 1 << 10:
237 		sig = "k";
238 		break; /* low speed */
239 	case 2 << 10:
240 		sig = "j";
241 		break;
242 	default:
243 		sig = "?";
244 		break;
245 	}
246 
247 	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
248 			label, label[0] ? " " : "", port, status,
249 			status >> 25, /*device address */
250 			sig,
251 			(status & PORT_RESET) ? " RESET" : "",
252 			(status & PORT_SUSPEND) ? " SUSPEND" : "",
253 			(status & PORT_RESUME) ? " RESUME" : "",
254 			(status & PORT_PEC) ? " PEC" : "",
255 			(status & PORT_PE) ? " PE" : "",
256 			(status & PORT_CSC) ? " CSC" : "",
257 			(status & PORT_CONNECT) ? " CONNECT" : "");
258 
259 	return buf;
260 }
261 
262 /* functions have the "wrong" filename when they're output... */
263 #define dbg_status(fotg210, label, status) {			\
264 	char _buf[80];						\
265 	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
266 	fotg210_dbg(fotg210, "%s\n", _buf);			\
267 }
268 
269 #define dbg_cmd(fotg210, label, command) {			\
270 	char _buf[80];						\
271 	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
272 	fotg210_dbg(fotg210, "%s\n", _buf);			\
273 }
274 
275 #define dbg_port(fotg210, label, port, status) {			       \
276 	char _buf[80];							       \
277 	fotg210_dbg(fotg210, "%s\n",					       \
278 			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279 }
280 
281 /* troubleshooting help: expose state in debugfs */
282 static int debug_async_open(struct inode *, struct file *);
283 static int debug_periodic_open(struct inode *, struct file *);
284 static int debug_registers_open(struct inode *, struct file *);
285 static int debug_async_open(struct inode *, struct file *);
286 
287 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
288 static int debug_close(struct inode *, struct file *);
289 
290 static const struct file_operations debug_async_fops = {
291 	.owner		= THIS_MODULE,
292 	.open		= debug_async_open,
293 	.read		= debug_output,
294 	.release	= debug_close,
295 	.llseek		= default_llseek,
296 };
297 static const struct file_operations debug_periodic_fops = {
298 	.owner		= THIS_MODULE,
299 	.open		= debug_periodic_open,
300 	.read		= debug_output,
301 	.release	= debug_close,
302 	.llseek		= default_llseek,
303 };
304 static const struct file_operations debug_registers_fops = {
305 	.owner		= THIS_MODULE,
306 	.open		= debug_registers_open,
307 	.read		= debug_output,
308 	.release	= debug_close,
309 	.llseek		= default_llseek,
310 };
311 
312 static struct dentry *fotg210_debug_root;
313 
314 struct debug_buffer {
315 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
316 	struct usb_bus *bus;
317 	struct mutex mutex;	/* protect filling of buffer */
318 	size_t count;		/* number of characters filled into buffer */
319 	char *output_buf;
320 	size_t alloc_size;
321 };
322 
speed_char(u32 scratch)323 static inline char speed_char(u32 scratch)
324 {
325 	switch (scratch & (3 << 12)) {
326 	case QH_FULL_SPEED:
327 		return 'f';
328 
329 	case QH_LOW_SPEED:
330 		return 'l';
331 
332 	case QH_HIGH_SPEED:
333 		return 'h';
334 
335 	default:
336 		return '?';
337 	}
338 }
339 
token_mark(struct fotg210_hcd * fotg210,__hc32 token)340 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
341 {
342 	__u32 v = hc32_to_cpu(fotg210, token);
343 
344 	if (v & QTD_STS_ACTIVE)
345 		return '*';
346 	if (v & QTD_STS_HALT)
347 		return '-';
348 	if (!IS_SHORT_READ(v))
349 		return ' ';
350 	/* tries to advance through hw_alt_next */
351 	return '/';
352 }
353 
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)354 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
355 		char **nextp, unsigned *sizep)
356 {
357 	u32 scratch;
358 	u32 hw_curr;
359 	struct fotg210_qtd *td;
360 	unsigned temp;
361 	unsigned size = *sizep;
362 	char *next = *nextp;
363 	char mark;
364 	__le32 list_end = FOTG210_LIST_END(fotg210);
365 	struct fotg210_qh_hw *hw = qh->hw;
366 
367 	if (hw->hw_qtd_next == list_end) /* NEC does this */
368 		mark = '@';
369 	else
370 		mark = token_mark(fotg210, hw->hw_token);
371 	if (mark == '/') { /* qh_alt_next controls qh advance? */
372 		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
373 		    fotg210->async->hw->hw_alt_next)
374 			mark = '#'; /* blocked */
375 		else if (hw->hw_alt_next == list_end)
376 			mark = '.'; /* use hw_qtd_next */
377 		/* else alt_next points to some other qtd */
378 	}
379 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
380 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
381 	temp = scnprintf(next, size,
382 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
383 			qh, scratch & 0x007f,
384 			speed_char(scratch),
385 			(scratch >> 8) & 0x000f,
386 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
387 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
388 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
389 				? "data1" : "data0",
390 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
391 	size -= temp;
392 	next += temp;
393 
394 	/* hc may be modifying the list as we read it ... */
395 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
396 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
397 		mark = ' ';
398 		if (hw_curr == td->qtd_dma)
399 			mark = '*';
400 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
401 			mark = '+';
402 		else if (QTD_LENGTH(scratch)) {
403 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
404 				mark = '#';
405 			else if (td->hw_alt_next != list_end)
406 				mark = '/';
407 		}
408 		temp = snprintf(next, size,
409 				"\n\t%p%c%s len=%d %08x urb %p",
410 				td, mark, ({ char *tmp;
411 				 switch ((scratch>>8)&0x03) {
412 				 case 0:
413 					tmp = "out";
414 					break;
415 				 case 1:
416 					tmp = "in";
417 					break;
418 				 case 2:
419 					tmp = "setup";
420 					break;
421 				 default:
422 					tmp = "?";
423 					break;
424 				 } tmp; }),
425 				(scratch >> 16) & 0x7fff,
426 				scratch,
427 				td->urb);
428 		if (size < temp)
429 			temp = size;
430 		size -= temp;
431 		next += temp;
432 		if (temp == size)
433 			goto done;
434 	}
435 
436 	temp = snprintf(next, size, "\n");
437 	if (size < temp)
438 		temp = size;
439 
440 	size -= temp;
441 	next += temp;
442 
443 done:
444 	*sizep = size;
445 	*nextp = next;
446 }
447 
fill_async_buffer(struct debug_buffer * buf)448 static ssize_t fill_async_buffer(struct debug_buffer *buf)
449 {
450 	struct usb_hcd *hcd;
451 	struct fotg210_hcd *fotg210;
452 	unsigned long flags;
453 	unsigned temp, size;
454 	char *next;
455 	struct fotg210_qh *qh;
456 
457 	hcd = bus_to_hcd(buf->bus);
458 	fotg210 = hcd_to_fotg210(hcd);
459 	next = buf->output_buf;
460 	size = buf->alloc_size;
461 
462 	*next = 0;
463 
464 	/* dumps a snapshot of the async schedule.
465 	 * usually empty except for long-term bulk reads, or head.
466 	 * one QH per line, and TDs we know about
467 	 */
468 	spin_lock_irqsave(&fotg210->lock, flags);
469 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
470 			qh = qh->qh_next.qh)
471 		qh_lines(fotg210, qh, &next, &size);
472 	if (fotg210->async_unlink && size > 0) {
473 		temp = scnprintf(next, size, "\nunlink =\n");
474 		size -= temp;
475 		next += temp;
476 
477 		for (qh = fotg210->async_unlink; size > 0 && qh;
478 				qh = qh->unlink_next)
479 			qh_lines(fotg210, qh, &next, &size);
480 	}
481 	spin_unlock_irqrestore(&fotg210->lock, flags);
482 
483 	return strlen(buf->output_buf);
484 }
485 
486 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)487 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
488 		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
489 {
490 	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
491 	struct fotg210_qtd *qtd;
492 	char *type = "";
493 	unsigned temp = 0;
494 
495 	/* count tds, get ep direction */
496 	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
497 		temp++;
498 		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
499 		case 0:
500 			type = "out";
501 			continue;
502 		case 1:
503 			type = "in";
504 			continue;
505 		}
506 	}
507 
508 	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
509 			speed_char(scratch), scratch & 0x007f,
510 			(scratch >> 8) & 0x000f, type, qh->usecs,
511 			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
512 }
513 
514 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)515 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
516 {
517 	struct usb_hcd *hcd;
518 	struct fotg210_hcd *fotg210;
519 	unsigned long flags;
520 	union fotg210_shadow p, *seen;
521 	unsigned temp, size, seen_count;
522 	char *next;
523 	unsigned i;
524 	__hc32 tag;
525 
526 	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
527 	if (!seen)
528 		return 0;
529 
530 	seen_count = 0;
531 
532 	hcd = bus_to_hcd(buf->bus);
533 	fotg210 = hcd_to_fotg210(hcd);
534 	next = buf->output_buf;
535 	size = buf->alloc_size;
536 
537 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
538 	size -= temp;
539 	next += temp;
540 
541 	/* dump a snapshot of the periodic schedule.
542 	 * iso changes, interrupt usually doesn't.
543 	 */
544 	spin_lock_irqsave(&fotg210->lock, flags);
545 	for (i = 0; i < fotg210->periodic_size; i++) {
546 		p = fotg210->pshadow[i];
547 		if (likely(!p.ptr))
548 			continue;
549 
550 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
551 
552 		temp = scnprintf(next, size, "%4d: ", i);
553 		size -= temp;
554 		next += temp;
555 
556 		do {
557 			struct fotg210_qh_hw *hw;
558 
559 			switch (hc32_to_cpu(fotg210, tag)) {
560 			case Q_TYPE_QH:
561 				hw = p.qh->hw;
562 				temp = scnprintf(next, size, " qh%d-%04x/%p",
563 						p.qh->period,
564 						hc32_to_cpup(fotg210,
565 							&hw->hw_info2)
566 							/* uframe masks */
567 							& (QH_CMASK | QH_SMASK),
568 						p.qh);
569 				size -= temp;
570 				next += temp;
571 				/* don't repeat what follows this qh */
572 				for (temp = 0; temp < seen_count; temp++) {
573 					if (seen[temp].ptr != p.ptr)
574 						continue;
575 					if (p.qh->qh_next.ptr) {
576 						temp = scnprintf(next, size,
577 								" ...");
578 						size -= temp;
579 						next += temp;
580 					}
581 					break;
582 				}
583 				/* show more info the first time around */
584 				if (temp == seen_count) {
585 					temp = output_buf_tds_dir(next,
586 							fotg210, hw,
587 							p.qh, size);
588 
589 					if (seen_count < DBG_SCHED_LIMIT)
590 						seen[seen_count++].qh = p.qh;
591 				} else
592 					temp = 0;
593 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
594 				p = p.qh->qh_next;
595 				break;
596 			case Q_TYPE_FSTN:
597 				temp = scnprintf(next, size,
598 						" fstn-%8x/%p",
599 						p.fstn->hw_prev, p.fstn);
600 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
601 				p = p.fstn->fstn_next;
602 				break;
603 			case Q_TYPE_ITD:
604 				temp = scnprintf(next, size,
605 						" itd/%p", p.itd);
606 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
607 				p = p.itd->itd_next;
608 				break;
609 			}
610 			size -= temp;
611 			next += temp;
612 		} while (p.ptr);
613 
614 		temp = scnprintf(next, size, "\n");
615 		size -= temp;
616 		next += temp;
617 	}
618 	spin_unlock_irqrestore(&fotg210->lock, flags);
619 	kfree(seen);
620 
621 	return buf->alloc_size - size;
622 }
623 #undef DBG_SCHED_LIMIT
624 
rh_state_string(struct fotg210_hcd * fotg210)625 static const char *rh_state_string(struct fotg210_hcd *fotg210)
626 {
627 	switch (fotg210->rh_state) {
628 	case FOTG210_RH_HALTED:
629 		return "halted";
630 	case FOTG210_RH_SUSPENDED:
631 		return "suspended";
632 	case FOTG210_RH_RUNNING:
633 		return "running";
634 	case FOTG210_RH_STOPPING:
635 		return "stopping";
636 	}
637 	return "?";
638 }
639 
fill_registers_buffer(struct debug_buffer * buf)640 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
641 {
642 	struct usb_hcd *hcd;
643 	struct fotg210_hcd *fotg210;
644 	unsigned long flags;
645 	unsigned temp, size, i;
646 	char *next, scratch[80];
647 	static const char fmt[] = "%*s\n";
648 	static const char label[] = "";
649 
650 	hcd = bus_to_hcd(buf->bus);
651 	fotg210 = hcd_to_fotg210(hcd);
652 	next = buf->output_buf;
653 	size = buf->alloc_size;
654 
655 	spin_lock_irqsave(&fotg210->lock, flags);
656 
657 	if (!HCD_HW_ACCESSIBLE(hcd)) {
658 		size = scnprintf(next, size,
659 				"bus %s, device %s\n"
660 				"%s\n"
661 				"SUSPENDED(no register access)\n",
662 				hcd->self.controller->bus->name,
663 				dev_name(hcd->self.controller),
664 				hcd->product_desc);
665 		goto done;
666 	}
667 
668 	/* Capability Registers */
669 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
670 			&fotg210->caps->hc_capbase));
671 	temp = scnprintf(next, size,
672 			"bus %s, device %s\n"
673 			"%s\n"
674 			"EHCI %x.%02x, rh state %s\n",
675 			hcd->self.controller->bus->name,
676 			dev_name(hcd->self.controller),
677 			hcd->product_desc,
678 			i >> 8, i & 0x0ff, rh_state_string(fotg210));
679 	size -= temp;
680 	next += temp;
681 
682 	/* FIXME interpret both types of params */
683 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
684 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
685 	size -= temp;
686 	next += temp;
687 
688 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
689 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
690 	size -= temp;
691 	next += temp;
692 
693 	/* Operational Registers */
694 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
695 			fotg210_readl(fotg210, &fotg210->regs->status));
696 	temp = scnprintf(next, size, fmt, temp, scratch);
697 	size -= temp;
698 	next += temp;
699 
700 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
701 			fotg210_readl(fotg210, &fotg210->regs->command));
702 	temp = scnprintf(next, size, fmt, temp, scratch);
703 	size -= temp;
704 	next += temp;
705 
706 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
707 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
708 	temp = scnprintf(next, size, fmt, temp, scratch);
709 	size -= temp;
710 	next += temp;
711 
712 	temp = scnprintf(next, size, "uframe %04x\n",
713 			fotg210_read_frame_index(fotg210));
714 	size -= temp;
715 	next += temp;
716 
717 	if (fotg210->async_unlink) {
718 		temp = scnprintf(next, size, "async unlink qh %p\n",
719 				fotg210->async_unlink);
720 		size -= temp;
721 		next += temp;
722 	}
723 
724 #ifdef FOTG210_STATS
725 	temp = scnprintf(next, size,
726 			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
727 			fotg210->stats.normal, fotg210->stats.error,
728 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
729 	size -= temp;
730 	next += temp;
731 
732 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
733 			fotg210->stats.complete, fotg210->stats.unlink);
734 	size -= temp;
735 	next += temp;
736 #endif
737 
738 done:
739 	spin_unlock_irqrestore(&fotg210->lock, flags);
740 
741 	return buf->alloc_size - size;
742 }
743 
744 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))745 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
746 {
747 	struct debug_buffer *buf;
748 
749 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
750 
751 	if (buf) {
752 		buf->bus = bus;
753 		buf->fill_func = fill_func;
754 		mutex_init(&buf->mutex);
755 		buf->alloc_size = PAGE_SIZE;
756 	}
757 
758 	return buf;
759 }
760 
fill_buffer(struct debug_buffer * buf)761 static int fill_buffer(struct debug_buffer *buf)
762 {
763 	int ret = 0;
764 
765 	if (!buf->output_buf)
766 		buf->output_buf = vmalloc(buf->alloc_size);
767 
768 	if (!buf->output_buf) {
769 		ret = -ENOMEM;
770 		goto out;
771 	}
772 
773 	ret = buf->fill_func(buf);
774 
775 	if (ret >= 0) {
776 		buf->count = ret;
777 		ret = 0;
778 	}
779 
780 out:
781 	return ret;
782 }
783 
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)784 static ssize_t debug_output(struct file *file, char __user *user_buf,
785 		size_t len, loff_t *offset)
786 {
787 	struct debug_buffer *buf = file->private_data;
788 	int ret = 0;
789 
790 	mutex_lock(&buf->mutex);
791 	if (buf->count == 0) {
792 		ret = fill_buffer(buf);
793 		if (ret != 0) {
794 			mutex_unlock(&buf->mutex);
795 			goto out;
796 		}
797 	}
798 	mutex_unlock(&buf->mutex);
799 
800 	ret = simple_read_from_buffer(user_buf, len, offset,
801 			buf->output_buf, buf->count);
802 
803 out:
804 	return ret;
805 
806 }
807 
debug_close(struct inode * inode,struct file * file)808 static int debug_close(struct inode *inode, struct file *file)
809 {
810 	struct debug_buffer *buf = file->private_data;
811 
812 	if (buf) {
813 		vfree(buf->output_buf);
814 		kfree(buf);
815 	}
816 
817 	return 0;
818 }
debug_async_open(struct inode * inode,struct file * file)819 static int debug_async_open(struct inode *inode, struct file *file)
820 {
821 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
822 
823 	return file->private_data ? 0 : -ENOMEM;
824 }
825 
debug_periodic_open(struct inode * inode,struct file * file)826 static int debug_periodic_open(struct inode *inode, struct file *file)
827 {
828 	struct debug_buffer *buf;
829 
830 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
831 	if (!buf)
832 		return -ENOMEM;
833 
834 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
835 	file->private_data = buf;
836 	return 0;
837 }
838 
debug_registers_open(struct inode * inode,struct file * file)839 static int debug_registers_open(struct inode *inode, struct file *file)
840 {
841 	file->private_data = alloc_buffer(inode->i_private,
842 			fill_registers_buffer);
843 
844 	return file->private_data ? 0 : -ENOMEM;
845 }
846 
create_debug_files(struct fotg210_hcd * fotg210)847 static inline void create_debug_files(struct fotg210_hcd *fotg210)
848 {
849 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
850 	struct dentry *root;
851 
852 	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
853 	fotg210->debug_dir = root;
854 
855 	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
856 	debugfs_create_file("periodic", S_IRUGO, root, bus,
857 			    &debug_periodic_fops);
858 	debugfs_create_file("registers", S_IRUGO, root, bus,
859 			    &debug_registers_fops);
860 }
861 
remove_debug_files(struct fotg210_hcd * fotg210)862 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
863 {
864 	debugfs_remove_recursive(fotg210->debug_dir);
865 }
866 
867 /* handshake - spin reading hc until handshake completes or fails
868  * @ptr: address of hc register to be read
869  * @mask: bits to look at in result of read
870  * @done: value of those bits when handshake succeeds
871  * @usec: timeout in microseconds
872  *
873  * Returns negative errno, or zero on success
874  *
875  * Success happens when the "mask" bits have the specified value (hardware
876  * handshake done).  There are two failure modes:  "usec" have passed (major
877  * hardware flakeout), or the register reads as all-ones (hardware removed).
878  *
879  * That last failure should_only happen in cases like physical cardbus eject
880  * before driver shutdown. But it also seems to be caused by bugs in cardbus
881  * bridge shutdown:  shutting down the bridge before the devices using it.
882  */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)883 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
884 		u32 mask, u32 done, int usec)
885 {
886 	u32 result;
887 	int ret;
888 
889 	ret = readl_poll_timeout_atomic(ptr, result,
890 					((result & mask) == done ||
891 					 result == U32_MAX), 1, usec);
892 	if (result == U32_MAX)		/* card removed */
893 		return -ENODEV;
894 
895 	return ret;
896 }
897 
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899  * Must be called with interrupts enabled and the lock not held.
900  */
fotg210_halt(struct fotg210_hcd * fotg210)901 static int fotg210_halt(struct fotg210_hcd *fotg210)
902 {
903 	u32 temp;
904 
905 	spin_lock_irq(&fotg210->lock);
906 
907 	/* disable any irqs left enabled by previous code */
908 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
909 
910 	/*
911 	 * This routine gets called during probe before fotg210->command
912 	 * has been initialized, so we can't rely on its value.
913 	 */
914 	fotg210->command &= ~CMD_RUN;
915 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
916 	temp &= ~(CMD_RUN | CMD_IAAD);
917 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
918 
919 	spin_unlock_irq(&fotg210->lock);
920 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
921 
922 	return handshake(fotg210, &fotg210->regs->status,
923 			STS_HALT, STS_HALT, 16 * 125);
924 }
925 
926 /* Reset a non-running (STS_HALT == 1) controller.
927  * Must be called with interrupts enabled and the lock not held.
928  */
fotg210_reset(struct fotg210_hcd * fotg210)929 static int fotg210_reset(struct fotg210_hcd *fotg210)
930 {
931 	int retval;
932 	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
933 
934 	/* If the EHCI debug controller is active, special care must be
935 	 * taken before and after a host controller reset
936 	 */
937 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
938 		fotg210->debug = NULL;
939 
940 	command |= CMD_RESET;
941 	dbg_cmd(fotg210, "reset", command);
942 	fotg210_writel(fotg210, command, &fotg210->regs->command);
943 	fotg210->rh_state = FOTG210_RH_HALTED;
944 	fotg210->next_statechange = jiffies;
945 	retval = handshake(fotg210, &fotg210->regs->command,
946 			CMD_RESET, 0, 250 * 1000);
947 
948 	if (retval)
949 		return retval;
950 
951 	if (fotg210->debug)
952 		dbgp_external_startup(fotg210_to_hcd(fotg210));
953 
954 	fotg210->port_c_suspend = fotg210->suspended_ports =
955 			fotg210->resuming_ports = 0;
956 	return retval;
957 }
958 
959 /* Idle the controller (turn off the schedules).
960  * Must be called with interrupts enabled and the lock not held.
961  */
fotg210_quiesce(struct fotg210_hcd * fotg210)962 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
963 {
964 	u32 temp;
965 
966 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
967 		return;
968 
969 	/* wait for any schedule enables/disables to take effect */
970 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
971 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
972 			16 * 125);
973 
974 	/* then disable anything that's still active */
975 	spin_lock_irq(&fotg210->lock);
976 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
977 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
978 	spin_unlock_irq(&fotg210->lock);
979 
980 	/* hardware can take 16 microframes to turn off ... */
981 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
982 			16 * 125);
983 }
984 
985 static void end_unlink_async(struct fotg210_hcd *fotg210);
986 static void unlink_empty_async(struct fotg210_hcd *fotg210);
987 static void fotg210_work(struct fotg210_hcd *fotg210);
988 static void start_unlink_intr(struct fotg210_hcd *fotg210,
989 			      struct fotg210_qh *qh);
990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
991 
992 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
994 {
995 	fotg210->command |= bit;
996 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
997 
998 	/* unblock posted write */
999 	fotg210_readl(fotg210, &fotg210->regs->command);
1000 }
1001 
1002 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1004 {
1005 	fotg210->command &= ~bit;
1006 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1007 
1008 	/* unblock posted write */
1009 	fotg210_readl(fotg210, &fotg210->regs->command);
1010 }
1011 
1012 /* EHCI timer support...  Now using hrtimers.
1013  *
1014  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1015  * the timer routine runs, it checks each possible event; events that are
1016  * currently enabled and whose expiration time has passed get handled.
1017  * The set of enabled events is stored as a collection of bitflags in
1018  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019  * increasing delay values (ranging between 1 ms and 100 ms).
1020  *
1021  * Rather than implementing a sorted list or tree of all pending events,
1022  * we keep track only of the lowest-numbered pending event, in
1023  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1024  * expiration time is set to the timeout value for this event.
1025  *
1026  * As a result, events might not get handled right away; the actual delay
1027  * could be anywhere up to twice the requested delay.  This doesn't
1028  * matter, because none of the events are especially time-critical.  The
1029  * ones that matter most all have a delay of 1 ms, so they will be
1030  * handled after 2 ms at most, which is okay.  In addition to this, we
1031  * allow for an expiration range of 1 ms.
1032  */
1033 
1034 /* Delay lengths for the hrtimer event types.
1035  * Keep this list sorted by delay length, in the same order as
1036  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1037  */
1038 static unsigned event_delays_ns[] = {
1039 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1040 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1041 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1042 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1043 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1044 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1046 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1048 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1049 };
1050 
1051 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053 		bool resched)
1054 {
1055 	ktime_t *timeout = &fotg210->hr_timeouts[event];
1056 
1057 	if (resched)
1058 		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059 	fotg210->enabled_hrtimer_events |= (1 << event);
1060 
1061 	/* Track only the lowest-numbered pending event */
1062 	if (event < fotg210->next_hrtimer_event) {
1063 		fotg210->next_hrtimer_event = event;
1064 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1066 	}
1067 }
1068 
1069 
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1072 {
1073 	unsigned actual, want;
1074 
1075 	/* Don't enable anything if the controller isn't running (e.g., died) */
1076 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077 		return;
1078 
1079 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1081 
1082 	if (want != actual) {
1083 
1084 		/* Poll again later, but give up after about 20 ms */
1085 		if (fotg210->ASS_poll_count++ < 20) {
1086 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087 					true);
1088 			return;
1089 		}
1090 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091 				want, actual);
1092 	}
1093 	fotg210->ASS_poll_count = 0;
1094 
1095 	/* The status is up-to-date; restart or stop the schedule as needed */
1096 	if (want == 0) {	/* Stopped */
1097 		if (fotg210->async_count > 0)
1098 			fotg210_set_command_bit(fotg210, CMD_ASE);
1099 
1100 	} else {		/* Running */
1101 		if (fotg210->async_count == 0) {
1102 
1103 			/* Turn off the schedule after a while */
1104 			fotg210_enable_event(fotg210,
1105 					FOTG210_HRTIMER_DISABLE_ASYNC,
1106 					true);
1107 		}
1108 	}
1109 }
1110 
1111 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1113 {
1114 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1115 }
1116 
1117 
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1120 {
1121 	unsigned actual, want;
1122 
1123 	/* Don't do anything if the controller isn't running (e.g., died) */
1124 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125 		return;
1126 
1127 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1129 
1130 	if (want != actual) {
1131 
1132 		/* Poll again later, but give up after about 20 ms */
1133 		if (fotg210->PSS_poll_count++ < 20) {
1134 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135 					true);
1136 			return;
1137 		}
1138 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139 				want, actual);
1140 	}
1141 	fotg210->PSS_poll_count = 0;
1142 
1143 	/* The status is up-to-date; restart or stop the schedule as needed */
1144 	if (want == 0) {	/* Stopped */
1145 		if (fotg210->periodic_count > 0)
1146 			fotg210_set_command_bit(fotg210, CMD_PSE);
1147 
1148 	} else {		/* Running */
1149 		if (fotg210->periodic_count == 0) {
1150 
1151 			/* Turn off the schedule after a while */
1152 			fotg210_enable_event(fotg210,
1153 					FOTG210_HRTIMER_DISABLE_PERIODIC,
1154 					true);
1155 		}
1156 	}
1157 }
1158 
1159 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1161 {
1162 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1163 }
1164 
1165 
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1168 {
1169 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1170 
1171 		/* Give up after a few milliseconds */
1172 		if (fotg210->died_poll_count++ < 5) {
1173 			/* Try again later */
1174 			fotg210_enable_event(fotg210,
1175 					FOTG210_HRTIMER_POLL_DEAD, true);
1176 			return;
1177 		}
1178 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1179 	}
1180 
1181 	/* Clean up the mess */
1182 	fotg210->rh_state = FOTG210_RH_HALTED;
1183 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184 	fotg210_work(fotg210);
1185 	end_unlink_async(fotg210);
1186 
1187 	/* Not in process context, so don't try to reset the controller */
1188 }
1189 
1190 
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1193 {
1194 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1195 
1196 	/*
1197 	 * Process all the QHs on the intr_unlink list that were added
1198 	 * before the current unlink cycle began.  The list is in
1199 	 * temporal order, so stop when we reach the first entry in the
1200 	 * current cycle.  But if the root hub isn't running then
1201 	 * process all the QHs on the list.
1202 	 */
1203 	fotg210->intr_unlinking = true;
1204 	while (fotg210->intr_unlink) {
1205 		struct fotg210_qh *qh = fotg210->intr_unlink;
1206 
1207 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208 			break;
1209 		fotg210->intr_unlink = qh->unlink_next;
1210 		qh->unlink_next = NULL;
1211 		end_unlink_intr(fotg210, qh);
1212 	}
1213 
1214 	/* Handle remaining entries later */
1215 	if (fotg210->intr_unlink) {
1216 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217 				true);
1218 		++fotg210->intr_unlink_cycle;
1219 	}
1220 	fotg210->intr_unlinking = false;
1221 }
1222 
1223 
1224 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1225 static void start_free_itds(struct fotg210_hcd *fotg210)
1226 {
1227 	if (!(fotg210->enabled_hrtimer_events &
1228 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229 		fotg210->last_itd_to_free = list_entry(
1230 				fotg210->cached_itd_list.prev,
1231 				struct fotg210_itd, itd_list);
1232 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1233 	}
1234 }
1235 
1236 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1237 static void end_free_itds(struct fotg210_hcd *fotg210)
1238 {
1239 	struct fotg210_itd *itd, *n;
1240 
1241 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242 		fotg210->last_itd_to_free = NULL;
1243 
1244 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245 		list_del(&itd->itd_list);
1246 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247 		if (itd == fotg210->last_itd_to_free)
1248 			break;
1249 	}
1250 
1251 	if (!list_empty(&fotg210->cached_itd_list))
1252 		start_free_itds(fotg210);
1253 }
1254 
1255 
1256 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1258 {
1259 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260 		return;
1261 
1262 	/*
1263 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264 	 * So we need this watchdog, but must protect it against both
1265 	 * (a) SMP races against real IAA firing and retriggering, and
1266 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1267 	 */
1268 	if (fotg210->async_iaa) {
1269 		u32 cmd, status;
1270 
1271 		/* If we get here, IAA is *REALLY* late.  It's barely
1272 		 * conceivable that the system is so busy that CMD_IAAD
1273 		 * is still legitimately set, so let's be sure it's
1274 		 * clear before we read STS_IAA.  (The HC should clear
1275 		 * CMD_IAAD when it sets STS_IAA.)
1276 		 */
1277 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1278 
1279 		/*
1280 		 * If IAA is set here it either legitimately triggered
1281 		 * after the watchdog timer expired (_way_ late, so we'll
1282 		 * still count it as lost) ... or a silicon erratum:
1283 		 * - VIA seems to set IAA without triggering the IRQ;
1284 		 * - IAAD potentially cleared without setting IAA.
1285 		 */
1286 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1287 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288 			INCR(fotg210->stats.lost_iaa);
1289 			fotg210_writel(fotg210, STS_IAA,
1290 					&fotg210->regs->status);
1291 		}
1292 
1293 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294 				status, cmd);
1295 		end_unlink_async(fotg210);
1296 	}
1297 }
1298 
1299 
1300 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1302 {
1303 	/* Not needed if the controller isn't running or it's already enabled */
1304 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305 			(fotg210->enabled_hrtimer_events &
1306 			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307 		return;
1308 
1309 	/*
1310 	 * Isochronous transfers always need the watchdog.
1311 	 * For other sorts we use it only if the flag is set.
1312 	 */
1313 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314 			fotg210->async_count + fotg210->intr_count > 0))
1315 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316 				true);
1317 }
1318 
1319 
1320 /* Handler functions for the hrtimer event types.
1321  * Keep this array in the same order as the event types indexed by
1322  * enum fotg210_hrtimer_event in fotg210.h.
1323  */
1324 static void (*event_handlers[])(struct fotg210_hcd *) = {
1325 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1326 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1327 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1328 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1329 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1330 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1332 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1334 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1335 };
1336 
fotg210_hrtimer_func(struct hrtimer * t)1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1338 {
1339 	struct fotg210_hcd *fotg210 =
1340 			container_of(t, struct fotg210_hcd, hrtimer);
1341 	ktime_t now;
1342 	unsigned long events;
1343 	unsigned long flags;
1344 	unsigned e;
1345 
1346 	spin_lock_irqsave(&fotg210->lock, flags);
1347 
1348 	events = fotg210->enabled_hrtimer_events;
1349 	fotg210->enabled_hrtimer_events = 0;
1350 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1351 
1352 	/*
1353 	 * Check each pending event.  If its time has expired, handle
1354 	 * the event; otherwise re-enable it.
1355 	 */
1356 	now = ktime_get();
1357 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358 		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359 			event_handlers[e](fotg210);
1360 		else
1361 			fotg210_enable_event(fotg210, e, false);
1362 	}
1363 
1364 	spin_unlock_irqrestore(&fotg210->lock, flags);
1365 	return HRTIMER_NORESTART;
1366 }
1367 
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1370 
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372 		u32 __iomem *status_reg, int port_status)
1373 {
1374 	if (!(port_status & PORT_CONNECT))
1375 		return port_status;
1376 
1377 	/* if reset finished and it's still not enabled -- handoff */
1378 	if (!(port_status & PORT_PE))
1379 		/* with integrated TT, there's nobody to hand it to! */
1380 		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381 				index + 1);
1382 	else
1383 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384 				index + 1);
1385 
1386 	return port_status;
1387 }
1388 
1389 
1390 /* build "status change" packet (one or two bytes) from HC registers */
1391 
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1393 {
1394 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395 	u32 temp, status;
1396 	u32 mask;
1397 	int retval = 1;
1398 	unsigned long flags;
1399 
1400 	/* init status to no-changes */
1401 	buf[0] = 0;
1402 
1403 	/* Inform the core about resumes-in-progress by returning
1404 	 * a non-zero value even if there are no status changes.
1405 	 */
1406 	status = fotg210->resuming_ports;
1407 
1408 	mask = PORT_CSC | PORT_PEC;
1409 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1410 
1411 	/* no hub change reports (bit 0) for now (power, ...) */
1412 
1413 	/* port N changes (bit N)? */
1414 	spin_lock_irqsave(&fotg210->lock, flags);
1415 
1416 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1417 
1418 	/*
1419 	 * Return status information even for ports with OWNER set.
1420 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1421 	 * high-speed device is switched over to the companion
1422 	 * controller by the user.
1423 	 */
1424 
1425 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426 			(fotg210->reset_done[0] &&
1427 			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428 		buf[0] |= 1 << 1;
1429 		status = STS_PCD;
1430 	}
1431 	/* FIXME autosuspend idle root hubs */
1432 	spin_unlock_irqrestore(&fotg210->lock, flags);
1433 	return status ? retval : 0;
1434 }
1435 
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437 		struct usb_hub_descriptor *desc)
1438 {
1439 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1440 	u16 temp;
1441 
1442 	desc->bDescriptorType = USB_DT_HUB;
1443 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1444 	desc->bHubContrCurrent = 0;
1445 
1446 	desc->bNbrPorts = ports;
1447 	temp = 1 + (ports / 8);
1448 	desc->bDescLength = 7 + 2 * temp;
1449 
1450 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1453 
1454 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1455 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1456 	desc->wHubCharacteristics = cpu_to_le16(temp);
1457 }
1458 
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460 		u16 wIndex, char *buf, u16 wLength)
1461 {
1462 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1464 	u32 __iomem *status_reg = &fotg210->regs->port_status;
1465 	u32 temp, temp1, status;
1466 	unsigned long flags;
1467 	int retval = 0;
1468 	unsigned selector;
1469 
1470 	/*
1471 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473 	 * (track current state ourselves) ... blink for diagnostics,
1474 	 * power, "this is the one", etc.  EHCI spec supports this.
1475 	 */
1476 
1477 	spin_lock_irqsave(&fotg210->lock, flags);
1478 	switch (typeReq) {
1479 	case ClearHubFeature:
1480 		switch (wValue) {
1481 		case C_HUB_LOCAL_POWER:
1482 		case C_HUB_OVER_CURRENT:
1483 			/* no hub-wide feature/status flags */
1484 			break;
1485 		default:
1486 			goto error;
1487 		}
1488 		break;
1489 	case ClearPortFeature:
1490 		if (!wIndex || wIndex > ports)
1491 			goto error;
1492 		wIndex--;
1493 		temp = fotg210_readl(fotg210, status_reg);
1494 		temp &= ~PORT_RWC_BITS;
1495 
1496 		/*
1497 		 * Even if OWNER is set, so the port is owned by the
1498 		 * companion controller, hub_wq needs to be able to clear
1499 		 * the port-change status bits (especially
1500 		 * USB_PORT_STAT_C_CONNECTION).
1501 		 */
1502 
1503 		switch (wValue) {
1504 		case USB_PORT_FEAT_ENABLE:
1505 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506 			break;
1507 		case USB_PORT_FEAT_C_ENABLE:
1508 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509 			break;
1510 		case USB_PORT_FEAT_SUSPEND:
1511 			if (temp & PORT_RESET)
1512 				goto error;
1513 			if (!(temp & PORT_SUSPEND))
1514 				break;
1515 			if ((temp & PORT_PE) == 0)
1516 				goto error;
1517 
1518 			/* resume signaling for 20 msec */
1519 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520 			fotg210->reset_done[wIndex] = jiffies
1521 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522 			break;
1523 		case USB_PORT_FEAT_C_SUSPEND:
1524 			clear_bit(wIndex, &fotg210->port_c_suspend);
1525 			break;
1526 		case USB_PORT_FEAT_C_CONNECTION:
1527 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528 			break;
1529 		case USB_PORT_FEAT_C_OVER_CURRENT:
1530 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1531 					&fotg210->regs->otgisr);
1532 			break;
1533 		case USB_PORT_FEAT_C_RESET:
1534 			/* GetPortStatus clears reset */
1535 			break;
1536 		default:
1537 			goto error;
1538 		}
1539 		fotg210_readl(fotg210, &fotg210->regs->command);
1540 		break;
1541 	case GetHubDescriptor:
1542 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543 				buf);
1544 		break;
1545 	case GetHubStatus:
1546 		/* no hub-wide feature/status flags */
1547 		memset(buf, 0, 4);
1548 		/*cpu_to_le32s ((u32 *) buf); */
1549 		break;
1550 	case GetPortStatus:
1551 		if (!wIndex || wIndex > ports)
1552 			goto error;
1553 		wIndex--;
1554 		status = 0;
1555 		temp = fotg210_readl(fotg210, status_reg);
1556 
1557 		/* wPortChange bits */
1558 		if (temp & PORT_CSC)
1559 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1560 		if (temp & PORT_PEC)
1561 			status |= USB_PORT_STAT_C_ENABLE << 16;
1562 
1563 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564 		if (temp1 & OTGISR_OVC)
1565 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1566 
1567 		/* whoever resumes must GetPortStatus to complete it!! */
1568 		if (temp & PORT_RESUME) {
1569 
1570 			/* Remote Wakeup received? */
1571 			if (!fotg210->reset_done[wIndex]) {
1572 				/* resume signaling for 20 msec */
1573 				fotg210->reset_done[wIndex] = jiffies
1574 						+ msecs_to_jiffies(20);
1575 				/* check the port again */
1576 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577 						fotg210->reset_done[wIndex]);
1578 			}
1579 
1580 			/* resume completed? */
1581 			else if (time_after_eq(jiffies,
1582 					fotg210->reset_done[wIndex])) {
1583 				clear_bit(wIndex, &fotg210->suspended_ports);
1584 				set_bit(wIndex, &fotg210->port_c_suspend);
1585 				fotg210->reset_done[wIndex] = 0;
1586 
1587 				/* stop resume signaling */
1588 				temp = fotg210_readl(fotg210, status_reg);
1589 				fotg210_writel(fotg210, temp &
1590 						~(PORT_RWC_BITS | PORT_RESUME),
1591 						status_reg);
1592 				clear_bit(wIndex, &fotg210->resuming_ports);
1593 				retval = handshake(fotg210, status_reg,
1594 						PORT_RESUME, 0, 2000);/* 2ms */
1595 				if (retval != 0) {
1596 					fotg210_err(fotg210,
1597 							"port %d resume error %d\n",
1598 							wIndex + 1, retval);
1599 					goto error;
1600 				}
1601 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1602 			}
1603 		}
1604 
1605 		/* whoever resets must GetPortStatus to complete it!! */
1606 		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607 				fotg210->reset_done[wIndex])) {
1608 			status |= USB_PORT_STAT_C_RESET << 16;
1609 			fotg210->reset_done[wIndex] = 0;
1610 			clear_bit(wIndex, &fotg210->resuming_ports);
1611 
1612 			/* force reset to complete */
1613 			fotg210_writel(fotg210,
1614 					temp & ~(PORT_RWC_BITS | PORT_RESET),
1615 					status_reg);
1616 			/* REVISIT:  some hardware needs 550+ usec to clear
1617 			 * this bit; seems too long to spin routinely...
1618 			 */
1619 			retval = handshake(fotg210, status_reg,
1620 					PORT_RESET, 0, 1000);
1621 			if (retval != 0) {
1622 				fotg210_err(fotg210, "port %d reset error %d\n",
1623 						wIndex + 1, retval);
1624 				goto error;
1625 			}
1626 
1627 			/* see what we found out */
1628 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1629 					fotg210_readl(fotg210, status_reg));
1630 
1631 			/* restart schedule */
1632 			fotg210->command |= CMD_RUN;
1633 			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1634 		}
1635 
1636 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1637 			fotg210->reset_done[wIndex] = 0;
1638 			clear_bit(wIndex, &fotg210->resuming_ports);
1639 		}
1640 
1641 		/* transfer dedicated ports to the companion hc */
1642 		if ((temp & PORT_CONNECT) &&
1643 				test_bit(wIndex, &fotg210->companion_ports)) {
1644 			temp &= ~PORT_RWC_BITS;
1645 			fotg210_writel(fotg210, temp, status_reg);
1646 			fotg210_dbg(fotg210, "port %d --> companion\n",
1647 					wIndex + 1);
1648 			temp = fotg210_readl(fotg210, status_reg);
1649 		}
1650 
1651 		/*
1652 		 * Even if OWNER is set, there's no harm letting hub_wq
1653 		 * see the wPortStatus values (they should all be 0 except
1654 		 * for PORT_POWER anyway).
1655 		 */
1656 
1657 		if (temp & PORT_CONNECT) {
1658 			status |= USB_PORT_STAT_CONNECTION;
1659 			status |= fotg210_port_speed(fotg210, temp);
1660 		}
1661 		if (temp & PORT_PE)
1662 			status |= USB_PORT_STAT_ENABLE;
1663 
1664 		/* maybe the port was unsuspended without our knowledge */
1665 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1666 			status |= USB_PORT_STAT_SUSPEND;
1667 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1668 			clear_bit(wIndex, &fotg210->suspended_ports);
1669 			clear_bit(wIndex, &fotg210->resuming_ports);
1670 			fotg210->reset_done[wIndex] = 0;
1671 			if (temp & PORT_PE)
1672 				set_bit(wIndex, &fotg210->port_c_suspend);
1673 		}
1674 
1675 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1676 		if (temp1 & OTGISR_OVC)
1677 			status |= USB_PORT_STAT_OVERCURRENT;
1678 		if (temp & PORT_RESET)
1679 			status |= USB_PORT_STAT_RESET;
1680 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1681 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1682 
1683 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1684 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1685 		put_unaligned_le32(status, buf);
1686 		break;
1687 	case SetHubFeature:
1688 		switch (wValue) {
1689 		case C_HUB_LOCAL_POWER:
1690 		case C_HUB_OVER_CURRENT:
1691 			/* no hub-wide feature/status flags */
1692 			break;
1693 		default:
1694 			goto error;
1695 		}
1696 		break;
1697 	case SetPortFeature:
1698 		selector = wIndex >> 8;
1699 		wIndex &= 0xff;
1700 
1701 		if (!wIndex || wIndex > ports)
1702 			goto error;
1703 		wIndex--;
1704 		temp = fotg210_readl(fotg210, status_reg);
1705 		temp &= ~PORT_RWC_BITS;
1706 		switch (wValue) {
1707 		case USB_PORT_FEAT_SUSPEND:
1708 			if ((temp & PORT_PE) == 0
1709 					|| (temp & PORT_RESET) != 0)
1710 				goto error;
1711 
1712 			/* After above check the port must be connected.
1713 			 * Set appropriate bit thus could put phy into low power
1714 			 * mode if we have hostpc feature
1715 			 */
1716 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1717 					status_reg);
1718 			set_bit(wIndex, &fotg210->suspended_ports);
1719 			break;
1720 		case USB_PORT_FEAT_RESET:
1721 			if (temp & PORT_RESUME)
1722 				goto error;
1723 			/* line status bits may report this as low speed,
1724 			 * which can be fine if this root hub has a
1725 			 * transaction translator built in.
1726 			 */
1727 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1728 			temp |= PORT_RESET;
1729 			temp &= ~PORT_PE;
1730 
1731 			/*
1732 			 * caller must wait, then call GetPortStatus
1733 			 * usb 2.0 spec says 50 ms resets on root
1734 			 */
1735 			fotg210->reset_done[wIndex] = jiffies
1736 					+ msecs_to_jiffies(50);
1737 			fotg210_writel(fotg210, temp, status_reg);
1738 			break;
1739 
1740 		/* For downstream facing ports (these):  one hub port is put
1741 		 * into test mode according to USB2 11.24.2.13, then the hub
1742 		 * must be reset (which for root hub now means rmmod+modprobe,
1743 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1744 		 * about the EHCI-specific stuff.
1745 		 */
1746 		case USB_PORT_FEAT_TEST:
1747 			if (!selector || selector > 5)
1748 				goto error;
1749 			spin_unlock_irqrestore(&fotg210->lock, flags);
1750 			fotg210_quiesce(fotg210);
1751 			spin_lock_irqsave(&fotg210->lock, flags);
1752 
1753 			/* Put all enabled ports into suspend */
1754 			temp = fotg210_readl(fotg210, status_reg) &
1755 				~PORT_RWC_BITS;
1756 			if (temp & PORT_PE)
1757 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1758 						status_reg);
1759 
1760 			spin_unlock_irqrestore(&fotg210->lock, flags);
1761 			fotg210_halt(fotg210);
1762 			spin_lock_irqsave(&fotg210->lock, flags);
1763 
1764 			temp = fotg210_readl(fotg210, status_reg);
1765 			temp |= selector << 16;
1766 			fotg210_writel(fotg210, temp, status_reg);
1767 			break;
1768 
1769 		default:
1770 			goto error;
1771 		}
1772 		fotg210_readl(fotg210, &fotg210->regs->command);
1773 		break;
1774 
1775 	default:
1776 error:
1777 		/* "stall" on error */
1778 		retval = -EPIPE;
1779 	}
1780 	spin_unlock_irqrestore(&fotg210->lock, flags);
1781 	return retval;
1782 }
1783 
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1784 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1785 		int portnum)
1786 {
1787 	return;
1788 }
1789 
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1790 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1791 		int portnum)
1792 {
1793 	return 0;
1794 }
1795 
1796 /* There's basically three types of memory:
1797  *	- data used only by the HCD ... kmalloc is fine
1798  *	- async and periodic schedules, shared by HC and HCD ... these
1799  *	  need to use dma_pool or dma_alloc_coherent
1800  *	- driver buffers, read/written by HC ... single shot DMA mapped
1801  *
1802  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1803  * No memory seen by this driver is pageable.
1804  */
1805 
1806 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1807 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1808 		struct fotg210_qtd *qtd, dma_addr_t dma)
1809 {
1810 	memset(qtd, 0, sizeof(*qtd));
1811 	qtd->qtd_dma = dma;
1812 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1813 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1814 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1815 	INIT_LIST_HEAD(&qtd->qtd_list);
1816 }
1817 
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1818 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1819 		gfp_t flags)
1820 {
1821 	struct fotg210_qtd *qtd;
1822 	dma_addr_t dma;
1823 
1824 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1825 	if (qtd != NULL)
1826 		fotg210_qtd_init(fotg210, qtd, dma);
1827 
1828 	return qtd;
1829 }
1830 
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1831 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1832 		struct fotg210_qtd *qtd)
1833 {
1834 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1835 }
1836 
1837 
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1838 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1839 {
1840 	/* clean qtds first, and know this is not linked */
1841 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1842 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1843 		BUG();
1844 	}
1845 	if (qh->dummy)
1846 		fotg210_qtd_free(fotg210, qh->dummy);
1847 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1848 	kfree(qh);
1849 }
1850 
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1851 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1852 		gfp_t flags)
1853 {
1854 	struct fotg210_qh *qh;
1855 	dma_addr_t dma;
1856 
1857 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1858 	if (!qh)
1859 		goto done;
1860 	qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1861 	if (!qh->hw)
1862 		goto fail;
1863 	qh->qh_dma = dma;
1864 	INIT_LIST_HEAD(&qh->qtd_list);
1865 
1866 	/* dummy td enables safe urb queuing */
1867 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1868 	if (qh->dummy == NULL) {
1869 		fotg210_dbg(fotg210, "no dummy td\n");
1870 		goto fail1;
1871 	}
1872 done:
1873 	return qh;
1874 fail1:
1875 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1876 fail:
1877 	kfree(qh);
1878 	return NULL;
1879 }
1880 
1881 /* The queue heads and transfer descriptors are managed from pools tied
1882  * to each of the "per device" structures.
1883  * This is the initialisation and cleanup code.
1884  */
1885 
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1886 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1887 {
1888 	if (fotg210->async)
1889 		qh_destroy(fotg210, fotg210->async);
1890 	fotg210->async = NULL;
1891 
1892 	if (fotg210->dummy)
1893 		qh_destroy(fotg210, fotg210->dummy);
1894 	fotg210->dummy = NULL;
1895 
1896 	/* DMA consistent memory and pools */
1897 	dma_pool_destroy(fotg210->qtd_pool);
1898 	fotg210->qtd_pool = NULL;
1899 
1900 	dma_pool_destroy(fotg210->qh_pool);
1901 	fotg210->qh_pool = NULL;
1902 
1903 	dma_pool_destroy(fotg210->itd_pool);
1904 	fotg210->itd_pool = NULL;
1905 
1906 	if (fotg210->periodic)
1907 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1908 				fotg210->periodic_size * sizeof(u32),
1909 				fotg210->periodic, fotg210->periodic_dma);
1910 	fotg210->periodic = NULL;
1911 
1912 	/* shadow periodic table */
1913 	kfree(fotg210->pshadow);
1914 	fotg210->pshadow = NULL;
1915 }
1916 
1917 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1918 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1919 {
1920 	int i;
1921 
1922 	/* QTDs for control/bulk/intr transfers */
1923 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1924 			fotg210_to_hcd(fotg210)->self.controller,
1925 			sizeof(struct fotg210_qtd),
1926 			32 /* byte alignment (for hw parts) */,
1927 			4096 /* can't cross 4K */);
1928 	if (!fotg210->qtd_pool)
1929 		goto fail;
1930 
1931 	/* QHs for control/bulk/intr transfers */
1932 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1933 			fotg210_to_hcd(fotg210)->self.controller,
1934 			sizeof(struct fotg210_qh_hw),
1935 			32 /* byte alignment (for hw parts) */,
1936 			4096 /* can't cross 4K */);
1937 	if (!fotg210->qh_pool)
1938 		goto fail;
1939 
1940 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1941 	if (!fotg210->async)
1942 		goto fail;
1943 
1944 	/* ITD for high speed ISO transfers */
1945 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1946 			fotg210_to_hcd(fotg210)->self.controller,
1947 			sizeof(struct fotg210_itd),
1948 			64 /* byte alignment (for hw parts) */,
1949 			4096 /* can't cross 4K */);
1950 	if (!fotg210->itd_pool)
1951 		goto fail;
1952 
1953 	/* Hardware periodic table */
1954 	fotg210->periodic = (__le32 *)
1955 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1956 				fotg210->periodic_size * sizeof(__le32),
1957 				&fotg210->periodic_dma, 0);
1958 	if (fotg210->periodic == NULL)
1959 		goto fail;
1960 
1961 	for (i = 0; i < fotg210->periodic_size; i++)
1962 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1963 
1964 	/* software shadow of hardware table */
1965 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1966 			flags);
1967 	if (fotg210->pshadow != NULL)
1968 		return 0;
1969 
1970 fail:
1971 	fotg210_dbg(fotg210, "couldn't init memory\n");
1972 	fotg210_mem_cleanup(fotg210);
1973 	return -ENOMEM;
1974 }
1975 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1976  *
1977  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1978  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1979  * buffers needed for the larger number).  We use one QH per endpoint, queue
1980  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1981  *
1982  * ISO traffic uses "ISO TD" (itd) records, and (along with
1983  * interrupts) needs careful scheduling.  Performance improvements can be
1984  * an ongoing challenge.  That's in "ehci-sched.c".
1985  *
1986  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1987  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1988  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1989  * buffer low/full speed data so the host collects it at high speed.
1990  */
1991 
1992 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1993 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1994 		dma_addr_t buf, size_t len, int token, int maxpacket)
1995 {
1996 	int i, count;
1997 	u64 addr = buf;
1998 
1999 	/* one buffer entry per 4K ... first might be short or unaligned */
2000 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2001 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2002 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2003 	if (likely(len < count))		/* ... iff needed */
2004 		count = len;
2005 	else {
2006 		buf +=  0x1000;
2007 		buf &= ~0x0fff;
2008 
2009 		/* per-qtd limit: from 16K to 20K (best alignment) */
2010 		for (i = 1; count < len && i < 5; i++) {
2011 			addr = buf;
2012 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2013 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2014 					(u32)(addr >> 32));
2015 			buf += 0x1000;
2016 			if ((count + 0x1000) < len)
2017 				count += 0x1000;
2018 			else
2019 				count = len;
2020 		}
2021 
2022 		/* short packets may only terminate transfers */
2023 		if (count != len)
2024 			count -= (count % maxpacket);
2025 	}
2026 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2027 	qtd->length = count;
2028 
2029 	return count;
2030 }
2031 
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2032 static inline void qh_update(struct fotg210_hcd *fotg210,
2033 		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2034 {
2035 	struct fotg210_qh_hw *hw = qh->hw;
2036 
2037 	/* writes to an active overlay are unsafe */
2038 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2039 
2040 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2041 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2042 
2043 	/* Except for control endpoints, we make hardware maintain data
2044 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2045 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2046 	 * ever clear it.
2047 	 */
2048 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2049 		unsigned is_out, epnum;
2050 
2051 		is_out = qh->is_out;
2052 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2053 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2054 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2055 			usb_settoggle(qh->dev, epnum, is_out, 1);
2056 		}
2057 	}
2058 
2059 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2060 }
2061 
2062 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2063  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2064  * recovery (including urb dequeue) would need software changes to a QH...
2065  */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2066 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2067 {
2068 	struct fotg210_qtd *qtd;
2069 
2070 	if (list_empty(&qh->qtd_list))
2071 		qtd = qh->dummy;
2072 	else {
2073 		qtd = list_entry(qh->qtd_list.next,
2074 				struct fotg210_qtd, qtd_list);
2075 		/*
2076 		 * first qtd may already be partially processed.
2077 		 * If we come here during unlink, the QH overlay region
2078 		 * might have reference to the just unlinked qtd. The
2079 		 * qtd is updated in qh_completions(). Update the QH
2080 		 * overlay here.
2081 		 */
2082 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2083 			qh->hw->hw_qtd_next = qtd->hw_next;
2084 			qtd = NULL;
2085 		}
2086 	}
2087 
2088 	if (qtd)
2089 		qh_update(fotg210, qh, qtd);
2090 }
2091 
2092 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2093 
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2094 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2095 		struct usb_host_endpoint *ep)
2096 {
2097 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2098 	struct fotg210_qh *qh = ep->hcpriv;
2099 	unsigned long flags;
2100 
2101 	spin_lock_irqsave(&fotg210->lock, flags);
2102 	qh->clearing_tt = 0;
2103 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2104 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2105 		qh_link_async(fotg210, qh);
2106 	spin_unlock_irqrestore(&fotg210->lock, flags);
2107 }
2108 
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2109 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2110 		struct fotg210_qh *qh, struct urb *urb, u32 token)
2111 {
2112 
2113 	/* If an async split transaction gets an error or is unlinked,
2114 	 * the TT buffer may be left in an indeterminate state.  We
2115 	 * have to clear the TT buffer.
2116 	 *
2117 	 * Note: this routine is never called for Isochronous transfers.
2118 	 */
2119 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2120 		struct usb_device *tt = urb->dev->tt->hub;
2121 
2122 		dev_dbg(&tt->dev,
2123 				"clear tt buffer port %d, a%d ep%d t%08x\n",
2124 				urb->dev->ttport, urb->dev->devnum,
2125 				usb_pipeendpoint(urb->pipe), token);
2126 
2127 		if (urb->dev->tt->hub !=
2128 				fotg210_to_hcd(fotg210)->self.root_hub) {
2129 			if (usb_hub_clear_tt_buffer(urb) == 0)
2130 				qh->clearing_tt = 1;
2131 		}
2132 	}
2133 }
2134 
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2135 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2136 		size_t length, u32 token)
2137 {
2138 	int status = -EINPROGRESS;
2139 
2140 	/* count IN/OUT bytes, not SETUP (even short packets) */
2141 	if (likely(QTD_PID(token) != 2))
2142 		urb->actual_length += length - QTD_LENGTH(token);
2143 
2144 	/* don't modify error codes */
2145 	if (unlikely(urb->unlinked))
2146 		return status;
2147 
2148 	/* force cleanup after short read; not always an error */
2149 	if (unlikely(IS_SHORT_READ(token)))
2150 		status = -EREMOTEIO;
2151 
2152 	/* serious "can't proceed" faults reported by the hardware */
2153 	if (token & QTD_STS_HALT) {
2154 		if (token & QTD_STS_BABBLE) {
2155 			/* FIXME "must" disable babbling device's port too */
2156 			status = -EOVERFLOW;
2157 		/* CERR nonzero + halt --> stall */
2158 		} else if (QTD_CERR(token)) {
2159 			status = -EPIPE;
2160 
2161 		/* In theory, more than one of the following bits can be set
2162 		 * since they are sticky and the transaction is retried.
2163 		 * Which to test first is rather arbitrary.
2164 		 */
2165 		} else if (token & QTD_STS_MMF) {
2166 			/* fs/ls interrupt xfer missed the complete-split */
2167 			status = -EPROTO;
2168 		} else if (token & QTD_STS_DBE) {
2169 			status = (QTD_PID(token) == 1) /* IN ? */
2170 				? -ENOSR  /* hc couldn't read data */
2171 				: -ECOMM; /* hc couldn't write data */
2172 		} else if (token & QTD_STS_XACT) {
2173 			/* timeout, bad CRC, wrong PID, etc */
2174 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2175 					urb->dev->devpath,
2176 					usb_pipeendpoint(urb->pipe),
2177 					usb_pipein(urb->pipe) ? "in" : "out");
2178 			status = -EPROTO;
2179 		} else {	/* unknown */
2180 			status = -EPROTO;
2181 		}
2182 
2183 		fotg210_dbg(fotg210,
2184 				"dev%d ep%d%s qtd token %08x --> status %d\n",
2185 				usb_pipedevice(urb->pipe),
2186 				usb_pipeendpoint(urb->pipe),
2187 				usb_pipein(urb->pipe) ? "in" : "out",
2188 				token, status);
2189 	}
2190 
2191 	return status;
2192 }
2193 
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2194 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2195 		int status)
2196 __releases(fotg210->lock)
2197 __acquires(fotg210->lock)
2198 {
2199 	if (likely(urb->hcpriv != NULL)) {
2200 		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2201 
2202 		/* S-mask in a QH means it's an interrupt urb */
2203 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2204 
2205 			/* ... update hc-wide periodic stats (for usbfs) */
2206 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2207 		}
2208 	}
2209 
2210 	if (unlikely(urb->unlinked)) {
2211 		INCR(fotg210->stats.unlink);
2212 	} else {
2213 		/* report non-error and short read status as zero */
2214 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2215 			status = 0;
2216 		INCR(fotg210->stats.complete);
2217 	}
2218 
2219 #ifdef FOTG210_URB_TRACE
2220 	fotg210_dbg(fotg210,
2221 			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2222 			__func__, urb->dev->devpath, urb,
2223 			usb_pipeendpoint(urb->pipe),
2224 			usb_pipein(urb->pipe) ? "in" : "out",
2225 			status,
2226 			urb->actual_length, urb->transfer_buffer_length);
2227 #endif
2228 
2229 	/* complete() can reenter this HCD */
2230 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2231 	spin_unlock(&fotg210->lock);
2232 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2233 	spin_lock(&fotg210->lock);
2234 }
2235 
2236 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2237 
2238 /* Process and free completed qtds for a qh, returning URBs to drivers.
2239  * Chases up to qh->hw_current.  Returns number of completions called,
2240  * indicating how much "real" work we did.
2241  */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2242 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2243 		struct fotg210_qh *qh)
2244 {
2245 	struct fotg210_qtd *last, *end = qh->dummy;
2246 	struct fotg210_qtd *qtd, *tmp;
2247 	int last_status;
2248 	int stopped;
2249 	unsigned count = 0;
2250 	u8 state;
2251 	struct fotg210_qh_hw *hw = qh->hw;
2252 
2253 	if (unlikely(list_empty(&qh->qtd_list)))
2254 		return count;
2255 
2256 	/* completions (or tasks on other cpus) must never clobber HALT
2257 	 * till we've gone through and cleaned everything up, even when
2258 	 * they add urbs to this qh's queue or mark them for unlinking.
2259 	 *
2260 	 * NOTE:  unlinking expects to be done in queue order.
2261 	 *
2262 	 * It's a bug for qh->qh_state to be anything other than
2263 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2264 	 * scan_intr().
2265 	 */
2266 	state = qh->qh_state;
2267 	qh->qh_state = QH_STATE_COMPLETING;
2268 	stopped = (state == QH_STATE_IDLE);
2269 
2270 rescan:
2271 	last = NULL;
2272 	last_status = -EINPROGRESS;
2273 	qh->needs_rescan = 0;
2274 
2275 	/* remove de-activated QTDs from front of queue.
2276 	 * after faults (including short reads), cleanup this urb
2277 	 * then let the queue advance.
2278 	 * if queue is stopped, handles unlinks.
2279 	 */
2280 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2281 		struct urb *urb;
2282 		u32 token = 0;
2283 
2284 		urb = qtd->urb;
2285 
2286 		/* clean up any state from previous QTD ...*/
2287 		if (last) {
2288 			if (likely(last->urb != urb)) {
2289 				fotg210_urb_done(fotg210, last->urb,
2290 						last_status);
2291 				count++;
2292 				last_status = -EINPROGRESS;
2293 			}
2294 			fotg210_qtd_free(fotg210, last);
2295 			last = NULL;
2296 		}
2297 
2298 		/* ignore urbs submitted during completions we reported */
2299 		if (qtd == end)
2300 			break;
2301 
2302 		/* hardware copies qtd out of qh overlay */
2303 		rmb();
2304 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2305 
2306 		/* always clean up qtds the hc de-activated */
2307 retry_xacterr:
2308 		if ((token & QTD_STS_ACTIVE) == 0) {
2309 
2310 			/* Report Data Buffer Error: non-fatal but useful */
2311 			if (token & QTD_STS_DBE)
2312 				fotg210_dbg(fotg210,
2313 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2314 					urb, usb_endpoint_num(&urb->ep->desc),
2315 					usb_endpoint_dir_in(&urb->ep->desc)
2316 						? "in" : "out",
2317 					urb->transfer_buffer_length, qtd, qh);
2318 
2319 			/* on STALL, error, and short reads this urb must
2320 			 * complete and all its qtds must be recycled.
2321 			 */
2322 			if ((token & QTD_STS_HALT) != 0) {
2323 
2324 				/* retry transaction errors until we
2325 				 * reach the software xacterr limit
2326 				 */
2327 				if ((token & QTD_STS_XACT) &&
2328 						QTD_CERR(token) == 0 &&
2329 						++qh->xacterrs < QH_XACTERR_MAX &&
2330 						!urb->unlinked) {
2331 					fotg210_dbg(fotg210,
2332 						"detected XactErr len %zu/%zu retry %d\n",
2333 						qtd->length - QTD_LENGTH(token),
2334 						qtd->length,
2335 						qh->xacterrs);
2336 
2337 					/* reset the token in the qtd and the
2338 					 * qh overlay (which still contains
2339 					 * the qtd) so that we pick up from
2340 					 * where we left off
2341 					 */
2342 					token &= ~QTD_STS_HALT;
2343 					token |= QTD_STS_ACTIVE |
2344 						 (FOTG210_TUNE_CERR << 10);
2345 					qtd->hw_token = cpu_to_hc32(fotg210,
2346 							token);
2347 					wmb();
2348 					hw->hw_token = cpu_to_hc32(fotg210,
2349 							token);
2350 					goto retry_xacterr;
2351 				}
2352 				stopped = 1;
2353 
2354 			/* magic dummy for some short reads; qh won't advance.
2355 			 * that silicon quirk can kick in with this dummy too.
2356 			 *
2357 			 * other short reads won't stop the queue, including
2358 			 * control transfers (status stage handles that) or
2359 			 * most other single-qtd reads ... the queue stops if
2360 			 * URB_SHORT_NOT_OK was set so the driver submitting
2361 			 * the urbs could clean it up.
2362 			 */
2363 			} else if (IS_SHORT_READ(token) &&
2364 					!(qtd->hw_alt_next &
2365 					FOTG210_LIST_END(fotg210))) {
2366 				stopped = 1;
2367 			}
2368 
2369 		/* stop scanning when we reach qtds the hc is using */
2370 		} else if (likely(!stopped
2371 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2372 			break;
2373 
2374 		/* scan the whole queue for unlinks whenever it stops */
2375 		} else {
2376 			stopped = 1;
2377 
2378 			/* cancel everything if we halt, suspend, etc */
2379 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2380 				last_status = -ESHUTDOWN;
2381 
2382 			/* this qtd is active; skip it unless a previous qtd
2383 			 * for its urb faulted, or its urb was canceled.
2384 			 */
2385 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2386 				continue;
2387 
2388 			/* qh unlinked; token in overlay may be most current */
2389 			if (state == QH_STATE_IDLE &&
2390 					cpu_to_hc32(fotg210, qtd->qtd_dma)
2391 					== hw->hw_current) {
2392 				token = hc32_to_cpu(fotg210, hw->hw_token);
2393 
2394 				/* An unlink may leave an incomplete
2395 				 * async transaction in the TT buffer.
2396 				 * We have to clear it.
2397 				 */
2398 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2399 						token);
2400 			}
2401 		}
2402 
2403 		/* unless we already know the urb's status, collect qtd status
2404 		 * and update count of bytes transferred.  in common short read
2405 		 * cases with only one data qtd (including control transfers),
2406 		 * queue processing won't halt.  but with two or more qtds (for
2407 		 * example, with a 32 KB transfer), when the first qtd gets a
2408 		 * short read the second must be removed by hand.
2409 		 */
2410 		if (last_status == -EINPROGRESS) {
2411 			last_status = qtd_copy_status(fotg210, urb,
2412 					qtd->length, token);
2413 			if (last_status == -EREMOTEIO &&
2414 					(qtd->hw_alt_next &
2415 					FOTG210_LIST_END(fotg210)))
2416 				last_status = -EINPROGRESS;
2417 
2418 			/* As part of low/full-speed endpoint-halt processing
2419 			 * we must clear the TT buffer (11.17.5).
2420 			 */
2421 			if (unlikely(last_status != -EINPROGRESS &&
2422 					last_status != -EREMOTEIO)) {
2423 				/* The TT's in some hubs malfunction when they
2424 				 * receive this request following a STALL (they
2425 				 * stop sending isochronous packets).  Since a
2426 				 * STALL can't leave the TT buffer in a busy
2427 				 * state (if you believe Figures 11-48 - 11-51
2428 				 * in the USB 2.0 spec), we won't clear the TT
2429 				 * buffer in this case.  Strictly speaking this
2430 				 * is a violation of the spec.
2431 				 */
2432 				if (last_status != -EPIPE)
2433 					fotg210_clear_tt_buffer(fotg210, qh,
2434 							urb, token);
2435 			}
2436 		}
2437 
2438 		/* if we're removing something not at the queue head,
2439 		 * patch the hardware queue pointer.
2440 		 */
2441 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2442 			last = list_entry(qtd->qtd_list.prev,
2443 					struct fotg210_qtd, qtd_list);
2444 			last->hw_next = qtd->hw_next;
2445 		}
2446 
2447 		/* remove qtd; it's recycled after possible urb completion */
2448 		list_del(&qtd->qtd_list);
2449 		last = qtd;
2450 
2451 		/* reinit the xacterr counter for the next qtd */
2452 		qh->xacterrs = 0;
2453 	}
2454 
2455 	/* last urb's completion might still need calling */
2456 	if (likely(last != NULL)) {
2457 		fotg210_urb_done(fotg210, last->urb, last_status);
2458 		count++;
2459 		fotg210_qtd_free(fotg210, last);
2460 	}
2461 
2462 	/* Do we need to rescan for URBs dequeued during a giveback? */
2463 	if (unlikely(qh->needs_rescan)) {
2464 		/* If the QH is already unlinked, do the rescan now. */
2465 		if (state == QH_STATE_IDLE)
2466 			goto rescan;
2467 
2468 		/* Otherwise we have to wait until the QH is fully unlinked.
2469 		 * Our caller will start an unlink if qh->needs_rescan is
2470 		 * set.  But if an unlink has already started, nothing needs
2471 		 * to be done.
2472 		 */
2473 		if (state != QH_STATE_LINKED)
2474 			qh->needs_rescan = 0;
2475 	}
2476 
2477 	/* restore original state; caller must unlink or relink */
2478 	qh->qh_state = state;
2479 
2480 	/* be sure the hardware's done with the qh before refreshing
2481 	 * it after fault cleanup, or recovering from silicon wrongly
2482 	 * overlaying the dummy qtd (which reduces DMA chatter).
2483 	 */
2484 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2485 		switch (state) {
2486 		case QH_STATE_IDLE:
2487 			qh_refresh(fotg210, qh);
2488 			break;
2489 		case QH_STATE_LINKED:
2490 			/* We won't refresh a QH that's linked (after the HC
2491 			 * stopped the queue).  That avoids a race:
2492 			 *  - HC reads first part of QH;
2493 			 *  - CPU updates that first part and the token;
2494 			 *  - HC reads rest of that QH, including token
2495 			 * Result:  HC gets an inconsistent image, and then
2496 			 * DMAs to/from the wrong memory (corrupting it).
2497 			 *
2498 			 * That should be rare for interrupt transfers,
2499 			 * except maybe high bandwidth ...
2500 			 */
2501 
2502 			/* Tell the caller to start an unlink */
2503 			qh->needs_rescan = 1;
2504 			break;
2505 		/* otherwise, unlink already started */
2506 		}
2507 	}
2508 
2509 	return count;
2510 }
2511 
2512 /* reverse of qh_urb_transaction:  free a list of TDs.
2513  * used for cleanup after errors, before HC sees an URB's TDs.
2514  */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2515 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2516 		struct list_head *head)
2517 {
2518 	struct fotg210_qtd *qtd, *temp;
2519 
2520 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2521 		list_del(&qtd->qtd_list);
2522 		fotg210_qtd_free(fotg210, qtd);
2523 	}
2524 }
2525 
2526 /* create a list of filled qtds for this URB; won't link into qh.
2527  */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2528 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2529 		struct urb *urb, struct list_head *head, gfp_t flags)
2530 {
2531 	struct fotg210_qtd *qtd, *qtd_prev;
2532 	dma_addr_t buf;
2533 	int len, this_sg_len, maxpacket;
2534 	int is_input;
2535 	u32 token;
2536 	int i;
2537 	struct scatterlist *sg;
2538 
2539 	/*
2540 	 * URBs map to sequences of QTDs:  one logical transaction
2541 	 */
2542 	qtd = fotg210_qtd_alloc(fotg210, flags);
2543 	if (unlikely(!qtd))
2544 		return NULL;
2545 	list_add_tail(&qtd->qtd_list, head);
2546 	qtd->urb = urb;
2547 
2548 	token = QTD_STS_ACTIVE;
2549 	token |= (FOTG210_TUNE_CERR << 10);
2550 	/* for split transactions, SplitXState initialized to zero */
2551 
2552 	len = urb->transfer_buffer_length;
2553 	is_input = usb_pipein(urb->pipe);
2554 	if (usb_pipecontrol(urb->pipe)) {
2555 		/* SETUP pid */
2556 		qtd_fill(fotg210, qtd, urb->setup_dma,
2557 				sizeof(struct usb_ctrlrequest),
2558 				token | (2 /* "setup" */ << 8), 8);
2559 
2560 		/* ... and always at least one more pid */
2561 		token ^= QTD_TOGGLE;
2562 		qtd_prev = qtd;
2563 		qtd = fotg210_qtd_alloc(fotg210, flags);
2564 		if (unlikely(!qtd))
2565 			goto cleanup;
2566 		qtd->urb = urb;
2567 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2568 		list_add_tail(&qtd->qtd_list, head);
2569 
2570 		/* for zero length DATA stages, STATUS is always IN */
2571 		if (len == 0)
2572 			token |= (1 /* "in" */ << 8);
2573 	}
2574 
2575 	/*
2576 	 * data transfer stage:  buffer setup
2577 	 */
2578 	i = urb->num_mapped_sgs;
2579 	if (len > 0 && i > 0) {
2580 		sg = urb->sg;
2581 		buf = sg_dma_address(sg);
2582 
2583 		/* urb->transfer_buffer_length may be smaller than the
2584 		 * size of the scatterlist (or vice versa)
2585 		 */
2586 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2587 	} else {
2588 		sg = NULL;
2589 		buf = urb->transfer_dma;
2590 		this_sg_len = len;
2591 	}
2592 
2593 	if (is_input)
2594 		token |= (1 /* "in" */ << 8);
2595 	/* else it's already initted to "out" pid (0 << 8) */
2596 
2597 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2598 
2599 	/*
2600 	 * buffer gets wrapped in one or more qtds;
2601 	 * last one may be "short" (including zero len)
2602 	 * and may serve as a control status ack
2603 	 */
2604 	for (;;) {
2605 		int this_qtd_len;
2606 
2607 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2608 				maxpacket);
2609 		this_sg_len -= this_qtd_len;
2610 		len -= this_qtd_len;
2611 		buf += this_qtd_len;
2612 
2613 		/*
2614 		 * short reads advance to a "magic" dummy instead of the next
2615 		 * qtd ... that forces the queue to stop, for manual cleanup.
2616 		 * (this will usually be overridden later.)
2617 		 */
2618 		if (is_input)
2619 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2620 
2621 		/* qh makes control packets use qtd toggle; maybe switch it */
2622 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2623 			token ^= QTD_TOGGLE;
2624 
2625 		if (likely(this_sg_len <= 0)) {
2626 			if (--i <= 0 || len <= 0)
2627 				break;
2628 			sg = sg_next(sg);
2629 			buf = sg_dma_address(sg);
2630 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2631 		}
2632 
2633 		qtd_prev = qtd;
2634 		qtd = fotg210_qtd_alloc(fotg210, flags);
2635 		if (unlikely(!qtd))
2636 			goto cleanup;
2637 		qtd->urb = urb;
2638 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2639 		list_add_tail(&qtd->qtd_list, head);
2640 	}
2641 
2642 	/*
2643 	 * unless the caller requires manual cleanup after short reads,
2644 	 * have the alt_next mechanism keep the queue running after the
2645 	 * last data qtd (the only one, for control and most other cases).
2646 	 */
2647 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2648 			usb_pipecontrol(urb->pipe)))
2649 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2650 
2651 	/*
2652 	 * control requests may need a terminating data "status" ack;
2653 	 * other OUT ones may need a terminating short packet
2654 	 * (zero length).
2655 	 */
2656 	if (likely(urb->transfer_buffer_length != 0)) {
2657 		int one_more = 0;
2658 
2659 		if (usb_pipecontrol(urb->pipe)) {
2660 			one_more = 1;
2661 			token ^= 0x0100;	/* "in" <--> "out"  */
2662 			token |= QTD_TOGGLE;	/* force DATA1 */
2663 		} else if (usb_pipeout(urb->pipe)
2664 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2665 				&& !(urb->transfer_buffer_length % maxpacket)) {
2666 			one_more = 1;
2667 		}
2668 		if (one_more) {
2669 			qtd_prev = qtd;
2670 			qtd = fotg210_qtd_alloc(fotg210, flags);
2671 			if (unlikely(!qtd))
2672 				goto cleanup;
2673 			qtd->urb = urb;
2674 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2675 			list_add_tail(&qtd->qtd_list, head);
2676 
2677 			/* never any data in such packets */
2678 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2679 		}
2680 	}
2681 
2682 	/* by default, enable interrupt on urb completion */
2683 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2684 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2685 	return head;
2686 
2687 cleanup:
2688 	qtd_list_free(fotg210, urb, head);
2689 	return NULL;
2690 }
2691 
2692 /* Would be best to create all qh's from config descriptors,
2693  * when each interface/altsetting is established.  Unlink
2694  * any previous qh and cancel its urbs first; endpoints are
2695  * implicitly reset then (data toggle too).
2696  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2697 */
2698 
2699 
2700 /* Each QH holds a qtd list; a QH is used for everything except iso.
2701  *
2702  * For interrupt urbs, the scheduler must set the microframe scheduling
2703  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2704  * just one microframe in the s-mask.  For split interrupt transactions
2705  * there are additional complications: c-mask, maybe FSTNs.
2706  */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2707 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2708 		gfp_t flags)
2709 {
2710 	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2711 	struct usb_host_endpoint *ep;
2712 	u32 info1 = 0, info2 = 0;
2713 	int is_input, type;
2714 	int maxp = 0;
2715 	int mult;
2716 	struct usb_tt *tt = urb->dev->tt;
2717 	struct fotg210_qh_hw *hw;
2718 
2719 	if (!qh)
2720 		return qh;
2721 
2722 	/*
2723 	 * init endpoint/device data for this QH
2724 	 */
2725 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2726 	info1 |= usb_pipedevice(urb->pipe) << 0;
2727 
2728 	is_input = usb_pipein(urb->pipe);
2729 	type = usb_pipetype(urb->pipe);
2730 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2731 	maxp = usb_endpoint_maxp(&ep->desc);
2732 	mult = usb_endpoint_maxp_mult(&ep->desc);
2733 
2734 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2735 	 * acts like up to 3KB, but is built from smaller packets.
2736 	 */
2737 	if (maxp > 1024) {
2738 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2739 		goto done;
2740 	}
2741 
2742 	/* Compute interrupt scheduling parameters just once, and save.
2743 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2744 	 * - split transactions need a second CSPLIT uframe; same question
2745 	 * - splits also need a schedule gap (for full/low speed I/O)
2746 	 * - qh has a polling interval
2747 	 *
2748 	 * For control/bulk requests, the HC or TT handles these.
2749 	 */
2750 	if (type == PIPE_INTERRUPT) {
2751 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2752 				is_input, 0, mult * maxp));
2753 		qh->start = NO_FRAME;
2754 
2755 		if (urb->dev->speed == USB_SPEED_HIGH) {
2756 			qh->c_usecs = 0;
2757 			qh->gap_uf = 0;
2758 
2759 			qh->period = urb->interval >> 3;
2760 			if (qh->period == 0 && urb->interval != 1) {
2761 				/* NOTE interval 2 or 4 uframes could work.
2762 				 * But interval 1 scheduling is simpler, and
2763 				 * includes high bandwidth.
2764 				 */
2765 				urb->interval = 1;
2766 			} else if (qh->period > fotg210->periodic_size) {
2767 				qh->period = fotg210->periodic_size;
2768 				urb->interval = qh->period << 3;
2769 			}
2770 		} else {
2771 			int think_time;
2772 
2773 			/* gap is f(FS/LS transfer times) */
2774 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2775 					is_input, 0, maxp) / (125 * 1000);
2776 
2777 			/* FIXME this just approximates SPLIT/CSPLIT times */
2778 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2779 				qh->c_usecs = qh->usecs + HS_USECS(0);
2780 				qh->usecs = HS_USECS(1);
2781 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2782 				qh->usecs += HS_USECS(1);
2783 				qh->c_usecs = HS_USECS(0);
2784 			}
2785 
2786 			think_time = tt ? tt->think_time : 0;
2787 			qh->tt_usecs = NS_TO_US(think_time +
2788 					usb_calc_bus_time(urb->dev->speed,
2789 					is_input, 0, maxp));
2790 			qh->period = urb->interval;
2791 			if (qh->period > fotg210->periodic_size) {
2792 				qh->period = fotg210->periodic_size;
2793 				urb->interval = qh->period;
2794 			}
2795 		}
2796 	}
2797 
2798 	/* support for tt scheduling, and access to toggles */
2799 	qh->dev = urb->dev;
2800 
2801 	/* using TT? */
2802 	switch (urb->dev->speed) {
2803 	case USB_SPEED_LOW:
2804 		info1 |= QH_LOW_SPEED;
2805 		fallthrough;
2806 
2807 	case USB_SPEED_FULL:
2808 		/* EPS 0 means "full" */
2809 		if (type != PIPE_INTERRUPT)
2810 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2811 		if (type == PIPE_CONTROL) {
2812 			info1 |= QH_CONTROL_EP;		/* for TT */
2813 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2814 		}
2815 		info1 |= maxp << 16;
2816 
2817 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2818 
2819 		/* Some Freescale processors have an erratum in which the
2820 		 * port number in the queue head was 0..N-1 instead of 1..N.
2821 		 */
2822 		if (fotg210_has_fsl_portno_bug(fotg210))
2823 			info2 |= (urb->dev->ttport-1) << 23;
2824 		else
2825 			info2 |= urb->dev->ttport << 23;
2826 
2827 		/* set the address of the TT; for TDI's integrated
2828 		 * root hub tt, leave it zeroed.
2829 		 */
2830 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2831 			info2 |= tt->hub->devnum << 16;
2832 
2833 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2834 
2835 		break;
2836 
2837 	case USB_SPEED_HIGH:		/* no TT involved */
2838 		info1 |= QH_HIGH_SPEED;
2839 		if (type == PIPE_CONTROL) {
2840 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2841 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2842 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2843 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2844 		} else if (type == PIPE_BULK) {
2845 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2846 			/* The USB spec says that high speed bulk endpoints
2847 			 * always use 512 byte maxpacket.  But some device
2848 			 * vendors decided to ignore that, and MSFT is happy
2849 			 * to help them do so.  So now people expect to use
2850 			 * such nonconformant devices with Linux too; sigh.
2851 			 */
2852 			info1 |= maxp << 16;
2853 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2854 		} else {		/* PIPE_INTERRUPT */
2855 			info1 |= maxp << 16;
2856 			info2 |= mult << 30;
2857 		}
2858 		break;
2859 	default:
2860 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2861 				urb->dev->speed);
2862 done:
2863 		qh_destroy(fotg210, qh);
2864 		return NULL;
2865 	}
2866 
2867 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2868 
2869 	/* init as live, toggle clear, advance to dummy */
2870 	qh->qh_state = QH_STATE_IDLE;
2871 	hw = qh->hw;
2872 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2873 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2874 	qh->is_out = !is_input;
2875 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2876 	qh_refresh(fotg210, qh);
2877 	return qh;
2878 }
2879 
enable_async(struct fotg210_hcd * fotg210)2880 static void enable_async(struct fotg210_hcd *fotg210)
2881 {
2882 	if (fotg210->async_count++)
2883 		return;
2884 
2885 	/* Stop waiting to turn off the async schedule */
2886 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2887 
2888 	/* Don't start the schedule until ASS is 0 */
2889 	fotg210_poll_ASS(fotg210);
2890 	turn_on_io_watchdog(fotg210);
2891 }
2892 
disable_async(struct fotg210_hcd * fotg210)2893 static void disable_async(struct fotg210_hcd *fotg210)
2894 {
2895 	if (--fotg210->async_count)
2896 		return;
2897 
2898 	/* The async schedule and async_unlink list are supposed to be empty */
2899 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2900 
2901 	/* Don't turn off the schedule until ASS is 1 */
2902 	fotg210_poll_ASS(fotg210);
2903 }
2904 
2905 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2906 
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2907 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2908 {
2909 	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2910 	struct fotg210_qh *head;
2911 
2912 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2913 	if (unlikely(qh->clearing_tt))
2914 		return;
2915 
2916 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2917 
2918 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2919 	qh_refresh(fotg210, qh);
2920 
2921 	/* splice right after start */
2922 	head = fotg210->async;
2923 	qh->qh_next = head->qh_next;
2924 	qh->hw->hw_next = head->hw->hw_next;
2925 	wmb();
2926 
2927 	head->qh_next.qh = qh;
2928 	head->hw->hw_next = dma;
2929 
2930 	qh->xacterrs = 0;
2931 	qh->qh_state = QH_STATE_LINKED;
2932 	/* qtd completions reported later by interrupt */
2933 
2934 	enable_async(fotg210);
2935 }
2936 
2937 /* For control/bulk/interrupt, return QH with these TDs appended.
2938  * Allocates and initializes the QH if necessary.
2939  * Returns null if it can't allocate a QH it needs to.
2940  * If the QH has TDs (urbs) already, that's great.
2941  */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2942 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2943 		struct urb *urb, struct list_head *qtd_list,
2944 		int epnum, void **ptr)
2945 {
2946 	struct fotg210_qh *qh = NULL;
2947 	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2948 
2949 	qh = (struct fotg210_qh *) *ptr;
2950 	if (unlikely(qh == NULL)) {
2951 		/* can't sleep here, we have fotg210->lock... */
2952 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2953 		*ptr = qh;
2954 	}
2955 	if (likely(qh != NULL)) {
2956 		struct fotg210_qtd *qtd;
2957 
2958 		if (unlikely(list_empty(qtd_list)))
2959 			qtd = NULL;
2960 		else
2961 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2962 					qtd_list);
2963 
2964 		/* control qh may need patching ... */
2965 		if (unlikely(epnum == 0)) {
2966 			/* usb_reset_device() briefly reverts to address 0 */
2967 			if (usb_pipedevice(urb->pipe) == 0)
2968 				qh->hw->hw_info1 &= ~qh_addr_mask;
2969 		}
2970 
2971 		/* just one way to queue requests: swap with the dummy qtd.
2972 		 * only hc or qh_refresh() ever modify the overlay.
2973 		 */
2974 		if (likely(qtd != NULL)) {
2975 			struct fotg210_qtd *dummy;
2976 			dma_addr_t dma;
2977 			__hc32 token;
2978 
2979 			/* to avoid racing the HC, use the dummy td instead of
2980 			 * the first td of our list (becomes new dummy).  both
2981 			 * tds stay deactivated until we're done, when the
2982 			 * HC is allowed to fetch the old dummy (4.10.2).
2983 			 */
2984 			token = qtd->hw_token;
2985 			qtd->hw_token = HALT_BIT(fotg210);
2986 
2987 			dummy = qh->dummy;
2988 
2989 			dma = dummy->qtd_dma;
2990 			*dummy = *qtd;
2991 			dummy->qtd_dma = dma;
2992 
2993 			list_del(&qtd->qtd_list);
2994 			list_add(&dummy->qtd_list, qtd_list);
2995 			list_splice_tail(qtd_list, &qh->qtd_list);
2996 
2997 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2998 			qh->dummy = qtd;
2999 
3000 			/* hc must see the new dummy at list end */
3001 			dma = qtd->qtd_dma;
3002 			qtd = list_entry(qh->qtd_list.prev,
3003 					struct fotg210_qtd, qtd_list);
3004 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3005 
3006 			/* let the hc process these next qtds */
3007 			wmb();
3008 			dummy->hw_token = token;
3009 
3010 			urb->hcpriv = qh;
3011 		}
3012 	}
3013 	return qh;
3014 }
3015 
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3016 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3017 		struct list_head *qtd_list, gfp_t mem_flags)
3018 {
3019 	int epnum;
3020 	unsigned long flags;
3021 	struct fotg210_qh *qh = NULL;
3022 	int rc;
3023 
3024 	epnum = urb->ep->desc.bEndpointAddress;
3025 
3026 #ifdef FOTG210_URB_TRACE
3027 	{
3028 		struct fotg210_qtd *qtd;
3029 
3030 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3031 		fotg210_dbg(fotg210,
3032 				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3033 				__func__, urb->dev->devpath, urb,
3034 				epnum & 0x0f, (epnum & USB_DIR_IN)
3035 					? "in" : "out",
3036 				urb->transfer_buffer_length,
3037 				qtd, urb->ep->hcpriv);
3038 	}
3039 #endif
3040 
3041 	spin_lock_irqsave(&fotg210->lock, flags);
3042 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3043 		rc = -ESHUTDOWN;
3044 		goto done;
3045 	}
3046 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3047 	if (unlikely(rc))
3048 		goto done;
3049 
3050 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3051 	if (unlikely(qh == NULL)) {
3052 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3053 		rc = -ENOMEM;
3054 		goto done;
3055 	}
3056 
3057 	/* Control/bulk operations through TTs don't need scheduling,
3058 	 * the HC and TT handle it when the TT has a buffer ready.
3059 	 */
3060 	if (likely(qh->qh_state == QH_STATE_IDLE))
3061 		qh_link_async(fotg210, qh);
3062 done:
3063 	spin_unlock_irqrestore(&fotg210->lock, flags);
3064 	if (unlikely(qh == NULL))
3065 		qtd_list_free(fotg210, urb, qtd_list);
3066 	return rc;
3067 }
3068 
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3069 static void single_unlink_async(struct fotg210_hcd *fotg210,
3070 		struct fotg210_qh *qh)
3071 {
3072 	struct fotg210_qh *prev;
3073 
3074 	/* Add to the end of the list of QHs waiting for the next IAAD */
3075 	qh->qh_state = QH_STATE_UNLINK;
3076 	if (fotg210->async_unlink)
3077 		fotg210->async_unlink_last->unlink_next = qh;
3078 	else
3079 		fotg210->async_unlink = qh;
3080 	fotg210->async_unlink_last = qh;
3081 
3082 	/* Unlink it from the schedule */
3083 	prev = fotg210->async;
3084 	while (prev->qh_next.qh != qh)
3085 		prev = prev->qh_next.qh;
3086 
3087 	prev->hw->hw_next = qh->hw->hw_next;
3088 	prev->qh_next = qh->qh_next;
3089 	if (fotg210->qh_scan_next == qh)
3090 		fotg210->qh_scan_next = qh->qh_next.qh;
3091 }
3092 
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3093 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3094 {
3095 	/*
3096 	 * Do nothing if an IAA cycle is already running or
3097 	 * if one will be started shortly.
3098 	 */
3099 	if (fotg210->async_iaa || fotg210->async_unlinking)
3100 		return;
3101 
3102 	/* Do all the waiting QHs at once */
3103 	fotg210->async_iaa = fotg210->async_unlink;
3104 	fotg210->async_unlink = NULL;
3105 
3106 	/* If the controller isn't running, we don't have to wait for it */
3107 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3108 		if (!nested)		/* Avoid recursion */
3109 			end_unlink_async(fotg210);
3110 
3111 	/* Otherwise start a new IAA cycle */
3112 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3113 		/* Make sure the unlinks are all visible to the hardware */
3114 		wmb();
3115 
3116 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3117 				&fotg210->regs->command);
3118 		fotg210_readl(fotg210, &fotg210->regs->command);
3119 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3120 				true);
3121 	}
3122 }
3123 
3124 /* the async qh for the qtds being unlinked are now gone from the HC */
3125 
end_unlink_async(struct fotg210_hcd * fotg210)3126 static void end_unlink_async(struct fotg210_hcd *fotg210)
3127 {
3128 	struct fotg210_qh *qh;
3129 
3130 	/* Process the idle QHs */
3131 restart:
3132 	fotg210->async_unlinking = true;
3133 	while (fotg210->async_iaa) {
3134 		qh = fotg210->async_iaa;
3135 		fotg210->async_iaa = qh->unlink_next;
3136 		qh->unlink_next = NULL;
3137 
3138 		qh->qh_state = QH_STATE_IDLE;
3139 		qh->qh_next.qh = NULL;
3140 
3141 		qh_completions(fotg210, qh);
3142 		if (!list_empty(&qh->qtd_list) &&
3143 				fotg210->rh_state == FOTG210_RH_RUNNING)
3144 			qh_link_async(fotg210, qh);
3145 		disable_async(fotg210);
3146 	}
3147 	fotg210->async_unlinking = false;
3148 
3149 	/* Start a new IAA cycle if any QHs are waiting for it */
3150 	if (fotg210->async_unlink) {
3151 		start_iaa_cycle(fotg210, true);
3152 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3153 			goto restart;
3154 	}
3155 }
3156 
unlink_empty_async(struct fotg210_hcd * fotg210)3157 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3158 {
3159 	struct fotg210_qh *qh, *next;
3160 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3161 	bool check_unlinks_later = false;
3162 
3163 	/* Unlink all the async QHs that have been empty for a timer cycle */
3164 	next = fotg210->async->qh_next.qh;
3165 	while (next) {
3166 		qh = next;
3167 		next = qh->qh_next.qh;
3168 
3169 		if (list_empty(&qh->qtd_list) &&
3170 				qh->qh_state == QH_STATE_LINKED) {
3171 			if (!stopped && qh->unlink_cycle ==
3172 					fotg210->async_unlink_cycle)
3173 				check_unlinks_later = true;
3174 			else
3175 				single_unlink_async(fotg210, qh);
3176 		}
3177 	}
3178 
3179 	/* Start a new IAA cycle if any QHs are waiting for it */
3180 	if (fotg210->async_unlink)
3181 		start_iaa_cycle(fotg210, false);
3182 
3183 	/* QHs that haven't been empty for long enough will be handled later */
3184 	if (check_unlinks_later) {
3185 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3186 				true);
3187 		++fotg210->async_unlink_cycle;
3188 	}
3189 }
3190 
3191 /* makes sure the async qh will become idle */
3192 /* caller must own fotg210->lock */
3193 
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3194 static void start_unlink_async(struct fotg210_hcd *fotg210,
3195 		struct fotg210_qh *qh)
3196 {
3197 	/*
3198 	 * If the QH isn't linked then there's nothing we can do
3199 	 * unless we were called during a giveback, in which case
3200 	 * qh_completions() has to deal with it.
3201 	 */
3202 	if (qh->qh_state != QH_STATE_LINKED) {
3203 		if (qh->qh_state == QH_STATE_COMPLETING)
3204 			qh->needs_rescan = 1;
3205 		return;
3206 	}
3207 
3208 	single_unlink_async(fotg210, qh);
3209 	start_iaa_cycle(fotg210, false);
3210 }
3211 
scan_async(struct fotg210_hcd * fotg210)3212 static void scan_async(struct fotg210_hcd *fotg210)
3213 {
3214 	struct fotg210_qh *qh;
3215 	bool check_unlinks_later = false;
3216 
3217 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3218 	while (fotg210->qh_scan_next) {
3219 		qh = fotg210->qh_scan_next;
3220 		fotg210->qh_scan_next = qh->qh_next.qh;
3221 rescan:
3222 		/* clean any finished work for this qh */
3223 		if (!list_empty(&qh->qtd_list)) {
3224 			int temp;
3225 
3226 			/*
3227 			 * Unlinks could happen here; completion reporting
3228 			 * drops the lock.  That's why fotg210->qh_scan_next
3229 			 * always holds the next qh to scan; if the next qh
3230 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3231 			 * in single_unlink_async().
3232 			 */
3233 			temp = qh_completions(fotg210, qh);
3234 			if (qh->needs_rescan) {
3235 				start_unlink_async(fotg210, qh);
3236 			} else if (list_empty(&qh->qtd_list)
3237 					&& qh->qh_state == QH_STATE_LINKED) {
3238 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3239 				check_unlinks_later = true;
3240 			} else if (temp != 0)
3241 				goto rescan;
3242 		}
3243 	}
3244 
3245 	/*
3246 	 * Unlink empty entries, reducing DMA usage as well
3247 	 * as HCD schedule-scanning costs.  Delay for any qh
3248 	 * we just scanned, there's a not-unusual case that it
3249 	 * doesn't stay idle for long.
3250 	 */
3251 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3252 			!(fotg210->enabled_hrtimer_events &
3253 			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3254 		fotg210_enable_event(fotg210,
3255 				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3256 		++fotg210->async_unlink_cycle;
3257 	}
3258 }
3259 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3260  * These are called "periodic" transactions in the EHCI spec.
3261  *
3262  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3263  * with the "asynchronous" transaction support (control/bulk transfers).
3264  * The only real difference is in how interrupt transfers are scheduled.
3265  *
3266  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3267  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3268  * pre-calculated schedule data to make appending to the queue be quick.
3269  */
3270 static int fotg210_get_frame(struct usb_hcd *hcd);
3271 
3272 /* periodic_next_shadow - return "next" pointer on shadow list
3273  * @periodic: host pointer to qh/itd
3274  * @tag: hardware tag for type of this record
3275  */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3276 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3277 		union fotg210_shadow *periodic, __hc32 tag)
3278 {
3279 	switch (hc32_to_cpu(fotg210, tag)) {
3280 	case Q_TYPE_QH:
3281 		return &periodic->qh->qh_next;
3282 	case Q_TYPE_FSTN:
3283 		return &periodic->fstn->fstn_next;
3284 	default:
3285 		return &periodic->itd->itd_next;
3286 	}
3287 }
3288 
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3289 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3290 		union fotg210_shadow *periodic, __hc32 tag)
3291 {
3292 	switch (hc32_to_cpu(fotg210, tag)) {
3293 	/* our fotg210_shadow.qh is actually software part */
3294 	case Q_TYPE_QH:
3295 		return &periodic->qh->hw->hw_next;
3296 	/* others are hw parts */
3297 	default:
3298 		return periodic->hw_next;
3299 	}
3300 }
3301 
3302 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3303 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3304 		void *ptr)
3305 {
3306 	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3307 	__hc32 *hw_p = &fotg210->periodic[frame];
3308 	union fotg210_shadow here = *prev_p;
3309 
3310 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3311 	while (here.ptr && here.ptr != ptr) {
3312 		prev_p = periodic_next_shadow(fotg210, prev_p,
3313 				Q_NEXT_TYPE(fotg210, *hw_p));
3314 		hw_p = shadow_next_periodic(fotg210, &here,
3315 				Q_NEXT_TYPE(fotg210, *hw_p));
3316 		here = *prev_p;
3317 	}
3318 	/* an interrupt entry (at list end) could have been shared */
3319 	if (!here.ptr)
3320 		return;
3321 
3322 	/* update shadow and hardware lists ... the old "next" pointers
3323 	 * from ptr may still be in use, the caller updates them.
3324 	 */
3325 	*prev_p = *periodic_next_shadow(fotg210, &here,
3326 			Q_NEXT_TYPE(fotg210, *hw_p));
3327 
3328 	*hw_p = *shadow_next_periodic(fotg210, &here,
3329 			Q_NEXT_TYPE(fotg210, *hw_p));
3330 }
3331 
3332 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3333 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3334 		unsigned frame, unsigned uframe)
3335 {
3336 	__hc32 *hw_p = &fotg210->periodic[frame];
3337 	union fotg210_shadow *q = &fotg210->pshadow[frame];
3338 	unsigned usecs = 0;
3339 	struct fotg210_qh_hw *hw;
3340 
3341 	while (q->ptr) {
3342 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3343 		case Q_TYPE_QH:
3344 			hw = q->qh->hw;
3345 			/* is it in the S-mask? */
3346 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3347 				usecs += q->qh->usecs;
3348 			/* ... or C-mask? */
3349 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3350 					1 << (8 + uframe)))
3351 				usecs += q->qh->c_usecs;
3352 			hw_p = &hw->hw_next;
3353 			q = &q->qh->qh_next;
3354 			break;
3355 		/* case Q_TYPE_FSTN: */
3356 		default:
3357 			/* for "save place" FSTNs, count the relevant INTR
3358 			 * bandwidth from the previous frame
3359 			 */
3360 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3361 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3362 
3363 			hw_p = &q->fstn->hw_next;
3364 			q = &q->fstn->fstn_next;
3365 			break;
3366 		case Q_TYPE_ITD:
3367 			if (q->itd->hw_transaction[uframe])
3368 				usecs += q->itd->stream->usecs;
3369 			hw_p = &q->itd->hw_next;
3370 			q = &q->itd->itd_next;
3371 			break;
3372 		}
3373 	}
3374 	if (usecs > fotg210->uframe_periodic_max)
3375 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3376 				frame * 8 + uframe, usecs);
3377 	return usecs;
3378 }
3379 
same_tt(struct usb_device * dev1,struct usb_device * dev2)3380 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3381 {
3382 	if (!dev1->tt || !dev2->tt)
3383 		return 0;
3384 	if (dev1->tt != dev2->tt)
3385 		return 0;
3386 	if (dev1->tt->multi)
3387 		return dev1->ttport == dev2->ttport;
3388 	else
3389 		return 1;
3390 }
3391 
3392 /* return true iff the device's transaction translator is available
3393  * for a periodic transfer starting at the specified frame, using
3394  * all the uframes in the mask.
3395  */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3396 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3397 		struct usb_device *dev, unsigned frame, u32 uf_mask)
3398 {
3399 	if (period == 0)	/* error */
3400 		return 0;
3401 
3402 	/* note bandwidth wastage:  split never follows csplit
3403 	 * (different dev or endpoint) until the next uframe.
3404 	 * calling convention doesn't make that distinction.
3405 	 */
3406 	for (; frame < fotg210->periodic_size; frame += period) {
3407 		union fotg210_shadow here;
3408 		__hc32 type;
3409 		struct fotg210_qh_hw *hw;
3410 
3411 		here = fotg210->pshadow[frame];
3412 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3413 		while (here.ptr) {
3414 			switch (hc32_to_cpu(fotg210, type)) {
3415 			case Q_TYPE_ITD:
3416 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3417 				here = here.itd->itd_next;
3418 				continue;
3419 			case Q_TYPE_QH:
3420 				hw = here.qh->hw;
3421 				if (same_tt(dev, here.qh->dev)) {
3422 					u32 mask;
3423 
3424 					mask = hc32_to_cpu(fotg210,
3425 							hw->hw_info2);
3426 					/* "knows" no gap is needed */
3427 					mask |= mask >> 8;
3428 					if (mask & uf_mask)
3429 						break;
3430 				}
3431 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3432 				here = here.qh->qh_next;
3433 				continue;
3434 			/* case Q_TYPE_FSTN: */
3435 			default:
3436 				fotg210_dbg(fotg210,
3437 						"periodic frame %d bogus type %d\n",
3438 						frame, type);
3439 			}
3440 
3441 			/* collision or error */
3442 			return 0;
3443 		}
3444 	}
3445 
3446 	/* no collision */
3447 	return 1;
3448 }
3449 
enable_periodic(struct fotg210_hcd * fotg210)3450 static void enable_periodic(struct fotg210_hcd *fotg210)
3451 {
3452 	if (fotg210->periodic_count++)
3453 		return;
3454 
3455 	/* Stop waiting to turn off the periodic schedule */
3456 	fotg210->enabled_hrtimer_events &=
3457 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3458 
3459 	/* Don't start the schedule until PSS is 0 */
3460 	fotg210_poll_PSS(fotg210);
3461 	turn_on_io_watchdog(fotg210);
3462 }
3463 
disable_periodic(struct fotg210_hcd * fotg210)3464 static void disable_periodic(struct fotg210_hcd *fotg210)
3465 {
3466 	if (--fotg210->periodic_count)
3467 		return;
3468 
3469 	/* Don't turn off the schedule until PSS is 1 */
3470 	fotg210_poll_PSS(fotg210);
3471 }
3472 
3473 /* periodic schedule slots have iso tds (normal or split) first, then a
3474  * sparse tree for active interrupt transfers.
3475  *
3476  * this just links in a qh; caller guarantees uframe masks are set right.
3477  * no FSTN support (yet; fotg210 0.96+)
3478  */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3479 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3480 {
3481 	unsigned i;
3482 	unsigned period = qh->period;
3483 
3484 	dev_dbg(&qh->dev->dev,
3485 			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3486 			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3487 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3488 			qh->c_usecs);
3489 
3490 	/* high bandwidth, or otherwise every microframe */
3491 	if (period == 0)
3492 		period = 1;
3493 
3494 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3495 		union fotg210_shadow *prev = &fotg210->pshadow[i];
3496 		__hc32 *hw_p = &fotg210->periodic[i];
3497 		union fotg210_shadow here = *prev;
3498 		__hc32 type = 0;
3499 
3500 		/* skip the iso nodes at list head */
3501 		while (here.ptr) {
3502 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3503 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3504 				break;
3505 			prev = periodic_next_shadow(fotg210, prev, type);
3506 			hw_p = shadow_next_periodic(fotg210, &here, type);
3507 			here = *prev;
3508 		}
3509 
3510 		/* sorting each branch by period (slow-->fast)
3511 		 * enables sharing interior tree nodes
3512 		 */
3513 		while (here.ptr && qh != here.qh) {
3514 			if (qh->period > here.qh->period)
3515 				break;
3516 			prev = &here.qh->qh_next;
3517 			hw_p = &here.qh->hw->hw_next;
3518 			here = *prev;
3519 		}
3520 		/* link in this qh, unless some earlier pass did that */
3521 		if (qh != here.qh) {
3522 			qh->qh_next = here;
3523 			if (here.qh)
3524 				qh->hw->hw_next = *hw_p;
3525 			wmb();
3526 			prev->qh = qh;
3527 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3528 		}
3529 	}
3530 	qh->qh_state = QH_STATE_LINKED;
3531 	qh->xacterrs = 0;
3532 
3533 	/* update per-qh bandwidth for usbfs */
3534 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3535 		? ((qh->usecs + qh->c_usecs) / qh->period)
3536 		: (qh->usecs * 8);
3537 
3538 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3539 
3540 	/* maybe enable periodic schedule processing */
3541 	++fotg210->intr_count;
3542 	enable_periodic(fotg210);
3543 }
3544 
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3545 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3546 		struct fotg210_qh *qh)
3547 {
3548 	unsigned i;
3549 	unsigned period;
3550 
3551 	/*
3552 	 * If qh is for a low/full-speed device, simply unlinking it
3553 	 * could interfere with an ongoing split transaction.  To unlink
3554 	 * it safely would require setting the QH_INACTIVATE bit and
3555 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3556 	 *
3557 	 * We won't bother with any of this.  Instead, we assume that the
3558 	 * only reason for unlinking an interrupt QH while the current URB
3559 	 * is still active is to dequeue all the URBs (flush the whole
3560 	 * endpoint queue).
3561 	 *
3562 	 * If rebalancing the periodic schedule is ever implemented, this
3563 	 * approach will no longer be valid.
3564 	 */
3565 
3566 	/* high bandwidth, or otherwise part of every microframe */
3567 	period = qh->period;
3568 	if (!period)
3569 		period = 1;
3570 
3571 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3572 		periodic_unlink(fotg210, i, qh);
3573 
3574 	/* update per-qh bandwidth for usbfs */
3575 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3576 		? ((qh->usecs + qh->c_usecs) / qh->period)
3577 		: (qh->usecs * 8);
3578 
3579 	dev_dbg(&qh->dev->dev,
3580 			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3581 			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3582 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3583 			qh->c_usecs);
3584 
3585 	/* qh->qh_next still "live" to HC */
3586 	qh->qh_state = QH_STATE_UNLINK;
3587 	qh->qh_next.ptr = NULL;
3588 
3589 	if (fotg210->qh_scan_next == qh)
3590 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3591 				struct fotg210_qh, intr_node);
3592 	list_del(&qh->intr_node);
3593 }
3594 
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3595 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3596 		struct fotg210_qh *qh)
3597 {
3598 	/* If the QH isn't linked then there's nothing we can do
3599 	 * unless we were called during a giveback, in which case
3600 	 * qh_completions() has to deal with it.
3601 	 */
3602 	if (qh->qh_state != QH_STATE_LINKED) {
3603 		if (qh->qh_state == QH_STATE_COMPLETING)
3604 			qh->needs_rescan = 1;
3605 		return;
3606 	}
3607 
3608 	qh_unlink_periodic(fotg210, qh);
3609 
3610 	/* Make sure the unlinks are visible before starting the timer */
3611 	wmb();
3612 
3613 	/*
3614 	 * The EHCI spec doesn't say how long it takes the controller to
3615 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3616 	 * 9 uframes; presumably that will be long enough.
3617 	 */
3618 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3619 
3620 	/* New entries go at the end of the intr_unlink list */
3621 	if (fotg210->intr_unlink)
3622 		fotg210->intr_unlink_last->unlink_next = qh;
3623 	else
3624 		fotg210->intr_unlink = qh;
3625 	fotg210->intr_unlink_last = qh;
3626 
3627 	if (fotg210->intr_unlinking)
3628 		;	/* Avoid recursive calls */
3629 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3630 		fotg210_handle_intr_unlinks(fotg210);
3631 	else if (fotg210->intr_unlink == qh) {
3632 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3633 				true);
3634 		++fotg210->intr_unlink_cycle;
3635 	}
3636 }
3637 
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3638 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3639 {
3640 	struct fotg210_qh_hw *hw = qh->hw;
3641 	int rc;
3642 
3643 	qh->qh_state = QH_STATE_IDLE;
3644 	hw->hw_next = FOTG210_LIST_END(fotg210);
3645 
3646 	qh_completions(fotg210, qh);
3647 
3648 	/* reschedule QH iff another request is queued */
3649 	if (!list_empty(&qh->qtd_list) &&
3650 			fotg210->rh_state == FOTG210_RH_RUNNING) {
3651 		rc = qh_schedule(fotg210, qh);
3652 
3653 		/* An error here likely indicates handshake failure
3654 		 * or no space left in the schedule.  Neither fault
3655 		 * should happen often ...
3656 		 *
3657 		 * FIXME kill the now-dysfunctional queued urbs
3658 		 */
3659 		if (rc != 0)
3660 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3661 					qh, rc);
3662 	}
3663 
3664 	/* maybe turn off periodic schedule */
3665 	--fotg210->intr_count;
3666 	disable_periodic(fotg210);
3667 }
3668 
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3669 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3670 		unsigned uframe, unsigned period, unsigned usecs)
3671 {
3672 	int claimed;
3673 
3674 	/* complete split running into next frame?
3675 	 * given FSTN support, we could sometimes check...
3676 	 */
3677 	if (uframe >= 8)
3678 		return 0;
3679 
3680 	/* convert "usecs we need" to "max already claimed" */
3681 	usecs = fotg210->uframe_periodic_max - usecs;
3682 
3683 	/* we "know" 2 and 4 uframe intervals were rejected; so
3684 	 * for period 0, check _every_ microframe in the schedule.
3685 	 */
3686 	if (unlikely(period == 0)) {
3687 		do {
3688 			for (uframe = 0; uframe < 7; uframe++) {
3689 				claimed = periodic_usecs(fotg210, frame,
3690 						uframe);
3691 				if (claimed > usecs)
3692 					return 0;
3693 			}
3694 		} while ((frame += 1) < fotg210->periodic_size);
3695 
3696 	/* just check the specified uframe, at that period */
3697 	} else {
3698 		do {
3699 			claimed = periodic_usecs(fotg210, frame, uframe);
3700 			if (claimed > usecs)
3701 				return 0;
3702 		} while ((frame += period) < fotg210->periodic_size);
3703 	}
3704 
3705 	/* success! */
3706 	return 1;
3707 }
3708 
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3709 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3710 		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3711 {
3712 	int retval = -ENOSPC;
3713 	u8 mask = 0;
3714 
3715 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3716 		goto done;
3717 
3718 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3719 		goto done;
3720 	if (!qh->c_usecs) {
3721 		retval = 0;
3722 		*c_maskp = 0;
3723 		goto done;
3724 	}
3725 
3726 	/* Make sure this tt's buffer is also available for CSPLITs.
3727 	 * We pessimize a bit; probably the typical full speed case
3728 	 * doesn't need the second CSPLIT.
3729 	 *
3730 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3731 	 * one smart pass...
3732 	 */
3733 	mask = 0x03 << (uframe + qh->gap_uf);
3734 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3735 
3736 	mask |= 1 << uframe;
3737 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3738 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3739 				qh->period, qh->c_usecs))
3740 			goto done;
3741 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3742 				qh->period, qh->c_usecs))
3743 			goto done;
3744 		retval = 0;
3745 	}
3746 done:
3747 	return retval;
3748 }
3749 
3750 /* "first fit" scheduling policy used the first time through,
3751  * or when the previous schedule slot can't be re-used.
3752  */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3753 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3754 {
3755 	int status;
3756 	unsigned uframe;
3757 	__hc32 c_mask;
3758 	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3759 	struct fotg210_qh_hw *hw = qh->hw;
3760 
3761 	qh_refresh(fotg210, qh);
3762 	hw->hw_next = FOTG210_LIST_END(fotg210);
3763 	frame = qh->start;
3764 
3765 	/* reuse the previous schedule slots, if we can */
3766 	if (frame < qh->period) {
3767 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3768 		status = check_intr_schedule(fotg210, frame, --uframe,
3769 				qh, &c_mask);
3770 	} else {
3771 		uframe = 0;
3772 		c_mask = 0;
3773 		status = -ENOSPC;
3774 	}
3775 
3776 	/* else scan the schedule to find a group of slots such that all
3777 	 * uframes have enough periodic bandwidth available.
3778 	 */
3779 	if (status) {
3780 		/* "normal" case, uframing flexible except with splits */
3781 		if (qh->period) {
3782 			int i;
3783 
3784 			for (i = qh->period; status && i > 0; --i) {
3785 				frame = ++fotg210->random_frame % qh->period;
3786 				for (uframe = 0; uframe < 8; uframe++) {
3787 					status = check_intr_schedule(fotg210,
3788 							frame, uframe, qh,
3789 							&c_mask);
3790 					if (status == 0)
3791 						break;
3792 				}
3793 			}
3794 
3795 		/* qh->period == 0 means every uframe */
3796 		} else {
3797 			frame = 0;
3798 			status = check_intr_schedule(fotg210, 0, 0, qh,
3799 					&c_mask);
3800 		}
3801 		if (status)
3802 			goto done;
3803 		qh->start = frame;
3804 
3805 		/* reset S-frame and (maybe) C-frame masks */
3806 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3807 		hw->hw_info2 |= qh->period
3808 			? cpu_to_hc32(fotg210, 1 << uframe)
3809 			: cpu_to_hc32(fotg210, QH_SMASK);
3810 		hw->hw_info2 |= c_mask;
3811 	} else
3812 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3813 
3814 	/* stuff into the periodic schedule */
3815 	qh_link_periodic(fotg210, qh);
3816 done:
3817 	return status;
3818 }
3819 
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3820 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3821 		struct list_head *qtd_list, gfp_t mem_flags)
3822 {
3823 	unsigned epnum;
3824 	unsigned long flags;
3825 	struct fotg210_qh *qh;
3826 	int status;
3827 	struct list_head empty;
3828 
3829 	/* get endpoint and transfer/schedule data */
3830 	epnum = urb->ep->desc.bEndpointAddress;
3831 
3832 	spin_lock_irqsave(&fotg210->lock, flags);
3833 
3834 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3835 		status = -ESHUTDOWN;
3836 		goto done_not_linked;
3837 	}
3838 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3839 	if (unlikely(status))
3840 		goto done_not_linked;
3841 
3842 	/* get qh and force any scheduling errors */
3843 	INIT_LIST_HEAD(&empty);
3844 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3845 	if (qh == NULL) {
3846 		status = -ENOMEM;
3847 		goto done;
3848 	}
3849 	if (qh->qh_state == QH_STATE_IDLE) {
3850 		status = qh_schedule(fotg210, qh);
3851 		if (status)
3852 			goto done;
3853 	}
3854 
3855 	/* then queue the urb's tds to the qh */
3856 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3857 	BUG_ON(qh == NULL);
3858 
3859 	/* ... update usbfs periodic stats */
3860 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3861 
3862 done:
3863 	if (unlikely(status))
3864 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3865 done_not_linked:
3866 	spin_unlock_irqrestore(&fotg210->lock, flags);
3867 	if (status)
3868 		qtd_list_free(fotg210, urb, qtd_list);
3869 
3870 	return status;
3871 }
3872 
scan_intr(struct fotg210_hcd * fotg210)3873 static void scan_intr(struct fotg210_hcd *fotg210)
3874 {
3875 	struct fotg210_qh *qh;
3876 
3877 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3878 			&fotg210->intr_qh_list, intr_node) {
3879 rescan:
3880 		/* clean any finished work for this qh */
3881 		if (!list_empty(&qh->qtd_list)) {
3882 			int temp;
3883 
3884 			/*
3885 			 * Unlinks could happen here; completion reporting
3886 			 * drops the lock.  That's why fotg210->qh_scan_next
3887 			 * always holds the next qh to scan; if the next qh
3888 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3889 			 * in qh_unlink_periodic().
3890 			 */
3891 			temp = qh_completions(fotg210, qh);
3892 			if (unlikely(qh->needs_rescan ||
3893 					(list_empty(&qh->qtd_list) &&
3894 					qh->qh_state == QH_STATE_LINKED)))
3895 				start_unlink_intr(fotg210, qh);
3896 			else if (temp != 0)
3897 				goto rescan;
3898 		}
3899 	}
3900 }
3901 
3902 /* fotg210_iso_stream ops work with both ITD and SITD */
3903 
iso_stream_alloc(gfp_t mem_flags)3904 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3905 {
3906 	struct fotg210_iso_stream *stream;
3907 
3908 	stream = kzalloc(sizeof(*stream), mem_flags);
3909 	if (likely(stream != NULL)) {
3910 		INIT_LIST_HEAD(&stream->td_list);
3911 		INIT_LIST_HEAD(&stream->free_list);
3912 		stream->next_uframe = -1;
3913 	}
3914 	return stream;
3915 }
3916 
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3917 static void iso_stream_init(struct fotg210_hcd *fotg210,
3918 		struct fotg210_iso_stream *stream, struct usb_device *dev,
3919 		int pipe, unsigned interval)
3920 {
3921 	u32 buf1;
3922 	unsigned epnum, maxp;
3923 	int is_input;
3924 	long bandwidth;
3925 	unsigned multi;
3926 	struct usb_host_endpoint *ep;
3927 
3928 	/*
3929 	 * this might be a "high bandwidth" highspeed endpoint,
3930 	 * as encoded in the ep descriptor's wMaxPacket field
3931 	 */
3932 	epnum = usb_pipeendpoint(pipe);
3933 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3934 	ep = usb_pipe_endpoint(dev, pipe);
3935 	maxp = usb_endpoint_maxp(&ep->desc);
3936 	if (is_input)
3937 		buf1 = (1 << 11);
3938 	else
3939 		buf1 = 0;
3940 
3941 	multi = usb_endpoint_maxp_mult(&ep->desc);
3942 	buf1 |= maxp;
3943 	maxp *= multi;
3944 
3945 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3946 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3947 	stream->buf2 = cpu_to_hc32(fotg210, multi);
3948 
3949 	/* usbfs wants to report the average usecs per frame tied up
3950 	 * when transfers on this endpoint are scheduled ...
3951 	 */
3952 	if (dev->speed == USB_SPEED_FULL) {
3953 		interval <<= 3;
3954 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3955 				is_input, 1, maxp));
3956 		stream->usecs /= 8;
3957 	} else {
3958 		stream->highspeed = 1;
3959 		stream->usecs = HS_USECS_ISO(maxp);
3960 	}
3961 	bandwidth = stream->usecs * 8;
3962 	bandwidth /= interval;
3963 
3964 	stream->bandwidth = bandwidth;
3965 	stream->udev = dev;
3966 	stream->bEndpointAddress = is_input | epnum;
3967 	stream->interval = interval;
3968 	stream->maxp = maxp;
3969 }
3970 
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3971 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3972 		struct urb *urb)
3973 {
3974 	unsigned epnum;
3975 	struct fotg210_iso_stream *stream;
3976 	struct usb_host_endpoint *ep;
3977 	unsigned long flags;
3978 
3979 	epnum = usb_pipeendpoint(urb->pipe);
3980 	if (usb_pipein(urb->pipe))
3981 		ep = urb->dev->ep_in[epnum];
3982 	else
3983 		ep = urb->dev->ep_out[epnum];
3984 
3985 	spin_lock_irqsave(&fotg210->lock, flags);
3986 	stream = ep->hcpriv;
3987 
3988 	if (unlikely(stream == NULL)) {
3989 		stream = iso_stream_alloc(GFP_ATOMIC);
3990 		if (likely(stream != NULL)) {
3991 			ep->hcpriv = stream;
3992 			stream->ep = ep;
3993 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3994 					urb->interval);
3995 		}
3996 
3997 	/* if dev->ep[epnum] is a QH, hw is set */
3998 	} else if (unlikely(stream->hw != NULL)) {
3999 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4000 				urb->dev->devpath, epnum,
4001 				usb_pipein(urb->pipe) ? "in" : "out");
4002 		stream = NULL;
4003 	}
4004 
4005 	spin_unlock_irqrestore(&fotg210->lock, flags);
4006 	return stream;
4007 }
4008 
4009 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4010 
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4011 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4012 		gfp_t mem_flags)
4013 {
4014 	struct fotg210_iso_sched *iso_sched;
4015 	int size = sizeof(*iso_sched);
4016 
4017 	size += packets * sizeof(struct fotg210_iso_packet);
4018 	iso_sched = kzalloc(size, mem_flags);
4019 	if (likely(iso_sched != NULL))
4020 		INIT_LIST_HEAD(&iso_sched->td_list);
4021 
4022 	return iso_sched;
4023 }
4024 
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4025 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4026 		struct fotg210_iso_sched *iso_sched,
4027 		struct fotg210_iso_stream *stream, struct urb *urb)
4028 {
4029 	unsigned i;
4030 	dma_addr_t dma = urb->transfer_dma;
4031 
4032 	/* how many uframes are needed for these transfers */
4033 	iso_sched->span = urb->number_of_packets * stream->interval;
4034 
4035 	/* figure out per-uframe itd fields that we'll need later
4036 	 * when we fit new itds into the schedule.
4037 	 */
4038 	for (i = 0; i < urb->number_of_packets; i++) {
4039 		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4040 		unsigned length;
4041 		dma_addr_t buf;
4042 		u32 trans;
4043 
4044 		length = urb->iso_frame_desc[i].length;
4045 		buf = dma + urb->iso_frame_desc[i].offset;
4046 
4047 		trans = FOTG210_ISOC_ACTIVE;
4048 		trans |= buf & 0x0fff;
4049 		if (unlikely(((i + 1) == urb->number_of_packets))
4050 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4051 			trans |= FOTG210_ITD_IOC;
4052 		trans |= length << 16;
4053 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4054 
4055 		/* might need to cross a buffer page within a uframe */
4056 		uframe->bufp = (buf & ~(u64)0x0fff);
4057 		buf += length;
4058 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4059 			uframe->cross = 1;
4060 	}
4061 }
4062 
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4063 static void iso_sched_free(struct fotg210_iso_stream *stream,
4064 		struct fotg210_iso_sched *iso_sched)
4065 {
4066 	if (!iso_sched)
4067 		return;
4068 	/* caller must hold fotg210->lock!*/
4069 	list_splice(&iso_sched->td_list, &stream->free_list);
4070 	kfree(iso_sched);
4071 }
4072 
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4073 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4074 		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4075 {
4076 	struct fotg210_itd *itd;
4077 	dma_addr_t itd_dma;
4078 	int i;
4079 	unsigned num_itds;
4080 	struct fotg210_iso_sched *sched;
4081 	unsigned long flags;
4082 
4083 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4084 	if (unlikely(sched == NULL))
4085 		return -ENOMEM;
4086 
4087 	itd_sched_init(fotg210, sched, stream, urb);
4088 
4089 	if (urb->interval < 8)
4090 		num_itds = 1 + (sched->span + 7) / 8;
4091 	else
4092 		num_itds = urb->number_of_packets;
4093 
4094 	/* allocate/init ITDs */
4095 	spin_lock_irqsave(&fotg210->lock, flags);
4096 	for (i = 0; i < num_itds; i++) {
4097 
4098 		/*
4099 		 * Use iTDs from the free list, but not iTDs that may
4100 		 * still be in use by the hardware.
4101 		 */
4102 		if (likely(!list_empty(&stream->free_list))) {
4103 			itd = list_first_entry(&stream->free_list,
4104 					struct fotg210_itd, itd_list);
4105 			if (itd->frame == fotg210->now_frame)
4106 				goto alloc_itd;
4107 			list_del(&itd->itd_list);
4108 			itd_dma = itd->itd_dma;
4109 		} else {
4110 alloc_itd:
4111 			spin_unlock_irqrestore(&fotg210->lock, flags);
4112 			itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4113 					&itd_dma);
4114 			spin_lock_irqsave(&fotg210->lock, flags);
4115 			if (!itd) {
4116 				iso_sched_free(stream, sched);
4117 				spin_unlock_irqrestore(&fotg210->lock, flags);
4118 				return -ENOMEM;
4119 			}
4120 		}
4121 
4122 		itd->itd_dma = itd_dma;
4123 		list_add(&itd->itd_list, &sched->td_list);
4124 	}
4125 	spin_unlock_irqrestore(&fotg210->lock, flags);
4126 
4127 	/* temporarily store schedule info in hcpriv */
4128 	urb->hcpriv = sched;
4129 	urb->error_count = 0;
4130 	return 0;
4131 }
4132 
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4133 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4134 		u8 usecs, u32 period)
4135 {
4136 	uframe %= period;
4137 	do {
4138 		/* can't commit more than uframe_periodic_max usec */
4139 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4140 				> (fotg210->uframe_periodic_max - usecs))
4141 			return 0;
4142 
4143 		/* we know urb->interval is 2^N uframes */
4144 		uframe += period;
4145 	} while (uframe < mod);
4146 	return 1;
4147 }
4148 
4149 /* This scheduler plans almost as far into the future as it has actual
4150  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4151  * "as small as possible" to be cache-friendlier.)  That limits the size
4152  * transfers you can stream reliably; avoid more than 64 msec per urb.
4153  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4154  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4155  * and other factors); or more than about 230 msec total (for portability,
4156  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4157  */
4158 
4159 #define SCHEDULE_SLOP 80 /* microframes */
4160 
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4161 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4162 		struct fotg210_iso_stream *stream)
4163 {
4164 	u32 now, next, start, period, span;
4165 	int status;
4166 	unsigned mod = fotg210->periodic_size << 3;
4167 	struct fotg210_iso_sched *sched = urb->hcpriv;
4168 
4169 	period = urb->interval;
4170 	span = sched->span;
4171 
4172 	if (span > mod - SCHEDULE_SLOP) {
4173 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4174 		status = -EFBIG;
4175 		goto fail;
4176 	}
4177 
4178 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4179 
4180 	/* Typical case: reuse current schedule, stream is still active.
4181 	 * Hopefully there are no gaps from the host falling behind
4182 	 * (irq delays etc), but if there are we'll take the next
4183 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4184 	 */
4185 	if (likely(!list_empty(&stream->td_list))) {
4186 		u32 excess;
4187 
4188 		/* For high speed devices, allow scheduling within the
4189 		 * isochronous scheduling threshold.  For full speed devices
4190 		 * and Intel PCI-based controllers, don't (work around for
4191 		 * Intel ICH9 bug).
4192 		 */
4193 		if (!stream->highspeed && fotg210->fs_i_thresh)
4194 			next = now + fotg210->i_thresh;
4195 		else
4196 			next = now;
4197 
4198 		/* Fell behind (by up to twice the slop amount)?
4199 		 * We decide based on the time of the last currently-scheduled
4200 		 * slot, not the time of the next available slot.
4201 		 */
4202 		excess = (stream->next_uframe - period - next) & (mod - 1);
4203 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4204 			start = next + excess - mod + period *
4205 					DIV_ROUND_UP(mod - excess, period);
4206 		else
4207 			start = next + excess + period;
4208 		if (start - now >= mod) {
4209 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4210 					urb, start - now - period, period,
4211 					mod);
4212 			status = -EFBIG;
4213 			goto fail;
4214 		}
4215 	}
4216 
4217 	/* need to schedule; when's the next (u)frame we could start?
4218 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4219 	 * isn't free, the slop should handle reasonably slow cpus.  it
4220 	 * can also help high bandwidth if the dma and irq loads don't
4221 	 * jump until after the queue is primed.
4222 	 */
4223 	else {
4224 		int done = 0;
4225 
4226 		start = SCHEDULE_SLOP + (now & ~0x07);
4227 
4228 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4229 
4230 		/* find a uframe slot with enough bandwidth.
4231 		 * Early uframes are more precious because full-speed
4232 		 * iso IN transfers can't use late uframes,
4233 		 * and therefore they should be allocated last.
4234 		 */
4235 		next = start;
4236 		start += period;
4237 		do {
4238 			start--;
4239 			/* check schedule: enough space? */
4240 			if (itd_slot_ok(fotg210, mod, start,
4241 					stream->usecs, period))
4242 				done = 1;
4243 		} while (start > next && !done);
4244 
4245 		/* no room in the schedule */
4246 		if (!done) {
4247 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4248 					urb, now, now + mod);
4249 			status = -ENOSPC;
4250 			goto fail;
4251 		}
4252 	}
4253 
4254 	/* Tried to schedule too far into the future? */
4255 	if (unlikely(start - now + span - period >=
4256 			mod - 2 * SCHEDULE_SLOP)) {
4257 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4258 				urb, start - now, span - period,
4259 				mod - 2 * SCHEDULE_SLOP);
4260 		status = -EFBIG;
4261 		goto fail;
4262 	}
4263 
4264 	stream->next_uframe = start & (mod - 1);
4265 
4266 	/* report high speed start in uframes; full speed, in frames */
4267 	urb->start_frame = stream->next_uframe;
4268 	if (!stream->highspeed)
4269 		urb->start_frame >>= 3;
4270 
4271 	/* Make sure scan_isoc() sees these */
4272 	if (fotg210->isoc_count == 0)
4273 		fotg210->next_frame = now >> 3;
4274 	return 0;
4275 
4276 fail:
4277 	iso_sched_free(stream, sched);
4278 	urb->hcpriv = NULL;
4279 	return status;
4280 }
4281 
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4282 static inline void itd_init(struct fotg210_hcd *fotg210,
4283 		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4284 {
4285 	int i;
4286 
4287 	/* it's been recently zeroed */
4288 	itd->hw_next = FOTG210_LIST_END(fotg210);
4289 	itd->hw_bufp[0] = stream->buf0;
4290 	itd->hw_bufp[1] = stream->buf1;
4291 	itd->hw_bufp[2] = stream->buf2;
4292 
4293 	for (i = 0; i < 8; i++)
4294 		itd->index[i] = -1;
4295 
4296 	/* All other fields are filled when scheduling */
4297 }
4298 
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4299 static inline void itd_patch(struct fotg210_hcd *fotg210,
4300 		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4301 		unsigned index, u16 uframe)
4302 {
4303 	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4304 	unsigned pg = itd->pg;
4305 
4306 	uframe &= 0x07;
4307 	itd->index[uframe] = index;
4308 
4309 	itd->hw_transaction[uframe] = uf->transaction;
4310 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4311 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4312 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4313 
4314 	/* iso_frame_desc[].offset must be strictly increasing */
4315 	if (unlikely(uf->cross)) {
4316 		u64 bufp = uf->bufp + 4096;
4317 
4318 		itd->pg = ++pg;
4319 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4320 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4321 	}
4322 }
4323 
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4324 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4325 		struct fotg210_itd *itd)
4326 {
4327 	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4328 	__hc32 *hw_p = &fotg210->periodic[frame];
4329 	union fotg210_shadow here = *prev;
4330 	__hc32 type = 0;
4331 
4332 	/* skip any iso nodes which might belong to previous microframes */
4333 	while (here.ptr) {
4334 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4335 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4336 			break;
4337 		prev = periodic_next_shadow(fotg210, prev, type);
4338 		hw_p = shadow_next_periodic(fotg210, &here, type);
4339 		here = *prev;
4340 	}
4341 
4342 	itd->itd_next = here;
4343 	itd->hw_next = *hw_p;
4344 	prev->itd = itd;
4345 	itd->frame = frame;
4346 	wmb();
4347 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4348 }
4349 
4350 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4351 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4352 		unsigned mod, struct fotg210_iso_stream *stream)
4353 {
4354 	int packet;
4355 	unsigned next_uframe, uframe, frame;
4356 	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4357 	struct fotg210_itd *itd;
4358 
4359 	next_uframe = stream->next_uframe & (mod - 1);
4360 
4361 	if (unlikely(list_empty(&stream->td_list))) {
4362 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4363 				+= stream->bandwidth;
4364 		fotg210_dbg(fotg210,
4365 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4366 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4367 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4368 			urb->interval,
4369 			next_uframe >> 3, next_uframe & 0x7);
4370 	}
4371 
4372 	/* fill iTDs uframe by uframe */
4373 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4374 		if (itd == NULL) {
4375 			/* ASSERT:  we have all necessary itds */
4376 
4377 			/* ASSERT:  no itds for this endpoint in this uframe */
4378 
4379 			itd = list_entry(iso_sched->td_list.next,
4380 					struct fotg210_itd, itd_list);
4381 			list_move_tail(&itd->itd_list, &stream->td_list);
4382 			itd->stream = stream;
4383 			itd->urb = urb;
4384 			itd_init(fotg210, stream, itd);
4385 		}
4386 
4387 		uframe = next_uframe & 0x07;
4388 		frame = next_uframe >> 3;
4389 
4390 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4391 
4392 		next_uframe += stream->interval;
4393 		next_uframe &= mod - 1;
4394 		packet++;
4395 
4396 		/* link completed itds into the schedule */
4397 		if (((next_uframe >> 3) != frame)
4398 				|| packet == urb->number_of_packets) {
4399 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4400 					itd);
4401 			itd = NULL;
4402 		}
4403 	}
4404 	stream->next_uframe = next_uframe;
4405 
4406 	/* don't need that schedule data any more */
4407 	iso_sched_free(stream, iso_sched);
4408 	urb->hcpriv = NULL;
4409 
4410 	++fotg210->isoc_count;
4411 	enable_periodic(fotg210);
4412 }
4413 
4414 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4415 		FOTG210_ISOC_XACTERR)
4416 
4417 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4418  * and hence its completion callback probably added things to the hardware
4419  * schedule.
4420  *
4421  * Note that we carefully avoid recycling this descriptor until after any
4422  * completion callback runs, so that it won't be reused quickly.  That is,
4423  * assuming (a) no more than two urbs per frame on this endpoint, and also
4424  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4425  * corrupts things if you reuse completed descriptors very quickly...
4426  */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4427 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4428 {
4429 	struct urb *urb = itd->urb;
4430 	struct usb_iso_packet_descriptor *desc;
4431 	u32 t;
4432 	unsigned uframe;
4433 	int urb_index = -1;
4434 	struct fotg210_iso_stream *stream = itd->stream;
4435 	struct usb_device *dev;
4436 	bool retval = false;
4437 
4438 	/* for each uframe with a packet */
4439 	for (uframe = 0; uframe < 8; uframe++) {
4440 		if (likely(itd->index[uframe] == -1))
4441 			continue;
4442 		urb_index = itd->index[uframe];
4443 		desc = &urb->iso_frame_desc[urb_index];
4444 
4445 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4446 		itd->hw_transaction[uframe] = 0;
4447 
4448 		/* report transfer status */
4449 		if (unlikely(t & ISO_ERRS)) {
4450 			urb->error_count++;
4451 			if (t & FOTG210_ISOC_BUF_ERR)
4452 				desc->status = usb_pipein(urb->pipe)
4453 					? -ENOSR  /* hc couldn't read */
4454 					: -ECOMM; /* hc couldn't write */
4455 			else if (t & FOTG210_ISOC_BABBLE)
4456 				desc->status = -EOVERFLOW;
4457 			else /* (t & FOTG210_ISOC_XACTERR) */
4458 				desc->status = -EPROTO;
4459 
4460 			/* HC need not update length with this error */
4461 			if (!(t & FOTG210_ISOC_BABBLE)) {
4462 				desc->actual_length = FOTG210_ITD_LENGTH(t);
4463 				urb->actual_length += desc->actual_length;
4464 			}
4465 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4466 			desc->status = 0;
4467 			desc->actual_length = FOTG210_ITD_LENGTH(t);
4468 			urb->actual_length += desc->actual_length;
4469 		} else {
4470 			/* URB was too late */
4471 			desc->status = -EXDEV;
4472 		}
4473 	}
4474 
4475 	/* handle completion now? */
4476 	if (likely((urb_index + 1) != urb->number_of_packets))
4477 		goto done;
4478 
4479 	/* ASSERT: it's really the last itd for this urb
4480 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4481 	 *	BUG_ON (itd->urb == urb);
4482 	 */
4483 
4484 	/* give urb back to the driver; completion often (re)submits */
4485 	dev = urb->dev;
4486 	fotg210_urb_done(fotg210, urb, 0);
4487 	retval = true;
4488 	urb = NULL;
4489 
4490 	--fotg210->isoc_count;
4491 	disable_periodic(fotg210);
4492 
4493 	if (unlikely(list_is_singular(&stream->td_list))) {
4494 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4495 				-= stream->bandwidth;
4496 		fotg210_dbg(fotg210,
4497 			"deschedule devp %s ep%d%s-iso\n",
4498 			dev->devpath, stream->bEndpointAddress & 0x0f,
4499 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4500 	}
4501 
4502 done:
4503 	itd->urb = NULL;
4504 
4505 	/* Add to the end of the free list for later reuse */
4506 	list_move_tail(&itd->itd_list, &stream->free_list);
4507 
4508 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4509 	if (list_empty(&stream->td_list)) {
4510 		list_splice_tail_init(&stream->free_list,
4511 				&fotg210->cached_itd_list);
4512 		start_free_itds(fotg210);
4513 	}
4514 
4515 	return retval;
4516 }
4517 
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4518 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4519 		gfp_t mem_flags)
4520 {
4521 	int status = -EINVAL;
4522 	unsigned long flags;
4523 	struct fotg210_iso_stream *stream;
4524 
4525 	/* Get iso_stream head */
4526 	stream = iso_stream_find(fotg210, urb);
4527 	if (unlikely(stream == NULL)) {
4528 		fotg210_dbg(fotg210, "can't get iso stream\n");
4529 		return -ENOMEM;
4530 	}
4531 	if (unlikely(urb->interval != stream->interval &&
4532 			fotg210_port_speed(fotg210, 0) ==
4533 			USB_PORT_STAT_HIGH_SPEED)) {
4534 		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4535 				stream->interval, urb->interval);
4536 		goto done;
4537 	}
4538 
4539 #ifdef FOTG210_URB_TRACE
4540 	fotg210_dbg(fotg210,
4541 			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4542 			__func__, urb->dev->devpath, urb,
4543 			usb_pipeendpoint(urb->pipe),
4544 			usb_pipein(urb->pipe) ? "in" : "out",
4545 			urb->transfer_buffer_length,
4546 			urb->number_of_packets, urb->interval,
4547 			stream);
4548 #endif
4549 
4550 	/* allocate ITDs w/o locking anything */
4551 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4552 	if (unlikely(status < 0)) {
4553 		fotg210_dbg(fotg210, "can't init itds\n");
4554 		goto done;
4555 	}
4556 
4557 	/* schedule ... need to lock */
4558 	spin_lock_irqsave(&fotg210->lock, flags);
4559 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4560 		status = -ESHUTDOWN;
4561 		goto done_not_linked;
4562 	}
4563 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4564 	if (unlikely(status))
4565 		goto done_not_linked;
4566 	status = iso_stream_schedule(fotg210, urb, stream);
4567 	if (likely(status == 0))
4568 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4569 	else
4570 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4571 done_not_linked:
4572 	spin_unlock_irqrestore(&fotg210->lock, flags);
4573 done:
4574 	return status;
4575 }
4576 
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4577 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4578 		unsigned now_frame, bool live)
4579 {
4580 	unsigned uf;
4581 	bool modified;
4582 	union fotg210_shadow q, *q_p;
4583 	__hc32 type, *hw_p;
4584 
4585 	/* scan each element in frame's queue for completions */
4586 	q_p = &fotg210->pshadow[frame];
4587 	hw_p = &fotg210->periodic[frame];
4588 	q.ptr = q_p->ptr;
4589 	type = Q_NEXT_TYPE(fotg210, *hw_p);
4590 	modified = false;
4591 
4592 	while (q.ptr) {
4593 		switch (hc32_to_cpu(fotg210, type)) {
4594 		case Q_TYPE_ITD:
4595 			/* If this ITD is still active, leave it for
4596 			 * later processing ... check the next entry.
4597 			 * No need to check for activity unless the
4598 			 * frame is current.
4599 			 */
4600 			if (frame == now_frame && live) {
4601 				rmb();
4602 				for (uf = 0; uf < 8; uf++) {
4603 					if (q.itd->hw_transaction[uf] &
4604 							ITD_ACTIVE(fotg210))
4605 						break;
4606 				}
4607 				if (uf < 8) {
4608 					q_p = &q.itd->itd_next;
4609 					hw_p = &q.itd->hw_next;
4610 					type = Q_NEXT_TYPE(fotg210,
4611 							q.itd->hw_next);
4612 					q = *q_p;
4613 					break;
4614 				}
4615 			}
4616 
4617 			/* Take finished ITDs out of the schedule
4618 			 * and process them:  recycle, maybe report
4619 			 * URB completion.  HC won't cache the
4620 			 * pointer for much longer, if at all.
4621 			 */
4622 			*q_p = q.itd->itd_next;
4623 			*hw_p = q.itd->hw_next;
4624 			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4625 			wmb();
4626 			modified = itd_complete(fotg210, q.itd);
4627 			q = *q_p;
4628 			break;
4629 		default:
4630 			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4631 					type, frame, q.ptr);
4632 			fallthrough;
4633 		case Q_TYPE_QH:
4634 		case Q_TYPE_FSTN:
4635 			/* End of the iTDs and siTDs */
4636 			q.ptr = NULL;
4637 			break;
4638 		}
4639 
4640 		/* assume completion callbacks modify the queue */
4641 		if (unlikely(modified && fotg210->isoc_count > 0))
4642 			return -EINVAL;
4643 	}
4644 	return 0;
4645 }
4646 
scan_isoc(struct fotg210_hcd * fotg210)4647 static void scan_isoc(struct fotg210_hcd *fotg210)
4648 {
4649 	unsigned uf, now_frame, frame, ret;
4650 	unsigned fmask = fotg210->periodic_size - 1;
4651 	bool live;
4652 
4653 	/*
4654 	 * When running, scan from last scan point up to "now"
4655 	 * else clean up by scanning everything that's left.
4656 	 * Touches as few pages as possible:  cache-friendly.
4657 	 */
4658 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4659 		uf = fotg210_read_frame_index(fotg210);
4660 		now_frame = (uf >> 3) & fmask;
4661 		live = true;
4662 	} else  {
4663 		now_frame = (fotg210->next_frame - 1) & fmask;
4664 		live = false;
4665 	}
4666 	fotg210->now_frame = now_frame;
4667 
4668 	frame = fotg210->next_frame;
4669 	for (;;) {
4670 		ret = 1;
4671 		while (ret != 0)
4672 			ret = scan_frame_queue(fotg210, frame,
4673 					now_frame, live);
4674 
4675 		/* Stop when we have reached the current frame */
4676 		if (frame == now_frame)
4677 			break;
4678 		frame = (frame + 1) & fmask;
4679 	}
4680 	fotg210->next_frame = now_frame;
4681 }
4682 
4683 /* Display / Set uframe_periodic_max
4684  */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4685 static ssize_t uframe_periodic_max_show(struct device *dev,
4686 		struct device_attribute *attr, char *buf)
4687 {
4688 	struct fotg210_hcd *fotg210;
4689 	int n;
4690 
4691 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4692 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4693 	return n;
4694 }
4695 
4696 
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4697 static ssize_t uframe_periodic_max_store(struct device *dev,
4698 		struct device_attribute *attr, const char *buf, size_t count)
4699 {
4700 	struct fotg210_hcd *fotg210;
4701 	unsigned uframe_periodic_max;
4702 	unsigned frame, uframe;
4703 	unsigned short allocated_max;
4704 	unsigned long flags;
4705 	ssize_t ret;
4706 
4707 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4708 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4709 		return -EINVAL;
4710 
4711 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4712 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4713 				uframe_periodic_max);
4714 		return -EINVAL;
4715 	}
4716 
4717 	ret = -EINVAL;
4718 
4719 	/*
4720 	 * lock, so that our checking does not race with possible periodic
4721 	 * bandwidth allocation through submitting new urbs.
4722 	 */
4723 	spin_lock_irqsave(&fotg210->lock, flags);
4724 
4725 	/*
4726 	 * for request to decrease max periodic bandwidth, we have to check
4727 	 * every microframe in the schedule to see whether the decrease is
4728 	 * possible.
4729 	 */
4730 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4731 		allocated_max = 0;
4732 
4733 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4734 			for (uframe = 0; uframe < 7; ++uframe)
4735 				allocated_max = max(allocated_max,
4736 						periodic_usecs(fotg210, frame,
4737 						uframe));
4738 
4739 		if (allocated_max > uframe_periodic_max) {
4740 			fotg210_info(fotg210,
4741 					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4742 					allocated_max, uframe_periodic_max);
4743 			goto out_unlock;
4744 		}
4745 	}
4746 
4747 	/* increasing is always ok */
4748 
4749 	fotg210_info(fotg210,
4750 			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4751 			100 * uframe_periodic_max/125, uframe_periodic_max);
4752 
4753 	if (uframe_periodic_max != 100)
4754 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4755 
4756 	fotg210->uframe_periodic_max = uframe_periodic_max;
4757 	ret = count;
4758 
4759 out_unlock:
4760 	spin_unlock_irqrestore(&fotg210->lock, flags);
4761 	return ret;
4762 }
4763 
4764 static DEVICE_ATTR_RW(uframe_periodic_max);
4765 
create_sysfs_files(struct fotg210_hcd * fotg210)4766 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4767 {
4768 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4769 
4770 	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4771 }
4772 
remove_sysfs_files(struct fotg210_hcd * fotg210)4773 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4774 {
4775 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4776 
4777 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4778 }
4779 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4780  * The firmware seems to think that powering off is a wakeup event!
4781  * This routine turns off remote wakeup and everything else, on all ports.
4782  */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4783 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4784 {
4785 	u32 __iomem *status_reg = &fotg210->regs->port_status;
4786 
4787 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4788 }
4789 
4790 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4791  * Must be called with interrupts enabled and the lock not held.
4792  */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4793 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4794 {
4795 	fotg210_halt(fotg210);
4796 
4797 	spin_lock_irq(&fotg210->lock);
4798 	fotg210->rh_state = FOTG210_RH_HALTED;
4799 	fotg210_turn_off_all_ports(fotg210);
4800 	spin_unlock_irq(&fotg210->lock);
4801 }
4802 
4803 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4804  * This forcibly disables dma and IRQs, helping kexec and other cases
4805  * where the next system software may expect clean state.
4806  */
fotg210_shutdown(struct usb_hcd * hcd)4807 static void fotg210_shutdown(struct usb_hcd *hcd)
4808 {
4809 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4810 
4811 	spin_lock_irq(&fotg210->lock);
4812 	fotg210->shutdown = true;
4813 	fotg210->rh_state = FOTG210_RH_STOPPING;
4814 	fotg210->enabled_hrtimer_events = 0;
4815 	spin_unlock_irq(&fotg210->lock);
4816 
4817 	fotg210_silence_controller(fotg210);
4818 
4819 	hrtimer_cancel(&fotg210->hrtimer);
4820 }
4821 
4822 /* fotg210_work is called from some interrupts, timers, and so on.
4823  * it calls driver completion functions, after dropping fotg210->lock.
4824  */
fotg210_work(struct fotg210_hcd * fotg210)4825 static void fotg210_work(struct fotg210_hcd *fotg210)
4826 {
4827 	/* another CPU may drop fotg210->lock during a schedule scan while
4828 	 * it reports urb completions.  this flag guards against bogus
4829 	 * attempts at re-entrant schedule scanning.
4830 	 */
4831 	if (fotg210->scanning) {
4832 		fotg210->need_rescan = true;
4833 		return;
4834 	}
4835 	fotg210->scanning = true;
4836 
4837 rescan:
4838 	fotg210->need_rescan = false;
4839 	if (fotg210->async_count)
4840 		scan_async(fotg210);
4841 	if (fotg210->intr_count > 0)
4842 		scan_intr(fotg210);
4843 	if (fotg210->isoc_count > 0)
4844 		scan_isoc(fotg210);
4845 	if (fotg210->need_rescan)
4846 		goto rescan;
4847 	fotg210->scanning = false;
4848 
4849 	/* the IO watchdog guards against hardware or driver bugs that
4850 	 * misplace IRQs, and should let us run completely without IRQs.
4851 	 * such lossage has been observed on both VT6202 and VT8235.
4852 	 */
4853 	turn_on_io_watchdog(fotg210);
4854 }
4855 
4856 /* Called when the fotg210_hcd module is removed.
4857  */
fotg210_stop(struct usb_hcd * hcd)4858 static void fotg210_stop(struct usb_hcd *hcd)
4859 {
4860 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4861 
4862 	fotg210_dbg(fotg210, "stop\n");
4863 
4864 	/* no more interrupts ... */
4865 
4866 	spin_lock_irq(&fotg210->lock);
4867 	fotg210->enabled_hrtimer_events = 0;
4868 	spin_unlock_irq(&fotg210->lock);
4869 
4870 	fotg210_quiesce(fotg210);
4871 	fotg210_silence_controller(fotg210);
4872 	fotg210_reset(fotg210);
4873 
4874 	hrtimer_cancel(&fotg210->hrtimer);
4875 	remove_sysfs_files(fotg210);
4876 	remove_debug_files(fotg210);
4877 
4878 	/* root hub is shut down separately (first, when possible) */
4879 	spin_lock_irq(&fotg210->lock);
4880 	end_free_itds(fotg210);
4881 	spin_unlock_irq(&fotg210->lock);
4882 	fotg210_mem_cleanup(fotg210);
4883 
4884 #ifdef FOTG210_STATS
4885 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4886 			fotg210->stats.normal, fotg210->stats.error,
4887 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4888 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4889 			fotg210->stats.complete, fotg210->stats.unlink);
4890 #endif
4891 
4892 	dbg_status(fotg210, "fotg210_stop completed",
4893 			fotg210_readl(fotg210, &fotg210->regs->status));
4894 }
4895 
4896 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4897 static int hcd_fotg210_init(struct usb_hcd *hcd)
4898 {
4899 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4900 	u32 temp;
4901 	int retval;
4902 	u32 hcc_params;
4903 	struct fotg210_qh_hw *hw;
4904 
4905 	spin_lock_init(&fotg210->lock);
4906 
4907 	/*
4908 	 * keep io watchdog by default, those good HCDs could turn off it later
4909 	 */
4910 	fotg210->need_io_watchdog = 1;
4911 
4912 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4913 	fotg210->hrtimer.function = fotg210_hrtimer_func;
4914 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4915 
4916 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4917 
4918 	/*
4919 	 * by default set standard 80% (== 100 usec/uframe) max periodic
4920 	 * bandwidth as required by USB 2.0
4921 	 */
4922 	fotg210->uframe_periodic_max = 100;
4923 
4924 	/*
4925 	 * hw default: 1K periodic list heads, one per frame.
4926 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4927 	 */
4928 	fotg210->periodic_size = DEFAULT_I_TDPS;
4929 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4930 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4931 
4932 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4933 		/* periodic schedule size can be smaller than default */
4934 		switch (FOTG210_TUNE_FLS) {
4935 		case 0:
4936 			fotg210->periodic_size = 1024;
4937 			break;
4938 		case 1:
4939 			fotg210->periodic_size = 512;
4940 			break;
4941 		case 2:
4942 			fotg210->periodic_size = 256;
4943 			break;
4944 		default:
4945 			BUG();
4946 		}
4947 	}
4948 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4949 	if (retval < 0)
4950 		return retval;
4951 
4952 	/* controllers may cache some of the periodic schedule ... */
4953 	fotg210->i_thresh = 2;
4954 
4955 	/*
4956 	 * dedicate a qh for the async ring head, since we couldn't unlink
4957 	 * a 'real' qh without stopping the async schedule [4.8].  use it
4958 	 * as the 'reclamation list head' too.
4959 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4960 	 * from automatically advancing to the next td after short reads.
4961 	 */
4962 	fotg210->async->qh_next.qh = NULL;
4963 	hw = fotg210->async->hw;
4964 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4965 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4966 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4967 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4968 	fotg210->async->qh_state = QH_STATE_LINKED;
4969 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4970 
4971 	/* clear interrupt enables, set irq latency */
4972 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4973 		log2_irq_thresh = 0;
4974 	temp = 1 << (16 + log2_irq_thresh);
4975 	if (HCC_CANPARK(hcc_params)) {
4976 		/* HW default park == 3, on hardware that supports it (like
4977 		 * NVidia and ALI silicon), maximizes throughput on the async
4978 		 * schedule by avoiding QH fetches between transfers.
4979 		 *
4980 		 * With fast usb storage devices and NForce2, "park" seems to
4981 		 * make problems:  throughput reduction (!), data errors...
4982 		 */
4983 		if (park) {
4984 			park = min_t(unsigned, park, 3);
4985 			temp |= CMD_PARK;
4986 			temp |= park << 8;
4987 		}
4988 		fotg210_dbg(fotg210, "park %d\n", park);
4989 	}
4990 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4991 		/* periodic schedule size can be smaller than default */
4992 		temp &= ~(3 << 2);
4993 		temp |= (FOTG210_TUNE_FLS << 2);
4994 	}
4995 	fotg210->command = temp;
4996 
4997 	/* Accept arbitrarily long scatter-gather lists */
4998 	if (!hcd->localmem_pool)
4999 		hcd->self.sg_tablesize = ~0;
5000 	return 0;
5001 }
5002 
5003 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5004 static int fotg210_run(struct usb_hcd *hcd)
5005 {
5006 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5007 	u32 temp;
5008 
5009 	hcd->uses_new_polling = 1;
5010 
5011 	/* EHCI spec section 4.1 */
5012 
5013 	fotg210_writel(fotg210, fotg210->periodic_dma,
5014 			&fotg210->regs->frame_list);
5015 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5016 			&fotg210->regs->async_next);
5017 
5018 	/*
5019 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5020 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5021 	 * dma_pool consistent memory always uses segment zero.
5022 	 * streaming mappings for I/O buffers, like pci_map_single(),
5023 	 * can return segments above 4GB, if the device allows.
5024 	 *
5025 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5026 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5027 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5028 	 * host side drivers though.
5029 	 */
5030 	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5031 
5032 	/*
5033 	 * Philips, Intel, and maybe others need CMD_RUN before the
5034 	 * root hub will detect new devices (why?); NEC doesn't
5035 	 */
5036 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5037 	fotg210->command |= CMD_RUN;
5038 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5039 	dbg_cmd(fotg210, "init", fotg210->command);
5040 
5041 	/*
5042 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5043 	 * are explicitly handed to companion controller(s), so no TT is
5044 	 * involved with the root hub.  (Except where one is integrated,
5045 	 * and there's no companion controller unless maybe for USB OTG.)
5046 	 *
5047 	 * Turning on the CF flag will transfer ownership of all ports
5048 	 * from the companions to the EHCI controller.  If any of the
5049 	 * companions are in the middle of a port reset at the time, it
5050 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5051 	 * guarantees that no resets are in progress.  After we set CF,
5052 	 * a short delay lets the hardware catch up; new resets shouldn't
5053 	 * be started before the port switching actions could complete.
5054 	 */
5055 	down_write(&ehci_cf_port_reset_rwsem);
5056 	fotg210->rh_state = FOTG210_RH_RUNNING;
5057 	/* unblock posted writes */
5058 	fotg210_readl(fotg210, &fotg210->regs->command);
5059 	usleep_range(5000, 10000);
5060 	up_write(&ehci_cf_port_reset_rwsem);
5061 	fotg210->last_periodic_enable = ktime_get_real();
5062 
5063 	temp = HC_VERSION(fotg210,
5064 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5065 	fotg210_info(fotg210,
5066 			"USB %x.%x started, EHCI %x.%02x\n",
5067 			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5068 			temp >> 8, temp & 0xff);
5069 
5070 	fotg210_writel(fotg210, INTR_MASK,
5071 			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5072 
5073 	/* GRR this is run-once init(), being done every time the HC starts.
5074 	 * So long as they're part of class devices, we can't do it init()
5075 	 * since the class device isn't created that early.
5076 	 */
5077 	create_debug_files(fotg210);
5078 	create_sysfs_files(fotg210);
5079 
5080 	return 0;
5081 }
5082 
fotg210_setup(struct usb_hcd * hcd)5083 static int fotg210_setup(struct usb_hcd *hcd)
5084 {
5085 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5086 	int retval;
5087 
5088 	fotg210->regs = (void __iomem *)fotg210->caps +
5089 			HC_LENGTH(fotg210,
5090 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5091 	dbg_hcs_params(fotg210, "reset");
5092 	dbg_hcc_params(fotg210, "reset");
5093 
5094 	/* cache this readonly data; minimize chip reads */
5095 	fotg210->hcs_params = fotg210_readl(fotg210,
5096 			&fotg210->caps->hcs_params);
5097 
5098 	fotg210->sbrn = HCD_USB2;
5099 
5100 	/* data structure init */
5101 	retval = hcd_fotg210_init(hcd);
5102 	if (retval)
5103 		return retval;
5104 
5105 	retval = fotg210_halt(fotg210);
5106 	if (retval)
5107 		return retval;
5108 
5109 	fotg210_reset(fotg210);
5110 
5111 	return 0;
5112 }
5113 
fotg210_irq(struct usb_hcd * hcd)5114 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5115 {
5116 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5117 	u32 status, masked_status, pcd_status = 0, cmd;
5118 	int bh;
5119 
5120 	spin_lock(&fotg210->lock);
5121 
5122 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5123 
5124 	/* e.g. cardbus physical eject */
5125 	if (status == ~(u32) 0) {
5126 		fotg210_dbg(fotg210, "device removed\n");
5127 		goto dead;
5128 	}
5129 
5130 	/*
5131 	 * We don't use STS_FLR, but some controllers don't like it to
5132 	 * remain on, so mask it out along with the other status bits.
5133 	 */
5134 	masked_status = status & (INTR_MASK | STS_FLR);
5135 
5136 	/* Shared IRQ? */
5137 	if (!masked_status ||
5138 			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5139 		spin_unlock(&fotg210->lock);
5140 		return IRQ_NONE;
5141 	}
5142 
5143 	/* clear (just) interrupts */
5144 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5145 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5146 	bh = 0;
5147 
5148 	/* unrequested/ignored: Frame List Rollover */
5149 	dbg_status(fotg210, "irq", status);
5150 
5151 	/* INT, ERR, and IAA interrupt rates can be throttled */
5152 
5153 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5154 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5155 		if (likely((status & STS_ERR) == 0))
5156 			INCR(fotg210->stats.normal);
5157 		else
5158 			INCR(fotg210->stats.error);
5159 		bh = 1;
5160 	}
5161 
5162 	/* complete the unlinking of some qh [4.15.2.3] */
5163 	if (status & STS_IAA) {
5164 
5165 		/* Turn off the IAA watchdog */
5166 		fotg210->enabled_hrtimer_events &=
5167 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5168 
5169 		/*
5170 		 * Mild optimization: Allow another IAAD to reset the
5171 		 * hrtimer, if one occurs before the next expiration.
5172 		 * In theory we could always cancel the hrtimer, but
5173 		 * tests show that about half the time it will be reset
5174 		 * for some other event anyway.
5175 		 */
5176 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5177 			++fotg210->next_hrtimer_event;
5178 
5179 		/* guard against (alleged) silicon errata */
5180 		if (cmd & CMD_IAAD)
5181 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5182 		if (fotg210->async_iaa) {
5183 			INCR(fotg210->stats.iaa);
5184 			end_unlink_async(fotg210);
5185 		} else
5186 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5187 	}
5188 
5189 	/* remote wakeup [4.3.1] */
5190 	if (status & STS_PCD) {
5191 		int pstatus;
5192 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5193 
5194 		/* kick root hub later */
5195 		pcd_status = status;
5196 
5197 		/* resume root hub? */
5198 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5199 			usb_hcd_resume_root_hub(hcd);
5200 
5201 		pstatus = fotg210_readl(fotg210, status_reg);
5202 
5203 		if (test_bit(0, &fotg210->suspended_ports) &&
5204 				((pstatus & PORT_RESUME) ||
5205 				!(pstatus & PORT_SUSPEND)) &&
5206 				(pstatus & PORT_PE) &&
5207 				fotg210->reset_done[0] == 0) {
5208 
5209 			/* start 20 msec resume signaling from this port,
5210 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5211 			 * stop that signaling.  Use 5 ms extra for safety,
5212 			 * like usb_port_resume() does.
5213 			 */
5214 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5215 			set_bit(0, &fotg210->resuming_ports);
5216 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5217 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5218 		}
5219 	}
5220 
5221 	/* PCI errors [4.15.2.4] */
5222 	if (unlikely((status & STS_FATAL) != 0)) {
5223 		fotg210_err(fotg210, "fatal error\n");
5224 		dbg_cmd(fotg210, "fatal", cmd);
5225 		dbg_status(fotg210, "fatal", status);
5226 dead:
5227 		usb_hc_died(hcd);
5228 
5229 		/* Don't let the controller do anything more */
5230 		fotg210->shutdown = true;
5231 		fotg210->rh_state = FOTG210_RH_STOPPING;
5232 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5233 		fotg210_writel(fotg210, fotg210->command,
5234 				&fotg210->regs->command);
5235 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5236 		fotg210_handle_controller_death(fotg210);
5237 
5238 		/* Handle completions when the controller stops */
5239 		bh = 0;
5240 	}
5241 
5242 	if (bh)
5243 		fotg210_work(fotg210);
5244 	spin_unlock(&fotg210->lock);
5245 	if (pcd_status)
5246 		usb_hcd_poll_rh_status(hcd);
5247 	return IRQ_HANDLED;
5248 }
5249 
5250 /* non-error returns are a promise to giveback() the urb later
5251  * we drop ownership so next owner (or urb unlink) can get it
5252  *
5253  * urb + dev is in hcd.self.controller.urb_list
5254  * we're queueing TDs onto software and hardware lists
5255  *
5256  * hcd-specific init for hcpriv hasn't been done yet
5257  *
5258  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5259  * to a (possibly active) QH, and the same QH scanning code.
5260  */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5261 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5262 		gfp_t mem_flags)
5263 {
5264 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5265 	struct list_head qtd_list;
5266 
5267 	INIT_LIST_HEAD(&qtd_list);
5268 
5269 	switch (usb_pipetype(urb->pipe)) {
5270 	case PIPE_CONTROL:
5271 		/* qh_completions() code doesn't handle all the fault cases
5272 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5273 		 */
5274 		if (urb->transfer_buffer_length > (16 * 1024))
5275 			return -EMSGSIZE;
5276 		/* FALLTHROUGH */
5277 	/* case PIPE_BULK: */
5278 	default:
5279 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5280 			return -ENOMEM;
5281 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5282 
5283 	case PIPE_INTERRUPT:
5284 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5285 			return -ENOMEM;
5286 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5287 
5288 	case PIPE_ISOCHRONOUS:
5289 		return itd_submit(fotg210, urb, mem_flags);
5290 	}
5291 }
5292 
5293 /* remove from hardware lists
5294  * completions normally happen asynchronously
5295  */
5296 
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5297 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5298 {
5299 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5300 	struct fotg210_qh *qh;
5301 	unsigned long flags;
5302 	int rc;
5303 
5304 	spin_lock_irqsave(&fotg210->lock, flags);
5305 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5306 	if (rc)
5307 		goto done;
5308 
5309 	switch (usb_pipetype(urb->pipe)) {
5310 	/* case PIPE_CONTROL: */
5311 	/* case PIPE_BULK:*/
5312 	default:
5313 		qh = (struct fotg210_qh *) urb->hcpriv;
5314 		if (!qh)
5315 			break;
5316 		switch (qh->qh_state) {
5317 		case QH_STATE_LINKED:
5318 		case QH_STATE_COMPLETING:
5319 			start_unlink_async(fotg210, qh);
5320 			break;
5321 		case QH_STATE_UNLINK:
5322 		case QH_STATE_UNLINK_WAIT:
5323 			/* already started */
5324 			break;
5325 		case QH_STATE_IDLE:
5326 			/* QH might be waiting for a Clear-TT-Buffer */
5327 			qh_completions(fotg210, qh);
5328 			break;
5329 		}
5330 		break;
5331 
5332 	case PIPE_INTERRUPT:
5333 		qh = (struct fotg210_qh *) urb->hcpriv;
5334 		if (!qh)
5335 			break;
5336 		switch (qh->qh_state) {
5337 		case QH_STATE_LINKED:
5338 		case QH_STATE_COMPLETING:
5339 			start_unlink_intr(fotg210, qh);
5340 			break;
5341 		case QH_STATE_IDLE:
5342 			qh_completions(fotg210, qh);
5343 			break;
5344 		default:
5345 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5346 					qh, qh->qh_state);
5347 			goto done;
5348 		}
5349 		break;
5350 
5351 	case PIPE_ISOCHRONOUS:
5352 		/* itd... */
5353 
5354 		/* wait till next completion, do it then. */
5355 		/* completion irqs can wait up to 1024 msec, */
5356 		break;
5357 	}
5358 done:
5359 	spin_unlock_irqrestore(&fotg210->lock, flags);
5360 	return rc;
5361 }
5362 
5363 /* bulk qh holds the data toggle */
5364 
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5365 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5366 		struct usb_host_endpoint *ep)
5367 {
5368 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5369 	unsigned long flags;
5370 	struct fotg210_qh *qh, *tmp;
5371 
5372 	/* ASSERT:  any requests/urbs are being unlinked */
5373 	/* ASSERT:  nobody can be submitting urbs for this any more */
5374 
5375 rescan:
5376 	spin_lock_irqsave(&fotg210->lock, flags);
5377 	qh = ep->hcpriv;
5378 	if (!qh)
5379 		goto done;
5380 
5381 	/* endpoints can be iso streams.  for now, we don't
5382 	 * accelerate iso completions ... so spin a while.
5383 	 */
5384 	if (qh->hw == NULL) {
5385 		struct fotg210_iso_stream *stream = ep->hcpriv;
5386 
5387 		if (!list_empty(&stream->td_list))
5388 			goto idle_timeout;
5389 
5390 		/* BUG_ON(!list_empty(&stream->free_list)); */
5391 		kfree(stream);
5392 		goto done;
5393 	}
5394 
5395 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5396 		qh->qh_state = QH_STATE_IDLE;
5397 	switch (qh->qh_state) {
5398 	case QH_STATE_LINKED:
5399 	case QH_STATE_COMPLETING:
5400 		for (tmp = fotg210->async->qh_next.qh;
5401 				tmp && tmp != qh;
5402 				tmp = tmp->qh_next.qh)
5403 			continue;
5404 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5405 		 * may already be unlinked.
5406 		 */
5407 		if (tmp)
5408 			start_unlink_async(fotg210, qh);
5409 		fallthrough;
5410 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5411 	case QH_STATE_UNLINK_WAIT:
5412 idle_timeout:
5413 		spin_unlock_irqrestore(&fotg210->lock, flags);
5414 		schedule_timeout_uninterruptible(1);
5415 		goto rescan;
5416 	case QH_STATE_IDLE:		/* fully unlinked */
5417 		if (qh->clearing_tt)
5418 			goto idle_timeout;
5419 		if (list_empty(&qh->qtd_list)) {
5420 			qh_destroy(fotg210, qh);
5421 			break;
5422 		}
5423 		fallthrough;
5424 	default:
5425 		/* caller was supposed to have unlinked any requests;
5426 		 * that's not our job.  just leak this memory.
5427 		 */
5428 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5429 				qh, ep->desc.bEndpointAddress, qh->qh_state,
5430 				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5431 		break;
5432 	}
5433 done:
5434 	ep->hcpriv = NULL;
5435 	spin_unlock_irqrestore(&fotg210->lock, flags);
5436 }
5437 
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5438 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5439 		struct usb_host_endpoint *ep)
5440 {
5441 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5442 	struct fotg210_qh *qh;
5443 	int eptype = usb_endpoint_type(&ep->desc);
5444 	int epnum = usb_endpoint_num(&ep->desc);
5445 	int is_out = usb_endpoint_dir_out(&ep->desc);
5446 	unsigned long flags;
5447 
5448 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5449 		return;
5450 
5451 	spin_lock_irqsave(&fotg210->lock, flags);
5452 	qh = ep->hcpriv;
5453 
5454 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5455 	 * in the hardware; the toggle bits in udev aren't used at all.
5456 	 * When an endpoint is reset by usb_clear_halt() we must reset
5457 	 * the toggle bit in the QH.
5458 	 */
5459 	if (qh) {
5460 		usb_settoggle(qh->dev, epnum, is_out, 0);
5461 		if (!list_empty(&qh->qtd_list)) {
5462 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5463 		} else if (qh->qh_state == QH_STATE_LINKED ||
5464 				qh->qh_state == QH_STATE_COMPLETING) {
5465 
5466 			/* The toggle value in the QH can't be updated
5467 			 * while the QH is active.  Unlink it now;
5468 			 * re-linking will call qh_refresh().
5469 			 */
5470 			if (eptype == USB_ENDPOINT_XFER_BULK)
5471 				start_unlink_async(fotg210, qh);
5472 			else
5473 				start_unlink_intr(fotg210, qh);
5474 		}
5475 	}
5476 	spin_unlock_irqrestore(&fotg210->lock, flags);
5477 }
5478 
fotg210_get_frame(struct usb_hcd * hcd)5479 static int fotg210_get_frame(struct usb_hcd *hcd)
5480 {
5481 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5482 
5483 	return (fotg210_read_frame_index(fotg210) >> 3) %
5484 		fotg210->periodic_size;
5485 }
5486 
5487 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5488  * because its registers (and irq) are shared between host/gadget/otg
5489  * functions  and in order to facilitate role switching we cannot
5490  * give the fotg210 driver exclusive access to those.
5491  */
5492 MODULE_DESCRIPTION(DRIVER_DESC);
5493 MODULE_AUTHOR(DRIVER_AUTHOR);
5494 MODULE_LICENSE("GPL");
5495 
5496 static const struct hc_driver fotg210_fotg210_hc_driver = {
5497 	.description		= hcd_name,
5498 	.product_desc		= "Faraday USB2.0 Host Controller",
5499 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5500 
5501 	/*
5502 	 * generic hardware linkage
5503 	 */
5504 	.irq			= fotg210_irq,
5505 	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5506 
5507 	/*
5508 	 * basic lifecycle operations
5509 	 */
5510 	.reset			= hcd_fotg210_init,
5511 	.start			= fotg210_run,
5512 	.stop			= fotg210_stop,
5513 	.shutdown		= fotg210_shutdown,
5514 
5515 	/*
5516 	 * managing i/o requests and associated device resources
5517 	 */
5518 	.urb_enqueue		= fotg210_urb_enqueue,
5519 	.urb_dequeue		= fotg210_urb_dequeue,
5520 	.endpoint_disable	= fotg210_endpoint_disable,
5521 	.endpoint_reset		= fotg210_endpoint_reset,
5522 
5523 	/*
5524 	 * scheduling support
5525 	 */
5526 	.get_frame_number	= fotg210_get_frame,
5527 
5528 	/*
5529 	 * root hub support
5530 	 */
5531 	.hub_status_data	= fotg210_hub_status_data,
5532 	.hub_control		= fotg210_hub_control,
5533 	.bus_suspend		= fotg210_bus_suspend,
5534 	.bus_resume		= fotg210_bus_resume,
5535 
5536 	.relinquish_port	= fotg210_relinquish_port,
5537 	.port_handed_over	= fotg210_port_handed_over,
5538 
5539 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5540 };
5541 
fotg210_init(struct fotg210_hcd * fotg210)5542 static void fotg210_init(struct fotg210_hcd *fotg210)
5543 {
5544 	u32 value;
5545 
5546 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5547 			&fotg210->regs->gmir);
5548 
5549 	value = ioread32(&fotg210->regs->otgcsr);
5550 	value &= ~OTGCSR_A_BUS_DROP;
5551 	value |= OTGCSR_A_BUS_REQ;
5552 	iowrite32(value, &fotg210->regs->otgcsr);
5553 }
5554 
5555 /*
5556  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5557  *
5558  * Allocates basic resources for this USB host controller, and
5559  * then invokes the start() method for the HCD associated with it
5560  * through the hotplug entry's driver_data.
5561  */
fotg210_hcd_probe(struct platform_device * pdev)5562 static int fotg210_hcd_probe(struct platform_device *pdev)
5563 {
5564 	struct device *dev = &pdev->dev;
5565 	struct usb_hcd *hcd;
5566 	struct resource *res;
5567 	int irq;
5568 	int retval;
5569 	struct fotg210_hcd *fotg210;
5570 
5571 	if (usb_disabled())
5572 		return -ENODEV;
5573 
5574 	pdev->dev.power.power_state = PMSG_ON;
5575 
5576 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5577 	if (!res) {
5578 		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5579 				dev_name(dev));
5580 		return -ENODEV;
5581 	}
5582 
5583 	irq = res->start;
5584 
5585 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5586 			dev_name(dev));
5587 	if (!hcd) {
5588 		dev_err(dev, "failed to create hcd\n");
5589 		retval = -ENOMEM;
5590 		goto fail_create_hcd;
5591 	}
5592 
5593 	hcd->has_tt = 1;
5594 
5595 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5596 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5597 	if (IS_ERR(hcd->regs)) {
5598 		retval = PTR_ERR(hcd->regs);
5599 		goto failed_put_hcd;
5600 	}
5601 
5602 	hcd->rsrc_start = res->start;
5603 	hcd->rsrc_len = resource_size(res);
5604 
5605 	fotg210 = hcd_to_fotg210(hcd);
5606 
5607 	fotg210->caps = hcd->regs;
5608 
5609 	/* It's OK not to supply this clock */
5610 	fotg210->pclk = clk_get(dev, "PCLK");
5611 	if (!IS_ERR(fotg210->pclk)) {
5612 		retval = clk_prepare_enable(fotg210->pclk);
5613 		if (retval) {
5614 			dev_err(dev, "failed to enable PCLK\n");
5615 			goto failed_put_hcd;
5616 		}
5617 	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5618 		/*
5619 		 * Percolate deferrals, for anything else,
5620 		 * just live without the clocking.
5621 		 */
5622 		retval = PTR_ERR(fotg210->pclk);
5623 		goto failed_dis_clk;
5624 	}
5625 
5626 	retval = fotg210_setup(hcd);
5627 	if (retval)
5628 		goto failed_dis_clk;
5629 
5630 	fotg210_init(fotg210);
5631 
5632 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5633 	if (retval) {
5634 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5635 		goto failed_dis_clk;
5636 	}
5637 	device_wakeup_enable(hcd->self.controller);
5638 	platform_set_drvdata(pdev, hcd);
5639 
5640 	return retval;
5641 
5642 failed_dis_clk:
5643 	if (!IS_ERR(fotg210->pclk)) {
5644 		clk_disable_unprepare(fotg210->pclk);
5645 		clk_put(fotg210->pclk);
5646 	}
5647 failed_put_hcd:
5648 	usb_put_hcd(hcd);
5649 fail_create_hcd:
5650 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5651 	return retval;
5652 }
5653 
5654 /*
5655  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5656  * @dev: USB Host Controller being removed
5657  *
5658  */
fotg210_hcd_remove(struct platform_device * pdev)5659 static int fotg210_hcd_remove(struct platform_device *pdev)
5660 {
5661 	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5662 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5663 
5664 	if (!IS_ERR(fotg210->pclk)) {
5665 		clk_disable_unprepare(fotg210->pclk);
5666 		clk_put(fotg210->pclk);
5667 	}
5668 
5669 	usb_remove_hcd(hcd);
5670 	usb_put_hcd(hcd);
5671 
5672 	return 0;
5673 }
5674 
5675 #ifdef CONFIG_OF
5676 static const struct of_device_id fotg210_of_match[] = {
5677 	{ .compatible = "faraday,fotg210" },
5678 	{},
5679 };
5680 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5681 #endif
5682 
5683 static struct platform_driver fotg210_hcd_driver = {
5684 	.driver = {
5685 		.name   = "fotg210-hcd",
5686 		.of_match_table = of_match_ptr(fotg210_of_match),
5687 	},
5688 	.probe  = fotg210_hcd_probe,
5689 	.remove = fotg210_hcd_remove,
5690 };
5691 
fotg210_hcd_init(void)5692 static int __init fotg210_hcd_init(void)
5693 {
5694 	int retval = 0;
5695 
5696 	if (usb_disabled())
5697 		return -ENODEV;
5698 
5699 	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5700 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5701 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5702 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5703 		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5704 
5705 	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5706 			hcd_name, sizeof(struct fotg210_qh),
5707 			sizeof(struct fotg210_qtd),
5708 			sizeof(struct fotg210_itd));
5709 
5710 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5711 
5712 	retval = platform_driver_register(&fotg210_hcd_driver);
5713 	if (retval < 0)
5714 		goto clean;
5715 	return retval;
5716 
5717 clean:
5718 	debugfs_remove(fotg210_debug_root);
5719 	fotg210_debug_root = NULL;
5720 
5721 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5722 	return retval;
5723 }
5724 module_init(fotg210_hcd_init);
5725 
fotg210_hcd_cleanup(void)5726 static void __exit fotg210_hcd_cleanup(void)
5727 {
5728 	platform_driver_unregister(&fotg210_hcd_driver);
5729 	debugfs_remove(fotg210_debug_root);
5730 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5731 }
5732 module_exit(fotg210_hcd_cleanup);
5733