• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-mtk.h"
25 #include "xhci-debugfs.h"
26 #include "xhci-dbgcap.h"
27 
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30 
31 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32 
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37 
38 static unsigned long long quirks;
39 module_param(quirks, ullong, S_IRUGO);
40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43 {
44 	struct xhci_segment *seg = ring->first_seg;
45 
46 	if (!td || !td->start_seg)
47 		return false;
48 	do {
49 		if (seg == td->start_seg)
50 			return true;
51 		seg = seg->next;
52 	} while (seg && seg != ring->first_seg);
53 
54 	return false;
55 }
56 
57 /*
58  * xhci_handshake - spin reading hc until handshake completes or fails
59  * @ptr: address of hc register to be read
60  * @mask: bits to look at in result of read
61  * @done: value of those bits when handshake succeeds
62  * @usec: timeout in microseconds
63  *
64  * Returns negative errno, or zero on success
65  *
66  * Success happens when the "mask" bits have the specified value (hardware
67  * handshake done).  There are two failure modes:  "usec" have passed (major
68  * hardware flakeout), or the register reads as all-ones (hardware removed).
69  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
71 {
72 	u32	result;
73 	int	ret;
74 
75 	ret = readl_poll_timeout_atomic(ptr, result,
76 					(result & mask) == done ||
77 					result == U32_MAX,
78 					1, timeout_us);
79 	if (result == U32_MAX)		/* card removed */
80 		return -ENODEV;
81 
82 	return ret;
83 }
84 
85 /*
86  * Disable interrupts and begin the xHCI halting process.
87  */
xhci_quiesce(struct xhci_hcd * xhci)88 void xhci_quiesce(struct xhci_hcd *xhci)
89 {
90 	u32 halted;
91 	u32 cmd;
92 	u32 mask;
93 
94 	mask = ~(XHCI_IRQS);
95 	halted = readl(&xhci->op_regs->status) & STS_HALT;
96 	if (!halted)
97 		mask &= ~CMD_RUN;
98 
99 	cmd = readl(&xhci->op_regs->command);
100 	cmd &= mask;
101 	writel(cmd, &xhci->op_regs->command);
102 }
103 
104 /*
105  * Force HC into halt state.
106  *
107  * Disable any IRQs and clear the run/stop bit.
108  * HC will complete any current and actively pipelined transactions, and
109  * should halt within 16 ms of the run/stop bit being cleared.
110  * Read HC Halted bit in the status register to see when the HC is finished.
111  */
xhci_halt(struct xhci_hcd * xhci)112 int xhci_halt(struct xhci_hcd *xhci)
113 {
114 	int ret;
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 	return ret;
127 }
128 
129 /*
130  * Set the run bit and wait for the host to be running.
131  */
xhci_start(struct xhci_hcd * xhci)132 int xhci_start(struct xhci_hcd *xhci)
133 {
134 	u32 temp;
135 	int ret;
136 
137 	temp = readl(&xhci->op_regs->command);
138 	temp |= (CMD_RUN);
139 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
140 			temp);
141 	writel(temp, &xhci->op_regs->command);
142 
143 	/*
144 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
145 	 * running.
146 	 */
147 	ret = xhci_handshake(&xhci->op_regs->status,
148 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
149 	if (ret == -ETIMEDOUT)
150 		xhci_err(xhci, "Host took too long to start, "
151 				"waited %u microseconds.\n",
152 				XHCI_MAX_HALT_USEC);
153 	if (!ret) {
154 		/* clear state flags. Including dying, halted or removing */
155 		xhci->xhc_state = 0;
156 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
157 	}
158 
159 	return ret;
160 }
161 
162 /*
163  * Reset a halted HC.
164  *
165  * This resets pipelines, timers, counters, state machines, etc.
166  * Transactions will be terminated immediately, and operational registers
167  * will be set to their defaults.
168  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)169 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
170 {
171 	u32 command;
172 	u32 state;
173 	int ret;
174 
175 	state = readl(&xhci->op_regs->status);
176 
177 	if (state == ~(u32)0) {
178 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
179 		return -ENODEV;
180 	}
181 
182 	if ((state & STS_HALT) == 0) {
183 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
184 		return 0;
185 	}
186 
187 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
188 	command = readl(&xhci->op_regs->command);
189 	command |= CMD_RESET;
190 	writel(command, &xhci->op_regs->command);
191 
192 	/* Existing Intel xHCI controllers require a delay of 1 mS,
193 	 * after setting the CMD_RESET bit, and before accessing any
194 	 * HC registers. This allows the HC to complete the
195 	 * reset operation and be ready for HC register access.
196 	 * Without this delay, the subsequent HC register access,
197 	 * may result in a system hang very rarely.
198 	 */
199 	if (xhci->quirks & XHCI_INTEL_HOST)
200 		udelay(1000);
201 
202 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
203 	if (ret)
204 		return ret;
205 
206 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208 
209 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 			 "Wait for controller to be ready for doorbell rings");
211 	/*
212 	 * xHCI cannot write to any doorbells or operational registers other
213 	 * than status until the "Controller Not Ready" flag is cleared.
214 	 */
215 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
216 
217 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
218 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
219 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
220 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
221 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
222 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
223 
224 	return ret;
225 }
226 
xhci_zero_64b_regs(struct xhci_hcd * xhci)227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 {
229 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230 	struct iommu_domain *domain;
231 	int err, i;
232 	u64 val;
233 	u32 intrs;
234 
235 	/*
236 	 * Some Renesas controllers get into a weird state if they are
237 	 * reset while programmed with 64bit addresses (they will preserve
238 	 * the top half of the address in internal, non visible
239 	 * registers). You end up with half the address coming from the
240 	 * kernel, and the other half coming from the firmware. Also,
241 	 * changing the programming leads to extra accesses even if the
242 	 * controller is supposed to be halted. The controller ends up with
243 	 * a fatal fault, and is then ripe for being properly reset.
244 	 *
245 	 * Special care is taken to only apply this if the device is behind
246 	 * an iommu. Doing anything when there is no iommu is definitely
247 	 * unsafe...
248 	 */
249 	domain = iommu_get_domain_for_dev(dev);
250 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
251 	    domain->type == IOMMU_DOMAIN_IDENTITY)
252 		return;
253 
254 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
255 
256 	/* Clear HSEIE so that faults do not get signaled */
257 	val = readl(&xhci->op_regs->command);
258 	val &= ~CMD_HSEIE;
259 	writel(val, &xhci->op_regs->command);
260 
261 	/* Clear HSE (aka FATAL) */
262 	val = readl(&xhci->op_regs->status);
263 	val |= STS_FATAL;
264 	writel(val, &xhci->op_regs->status);
265 
266 	/* Now zero the registers, and brace for impact */
267 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
268 	if (upper_32_bits(val))
269 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
270 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
271 	if (upper_32_bits(val))
272 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
273 
274 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
275 		      ARRAY_SIZE(xhci->run_regs->ir_set));
276 
277 	for (i = 0; i < intrs; i++) {
278 		struct xhci_intr_reg __iomem *ir;
279 
280 		ir = &xhci->run_regs->ir_set[i];
281 		val = xhci_read_64(xhci, &ir->erst_base);
282 		if (upper_32_bits(val))
283 			xhci_write_64(xhci, 0, &ir->erst_base);
284 		val= xhci_read_64(xhci, &ir->erst_dequeue);
285 		if (upper_32_bits(val))
286 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
287 	}
288 
289 	/* Wait for the fault to appear. It will be cleared on reset */
290 	err = xhci_handshake(&xhci->op_regs->status,
291 			     STS_FATAL, STS_FATAL,
292 			     XHCI_MAX_HALT_USEC);
293 	if (!err)
294 		xhci_info(xhci, "Fault detected\n");
295 }
296 
297 #ifdef CONFIG_USB_PCI
298 /*
299  * Set up MSI
300  */
xhci_setup_msi(struct xhci_hcd * xhci)301 static int xhci_setup_msi(struct xhci_hcd *xhci)
302 {
303 	int ret;
304 	/*
305 	 * TODO:Check with MSI Soc for sysdev
306 	 */
307 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
308 
309 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
310 	if (ret < 0) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"failed to allocate MSI entry");
313 		return ret;
314 	}
315 
316 	ret = request_irq(pdev->irq, xhci_msi_irq,
317 				0, "xhci_hcd", xhci_to_hcd(xhci));
318 	if (ret) {
319 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
320 				"disable MSI interrupt");
321 		pci_free_irq_vectors(pdev);
322 	}
323 
324 	return ret;
325 }
326 
327 /*
328  * Set up MSI-X
329  */
xhci_setup_msix(struct xhci_hcd * xhci)330 static int xhci_setup_msix(struct xhci_hcd *xhci)
331 {
332 	int i, ret = 0;
333 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
334 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
335 
336 	/*
337 	 * calculate number of msi-x vectors supported.
338 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
339 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
340 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
341 	 *   Add additional 1 vector to ensure always available interrupt.
342 	 */
343 	xhci->msix_count = min(num_online_cpus() + 1,
344 				HCS_MAX_INTRS(xhci->hcs_params1));
345 
346 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
347 			PCI_IRQ_MSIX);
348 	if (ret < 0) {
349 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
350 				"Failed to enable MSI-X");
351 		return ret;
352 	}
353 
354 	for (i = 0; i < xhci->msix_count; i++) {
355 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
356 				"xhci_hcd", xhci_to_hcd(xhci));
357 		if (ret)
358 			goto disable_msix;
359 	}
360 
361 	hcd->msix_enabled = 1;
362 	return ret;
363 
364 disable_msix:
365 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
366 	while (--i >= 0)
367 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
368 	pci_free_irq_vectors(pdev);
369 	return ret;
370 }
371 
372 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)373 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
374 {
375 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
376 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
377 
378 	if (xhci->quirks & XHCI_PLAT)
379 		return;
380 
381 	/* return if using legacy interrupt */
382 	if (hcd->irq > 0)
383 		return;
384 
385 	if (hcd->msix_enabled) {
386 		int i;
387 
388 		for (i = 0; i < xhci->msix_count; i++)
389 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
390 	} else {
391 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
392 	}
393 
394 	pci_free_irq_vectors(pdev);
395 	hcd->msix_enabled = 0;
396 }
397 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)398 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
401 
402 	if (hcd->msix_enabled) {
403 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
404 		int i;
405 
406 		for (i = 0; i < xhci->msix_count; i++)
407 			synchronize_irq(pci_irq_vector(pdev, i));
408 	}
409 }
410 
xhci_try_enable_msi(struct usb_hcd * hcd)411 static int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
414 	struct pci_dev  *pdev;
415 	int ret;
416 
417 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
418 	if (xhci->quirks & XHCI_PLAT)
419 		return 0;
420 
421 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
422 	/*
423 	 * Some Fresco Logic host controllers advertise MSI, but fail to
424 	 * generate interrupts.  Don't even try to enable MSI.
425 	 */
426 	if (xhci->quirks & XHCI_BROKEN_MSI)
427 		goto legacy_irq;
428 
429 	/* unregister the legacy interrupt */
430 	if (hcd->irq)
431 		free_irq(hcd->irq, hcd);
432 	hcd->irq = 0;
433 
434 	ret = xhci_setup_msix(xhci);
435 	if (ret)
436 		/* fall back to msi*/
437 		ret = xhci_setup_msi(xhci);
438 
439 	if (!ret) {
440 		hcd->msi_enabled = 1;
441 		return 0;
442 	}
443 
444 	if (!pdev->irq) {
445 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
446 		return -EINVAL;
447 	}
448 
449  legacy_irq:
450 	if (!strlen(hcd->irq_descr))
451 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
452 			 hcd->driver->description, hcd->self.busnum);
453 
454 	/* fall back to legacy interrupt*/
455 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
456 			hcd->irq_descr, hcd);
457 	if (ret) {
458 		xhci_err(xhci, "request interrupt %d failed\n",
459 				pdev->irq);
460 		return ret;
461 	}
462 	hcd->irq = pdev->irq;
463 	return 0;
464 }
465 
466 #else
467 
xhci_try_enable_msi(struct usb_hcd * hcd)468 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
469 {
470 	return 0;
471 }
472 
xhci_cleanup_msix(struct xhci_hcd * xhci)473 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
474 {
475 }
476 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)477 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
478 {
479 }
480 
481 #endif
482 
compliance_mode_recovery(struct timer_list * t)483 static void compliance_mode_recovery(struct timer_list *t)
484 {
485 	struct xhci_hcd *xhci;
486 	struct usb_hcd *hcd;
487 	struct xhci_hub *rhub;
488 	u32 temp;
489 	int i;
490 
491 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
492 	rhub = &xhci->usb3_rhub;
493 
494 	for (i = 0; i < rhub->num_ports; i++) {
495 		temp = readl(rhub->ports[i]->addr);
496 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497 			/*
498 			 * Compliance Mode Detected. Letting USB Core
499 			 * handle the Warm Reset
500 			 */
501 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502 					"Compliance mode detected->port %d",
503 					i + 1);
504 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505 					"Attempting compliance mode recovery");
506 			hcd = xhci->shared_hcd;
507 
508 			if (hcd->state == HC_STATE_SUSPENDED)
509 				usb_hcd_resume_root_hub(hcd);
510 
511 			usb_hcd_poll_rh_status(hcd);
512 		}
513 	}
514 
515 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
516 		mod_timer(&xhci->comp_mode_recovery_timer,
517 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
518 }
519 
520 /*
521  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
522  * that causes ports behind that hardware to enter compliance mode sometimes.
523  * The quirk creates a timer that polls every 2 seconds the link state of
524  * each host controller's port and recovers it by issuing a Warm reset
525  * if Compliance mode is detected, otherwise the port will become "dead" (no
526  * device connections or disconnections will be detected anymore). Becasue no
527  * status event is generated when entering compliance mode (per xhci spec),
528  * this quirk is needed on systems that have the failing hardware installed.
529  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)530 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
531 {
532 	xhci->port_status_u0 = 0;
533 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
534 		    0);
535 	xhci->comp_mode_recovery_timer.expires = jiffies +
536 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
537 
538 	add_timer(&xhci->comp_mode_recovery_timer);
539 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
540 			"Compliance mode recovery timer initialized");
541 }
542 
543 /*
544  * This function identifies the systems that have installed the SN65LVPE502CP
545  * USB3.0 re-driver and that need the Compliance Mode Quirk.
546  * Systems:
547  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
548  */
xhci_compliance_mode_recovery_timer_quirk_check(void)549 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
550 {
551 	const char *dmi_product_name, *dmi_sys_vendor;
552 
553 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
554 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
555 	if (!dmi_product_name || !dmi_sys_vendor)
556 		return false;
557 
558 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
559 		return false;
560 
561 	if (strstr(dmi_product_name, "Z420") ||
562 			strstr(dmi_product_name, "Z620") ||
563 			strstr(dmi_product_name, "Z820") ||
564 			strstr(dmi_product_name, "Z1 Workstation"))
565 		return true;
566 
567 	return false;
568 }
569 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)570 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
571 {
572 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
573 }
574 
575 
576 /*
577  * Initialize memory for HCD and xHC (one-time init).
578  *
579  * Program the PAGESIZE register, initialize the device context array, create
580  * device contexts (?), set up a command ring segment (or two?), create event
581  * ring (one for now).
582  */
xhci_init(struct usb_hcd * hcd)583 static int xhci_init(struct usb_hcd *hcd)
584 {
585 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
586 	int retval = 0;
587 
588 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
589 	spin_lock_init(&xhci->lock);
590 	if (xhci->hci_version == 0x95 && link_quirk) {
591 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
592 				"QUIRK: Not clearing Link TRB chain bits.");
593 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
594 	} else {
595 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
596 				"xHCI doesn't need link TRB QUIRK");
597 	}
598 	retval = xhci_mem_init(xhci, GFP_KERNEL);
599 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
600 
601 	/* Initializing Compliance Mode Recovery Data If Needed */
602 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
603 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
604 		compliance_mode_recovery_timer_init(xhci);
605 	}
606 
607 	return retval;
608 }
609 
610 /*-------------------------------------------------------------------------*/
611 
612 
xhci_run_finished(struct xhci_hcd * xhci)613 static int xhci_run_finished(struct xhci_hcd *xhci)
614 {
615 	if (xhci_start(xhci)) {
616 		xhci_halt(xhci);
617 		return -ENODEV;
618 	}
619 	xhci->shared_hcd->state = HC_STATE_RUNNING;
620 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
621 
622 	if (xhci->quirks & XHCI_NEC_HOST)
623 		xhci_ring_cmd_db(xhci);
624 
625 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
626 			"Finished xhci_run for USB3 roothub");
627 	return 0;
628 }
629 
630 /*
631  * Start the HC after it was halted.
632  *
633  * This function is called by the USB core when the HC driver is added.
634  * Its opposite is xhci_stop().
635  *
636  * xhci_init() must be called once before this function can be called.
637  * Reset the HC, enable device slot contexts, program DCBAAP, and
638  * set command ring pointer and event ring pointer.
639  *
640  * Setup MSI-X vectors and enable interrupts.
641  */
xhci_run(struct usb_hcd * hcd)642 int xhci_run(struct usb_hcd *hcd)
643 {
644 	u32 temp;
645 	u64 temp_64;
646 	int ret;
647 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
648 
649 	/* Start the xHCI host controller running only after the USB 2.0 roothub
650 	 * is setup.
651 	 */
652 
653 	hcd->uses_new_polling = 1;
654 	if (!usb_hcd_is_primary_hcd(hcd))
655 		return xhci_run_finished(xhci);
656 
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
658 
659 	ret = xhci_try_enable_msi(hcd);
660 	if (ret)
661 		return ret;
662 
663 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
664 	temp_64 &= ~ERST_PTR_MASK;
665 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
666 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
667 
668 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669 			"// Set the interrupt modulation register");
670 	temp = readl(&xhci->ir_set->irq_control);
671 	temp &= ~ER_IRQ_INTERVAL_MASK;
672 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
673 	writel(temp, &xhci->ir_set->irq_control);
674 
675 	/* Set the HCD state before we enable the irqs */
676 	temp = readl(&xhci->op_regs->command);
677 	temp |= (CMD_EIE);
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Enable interrupts, cmd = 0x%x.", temp);
680 	writel(temp, &xhci->op_regs->command);
681 
682 	temp = readl(&xhci->ir_set->irq_pending);
683 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
684 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
685 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
686 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
687 
688 	if (xhci->quirks & XHCI_NEC_HOST) {
689 		struct xhci_command *command;
690 
691 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
692 		if (!command)
693 			return -ENOMEM;
694 
695 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
696 				TRB_TYPE(TRB_NEC_GET_FW));
697 		if (ret)
698 			xhci_free_command(xhci, command);
699 	}
700 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701 			"Finished xhci_run for USB2 roothub");
702 
703 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
704 
705 	xhci_dbc_init(xhci);
706 
707 	xhci_debugfs_init(xhci);
708 
709 	return 0;
710 }
711 EXPORT_SYMBOL_GPL(xhci_run);
712 
713 /*
714  * Stop xHCI driver.
715  *
716  * This function is called by the USB core when the HC driver is removed.
717  * Its opposite is xhci_run().
718  *
719  * Disable device contexts, disable IRQs, and quiesce the HC.
720  * Reset the HC, finish any completed transactions, and cleanup memory.
721  */
xhci_stop(struct usb_hcd * hcd)722 static void xhci_stop(struct usb_hcd *hcd)
723 {
724 	u32 temp;
725 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
726 
727 	mutex_lock(&xhci->mutex);
728 
729 	/* Only halt host and free memory after both hcds are removed */
730 	if (!usb_hcd_is_primary_hcd(hcd)) {
731 		mutex_unlock(&xhci->mutex);
732 		return;
733 	}
734 
735 	xhci_dbc_exit(xhci);
736 
737 	spin_lock_irq(&xhci->lock);
738 	xhci->xhc_state |= XHCI_STATE_HALTED;
739 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
740 	xhci_halt(xhci);
741 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
742 	spin_unlock_irq(&xhci->lock);
743 
744 	xhci_cleanup_msix(xhci);
745 
746 	/* Deleting Compliance Mode Recovery Timer */
747 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
748 			(!(xhci_all_ports_seen_u0(xhci)))) {
749 		del_timer_sync(&xhci->comp_mode_recovery_timer);
750 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
751 				"%s: compliance mode recovery timer deleted",
752 				__func__);
753 	}
754 
755 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
756 		usb_amd_dev_put();
757 
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"// Disabling event ring interrupts");
760 	temp = readl(&xhci->op_regs->status);
761 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
762 	temp = readl(&xhci->ir_set->irq_pending);
763 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
764 
765 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
766 	xhci_mem_cleanup(xhci);
767 	xhci_debugfs_exit(xhci);
768 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 			"xhci_stop completed - status = %x",
770 			readl(&xhci->op_regs->status));
771 	mutex_unlock(&xhci->mutex);
772 }
773 
774 /*
775  * Shutdown HC (not bus-specific)
776  *
777  * This is called when the machine is rebooting or halting.  We assume that the
778  * machine will be powered off, and the HC's internal state will be reset.
779  * Don't bother to free memory.
780  *
781  * This will only ever be called with the main usb_hcd (the USB3 roothub).
782  */
xhci_shutdown(struct usb_hcd * hcd)783 void xhci_shutdown(struct usb_hcd *hcd)
784 {
785 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
786 
787 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
788 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
789 
790 	/* Don't poll the roothubs after shutdown. */
791 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
792 			__func__, hcd->self.busnum);
793 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
794 	del_timer_sync(&hcd->rh_timer);
795 
796 	if (xhci->shared_hcd) {
797 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
798 		del_timer_sync(&xhci->shared_hcd->rh_timer);
799 	}
800 
801 	spin_lock_irq(&xhci->lock);
802 	xhci_halt(xhci);
803 
804 	/*
805 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
806 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
807 	 */
808 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
809 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
810 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
811 
812 	spin_unlock_irq(&xhci->lock);
813 
814 	xhci_cleanup_msix(xhci);
815 
816 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
817 			"xhci_shutdown completed - status = %x",
818 			readl(&xhci->op_regs->status));
819 }
820 EXPORT_SYMBOL_GPL(xhci_shutdown);
821 
822 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)823 static void xhci_save_registers(struct xhci_hcd *xhci)
824 {
825 	xhci->s3.command = readl(&xhci->op_regs->command);
826 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
827 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
828 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
829 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
830 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
831 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
832 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
833 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
834 }
835 
xhci_restore_registers(struct xhci_hcd * xhci)836 static void xhci_restore_registers(struct xhci_hcd *xhci)
837 {
838 	writel(xhci->s3.command, &xhci->op_regs->command);
839 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
840 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
841 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
842 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
843 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
844 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
845 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
846 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
847 }
848 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)849 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
850 {
851 	u64	val_64;
852 
853 	/* step 2: initialize command ring buffer */
854 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
855 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
856 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
857 				      xhci->cmd_ring->dequeue) &
858 		 (u64) ~CMD_RING_RSVD_BITS) |
859 		xhci->cmd_ring->cycle_state;
860 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
861 			"// Setting command ring address to 0x%llx",
862 			(long unsigned long) val_64);
863 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
864 }
865 
866 /*
867  * The whole command ring must be cleared to zero when we suspend the host.
868  *
869  * The host doesn't save the command ring pointer in the suspend well, so we
870  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
871  * aligned, because of the reserved bits in the command ring dequeue pointer
872  * register.  Therefore, we can't just set the dequeue pointer back in the
873  * middle of the ring (TRBs are 16-byte aligned).
874  */
xhci_clear_command_ring(struct xhci_hcd * xhci)875 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
876 {
877 	struct xhci_ring *ring;
878 	struct xhci_segment *seg;
879 
880 	ring = xhci->cmd_ring;
881 	seg = ring->deq_seg;
882 	do {
883 		memset(seg->trbs, 0,
884 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
885 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
886 			cpu_to_le32(~TRB_CYCLE);
887 		seg = seg->next;
888 	} while (seg != ring->deq_seg);
889 
890 	/* Reset the software enqueue and dequeue pointers */
891 	ring->deq_seg = ring->first_seg;
892 	ring->dequeue = ring->first_seg->trbs;
893 	ring->enq_seg = ring->deq_seg;
894 	ring->enqueue = ring->dequeue;
895 
896 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
897 	/*
898 	 * Ring is now zeroed, so the HW should look for change of ownership
899 	 * when the cycle bit is set to 1.
900 	 */
901 	ring->cycle_state = 1;
902 
903 	/*
904 	 * Reset the hardware dequeue pointer.
905 	 * Yes, this will need to be re-written after resume, but we're paranoid
906 	 * and want to make sure the hardware doesn't access bogus memory
907 	 * because, say, the BIOS or an SMI started the host without changing
908 	 * the command ring pointers.
909 	 */
910 	xhci_set_cmd_ring_deq(xhci);
911 }
912 
913 /*
914  * Disable port wake bits if do_wakeup is not set.
915  *
916  * Also clear a possible internal port wake state left hanging for ports that
917  * detected termination but never successfully enumerated (trained to 0U).
918  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
919  * at enumeration clears this wake, force one here as well for unconnected ports
920  */
921 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)922 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
923 				       struct xhci_hub *rhub,
924 				       bool do_wakeup)
925 {
926 	unsigned long flags;
927 	u32 t1, t2, portsc;
928 	int i;
929 
930 	spin_lock_irqsave(&xhci->lock, flags);
931 
932 	for (i = 0; i < rhub->num_ports; i++) {
933 		portsc = readl(rhub->ports[i]->addr);
934 		t1 = xhci_port_state_to_neutral(portsc);
935 		t2 = t1;
936 
937 		/* clear wake bits if do_wake is not set */
938 		if (!do_wakeup)
939 			t2 &= ~PORT_WAKE_BITS;
940 
941 		/* Don't touch csc bit if connected or connect change is set */
942 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
943 			t2 |= PORT_CSC;
944 
945 		if (t1 != t2) {
946 			writel(t2, rhub->ports[i]->addr);
947 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
948 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
949 		}
950 	}
951 	spin_unlock_irqrestore(&xhci->lock, flags);
952 }
953 
xhci_pending_portevent(struct xhci_hcd * xhci)954 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
955 {
956 	struct xhci_port	**ports;
957 	int			port_index;
958 	u32			status;
959 	u32			portsc;
960 
961 	status = readl(&xhci->op_regs->status);
962 	if (status & STS_EINT)
963 		return true;
964 	/*
965 	 * Checking STS_EINT is not enough as there is a lag between a change
966 	 * bit being set and the Port Status Change Event that it generated
967 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
968 	 */
969 
970 	port_index = xhci->usb2_rhub.num_ports;
971 	ports = xhci->usb2_rhub.ports;
972 	while (port_index--) {
973 		portsc = readl(ports[port_index]->addr);
974 		if (portsc & PORT_CHANGE_MASK ||
975 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
976 			return true;
977 	}
978 	port_index = xhci->usb3_rhub.num_ports;
979 	ports = xhci->usb3_rhub.ports;
980 	while (port_index--) {
981 		portsc = readl(ports[port_index]->addr);
982 		if (portsc & PORT_CHANGE_MASK ||
983 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
984 			return true;
985 	}
986 	return false;
987 }
988 
989 /*
990  * Stop HC (not bus-specific)
991  *
992  * This is called when the machine transition into S3/S4 mode.
993  *
994  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)995 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
996 {
997 	int			rc = 0;
998 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
999 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1000 	u32			command;
1001 	u32			res;
1002 
1003 	if (!hcd->state)
1004 		return 0;
1005 
1006 	if (hcd->state != HC_STATE_SUSPENDED ||
1007 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1008 		return -EINVAL;
1009 
1010 	/* Clear root port wake on bits if wakeup not allowed. */
1011 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1012 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1013 
1014 	if (!HCD_HW_ACCESSIBLE(hcd))
1015 		return 0;
1016 
1017 	xhci_dbc_suspend(xhci);
1018 
1019 	/* Don't poll the roothubs on bus suspend. */
1020 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1021 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1022 	del_timer_sync(&hcd->rh_timer);
1023 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1024 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1025 
1026 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1027 		usleep_range(1000, 1500);
1028 
1029 	spin_lock_irq(&xhci->lock);
1030 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1031 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1032 	/* step 1: stop endpoint */
1033 	/* skipped assuming that port suspend has done */
1034 
1035 	/* step 2: clear Run/Stop bit */
1036 	command = readl(&xhci->op_regs->command);
1037 	command &= ~CMD_RUN;
1038 	writel(command, &xhci->op_regs->command);
1039 
1040 	/* Some chips from Fresco Logic need an extraordinary delay */
1041 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1042 
1043 	if (xhci_handshake(&xhci->op_regs->status,
1044 		      STS_HALT, STS_HALT, delay)) {
1045 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1046 		spin_unlock_irq(&xhci->lock);
1047 		return -ETIMEDOUT;
1048 	}
1049 	xhci_clear_command_ring(xhci);
1050 
1051 	/* step 3: save registers */
1052 	xhci_save_registers(xhci);
1053 
1054 	/* step 4: set CSS flag */
1055 	command = readl(&xhci->op_regs->command);
1056 	command |= CMD_CSS;
1057 	writel(command, &xhci->op_regs->command);
1058 	xhci->broken_suspend = 0;
1059 	if (xhci_handshake(&xhci->op_regs->status,
1060 				STS_SAVE, 0, 20 * 1000)) {
1061 	/*
1062 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1063 	 * SSS bit of USBSTS and when driver tries to poll
1064 	 * to see if the xHC clears BIT(8) which never happens
1065 	 * and driver assumes that controller is not responding
1066 	 * and times out. To workaround this, its good to check
1067 	 * if SRE and HCE bits are not set (as per xhci
1068 	 * Section 5.4.2) and bypass the timeout.
1069 	 */
1070 		res = readl(&xhci->op_regs->status);
1071 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1072 		    (((res & STS_SRE) == 0) &&
1073 				((res & STS_HCE) == 0))) {
1074 			xhci->broken_suspend = 1;
1075 		} else {
1076 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1077 			spin_unlock_irq(&xhci->lock);
1078 			return -ETIMEDOUT;
1079 		}
1080 	}
1081 	spin_unlock_irq(&xhci->lock);
1082 
1083 	/*
1084 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1085 	 * is about to be suspended.
1086 	 */
1087 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1088 			(!(xhci_all_ports_seen_u0(xhci)))) {
1089 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1090 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1091 				"%s: compliance mode recovery timer deleted",
1092 				__func__);
1093 	}
1094 
1095 	/* step 5: remove core well power */
1096 	/* synchronize irq when using MSI-X */
1097 	xhci_msix_sync_irqs(xhci);
1098 
1099 	return rc;
1100 }
1101 EXPORT_SYMBOL_GPL(xhci_suspend);
1102 
1103 /*
1104  * start xHC (not bus-specific)
1105  *
1106  * This is called when the machine transition from S3/S4 mode.
1107  *
1108  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1109 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1110 {
1111 	u32			command, temp = 0;
1112 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1113 	struct usb_hcd		*secondary_hcd;
1114 	int			retval = 0;
1115 	bool			comp_timer_running = false;
1116 	bool			pending_portevent = false;
1117 	bool			reinit_xhc = false;
1118 
1119 	if (!hcd->state)
1120 		return 0;
1121 
1122 	/* Wait a bit if either of the roothubs need to settle from the
1123 	 * transition into bus suspend.
1124 	 */
1125 
1126 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1127 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1128 		msleep(100);
1129 
1130 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1131 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1132 
1133 	spin_lock_irq(&xhci->lock);
1134 
1135 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1136 		reinit_xhc = true;
1137 
1138 	if (!reinit_xhc) {
1139 		/*
1140 		 * Some controllers might lose power during suspend, so wait
1141 		 * for controller not ready bit to clear, just as in xHC init.
1142 		 */
1143 		retval = xhci_handshake(&xhci->op_regs->status,
1144 					STS_CNR, 0, 10 * 1000 * 1000);
1145 		if (retval) {
1146 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1147 				  retval);
1148 			spin_unlock_irq(&xhci->lock);
1149 			return retval;
1150 		}
1151 		/* step 1: restore register */
1152 		xhci_restore_registers(xhci);
1153 		/* step 2: initialize command ring buffer */
1154 		xhci_set_cmd_ring_deq(xhci);
1155 		/* step 3: restore state and start state*/
1156 		/* step 3: set CRS flag */
1157 		command = readl(&xhci->op_regs->command);
1158 		command |= CMD_CRS;
1159 		writel(command, &xhci->op_regs->command);
1160 		/*
1161 		 * Some controllers take up to 55+ ms to complete the controller
1162 		 * restore so setting the timeout to 100ms. Xhci specification
1163 		 * doesn't mention any timeout value.
1164 		 */
1165 		if (xhci_handshake(&xhci->op_regs->status,
1166 			      STS_RESTORE, 0, 100 * 1000)) {
1167 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1168 			spin_unlock_irq(&xhci->lock);
1169 			return -ETIMEDOUT;
1170 		}
1171 	}
1172 
1173 	temp = readl(&xhci->op_regs->status);
1174 
1175 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1176 	if (temp & (STS_SRE | STS_HCE)) {
1177 		reinit_xhc = true;
1178 		if (!xhci->broken_suspend)
1179 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1180 	}
1181 
1182 	if (reinit_xhc) {
1183 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1184 				!(xhci_all_ports_seen_u0(xhci))) {
1185 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1186 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1187 				"Compliance Mode Recovery Timer deleted!");
1188 		}
1189 
1190 		/* Let the USB core know _both_ roothubs lost power. */
1191 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1192 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1193 
1194 		xhci_dbg(xhci, "Stop HCD\n");
1195 		xhci_halt(xhci);
1196 		xhci_zero_64b_regs(xhci);
1197 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1198 		spin_unlock_irq(&xhci->lock);
1199 		if (retval)
1200 			return retval;
1201 		xhci_cleanup_msix(xhci);
1202 
1203 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1204 		temp = readl(&xhci->op_regs->status);
1205 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1206 		temp = readl(&xhci->ir_set->irq_pending);
1207 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1208 
1209 		xhci_dbg(xhci, "cleaning up memory\n");
1210 		xhci_mem_cleanup(xhci);
1211 		xhci_debugfs_exit(xhci);
1212 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1213 			    readl(&xhci->op_regs->status));
1214 
1215 		/* USB core calls the PCI reinit and start functions twice:
1216 		 * first with the primary HCD, and then with the secondary HCD.
1217 		 * If we don't do the same, the host will never be started.
1218 		 */
1219 		if (!usb_hcd_is_primary_hcd(hcd))
1220 			secondary_hcd = hcd;
1221 		else
1222 			secondary_hcd = xhci->shared_hcd;
1223 
1224 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1225 		retval = xhci_init(hcd->primary_hcd);
1226 		if (retval)
1227 			return retval;
1228 		comp_timer_running = true;
1229 
1230 		xhci_dbg(xhci, "Start the primary HCD\n");
1231 		retval = xhci_run(hcd->primary_hcd);
1232 		if (!retval) {
1233 			xhci_dbg(xhci, "Start the secondary HCD\n");
1234 			retval = xhci_run(secondary_hcd);
1235 		}
1236 		hcd->state = HC_STATE_SUSPENDED;
1237 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1238 		goto done;
1239 	}
1240 
1241 	/* step 4: set Run/Stop bit */
1242 	command = readl(&xhci->op_regs->command);
1243 	command |= CMD_RUN;
1244 	writel(command, &xhci->op_regs->command);
1245 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1246 		  0, 250 * 1000);
1247 
1248 	/* step 5: walk topology and initialize portsc,
1249 	 * portpmsc and portli
1250 	 */
1251 	/* this is done in bus_resume */
1252 
1253 	/* step 6: restart each of the previously
1254 	 * Running endpoints by ringing their doorbells
1255 	 */
1256 
1257 	spin_unlock_irq(&xhci->lock);
1258 
1259 	xhci_dbc_resume(xhci);
1260 
1261  done:
1262 	if (retval == 0) {
1263 		/*
1264 		 * Resume roothubs only if there are pending events.
1265 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1266 		 * the first wake signalling failed, give it that chance.
1267 		 */
1268 		pending_portevent = xhci_pending_portevent(xhci);
1269 		if (!pending_portevent) {
1270 			msleep(120);
1271 			pending_portevent = xhci_pending_portevent(xhci);
1272 		}
1273 
1274 		if (pending_portevent) {
1275 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1276 			usb_hcd_resume_root_hub(hcd);
1277 		}
1278 	}
1279 	/*
1280 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1281 	 * be re-initialized Always after a system resume. Ports are subject
1282 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1283 	 * ports have entered previously to U0 before system's suspension.
1284 	 */
1285 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1286 		compliance_mode_recovery_timer_init(xhci);
1287 
1288 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1289 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1290 
1291 	/* Re-enable port polling. */
1292 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1293 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1294 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1295 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1296 	usb_hcd_poll_rh_status(hcd);
1297 
1298 	return retval;
1299 }
1300 EXPORT_SYMBOL_GPL(xhci_resume);
1301 #endif	/* CONFIG_PM */
1302 
1303 /*-------------------------------------------------------------------------*/
1304 
1305 /*
1306  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1307  * we'll copy the actual data into the TRB address register. This is limited to
1308  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1309  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1310  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1311 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1312 				gfp_t mem_flags)
1313 {
1314 	if (xhci_urb_suitable_for_idt(urb))
1315 		return 0;
1316 
1317 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1318 }
1319 
1320 /*
1321  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1322  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1323  * value to right shift 1 for the bitmask.
1324  *
1325  * Index  = (epnum * 2) + direction - 1,
1326  * where direction = 0 for OUT, 1 for IN.
1327  * For control endpoints, the IN index is used (OUT index is unused), so
1328  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1329  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1330 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1331 {
1332 	unsigned int index;
1333 	if (usb_endpoint_xfer_control(desc))
1334 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1335 	else
1336 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1337 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1338 	return index;
1339 }
1340 
1341 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1342  * address from the XHCI endpoint index.
1343  */
xhci_get_endpoint_address(unsigned int ep_index)1344 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1345 {
1346 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1347 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1348 	return direction | number;
1349 }
1350 
1351 /* Find the flag for this endpoint (for use in the control context).  Use the
1352  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1353  * bit 1, etc.
1354  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1355 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1356 {
1357 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1358 }
1359 
1360 /* Find the flag for this endpoint (for use in the control context).  Use the
1361  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1362  * bit 1, etc.
1363  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1364 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1365 {
1366 	return 1 << (ep_index + 1);
1367 }
1368 
1369 /* Compute the last valid endpoint context index.  Basically, this is the
1370  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1371  * we find the most significant bit set in the added contexts flags.
1372  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1373  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1374  */
xhci_last_valid_endpoint(u32 added_ctxs)1375 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1376 {
1377 	return fls(added_ctxs) - 1;
1378 }
1379 
1380 /* Returns 1 if the arguments are OK;
1381  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1382  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1383 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1384 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1385 		const char *func) {
1386 	struct xhci_hcd	*xhci;
1387 	struct xhci_virt_device	*virt_dev;
1388 
1389 	if (!hcd || (check_ep && !ep) || !udev) {
1390 		pr_debug("xHCI %s called with invalid args\n", func);
1391 		return -EINVAL;
1392 	}
1393 	if (!udev->parent) {
1394 		pr_debug("xHCI %s called for root hub\n", func);
1395 		return 0;
1396 	}
1397 
1398 	xhci = hcd_to_xhci(hcd);
1399 	if (check_virt_dev) {
1400 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1401 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1402 					func);
1403 			return -EINVAL;
1404 		}
1405 
1406 		virt_dev = xhci->devs[udev->slot_id];
1407 		if (virt_dev->udev != udev) {
1408 			xhci_dbg(xhci, "xHCI %s called with udev and "
1409 					  "virt_dev does not match\n", func);
1410 			return -EINVAL;
1411 		}
1412 	}
1413 
1414 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1415 		return -ENODEV;
1416 
1417 	return 1;
1418 }
1419 
1420 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1421 		struct usb_device *udev, struct xhci_command *command,
1422 		bool ctx_change, bool must_succeed);
1423 
1424 /*
1425  * Full speed devices may have a max packet size greater than 8 bytes, but the
1426  * USB core doesn't know that until it reads the first 8 bytes of the
1427  * descriptor.  If the usb_device's max packet size changes after that point,
1428  * we need to issue an evaluate context command and wait on it.
1429  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1430 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1431 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1432 {
1433 	struct xhci_container_ctx *out_ctx;
1434 	struct xhci_input_control_ctx *ctrl_ctx;
1435 	struct xhci_ep_ctx *ep_ctx;
1436 	struct xhci_command *command;
1437 	int max_packet_size;
1438 	int hw_max_packet_size;
1439 	int ret = 0;
1440 
1441 	out_ctx = xhci->devs[slot_id]->out_ctx;
1442 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1443 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1444 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1445 	if (hw_max_packet_size != max_packet_size) {
1446 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1447 				"Max Packet Size for ep 0 changed.");
1448 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1449 				"Max packet size in usb_device = %d",
1450 				max_packet_size);
1451 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1452 				"Max packet size in xHCI HW = %d",
1453 				hw_max_packet_size);
1454 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1455 				"Issuing evaluate context command.");
1456 
1457 		/* Set up the input context flags for the command */
1458 		/* FIXME: This won't work if a non-default control endpoint
1459 		 * changes max packet sizes.
1460 		 */
1461 
1462 		command = xhci_alloc_command(xhci, true, mem_flags);
1463 		if (!command)
1464 			return -ENOMEM;
1465 
1466 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1467 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1468 		if (!ctrl_ctx) {
1469 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1470 					__func__);
1471 			ret = -ENOMEM;
1472 			goto command_cleanup;
1473 		}
1474 		/* Set up the modified control endpoint 0 */
1475 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1476 				xhci->devs[slot_id]->out_ctx, ep_index);
1477 
1478 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1479 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1480 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1481 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1482 
1483 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1484 		ctrl_ctx->drop_flags = 0;
1485 
1486 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1487 				true, false);
1488 
1489 		/* Clean up the input context for later use by bandwidth
1490 		 * functions.
1491 		 */
1492 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1493 command_cleanup:
1494 		kfree(command->completion);
1495 		kfree(command);
1496 	}
1497 	return ret;
1498 }
1499 
1500 /*
1501  * non-error returns are a promise to giveback() the urb later
1502  * we drop ownership so next owner (or urb unlink) can get it
1503  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1504 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1505 {
1506 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1507 	unsigned long flags;
1508 	int ret = 0;
1509 	unsigned int slot_id, ep_index;
1510 	unsigned int *ep_state;
1511 	struct urb_priv	*urb_priv;
1512 	int num_tds;
1513 
1514 	if (!urb)
1515 		return -EINVAL;
1516 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1517 					true, true, __func__);
1518 	if (ret <= 0)
1519 		return ret ? ret : -EINVAL;
1520 
1521 	slot_id = urb->dev->slot_id;
1522 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1524 
1525 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1526 		if (!in_interrupt())
1527 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1528 		return -ESHUTDOWN;
1529 	}
1530 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1531 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1532 		return -ENODEV;
1533 	}
1534 
1535 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1536 		num_tds = urb->number_of_packets;
1537 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1538 	    urb->transfer_buffer_length > 0 &&
1539 	    urb->transfer_flags & URB_ZERO_PACKET &&
1540 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1541 		num_tds = 2;
1542 	else
1543 		num_tds = 1;
1544 
1545 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1546 	if (!urb_priv)
1547 		return -ENOMEM;
1548 
1549 	urb_priv->num_tds = num_tds;
1550 	urb_priv->num_tds_done = 0;
1551 	urb->hcpriv = urb_priv;
1552 
1553 	trace_xhci_urb_enqueue(urb);
1554 
1555 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1556 		/* Check to see if the max packet size for the default control
1557 		 * endpoint changed during FS device enumeration
1558 		 */
1559 		if (urb->dev->speed == USB_SPEED_FULL) {
1560 			ret = xhci_check_maxpacket(xhci, slot_id,
1561 					ep_index, urb, mem_flags);
1562 			if (ret < 0) {
1563 				xhci_urb_free_priv(urb_priv);
1564 				urb->hcpriv = NULL;
1565 				return ret;
1566 			}
1567 		}
1568 	}
1569 
1570 	spin_lock_irqsave(&xhci->lock, flags);
1571 
1572 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1573 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1574 			 urb->ep->desc.bEndpointAddress, urb);
1575 		ret = -ESHUTDOWN;
1576 		goto free_priv;
1577 	}
1578 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1579 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1580 			  *ep_state);
1581 		ret = -EINVAL;
1582 		goto free_priv;
1583 	}
1584 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1585 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1586 		ret = -EINVAL;
1587 		goto free_priv;
1588 	}
1589 
1590 	switch (usb_endpoint_type(&urb->ep->desc)) {
1591 
1592 	case USB_ENDPOINT_XFER_CONTROL:
1593 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1594 					 slot_id, ep_index);
1595 		break;
1596 	case USB_ENDPOINT_XFER_BULK:
1597 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1598 					 slot_id, ep_index);
1599 		break;
1600 	case USB_ENDPOINT_XFER_INT:
1601 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1602 				slot_id, ep_index);
1603 		break;
1604 	case USB_ENDPOINT_XFER_ISOC:
1605 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1606 				slot_id, ep_index);
1607 	}
1608 
1609 	if (ret) {
1610 free_priv:
1611 		xhci_urb_free_priv(urb_priv);
1612 		urb->hcpriv = NULL;
1613 	}
1614 	spin_unlock_irqrestore(&xhci->lock, flags);
1615 	return ret;
1616 }
1617 
1618 /*
1619  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1620  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1621  * should pick up where it left off in the TD, unless a Set Transfer Ring
1622  * Dequeue Pointer is issued.
1623  *
1624  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1625  * the ring.  Since the ring is a contiguous structure, they can't be physically
1626  * removed.  Instead, there are two options:
1627  *
1628  *  1) If the HC is in the middle of processing the URB to be canceled, we
1629  *     simply move the ring's dequeue pointer past those TRBs using the Set
1630  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1631  *     when drivers timeout on the last submitted URB and attempt to cancel.
1632  *
1633  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1634  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1635  *     HC will need to invalidate the any TRBs it has cached after the stop
1636  *     endpoint command, as noted in the xHCI 0.95 errata.
1637  *
1638  *  3) The TD may have completed by the time the Stop Endpoint Command
1639  *     completes, so software needs to handle that case too.
1640  *
1641  * This function should protect against the TD enqueueing code ringing the
1642  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1643  * It also needs to account for multiple cancellations on happening at the same
1644  * time for the same endpoint.
1645  *
1646  * Note that this function can be called in any context, or so says
1647  * usb_hcd_unlink_urb()
1648  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1649 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1650 {
1651 	unsigned long flags;
1652 	int ret, i;
1653 	u32 temp;
1654 	struct xhci_hcd *xhci;
1655 	struct urb_priv	*urb_priv;
1656 	struct xhci_td *td;
1657 	unsigned int ep_index;
1658 	struct xhci_ring *ep_ring;
1659 	struct xhci_virt_ep *ep;
1660 	struct xhci_command *command;
1661 	struct xhci_virt_device *vdev;
1662 
1663 	xhci = hcd_to_xhci(hcd);
1664 	spin_lock_irqsave(&xhci->lock, flags);
1665 
1666 	trace_xhci_urb_dequeue(urb);
1667 
1668 	/* Make sure the URB hasn't completed or been unlinked already */
1669 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1670 	if (ret)
1671 		goto done;
1672 
1673 	/* give back URB now if we can't queue it for cancel */
1674 	vdev = xhci->devs[urb->dev->slot_id];
1675 	urb_priv = urb->hcpriv;
1676 	if (!vdev || !urb_priv)
1677 		goto err_giveback;
1678 
1679 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1680 	ep = &vdev->eps[ep_index];
1681 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1682 	if (!ep || !ep_ring)
1683 		goto err_giveback;
1684 
1685 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1686 	temp = readl(&xhci->op_regs->status);
1687 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1688 		xhci_hc_died(xhci);
1689 		goto done;
1690 	}
1691 
1692 	/*
1693 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1694 	 * make sure none of the ring related pointers in this URB private data
1695 	 * are touched, such as td_list, otherwise we overwrite freed data
1696 	 */
1697 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1698 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1699 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1700 			td = &urb_priv->td[i];
1701 			if (!list_empty(&td->cancelled_td_list))
1702 				list_del_init(&td->cancelled_td_list);
1703 		}
1704 		goto err_giveback;
1705 	}
1706 
1707 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1708 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1709 				"HC halted, freeing TD manually.");
1710 		for (i = urb_priv->num_tds_done;
1711 		     i < urb_priv->num_tds;
1712 		     i++) {
1713 			td = &urb_priv->td[i];
1714 			if (!list_empty(&td->td_list))
1715 				list_del_init(&td->td_list);
1716 			if (!list_empty(&td->cancelled_td_list))
1717 				list_del_init(&td->cancelled_td_list);
1718 		}
1719 		goto err_giveback;
1720 	}
1721 
1722 	i = urb_priv->num_tds_done;
1723 	if (i < urb_priv->num_tds)
1724 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1725 				"Cancel URB %p, dev %s, ep 0x%x, "
1726 				"starting at offset 0x%llx",
1727 				urb, urb->dev->devpath,
1728 				urb->ep->desc.bEndpointAddress,
1729 				(unsigned long long) xhci_trb_virt_to_dma(
1730 					urb_priv->td[i].start_seg,
1731 					urb_priv->td[i].first_trb));
1732 
1733 	for (; i < urb_priv->num_tds; i++) {
1734 		td = &urb_priv->td[i];
1735 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1736 	}
1737 
1738 	/* Queue a stop endpoint command, but only if this is
1739 	 * the first cancellation to be handled.
1740 	 */
1741 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1742 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1743 		if (!command) {
1744 			ret = -ENOMEM;
1745 			goto done;
1746 		}
1747 		ep->ep_state |= EP_STOP_CMD_PENDING;
1748 		ep->stop_cmd_timer.expires = jiffies +
1749 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1750 		add_timer(&ep->stop_cmd_timer);
1751 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1752 					 ep_index, 0);
1753 		xhci_ring_cmd_db(xhci);
1754 	}
1755 done:
1756 	spin_unlock_irqrestore(&xhci->lock, flags);
1757 	return ret;
1758 
1759 err_giveback:
1760 	if (urb_priv)
1761 		xhci_urb_free_priv(urb_priv);
1762 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1763 	spin_unlock_irqrestore(&xhci->lock, flags);
1764 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1765 	return ret;
1766 }
1767 
1768 /* Drop an endpoint from a new bandwidth configuration for this device.
1769  * Only one call to this function is allowed per endpoint before
1770  * check_bandwidth() or reset_bandwidth() must be called.
1771  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1772  * add the endpoint to the schedule with possibly new parameters denoted by a
1773  * different endpoint descriptor in usb_host_endpoint.
1774  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1775  * not allowed.
1776  *
1777  * The USB core will not allow URBs to be queued to an endpoint that is being
1778  * disabled, so there's no need for mutual exclusion to protect
1779  * the xhci->devs[slot_id] structure.
1780  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1781 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1782 		struct usb_host_endpoint *ep)
1783 {
1784 	struct xhci_hcd *xhci;
1785 	struct xhci_container_ctx *in_ctx, *out_ctx;
1786 	struct xhci_input_control_ctx *ctrl_ctx;
1787 	unsigned int ep_index;
1788 	struct xhci_ep_ctx *ep_ctx;
1789 	u32 drop_flag;
1790 	u32 new_add_flags, new_drop_flags;
1791 	int ret;
1792 
1793 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1794 	if (ret <= 0)
1795 		return ret;
1796 	xhci = hcd_to_xhci(hcd);
1797 	if (xhci->xhc_state & XHCI_STATE_DYING)
1798 		return -ENODEV;
1799 
1800 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1801 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1802 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1803 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1804 				__func__, drop_flag);
1805 		return 0;
1806 	}
1807 
1808 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1809 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1810 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1811 	if (!ctrl_ctx) {
1812 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1813 				__func__);
1814 		return 0;
1815 	}
1816 
1817 	ep_index = xhci_get_endpoint_index(&ep->desc);
1818 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1819 	/* If the HC already knows the endpoint is disabled,
1820 	 * or the HCD has noted it is disabled, ignore this request
1821 	 */
1822 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1823 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1824 	    xhci_get_endpoint_flag(&ep->desc)) {
1825 		/* Do not warn when called after a usb_device_reset */
1826 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1827 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1828 				  __func__, ep);
1829 		return 0;
1830 	}
1831 
1832 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1833 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1834 
1835 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1836 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1837 
1838 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1839 
1840 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1841 
1842 	if (xhci->quirks & XHCI_MTK_HOST)
1843 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1844 
1845 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1846 			(unsigned int) ep->desc.bEndpointAddress,
1847 			udev->slot_id,
1848 			(unsigned int) new_drop_flags,
1849 			(unsigned int) new_add_flags);
1850 	return 0;
1851 }
1852 
1853 /* Add an endpoint to a new possible bandwidth configuration for this device.
1854  * Only one call to this function is allowed per endpoint before
1855  * check_bandwidth() or reset_bandwidth() must be called.
1856  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1857  * add the endpoint to the schedule with possibly new parameters denoted by a
1858  * different endpoint descriptor in usb_host_endpoint.
1859  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1860  * not allowed.
1861  *
1862  * The USB core will not allow URBs to be queued to an endpoint until the
1863  * configuration or alt setting is installed in the device, so there's no need
1864  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1865  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1866 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1867 		struct usb_host_endpoint *ep)
1868 {
1869 	struct xhci_hcd *xhci;
1870 	struct xhci_container_ctx *in_ctx;
1871 	unsigned int ep_index;
1872 	struct xhci_input_control_ctx *ctrl_ctx;
1873 	struct xhci_ep_ctx *ep_ctx;
1874 	u32 added_ctxs;
1875 	u32 new_add_flags, new_drop_flags;
1876 	struct xhci_virt_device *virt_dev;
1877 	int ret = 0;
1878 
1879 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1880 	if (ret <= 0) {
1881 		/* So we won't queue a reset ep command for a root hub */
1882 		ep->hcpriv = NULL;
1883 		return ret;
1884 	}
1885 	xhci = hcd_to_xhci(hcd);
1886 	if (xhci->xhc_state & XHCI_STATE_DYING)
1887 		return -ENODEV;
1888 
1889 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1890 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1891 		/* FIXME when we have to issue an evaluate endpoint command to
1892 		 * deal with ep0 max packet size changing once we get the
1893 		 * descriptors
1894 		 */
1895 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1896 				__func__, added_ctxs);
1897 		return 0;
1898 	}
1899 
1900 	virt_dev = xhci->devs[udev->slot_id];
1901 	in_ctx = virt_dev->in_ctx;
1902 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1903 	if (!ctrl_ctx) {
1904 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1905 				__func__);
1906 		return 0;
1907 	}
1908 
1909 	ep_index = xhci_get_endpoint_index(&ep->desc);
1910 	/* If this endpoint is already in use, and the upper layers are trying
1911 	 * to add it again without dropping it, reject the addition.
1912 	 */
1913 	if (virt_dev->eps[ep_index].ring &&
1914 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1915 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1916 				"without dropping it.\n",
1917 				(unsigned int) ep->desc.bEndpointAddress);
1918 		return -EINVAL;
1919 	}
1920 
1921 	/* If the HCD has already noted the endpoint is enabled,
1922 	 * ignore this request.
1923 	 */
1924 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1925 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1926 				__func__, ep);
1927 		return 0;
1928 	}
1929 
1930 	/*
1931 	 * Configuration and alternate setting changes must be done in
1932 	 * process context, not interrupt context (or so documenation
1933 	 * for usb_set_interface() and usb_set_configuration() claim).
1934 	 */
1935 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1936 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1937 				__func__, ep->desc.bEndpointAddress);
1938 		return -ENOMEM;
1939 	}
1940 
1941 	if (xhci->quirks & XHCI_MTK_HOST) {
1942 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1943 		if (ret < 0) {
1944 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1945 			virt_dev->eps[ep_index].new_ring = NULL;
1946 			return ret;
1947 		}
1948 	}
1949 
1950 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1951 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1952 
1953 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1954 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1955 	 * this re-adds a new state for the endpoint from the new endpoint
1956 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1957 	 * drop flags alone.
1958 	 */
1959 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1960 
1961 	/* Store the usb_device pointer for later use */
1962 	ep->hcpriv = udev;
1963 
1964 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1965 	trace_xhci_add_endpoint(ep_ctx);
1966 
1967 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1968 			(unsigned int) ep->desc.bEndpointAddress,
1969 			udev->slot_id,
1970 			(unsigned int) new_drop_flags,
1971 			(unsigned int) new_add_flags);
1972 	return 0;
1973 }
1974 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1975 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1976 {
1977 	struct xhci_input_control_ctx *ctrl_ctx;
1978 	struct xhci_ep_ctx *ep_ctx;
1979 	struct xhci_slot_ctx *slot_ctx;
1980 	int i;
1981 
1982 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1983 	if (!ctrl_ctx) {
1984 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1985 				__func__);
1986 		return;
1987 	}
1988 
1989 	/* When a device's add flag and drop flag are zero, any subsequent
1990 	 * configure endpoint command will leave that endpoint's state
1991 	 * untouched.  Make sure we don't leave any old state in the input
1992 	 * endpoint contexts.
1993 	 */
1994 	ctrl_ctx->drop_flags = 0;
1995 	ctrl_ctx->add_flags = 0;
1996 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1997 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1998 	/* Endpoint 0 is always valid */
1999 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2000 	for (i = 1; i < 31; i++) {
2001 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2002 		ep_ctx->ep_info = 0;
2003 		ep_ctx->ep_info2 = 0;
2004 		ep_ctx->deq = 0;
2005 		ep_ctx->tx_info = 0;
2006 	}
2007 }
2008 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2009 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2010 		struct usb_device *udev, u32 *cmd_status)
2011 {
2012 	int ret;
2013 
2014 	switch (*cmd_status) {
2015 	case COMP_COMMAND_ABORTED:
2016 	case COMP_COMMAND_RING_STOPPED:
2017 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2018 		ret = -ETIME;
2019 		break;
2020 	case COMP_RESOURCE_ERROR:
2021 		dev_warn(&udev->dev,
2022 			 "Not enough host controller resources for new device state.\n");
2023 		ret = -ENOMEM;
2024 		/* FIXME: can we allocate more resources for the HC? */
2025 		break;
2026 	case COMP_BANDWIDTH_ERROR:
2027 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2028 		dev_warn(&udev->dev,
2029 			 "Not enough bandwidth for new device state.\n");
2030 		ret = -ENOSPC;
2031 		/* FIXME: can we go back to the old state? */
2032 		break;
2033 	case COMP_TRB_ERROR:
2034 		/* the HCD set up something wrong */
2035 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2036 				"add flag = 1, "
2037 				"and endpoint is not disabled.\n");
2038 		ret = -EINVAL;
2039 		break;
2040 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2041 		dev_warn(&udev->dev,
2042 			 "ERROR: Incompatible device for endpoint configure command.\n");
2043 		ret = -ENODEV;
2044 		break;
2045 	case COMP_SUCCESS:
2046 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2047 				"Successful Endpoint Configure command");
2048 		ret = 0;
2049 		break;
2050 	default:
2051 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2052 				*cmd_status);
2053 		ret = -EINVAL;
2054 		break;
2055 	}
2056 	return ret;
2057 }
2058 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2059 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2060 		struct usb_device *udev, u32 *cmd_status)
2061 {
2062 	int ret;
2063 
2064 	switch (*cmd_status) {
2065 	case COMP_COMMAND_ABORTED:
2066 	case COMP_COMMAND_RING_STOPPED:
2067 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2068 		ret = -ETIME;
2069 		break;
2070 	case COMP_PARAMETER_ERROR:
2071 		dev_warn(&udev->dev,
2072 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2073 		ret = -EINVAL;
2074 		break;
2075 	case COMP_SLOT_NOT_ENABLED_ERROR:
2076 		dev_warn(&udev->dev,
2077 			"WARN: slot not enabled for evaluate context command.\n");
2078 		ret = -EINVAL;
2079 		break;
2080 	case COMP_CONTEXT_STATE_ERROR:
2081 		dev_warn(&udev->dev,
2082 			"WARN: invalid context state for evaluate context command.\n");
2083 		ret = -EINVAL;
2084 		break;
2085 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2086 		dev_warn(&udev->dev,
2087 			"ERROR: Incompatible device for evaluate context command.\n");
2088 		ret = -ENODEV;
2089 		break;
2090 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2091 		/* Max Exit Latency too large error */
2092 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2093 		ret = -EINVAL;
2094 		break;
2095 	case COMP_SUCCESS:
2096 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2097 				"Successful evaluate context command");
2098 		ret = 0;
2099 		break;
2100 	default:
2101 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2102 			*cmd_status);
2103 		ret = -EINVAL;
2104 		break;
2105 	}
2106 	return ret;
2107 }
2108 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2109 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2110 		struct xhci_input_control_ctx *ctrl_ctx)
2111 {
2112 	u32 valid_add_flags;
2113 	u32 valid_drop_flags;
2114 
2115 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2116 	 * (bit 1).  The default control endpoint is added during the Address
2117 	 * Device command and is never removed until the slot is disabled.
2118 	 */
2119 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2120 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2121 
2122 	/* Use hweight32 to count the number of ones in the add flags, or
2123 	 * number of endpoints added.  Don't count endpoints that are changed
2124 	 * (both added and dropped).
2125 	 */
2126 	return hweight32(valid_add_flags) -
2127 		hweight32(valid_add_flags & valid_drop_flags);
2128 }
2129 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2130 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2131 		struct xhci_input_control_ctx *ctrl_ctx)
2132 {
2133 	u32 valid_add_flags;
2134 	u32 valid_drop_flags;
2135 
2136 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2137 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2138 
2139 	return hweight32(valid_drop_flags) -
2140 		hweight32(valid_add_flags & valid_drop_flags);
2141 }
2142 
2143 /*
2144  * We need to reserve the new number of endpoints before the configure endpoint
2145  * command completes.  We can't subtract the dropped endpoints from the number
2146  * of active endpoints until the command completes because we can oversubscribe
2147  * the host in this case:
2148  *
2149  *  - the first configure endpoint command drops more endpoints than it adds
2150  *  - a second configure endpoint command that adds more endpoints is queued
2151  *  - the first configure endpoint command fails, so the config is unchanged
2152  *  - the second command may succeed, even though there isn't enough resources
2153  *
2154  * Must be called with xhci->lock held.
2155  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2156 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2157 		struct xhci_input_control_ctx *ctrl_ctx)
2158 {
2159 	u32 added_eps;
2160 
2161 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2162 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2163 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164 				"Not enough ep ctxs: "
2165 				"%u active, need to add %u, limit is %u.",
2166 				xhci->num_active_eps, added_eps,
2167 				xhci->limit_active_eps);
2168 		return -ENOMEM;
2169 	}
2170 	xhci->num_active_eps += added_eps;
2171 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2172 			"Adding %u ep ctxs, %u now active.", added_eps,
2173 			xhci->num_active_eps);
2174 	return 0;
2175 }
2176 
2177 /*
2178  * The configure endpoint was failed by the xHC for some other reason, so we
2179  * need to revert the resources that failed configuration would have used.
2180  *
2181  * Must be called with xhci->lock held.
2182  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2183 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2184 		struct xhci_input_control_ctx *ctrl_ctx)
2185 {
2186 	u32 num_failed_eps;
2187 
2188 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2189 	xhci->num_active_eps -= num_failed_eps;
2190 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2191 			"Removing %u failed ep ctxs, %u now active.",
2192 			num_failed_eps,
2193 			xhci->num_active_eps);
2194 }
2195 
2196 /*
2197  * Now that the command has completed, clean up the active endpoint count by
2198  * subtracting out the endpoints that were dropped (but not changed).
2199  *
2200  * Must be called with xhci->lock held.
2201  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2202 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2203 		struct xhci_input_control_ctx *ctrl_ctx)
2204 {
2205 	u32 num_dropped_eps;
2206 
2207 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2208 	xhci->num_active_eps -= num_dropped_eps;
2209 	if (num_dropped_eps)
2210 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211 				"Removing %u dropped ep ctxs, %u now active.",
2212 				num_dropped_eps,
2213 				xhci->num_active_eps);
2214 }
2215 
xhci_get_block_size(struct usb_device * udev)2216 static unsigned int xhci_get_block_size(struct usb_device *udev)
2217 {
2218 	switch (udev->speed) {
2219 	case USB_SPEED_LOW:
2220 	case USB_SPEED_FULL:
2221 		return FS_BLOCK;
2222 	case USB_SPEED_HIGH:
2223 		return HS_BLOCK;
2224 	case USB_SPEED_SUPER:
2225 	case USB_SPEED_SUPER_PLUS:
2226 		return SS_BLOCK;
2227 	case USB_SPEED_UNKNOWN:
2228 	case USB_SPEED_WIRELESS:
2229 	default:
2230 		/* Should never happen */
2231 		return 1;
2232 	}
2233 }
2234 
2235 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2236 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2237 {
2238 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2239 		return LS_OVERHEAD;
2240 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2241 		return FS_OVERHEAD;
2242 	return HS_OVERHEAD;
2243 }
2244 
2245 /* If we are changing a LS/FS device under a HS hub,
2246  * make sure (if we are activating a new TT) that the HS bus has enough
2247  * bandwidth for this new TT.
2248  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2249 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2250 		struct xhci_virt_device *virt_dev,
2251 		int old_active_eps)
2252 {
2253 	struct xhci_interval_bw_table *bw_table;
2254 	struct xhci_tt_bw_info *tt_info;
2255 
2256 	/* Find the bandwidth table for the root port this TT is attached to. */
2257 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2258 	tt_info = virt_dev->tt_info;
2259 	/* If this TT already had active endpoints, the bandwidth for this TT
2260 	 * has already been added.  Removing all periodic endpoints (and thus
2261 	 * making the TT enactive) will only decrease the bandwidth used.
2262 	 */
2263 	if (old_active_eps)
2264 		return 0;
2265 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2266 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2267 			return -ENOMEM;
2268 		return 0;
2269 	}
2270 	/* Not sure why we would have no new active endpoints...
2271 	 *
2272 	 * Maybe because of an Evaluate Context change for a hub update or a
2273 	 * control endpoint 0 max packet size change?
2274 	 * FIXME: skip the bandwidth calculation in that case.
2275 	 */
2276 	return 0;
2277 }
2278 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2279 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2280 		struct xhci_virt_device *virt_dev)
2281 {
2282 	unsigned int bw_reserved;
2283 
2284 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2285 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2286 		return -ENOMEM;
2287 
2288 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2289 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2290 		return -ENOMEM;
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * This algorithm is a very conservative estimate of the worst-case scheduling
2297  * scenario for any one interval.  The hardware dynamically schedules the
2298  * packets, so we can't tell which microframe could be the limiting factor in
2299  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2300  *
2301  * Obviously, we can't solve an NP complete problem to find the minimum worst
2302  * case scenario.  Instead, we come up with an estimate that is no less than
2303  * the worst case bandwidth used for any one microframe, but may be an
2304  * over-estimate.
2305  *
2306  * We walk the requirements for each endpoint by interval, starting with the
2307  * smallest interval, and place packets in the schedule where there is only one
2308  * possible way to schedule packets for that interval.  In order to simplify
2309  * this algorithm, we record the largest max packet size for each interval, and
2310  * assume all packets will be that size.
2311  *
2312  * For interval 0, we obviously must schedule all packets for each interval.
2313  * The bandwidth for interval 0 is just the amount of data to be transmitted
2314  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2315  * the number of packets).
2316  *
2317  * For interval 1, we have two possible microframes to schedule those packets
2318  * in.  For this algorithm, if we can schedule the same number of packets for
2319  * each possible scheduling opportunity (each microframe), we will do so.  The
2320  * remaining number of packets will be saved to be transmitted in the gaps in
2321  * the next interval's scheduling sequence.
2322  *
2323  * As we move those remaining packets to be scheduled with interval 2 packets,
2324  * we have to double the number of remaining packets to transmit.  This is
2325  * because the intervals are actually powers of 2, and we would be transmitting
2326  * the previous interval's packets twice in this interval.  We also have to be
2327  * sure that when we look at the largest max packet size for this interval, we
2328  * also look at the largest max packet size for the remaining packets and take
2329  * the greater of the two.
2330  *
2331  * The algorithm continues to evenly distribute packets in each scheduling
2332  * opportunity, and push the remaining packets out, until we get to the last
2333  * interval.  Then those packets and their associated overhead are just added
2334  * to the bandwidth used.
2335  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2336 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2337 		struct xhci_virt_device *virt_dev,
2338 		int old_active_eps)
2339 {
2340 	unsigned int bw_reserved;
2341 	unsigned int max_bandwidth;
2342 	unsigned int bw_used;
2343 	unsigned int block_size;
2344 	struct xhci_interval_bw_table *bw_table;
2345 	unsigned int packet_size = 0;
2346 	unsigned int overhead = 0;
2347 	unsigned int packets_transmitted = 0;
2348 	unsigned int packets_remaining = 0;
2349 	unsigned int i;
2350 
2351 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2352 		return xhci_check_ss_bw(xhci, virt_dev);
2353 
2354 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2355 		max_bandwidth = HS_BW_LIMIT;
2356 		/* Convert percent of bus BW reserved to blocks reserved */
2357 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2358 	} else {
2359 		max_bandwidth = FS_BW_LIMIT;
2360 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2361 	}
2362 
2363 	bw_table = virt_dev->bw_table;
2364 	/* We need to translate the max packet size and max ESIT payloads into
2365 	 * the units the hardware uses.
2366 	 */
2367 	block_size = xhci_get_block_size(virt_dev->udev);
2368 
2369 	/* If we are manipulating a LS/FS device under a HS hub, double check
2370 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2371 	 */
2372 	if (virt_dev->tt_info) {
2373 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2374 				"Recalculating BW for rootport %u",
2375 				virt_dev->real_port);
2376 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2377 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2378 					"newly activated TT.\n");
2379 			return -ENOMEM;
2380 		}
2381 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2382 				"Recalculating BW for TT slot %u port %u",
2383 				virt_dev->tt_info->slot_id,
2384 				virt_dev->tt_info->ttport);
2385 	} else {
2386 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2387 				"Recalculating BW for rootport %u",
2388 				virt_dev->real_port);
2389 	}
2390 
2391 	/* Add in how much bandwidth will be used for interval zero, or the
2392 	 * rounded max ESIT payload + number of packets * largest overhead.
2393 	 */
2394 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2395 		bw_table->interval_bw[0].num_packets *
2396 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2397 
2398 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2399 		unsigned int bw_added;
2400 		unsigned int largest_mps;
2401 		unsigned int interval_overhead;
2402 
2403 		/*
2404 		 * How many packets could we transmit in this interval?
2405 		 * If packets didn't fit in the previous interval, we will need
2406 		 * to transmit that many packets twice within this interval.
2407 		 */
2408 		packets_remaining = 2 * packets_remaining +
2409 			bw_table->interval_bw[i].num_packets;
2410 
2411 		/* Find the largest max packet size of this or the previous
2412 		 * interval.
2413 		 */
2414 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2415 			largest_mps = 0;
2416 		else {
2417 			struct xhci_virt_ep *virt_ep;
2418 			struct list_head *ep_entry;
2419 
2420 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2421 			virt_ep = list_entry(ep_entry,
2422 					struct xhci_virt_ep, bw_endpoint_list);
2423 			/* Convert to blocks, rounding up */
2424 			largest_mps = DIV_ROUND_UP(
2425 					virt_ep->bw_info.max_packet_size,
2426 					block_size);
2427 		}
2428 		if (largest_mps > packet_size)
2429 			packet_size = largest_mps;
2430 
2431 		/* Use the larger overhead of this or the previous interval. */
2432 		interval_overhead = xhci_get_largest_overhead(
2433 				&bw_table->interval_bw[i]);
2434 		if (interval_overhead > overhead)
2435 			overhead = interval_overhead;
2436 
2437 		/* How many packets can we evenly distribute across
2438 		 * (1 << (i + 1)) possible scheduling opportunities?
2439 		 */
2440 		packets_transmitted = packets_remaining >> (i + 1);
2441 
2442 		/* Add in the bandwidth used for those scheduled packets */
2443 		bw_added = packets_transmitted * (overhead + packet_size);
2444 
2445 		/* How many packets do we have remaining to transmit? */
2446 		packets_remaining = packets_remaining % (1 << (i + 1));
2447 
2448 		/* What largest max packet size should those packets have? */
2449 		/* If we've transmitted all packets, don't carry over the
2450 		 * largest packet size.
2451 		 */
2452 		if (packets_remaining == 0) {
2453 			packet_size = 0;
2454 			overhead = 0;
2455 		} else if (packets_transmitted > 0) {
2456 			/* Otherwise if we do have remaining packets, and we've
2457 			 * scheduled some packets in this interval, take the
2458 			 * largest max packet size from endpoints with this
2459 			 * interval.
2460 			 */
2461 			packet_size = largest_mps;
2462 			overhead = interval_overhead;
2463 		}
2464 		/* Otherwise carry over packet_size and overhead from the last
2465 		 * time we had a remainder.
2466 		 */
2467 		bw_used += bw_added;
2468 		if (bw_used > max_bandwidth) {
2469 			xhci_warn(xhci, "Not enough bandwidth. "
2470 					"Proposed: %u, Max: %u\n",
2471 				bw_used, max_bandwidth);
2472 			return -ENOMEM;
2473 		}
2474 	}
2475 	/*
2476 	 * Ok, we know we have some packets left over after even-handedly
2477 	 * scheduling interval 15.  We don't know which microframes they will
2478 	 * fit into, so we over-schedule and say they will be scheduled every
2479 	 * microframe.
2480 	 */
2481 	if (packets_remaining > 0)
2482 		bw_used += overhead + packet_size;
2483 
2484 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2485 		unsigned int port_index = virt_dev->real_port - 1;
2486 
2487 		/* OK, we're manipulating a HS device attached to a
2488 		 * root port bandwidth domain.  Include the number of active TTs
2489 		 * in the bandwidth used.
2490 		 */
2491 		bw_used += TT_HS_OVERHEAD *
2492 			xhci->rh_bw[port_index].num_active_tts;
2493 	}
2494 
2495 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2497 		"Available: %u " "percent",
2498 		bw_used, max_bandwidth, bw_reserved,
2499 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2500 		max_bandwidth);
2501 
2502 	bw_used += bw_reserved;
2503 	if (bw_used > max_bandwidth) {
2504 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2505 				bw_used, max_bandwidth);
2506 		return -ENOMEM;
2507 	}
2508 
2509 	bw_table->bw_used = bw_used;
2510 	return 0;
2511 }
2512 
xhci_is_async_ep(unsigned int ep_type)2513 static bool xhci_is_async_ep(unsigned int ep_type)
2514 {
2515 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2516 					ep_type != ISOC_IN_EP &&
2517 					ep_type != INT_IN_EP);
2518 }
2519 
xhci_is_sync_in_ep(unsigned int ep_type)2520 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2521 {
2522 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2523 }
2524 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2525 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2526 {
2527 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2528 
2529 	if (ep_bw->ep_interval == 0)
2530 		return SS_OVERHEAD_BURST +
2531 			(ep_bw->mult * ep_bw->num_packets *
2532 					(SS_OVERHEAD + mps));
2533 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2534 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2535 				1 << ep_bw->ep_interval);
2536 
2537 }
2538 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2539 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2540 		struct xhci_bw_info *ep_bw,
2541 		struct xhci_interval_bw_table *bw_table,
2542 		struct usb_device *udev,
2543 		struct xhci_virt_ep *virt_ep,
2544 		struct xhci_tt_bw_info *tt_info)
2545 {
2546 	struct xhci_interval_bw	*interval_bw;
2547 	int normalized_interval;
2548 
2549 	if (xhci_is_async_ep(ep_bw->type))
2550 		return;
2551 
2552 	if (udev->speed >= USB_SPEED_SUPER) {
2553 		if (xhci_is_sync_in_ep(ep_bw->type))
2554 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2555 				xhci_get_ss_bw_consumed(ep_bw);
2556 		else
2557 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2558 				xhci_get_ss_bw_consumed(ep_bw);
2559 		return;
2560 	}
2561 
2562 	/* SuperSpeed endpoints never get added to intervals in the table, so
2563 	 * this check is only valid for HS/FS/LS devices.
2564 	 */
2565 	if (list_empty(&virt_ep->bw_endpoint_list))
2566 		return;
2567 	/* For LS/FS devices, we need to translate the interval expressed in
2568 	 * microframes to frames.
2569 	 */
2570 	if (udev->speed == USB_SPEED_HIGH)
2571 		normalized_interval = ep_bw->ep_interval;
2572 	else
2573 		normalized_interval = ep_bw->ep_interval - 3;
2574 
2575 	if (normalized_interval == 0)
2576 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2577 	interval_bw = &bw_table->interval_bw[normalized_interval];
2578 	interval_bw->num_packets -= ep_bw->num_packets;
2579 	switch (udev->speed) {
2580 	case USB_SPEED_LOW:
2581 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2582 		break;
2583 	case USB_SPEED_FULL:
2584 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2585 		break;
2586 	case USB_SPEED_HIGH:
2587 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2588 		break;
2589 	case USB_SPEED_SUPER:
2590 	case USB_SPEED_SUPER_PLUS:
2591 	case USB_SPEED_UNKNOWN:
2592 	case USB_SPEED_WIRELESS:
2593 		/* Should never happen because only LS/FS/HS endpoints will get
2594 		 * added to the endpoint list.
2595 		 */
2596 		return;
2597 	}
2598 	if (tt_info)
2599 		tt_info->active_eps -= 1;
2600 	list_del_init(&virt_ep->bw_endpoint_list);
2601 }
2602 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2603 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2604 		struct xhci_bw_info *ep_bw,
2605 		struct xhci_interval_bw_table *bw_table,
2606 		struct usb_device *udev,
2607 		struct xhci_virt_ep *virt_ep,
2608 		struct xhci_tt_bw_info *tt_info)
2609 {
2610 	struct xhci_interval_bw	*interval_bw;
2611 	struct xhci_virt_ep *smaller_ep;
2612 	int normalized_interval;
2613 
2614 	if (xhci_is_async_ep(ep_bw->type))
2615 		return;
2616 
2617 	if (udev->speed == USB_SPEED_SUPER) {
2618 		if (xhci_is_sync_in_ep(ep_bw->type))
2619 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2620 				xhci_get_ss_bw_consumed(ep_bw);
2621 		else
2622 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2623 				xhci_get_ss_bw_consumed(ep_bw);
2624 		return;
2625 	}
2626 
2627 	/* For LS/FS devices, we need to translate the interval expressed in
2628 	 * microframes to frames.
2629 	 */
2630 	if (udev->speed == USB_SPEED_HIGH)
2631 		normalized_interval = ep_bw->ep_interval;
2632 	else
2633 		normalized_interval = ep_bw->ep_interval - 3;
2634 
2635 	if (normalized_interval == 0)
2636 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2637 	interval_bw = &bw_table->interval_bw[normalized_interval];
2638 	interval_bw->num_packets += ep_bw->num_packets;
2639 	switch (udev->speed) {
2640 	case USB_SPEED_LOW:
2641 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2642 		break;
2643 	case USB_SPEED_FULL:
2644 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2645 		break;
2646 	case USB_SPEED_HIGH:
2647 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2648 		break;
2649 	case USB_SPEED_SUPER:
2650 	case USB_SPEED_SUPER_PLUS:
2651 	case USB_SPEED_UNKNOWN:
2652 	case USB_SPEED_WIRELESS:
2653 		/* Should never happen because only LS/FS/HS endpoints will get
2654 		 * added to the endpoint list.
2655 		 */
2656 		return;
2657 	}
2658 
2659 	if (tt_info)
2660 		tt_info->active_eps += 1;
2661 	/* Insert the endpoint into the list, largest max packet size first. */
2662 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2663 			bw_endpoint_list) {
2664 		if (ep_bw->max_packet_size >=
2665 				smaller_ep->bw_info.max_packet_size) {
2666 			/* Add the new ep before the smaller endpoint */
2667 			list_add_tail(&virt_ep->bw_endpoint_list,
2668 					&smaller_ep->bw_endpoint_list);
2669 			return;
2670 		}
2671 	}
2672 	/* Add the new endpoint at the end of the list. */
2673 	list_add_tail(&virt_ep->bw_endpoint_list,
2674 			&interval_bw->endpoints);
2675 }
2676 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2677 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2678 		struct xhci_virt_device *virt_dev,
2679 		int old_active_eps)
2680 {
2681 	struct xhci_root_port_bw_info *rh_bw_info;
2682 	if (!virt_dev->tt_info)
2683 		return;
2684 
2685 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2686 	if (old_active_eps == 0 &&
2687 				virt_dev->tt_info->active_eps != 0) {
2688 		rh_bw_info->num_active_tts += 1;
2689 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2690 	} else if (old_active_eps != 0 &&
2691 				virt_dev->tt_info->active_eps == 0) {
2692 		rh_bw_info->num_active_tts -= 1;
2693 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2694 	}
2695 }
2696 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2697 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2698 		struct xhci_virt_device *virt_dev,
2699 		struct xhci_container_ctx *in_ctx)
2700 {
2701 	struct xhci_bw_info ep_bw_info[31];
2702 	int i;
2703 	struct xhci_input_control_ctx *ctrl_ctx;
2704 	int old_active_eps = 0;
2705 
2706 	if (virt_dev->tt_info)
2707 		old_active_eps = virt_dev->tt_info->active_eps;
2708 
2709 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2710 	if (!ctrl_ctx) {
2711 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2712 				__func__);
2713 		return -ENOMEM;
2714 	}
2715 
2716 	for (i = 0; i < 31; i++) {
2717 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2718 			continue;
2719 
2720 		/* Make a copy of the BW info in case we need to revert this */
2721 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2722 				sizeof(ep_bw_info[i]));
2723 		/* Drop the endpoint from the interval table if the endpoint is
2724 		 * being dropped or changed.
2725 		 */
2726 		if (EP_IS_DROPPED(ctrl_ctx, i))
2727 			xhci_drop_ep_from_interval_table(xhci,
2728 					&virt_dev->eps[i].bw_info,
2729 					virt_dev->bw_table,
2730 					virt_dev->udev,
2731 					&virt_dev->eps[i],
2732 					virt_dev->tt_info);
2733 	}
2734 	/* Overwrite the information stored in the endpoints' bw_info */
2735 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2736 	for (i = 0; i < 31; i++) {
2737 		/* Add any changed or added endpoints to the interval table */
2738 		if (EP_IS_ADDED(ctrl_ctx, i))
2739 			xhci_add_ep_to_interval_table(xhci,
2740 					&virt_dev->eps[i].bw_info,
2741 					virt_dev->bw_table,
2742 					virt_dev->udev,
2743 					&virt_dev->eps[i],
2744 					virt_dev->tt_info);
2745 	}
2746 
2747 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2748 		/* Ok, this fits in the bandwidth we have.
2749 		 * Update the number of active TTs.
2750 		 */
2751 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2752 		return 0;
2753 	}
2754 
2755 	/* We don't have enough bandwidth for this, revert the stored info. */
2756 	for (i = 0; i < 31; i++) {
2757 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2758 			continue;
2759 
2760 		/* Drop the new copies of any added or changed endpoints from
2761 		 * the interval table.
2762 		 */
2763 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2764 			xhci_drop_ep_from_interval_table(xhci,
2765 					&virt_dev->eps[i].bw_info,
2766 					virt_dev->bw_table,
2767 					virt_dev->udev,
2768 					&virt_dev->eps[i],
2769 					virt_dev->tt_info);
2770 		}
2771 		/* Revert the endpoint back to its old information */
2772 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2773 				sizeof(ep_bw_info[i]));
2774 		/* Add any changed or dropped endpoints back into the table */
2775 		if (EP_IS_DROPPED(ctrl_ctx, i))
2776 			xhci_add_ep_to_interval_table(xhci,
2777 					&virt_dev->eps[i].bw_info,
2778 					virt_dev->bw_table,
2779 					virt_dev->udev,
2780 					&virt_dev->eps[i],
2781 					virt_dev->tt_info);
2782 	}
2783 	return -ENOMEM;
2784 }
2785 
2786 
2787 /* Issue a configure endpoint command or evaluate context command
2788  * and wait for it to finish.
2789  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2790 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2791 		struct usb_device *udev,
2792 		struct xhci_command *command,
2793 		bool ctx_change, bool must_succeed)
2794 {
2795 	int ret;
2796 	unsigned long flags;
2797 	struct xhci_input_control_ctx *ctrl_ctx;
2798 	struct xhci_virt_device *virt_dev;
2799 	struct xhci_slot_ctx *slot_ctx;
2800 
2801 	if (!command)
2802 		return -EINVAL;
2803 
2804 	spin_lock_irqsave(&xhci->lock, flags);
2805 
2806 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2807 		spin_unlock_irqrestore(&xhci->lock, flags);
2808 		return -ESHUTDOWN;
2809 	}
2810 
2811 	virt_dev = xhci->devs[udev->slot_id];
2812 
2813 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2814 	if (!ctrl_ctx) {
2815 		spin_unlock_irqrestore(&xhci->lock, flags);
2816 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817 				__func__);
2818 		return -ENOMEM;
2819 	}
2820 
2821 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2822 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2823 		spin_unlock_irqrestore(&xhci->lock, flags);
2824 		xhci_warn(xhci, "Not enough host resources, "
2825 				"active endpoint contexts = %u\n",
2826 				xhci->num_active_eps);
2827 		return -ENOMEM;
2828 	}
2829 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2830 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2831 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2832 			xhci_free_host_resources(xhci, ctrl_ctx);
2833 		spin_unlock_irqrestore(&xhci->lock, flags);
2834 		xhci_warn(xhci, "Not enough bandwidth\n");
2835 		return -ENOMEM;
2836 	}
2837 
2838 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2839 
2840 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2841 	trace_xhci_configure_endpoint(slot_ctx);
2842 
2843 	if (!ctx_change)
2844 		ret = xhci_queue_configure_endpoint(xhci, command,
2845 				command->in_ctx->dma,
2846 				udev->slot_id, must_succeed);
2847 	else
2848 		ret = xhci_queue_evaluate_context(xhci, command,
2849 				command->in_ctx->dma,
2850 				udev->slot_id, must_succeed);
2851 	if (ret < 0) {
2852 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2853 			xhci_free_host_resources(xhci, ctrl_ctx);
2854 		spin_unlock_irqrestore(&xhci->lock, flags);
2855 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2856 				"FIXME allocate a new ring segment");
2857 		return -ENOMEM;
2858 	}
2859 	xhci_ring_cmd_db(xhci);
2860 	spin_unlock_irqrestore(&xhci->lock, flags);
2861 
2862 	/* Wait for the configure endpoint command to complete */
2863 	wait_for_completion(command->completion);
2864 
2865 	if (!ctx_change)
2866 		ret = xhci_configure_endpoint_result(xhci, udev,
2867 						     &command->status);
2868 	else
2869 		ret = xhci_evaluate_context_result(xhci, udev,
2870 						   &command->status);
2871 
2872 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2873 		spin_lock_irqsave(&xhci->lock, flags);
2874 		/* If the command failed, remove the reserved resources.
2875 		 * Otherwise, clean up the estimate to include dropped eps.
2876 		 */
2877 		if (ret)
2878 			xhci_free_host_resources(xhci, ctrl_ctx);
2879 		else
2880 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2881 		spin_unlock_irqrestore(&xhci->lock, flags);
2882 	}
2883 	return ret;
2884 }
2885 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2886 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2887 	struct xhci_virt_device *vdev, int i)
2888 {
2889 	struct xhci_virt_ep *ep = &vdev->eps[i];
2890 
2891 	if (ep->ep_state & EP_HAS_STREAMS) {
2892 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2893 				xhci_get_endpoint_address(i));
2894 		xhci_free_stream_info(xhci, ep->stream_info);
2895 		ep->stream_info = NULL;
2896 		ep->ep_state &= ~EP_HAS_STREAMS;
2897 	}
2898 }
2899 
2900 /* Called after one or more calls to xhci_add_endpoint() or
2901  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2902  * to call xhci_reset_bandwidth().
2903  *
2904  * Since we are in the middle of changing either configuration or
2905  * installing a new alt setting, the USB core won't allow URBs to be
2906  * enqueued for any endpoint on the old config or interface.  Nothing
2907  * else should be touching the xhci->devs[slot_id] structure, so we
2908  * don't need to take the xhci->lock for manipulating that.
2909  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2910 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2911 {
2912 	int i;
2913 	int ret = 0;
2914 	struct xhci_hcd *xhci;
2915 	struct xhci_virt_device	*virt_dev;
2916 	struct xhci_input_control_ctx *ctrl_ctx;
2917 	struct xhci_slot_ctx *slot_ctx;
2918 	struct xhci_command *command;
2919 
2920 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2921 	if (ret <= 0)
2922 		return ret;
2923 	xhci = hcd_to_xhci(hcd);
2924 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2925 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2926 		return -ENODEV;
2927 
2928 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2929 	virt_dev = xhci->devs[udev->slot_id];
2930 
2931 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2932 	if (!command)
2933 		return -ENOMEM;
2934 
2935 	command->in_ctx = virt_dev->in_ctx;
2936 
2937 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2938 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2939 	if (!ctrl_ctx) {
2940 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2941 				__func__);
2942 		ret = -ENOMEM;
2943 		goto command_cleanup;
2944 	}
2945 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2946 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2947 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2948 
2949 	/* Don't issue the command if there's no endpoints to update. */
2950 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2951 	    ctrl_ctx->drop_flags == 0) {
2952 		ret = 0;
2953 		goto command_cleanup;
2954 	}
2955 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2956 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2957 	for (i = 31; i >= 1; i--) {
2958 		__le32 le32 = cpu_to_le32(BIT(i));
2959 
2960 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2961 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2962 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2963 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2964 			break;
2965 		}
2966 	}
2967 
2968 	ret = xhci_configure_endpoint(xhci, udev, command,
2969 			false, false);
2970 	if (ret)
2971 		/* Callee should call reset_bandwidth() */
2972 		goto command_cleanup;
2973 
2974 	/* Free any rings that were dropped, but not changed. */
2975 	for (i = 1; i < 31; i++) {
2976 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2977 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2978 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2979 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2980 		}
2981 	}
2982 	xhci_zero_in_ctx(xhci, virt_dev);
2983 	/*
2984 	 * Install any rings for completely new endpoints or changed endpoints,
2985 	 * and free any old rings from changed endpoints.
2986 	 */
2987 	for (i = 1; i < 31; i++) {
2988 		if (!virt_dev->eps[i].new_ring)
2989 			continue;
2990 		/* Only free the old ring if it exists.
2991 		 * It may not if this is the first add of an endpoint.
2992 		 */
2993 		if (virt_dev->eps[i].ring) {
2994 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2995 		}
2996 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2997 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2998 		virt_dev->eps[i].new_ring = NULL;
2999 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3000 	}
3001 command_cleanup:
3002 	kfree(command->completion);
3003 	kfree(command);
3004 
3005 	return ret;
3006 }
3007 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3008 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3009 {
3010 	struct xhci_hcd *xhci;
3011 	struct xhci_virt_device	*virt_dev;
3012 	int i, ret;
3013 
3014 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3015 	if (ret <= 0)
3016 		return;
3017 	xhci = hcd_to_xhci(hcd);
3018 
3019 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3020 	virt_dev = xhci->devs[udev->slot_id];
3021 	/* Free any rings allocated for added endpoints */
3022 	for (i = 0; i < 31; i++) {
3023 		if (virt_dev->eps[i].new_ring) {
3024 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3025 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3026 			virt_dev->eps[i].new_ring = NULL;
3027 		}
3028 	}
3029 	xhci_zero_in_ctx(xhci, virt_dev);
3030 }
3031 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3032 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3033 		struct xhci_container_ctx *in_ctx,
3034 		struct xhci_container_ctx *out_ctx,
3035 		struct xhci_input_control_ctx *ctrl_ctx,
3036 		u32 add_flags, u32 drop_flags)
3037 {
3038 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3039 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3040 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3041 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3042 }
3043 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)3044 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3045 		unsigned int slot_id, unsigned int ep_index,
3046 		struct xhci_dequeue_state *deq_state)
3047 {
3048 	struct xhci_input_control_ctx *ctrl_ctx;
3049 	struct xhci_container_ctx *in_ctx;
3050 	struct xhci_ep_ctx *ep_ctx;
3051 	u32 added_ctxs;
3052 	dma_addr_t addr;
3053 
3054 	in_ctx = xhci->devs[slot_id]->in_ctx;
3055 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3056 	if (!ctrl_ctx) {
3057 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3058 				__func__);
3059 		return;
3060 	}
3061 
3062 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3063 			xhci->devs[slot_id]->out_ctx, ep_index);
3064 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3065 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3066 			deq_state->new_deq_ptr);
3067 	if (addr == 0) {
3068 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3069 				"reset ep command\n");
3070 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3071 				deq_state->new_deq_seg,
3072 				deq_state->new_deq_ptr);
3073 		return;
3074 	}
3075 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3076 
3077 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3078 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3079 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3080 			added_ctxs, added_ctxs);
3081 }
3082 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td)3083 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3084 			       unsigned int ep_index, unsigned int stream_id,
3085 			       struct xhci_td *td)
3086 {
3087 	struct xhci_dequeue_state deq_state;
3088 
3089 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3090 			"Cleaning up stalled endpoint ring");
3091 	/* We need to move the HW's dequeue pointer past this TD,
3092 	 * or it will attempt to resend it on the next doorbell ring.
3093 	 */
3094 	xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3095 				    &deq_state);
3096 
3097 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3098 		return;
3099 
3100 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3101 	 * issue a configure endpoint command later.
3102 	 */
3103 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3104 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3105 				"Queueing new dequeue state");
3106 		xhci_queue_new_dequeue_state(xhci, slot_id,
3107 				ep_index, &deq_state);
3108 	} else {
3109 		/* Better hope no one uses the input context between now and the
3110 		 * reset endpoint completion!
3111 		 * XXX: No idea how this hardware will react when stream rings
3112 		 * are enabled.
3113 		 */
3114 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3115 				"Setting up input context for "
3116 				"configure endpoint command");
3117 		xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3118 				ep_index, &deq_state);
3119 	}
3120 }
3121 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3122 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3123 				  struct usb_host_endpoint *host_ep)
3124 {
3125 	struct xhci_hcd		*xhci;
3126 	struct xhci_virt_device	*vdev;
3127 	struct xhci_virt_ep	*ep;
3128 	struct usb_device	*udev;
3129 	unsigned long		flags;
3130 	unsigned int		ep_index;
3131 
3132 	xhci = hcd_to_xhci(hcd);
3133 rescan:
3134 	spin_lock_irqsave(&xhci->lock, flags);
3135 
3136 	udev = (struct usb_device *)host_ep->hcpriv;
3137 	if (!udev || !udev->slot_id)
3138 		goto done;
3139 
3140 	vdev = xhci->devs[udev->slot_id];
3141 	if (!vdev)
3142 		goto done;
3143 
3144 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3145 	ep = &vdev->eps[ep_index];
3146 	if (!ep)
3147 		goto done;
3148 
3149 	/* wait for hub_tt_work to finish clearing hub TT */
3150 	if (ep->ep_state & EP_CLEARING_TT) {
3151 		spin_unlock_irqrestore(&xhci->lock, flags);
3152 		schedule_timeout_uninterruptible(1);
3153 		goto rescan;
3154 	}
3155 
3156 	if (ep->ep_state)
3157 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3158 			 ep->ep_state);
3159 done:
3160 	host_ep->hcpriv = NULL;
3161 	spin_unlock_irqrestore(&xhci->lock, flags);
3162 }
3163 
3164 /*
3165  * Called after usb core issues a clear halt control message.
3166  * The host side of the halt should already be cleared by a reset endpoint
3167  * command issued when the STALL event was received.
3168  *
3169  * The reset endpoint command may only be issued to endpoints in the halted
3170  * state. For software that wishes to reset the data toggle or sequence number
3171  * of an endpoint that isn't in the halted state this function will issue a
3172  * configure endpoint command with the Drop and Add bits set for the target
3173  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3174  */
3175 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3176 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3177 		struct usb_host_endpoint *host_ep)
3178 {
3179 	struct xhci_hcd *xhci;
3180 	struct usb_device *udev;
3181 	struct xhci_virt_device *vdev;
3182 	struct xhci_virt_ep *ep;
3183 	struct xhci_input_control_ctx *ctrl_ctx;
3184 	struct xhci_command *stop_cmd, *cfg_cmd;
3185 	unsigned int ep_index;
3186 	unsigned long flags;
3187 	u32 ep_flag;
3188 	int err;
3189 
3190 	xhci = hcd_to_xhci(hcd);
3191 	if (!host_ep->hcpriv)
3192 		return;
3193 	udev = (struct usb_device *) host_ep->hcpriv;
3194 	vdev = xhci->devs[udev->slot_id];
3195 
3196 	/*
3197 	 * vdev may be lost due to xHC restore error and re-initialization
3198 	 * during S3/S4 resume. A new vdev will be allocated later by
3199 	 * xhci_discover_or_reset_device()
3200 	 */
3201 	if (!udev->slot_id || !vdev)
3202 		return;
3203 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3204 	ep = &vdev->eps[ep_index];
3205 	if (!ep)
3206 		return;
3207 
3208 	/* Bail out if toggle is already being cleared by a endpoint reset */
3209 	spin_lock_irqsave(&xhci->lock, flags);
3210 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3211 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3212 		spin_unlock_irqrestore(&xhci->lock, flags);
3213 		return;
3214 	}
3215 	spin_unlock_irqrestore(&xhci->lock, flags);
3216 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3217 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3218 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3219 		return;
3220 
3221 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3222 
3223 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3224 		return;
3225 
3226 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3227 	if (!stop_cmd)
3228 		return;
3229 
3230 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3231 	if (!cfg_cmd)
3232 		goto cleanup;
3233 
3234 	spin_lock_irqsave(&xhci->lock, flags);
3235 
3236 	/* block queuing new trbs and ringing ep doorbell */
3237 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3238 
3239 	/*
3240 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3241 	 * Driver is required to synchronously cancel all transfer request.
3242 	 * Stop the endpoint to force xHC to update the output context
3243 	 */
3244 
3245 	if (!list_empty(&ep->ring->td_list)) {
3246 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3247 		spin_unlock_irqrestore(&xhci->lock, flags);
3248 		xhci_free_command(xhci, cfg_cmd);
3249 		goto cleanup;
3250 	}
3251 
3252 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3253 					ep_index, 0);
3254 	if (err < 0) {
3255 		spin_unlock_irqrestore(&xhci->lock, flags);
3256 		xhci_free_command(xhci, cfg_cmd);
3257 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3258 				__func__, err);
3259 		goto cleanup;
3260 	}
3261 
3262 	xhci_ring_cmd_db(xhci);
3263 	spin_unlock_irqrestore(&xhci->lock, flags);
3264 
3265 	wait_for_completion(stop_cmd->completion);
3266 
3267 	spin_lock_irqsave(&xhci->lock, flags);
3268 
3269 	/* config ep command clears toggle if add and drop ep flags are set */
3270 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3271 	if (!ctrl_ctx) {
3272 		spin_unlock_irqrestore(&xhci->lock, flags);
3273 		xhci_free_command(xhci, cfg_cmd);
3274 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3275 				__func__);
3276 		goto cleanup;
3277 	}
3278 
3279 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3280 					   ctrl_ctx, ep_flag, ep_flag);
3281 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3282 
3283 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3284 				      udev->slot_id, false);
3285 	if (err < 0) {
3286 		spin_unlock_irqrestore(&xhci->lock, flags);
3287 		xhci_free_command(xhci, cfg_cmd);
3288 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3289 				__func__, err);
3290 		goto cleanup;
3291 	}
3292 
3293 	xhci_ring_cmd_db(xhci);
3294 	spin_unlock_irqrestore(&xhci->lock, flags);
3295 
3296 	wait_for_completion(cfg_cmd->completion);
3297 
3298 	xhci_free_command(xhci, cfg_cmd);
3299 cleanup:
3300 	xhci_free_command(xhci, stop_cmd);
3301 	spin_lock_irqsave(&xhci->lock, flags);
3302 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3303 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3304 	spin_unlock_irqrestore(&xhci->lock, flags);
3305 }
3306 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3307 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3308 		struct usb_device *udev, struct usb_host_endpoint *ep,
3309 		unsigned int slot_id)
3310 {
3311 	int ret;
3312 	unsigned int ep_index;
3313 	unsigned int ep_state;
3314 
3315 	if (!ep)
3316 		return -EINVAL;
3317 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3318 	if (ret <= 0)
3319 		return ret ? ret : -EINVAL;
3320 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3321 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3322 				" descriptor for ep 0x%x does not support streams\n",
3323 				ep->desc.bEndpointAddress);
3324 		return -EINVAL;
3325 	}
3326 
3327 	ep_index = xhci_get_endpoint_index(&ep->desc);
3328 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3329 	if (ep_state & EP_HAS_STREAMS ||
3330 			ep_state & EP_GETTING_STREAMS) {
3331 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3332 				"already has streams set up.\n",
3333 				ep->desc.bEndpointAddress);
3334 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3335 				"dynamic stream context array reallocation.\n");
3336 		return -EINVAL;
3337 	}
3338 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3339 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3340 				"endpoint 0x%x; URBs are pending.\n",
3341 				ep->desc.bEndpointAddress);
3342 		return -EINVAL;
3343 	}
3344 	return 0;
3345 }
3346 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3347 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3348 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3349 {
3350 	unsigned int max_streams;
3351 
3352 	/* The stream context array size must be a power of two */
3353 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3354 	/*
3355 	 * Find out how many primary stream array entries the host controller
3356 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3357 	 * level page entries), but that's an optional feature for xHCI host
3358 	 * controllers. xHCs must support at least 4 stream IDs.
3359 	 */
3360 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3361 	if (*num_stream_ctxs > max_streams) {
3362 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3363 				max_streams);
3364 		*num_stream_ctxs = max_streams;
3365 		*num_streams = max_streams;
3366 	}
3367 }
3368 
3369 /* Returns an error code if one of the endpoint already has streams.
3370  * This does not change any data structures, it only checks and gathers
3371  * information.
3372  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3373 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3374 		struct usb_device *udev,
3375 		struct usb_host_endpoint **eps, unsigned int num_eps,
3376 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3377 {
3378 	unsigned int max_streams;
3379 	unsigned int endpoint_flag;
3380 	int i;
3381 	int ret;
3382 
3383 	for (i = 0; i < num_eps; i++) {
3384 		ret = xhci_check_streams_endpoint(xhci, udev,
3385 				eps[i], udev->slot_id);
3386 		if (ret < 0)
3387 			return ret;
3388 
3389 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3390 		if (max_streams < (*num_streams - 1)) {
3391 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3392 					eps[i]->desc.bEndpointAddress,
3393 					max_streams);
3394 			*num_streams = max_streams+1;
3395 		}
3396 
3397 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3398 		if (*changed_ep_bitmask & endpoint_flag)
3399 			return -EINVAL;
3400 		*changed_ep_bitmask |= endpoint_flag;
3401 	}
3402 	return 0;
3403 }
3404 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3405 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3406 		struct usb_device *udev,
3407 		struct usb_host_endpoint **eps, unsigned int num_eps)
3408 {
3409 	u32 changed_ep_bitmask = 0;
3410 	unsigned int slot_id;
3411 	unsigned int ep_index;
3412 	unsigned int ep_state;
3413 	int i;
3414 
3415 	slot_id = udev->slot_id;
3416 	if (!xhci->devs[slot_id])
3417 		return 0;
3418 
3419 	for (i = 0; i < num_eps; i++) {
3420 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3421 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3422 		/* Are streams already being freed for the endpoint? */
3423 		if (ep_state & EP_GETTING_NO_STREAMS) {
3424 			xhci_warn(xhci, "WARN Can't disable streams for "
3425 					"endpoint 0x%x, "
3426 					"streams are being disabled already\n",
3427 					eps[i]->desc.bEndpointAddress);
3428 			return 0;
3429 		}
3430 		/* Are there actually any streams to free? */
3431 		if (!(ep_state & EP_HAS_STREAMS) &&
3432 				!(ep_state & EP_GETTING_STREAMS)) {
3433 			xhci_warn(xhci, "WARN Can't disable streams for "
3434 					"endpoint 0x%x, "
3435 					"streams are already disabled!\n",
3436 					eps[i]->desc.bEndpointAddress);
3437 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3438 					"with non-streams endpoint\n");
3439 			return 0;
3440 		}
3441 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3442 	}
3443 	return changed_ep_bitmask;
3444 }
3445 
3446 /*
3447  * The USB device drivers use this function (through the HCD interface in USB
3448  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3449  * coordinate mass storage command queueing across multiple endpoints (basically
3450  * a stream ID == a task ID).
3451  *
3452  * Setting up streams involves allocating the same size stream context array
3453  * for each endpoint and issuing a configure endpoint command for all endpoints.
3454  *
3455  * Don't allow the call to succeed if one endpoint only supports one stream
3456  * (which means it doesn't support streams at all).
3457  *
3458  * Drivers may get less stream IDs than they asked for, if the host controller
3459  * hardware or endpoints claim they can't support the number of requested
3460  * stream IDs.
3461  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3462 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3463 		struct usb_host_endpoint **eps, unsigned int num_eps,
3464 		unsigned int num_streams, gfp_t mem_flags)
3465 {
3466 	int i, ret;
3467 	struct xhci_hcd *xhci;
3468 	struct xhci_virt_device *vdev;
3469 	struct xhci_command *config_cmd;
3470 	struct xhci_input_control_ctx *ctrl_ctx;
3471 	unsigned int ep_index;
3472 	unsigned int num_stream_ctxs;
3473 	unsigned int max_packet;
3474 	unsigned long flags;
3475 	u32 changed_ep_bitmask = 0;
3476 
3477 	if (!eps)
3478 		return -EINVAL;
3479 
3480 	/* Add one to the number of streams requested to account for
3481 	 * stream 0 that is reserved for xHCI usage.
3482 	 */
3483 	num_streams += 1;
3484 	xhci = hcd_to_xhci(hcd);
3485 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3486 			num_streams);
3487 
3488 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3489 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3490 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3491 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3492 		return -ENOSYS;
3493 	}
3494 
3495 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3496 	if (!config_cmd)
3497 		return -ENOMEM;
3498 
3499 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3500 	if (!ctrl_ctx) {
3501 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3502 				__func__);
3503 		xhci_free_command(xhci, config_cmd);
3504 		return -ENOMEM;
3505 	}
3506 
3507 	/* Check to make sure all endpoints are not already configured for
3508 	 * streams.  While we're at it, find the maximum number of streams that
3509 	 * all the endpoints will support and check for duplicate endpoints.
3510 	 */
3511 	spin_lock_irqsave(&xhci->lock, flags);
3512 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3513 			num_eps, &num_streams, &changed_ep_bitmask);
3514 	if (ret < 0) {
3515 		xhci_free_command(xhci, config_cmd);
3516 		spin_unlock_irqrestore(&xhci->lock, flags);
3517 		return ret;
3518 	}
3519 	if (num_streams <= 1) {
3520 		xhci_warn(xhci, "WARN: endpoints can't handle "
3521 				"more than one stream.\n");
3522 		xhci_free_command(xhci, config_cmd);
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		return -EINVAL;
3525 	}
3526 	vdev = xhci->devs[udev->slot_id];
3527 	/* Mark each endpoint as being in transition, so
3528 	 * xhci_urb_enqueue() will reject all URBs.
3529 	 */
3530 	for (i = 0; i < num_eps; i++) {
3531 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3533 	}
3534 	spin_unlock_irqrestore(&xhci->lock, flags);
3535 
3536 	/* Setup internal data structures and allocate HW data structures for
3537 	 * streams (but don't install the HW structures in the input context
3538 	 * until we're sure all memory allocation succeeded).
3539 	 */
3540 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3541 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3542 			num_stream_ctxs, num_streams);
3543 
3544 	for (i = 0; i < num_eps; i++) {
3545 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3547 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3548 				num_stream_ctxs,
3549 				num_streams,
3550 				max_packet, mem_flags);
3551 		if (!vdev->eps[ep_index].stream_info)
3552 			goto cleanup;
3553 		/* Set maxPstreams in endpoint context and update deq ptr to
3554 		 * point to stream context array. FIXME
3555 		 */
3556 	}
3557 
3558 	/* Set up the input context for a configure endpoint command. */
3559 	for (i = 0; i < num_eps; i++) {
3560 		struct xhci_ep_ctx *ep_ctx;
3561 
3562 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3563 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3564 
3565 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3566 				vdev->out_ctx, ep_index);
3567 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3568 				vdev->eps[ep_index].stream_info);
3569 	}
3570 	/* Tell the HW to drop its old copy of the endpoint context info
3571 	 * and add the updated copy from the input context.
3572 	 */
3573 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3574 			vdev->out_ctx, ctrl_ctx,
3575 			changed_ep_bitmask, changed_ep_bitmask);
3576 
3577 	/* Issue and wait for the configure endpoint command */
3578 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3579 			false, false);
3580 
3581 	/* xHC rejected the configure endpoint command for some reason, so we
3582 	 * leave the old ring intact and free our internal streams data
3583 	 * structure.
3584 	 */
3585 	if (ret < 0)
3586 		goto cleanup;
3587 
3588 	spin_lock_irqsave(&xhci->lock, flags);
3589 	for (i = 0; i < num_eps; i++) {
3590 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3591 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3592 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3593 			 udev->slot_id, ep_index);
3594 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3595 	}
3596 	xhci_free_command(xhci, config_cmd);
3597 	spin_unlock_irqrestore(&xhci->lock, flags);
3598 
3599 	for (i = 0; i < num_eps; i++) {
3600 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3601 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3602 	}
3603 	/* Subtract 1 for stream 0, which drivers can't use */
3604 	return num_streams - 1;
3605 
3606 cleanup:
3607 	/* If it didn't work, free the streams! */
3608 	for (i = 0; i < num_eps; i++) {
3609 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3610 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3611 		vdev->eps[ep_index].stream_info = NULL;
3612 		/* FIXME Unset maxPstreams in endpoint context and
3613 		 * update deq ptr to point to normal string ring.
3614 		 */
3615 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3616 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3617 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3618 	}
3619 	xhci_free_command(xhci, config_cmd);
3620 	return -ENOMEM;
3621 }
3622 
3623 /* Transition the endpoint from using streams to being a "normal" endpoint
3624  * without streams.
3625  *
3626  * Modify the endpoint context state, submit a configure endpoint command,
3627  * and free all endpoint rings for streams if that completes successfully.
3628  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3629 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3630 		struct usb_host_endpoint **eps, unsigned int num_eps,
3631 		gfp_t mem_flags)
3632 {
3633 	int i, ret;
3634 	struct xhci_hcd *xhci;
3635 	struct xhci_virt_device *vdev;
3636 	struct xhci_command *command;
3637 	struct xhci_input_control_ctx *ctrl_ctx;
3638 	unsigned int ep_index;
3639 	unsigned long flags;
3640 	u32 changed_ep_bitmask;
3641 
3642 	xhci = hcd_to_xhci(hcd);
3643 	vdev = xhci->devs[udev->slot_id];
3644 
3645 	/* Set up a configure endpoint command to remove the streams rings */
3646 	spin_lock_irqsave(&xhci->lock, flags);
3647 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3648 			udev, eps, num_eps);
3649 	if (changed_ep_bitmask == 0) {
3650 		spin_unlock_irqrestore(&xhci->lock, flags);
3651 		return -EINVAL;
3652 	}
3653 
3654 	/* Use the xhci_command structure from the first endpoint.  We may have
3655 	 * allocated too many, but the driver may call xhci_free_streams() for
3656 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3657 	 */
3658 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3659 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3660 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3661 	if (!ctrl_ctx) {
3662 		spin_unlock_irqrestore(&xhci->lock, flags);
3663 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3664 				__func__);
3665 		return -EINVAL;
3666 	}
3667 
3668 	for (i = 0; i < num_eps; i++) {
3669 		struct xhci_ep_ctx *ep_ctx;
3670 
3671 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3672 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3673 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3674 			EP_GETTING_NO_STREAMS;
3675 
3676 		xhci_endpoint_copy(xhci, command->in_ctx,
3677 				vdev->out_ctx, ep_index);
3678 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3679 				&vdev->eps[ep_index]);
3680 	}
3681 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3682 			vdev->out_ctx, ctrl_ctx,
3683 			changed_ep_bitmask, changed_ep_bitmask);
3684 	spin_unlock_irqrestore(&xhci->lock, flags);
3685 
3686 	/* Issue and wait for the configure endpoint command,
3687 	 * which must succeed.
3688 	 */
3689 	ret = xhci_configure_endpoint(xhci, udev, command,
3690 			false, true);
3691 
3692 	/* xHC rejected the configure endpoint command for some reason, so we
3693 	 * leave the streams rings intact.
3694 	 */
3695 	if (ret < 0)
3696 		return ret;
3697 
3698 	spin_lock_irqsave(&xhci->lock, flags);
3699 	for (i = 0; i < num_eps; i++) {
3700 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3701 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3702 		vdev->eps[ep_index].stream_info = NULL;
3703 		/* FIXME Unset maxPstreams in endpoint context and
3704 		 * update deq ptr to point to normal string ring.
3705 		 */
3706 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3707 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3708 	}
3709 	spin_unlock_irqrestore(&xhci->lock, flags);
3710 
3711 	return 0;
3712 }
3713 
3714 /*
3715  * Deletes endpoint resources for endpoints that were active before a Reset
3716  * Device command, or a Disable Slot command.  The Reset Device command leaves
3717  * the control endpoint intact, whereas the Disable Slot command deletes it.
3718  *
3719  * Must be called with xhci->lock held.
3720  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3721 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3722 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3723 {
3724 	int i;
3725 	unsigned int num_dropped_eps = 0;
3726 	unsigned int drop_flags = 0;
3727 
3728 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3729 		if (virt_dev->eps[i].ring) {
3730 			drop_flags |= 1 << i;
3731 			num_dropped_eps++;
3732 		}
3733 	}
3734 	xhci->num_active_eps -= num_dropped_eps;
3735 	if (num_dropped_eps)
3736 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3737 				"Dropped %u ep ctxs, flags = 0x%x, "
3738 				"%u now active.",
3739 				num_dropped_eps, drop_flags,
3740 				xhci->num_active_eps);
3741 }
3742 
3743 /*
3744  * This submits a Reset Device Command, which will set the device state to 0,
3745  * set the device address to 0, and disable all the endpoints except the default
3746  * control endpoint.  The USB core should come back and call
3747  * xhci_address_device(), and then re-set up the configuration.  If this is
3748  * called because of a usb_reset_and_verify_device(), then the old alternate
3749  * settings will be re-installed through the normal bandwidth allocation
3750  * functions.
3751  *
3752  * Wait for the Reset Device command to finish.  Remove all structures
3753  * associated with the endpoints that were disabled.  Clear the input device
3754  * structure? Reset the control endpoint 0 max packet size?
3755  *
3756  * If the virt_dev to be reset does not exist or does not match the udev,
3757  * it means the device is lost, possibly due to the xHC restore error and
3758  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3759  * re-allocate the device.
3760  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3761 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3762 		struct usb_device *udev)
3763 {
3764 	int ret, i;
3765 	unsigned long flags;
3766 	struct xhci_hcd *xhci;
3767 	unsigned int slot_id;
3768 	struct xhci_virt_device *virt_dev;
3769 	struct xhci_command *reset_device_cmd;
3770 	struct xhci_slot_ctx *slot_ctx;
3771 	int old_active_eps = 0;
3772 
3773 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3774 	if (ret <= 0)
3775 		return ret;
3776 	xhci = hcd_to_xhci(hcd);
3777 	slot_id = udev->slot_id;
3778 	virt_dev = xhci->devs[slot_id];
3779 	if (!virt_dev) {
3780 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3781 				"not exist. Re-allocate the device\n", slot_id);
3782 		ret = xhci_alloc_dev(hcd, udev);
3783 		if (ret == 1)
3784 			return 0;
3785 		else
3786 			return -EINVAL;
3787 	}
3788 
3789 	if (virt_dev->tt_info)
3790 		old_active_eps = virt_dev->tt_info->active_eps;
3791 
3792 	if (virt_dev->udev != udev) {
3793 		/* If the virt_dev and the udev does not match, this virt_dev
3794 		 * may belong to another udev.
3795 		 * Re-allocate the device.
3796 		 */
3797 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3798 				"not match the udev. Re-allocate the device\n",
3799 				slot_id);
3800 		ret = xhci_alloc_dev(hcd, udev);
3801 		if (ret == 1)
3802 			return 0;
3803 		else
3804 			return -EINVAL;
3805 	}
3806 
3807 	/* If device is not setup, there is no point in resetting it */
3808 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3809 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3810 						SLOT_STATE_DISABLED)
3811 		return 0;
3812 
3813 	trace_xhci_discover_or_reset_device(slot_ctx);
3814 
3815 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3816 	/* Allocate the command structure that holds the struct completion.
3817 	 * Assume we're in process context, since the normal device reset
3818 	 * process has to wait for the device anyway.  Storage devices are
3819 	 * reset as part of error handling, so use GFP_NOIO instead of
3820 	 * GFP_KERNEL.
3821 	 */
3822 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3823 	if (!reset_device_cmd) {
3824 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3825 		return -ENOMEM;
3826 	}
3827 
3828 	/* Attempt to submit the Reset Device command to the command ring */
3829 	spin_lock_irqsave(&xhci->lock, flags);
3830 
3831 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3832 	if (ret) {
3833 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3834 		spin_unlock_irqrestore(&xhci->lock, flags);
3835 		goto command_cleanup;
3836 	}
3837 	xhci_ring_cmd_db(xhci);
3838 	spin_unlock_irqrestore(&xhci->lock, flags);
3839 
3840 	/* Wait for the Reset Device command to finish */
3841 	wait_for_completion(reset_device_cmd->completion);
3842 
3843 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3844 	 * unless we tried to reset a slot ID that wasn't enabled,
3845 	 * or the device wasn't in the addressed or configured state.
3846 	 */
3847 	ret = reset_device_cmd->status;
3848 	switch (ret) {
3849 	case COMP_COMMAND_ABORTED:
3850 	case COMP_COMMAND_RING_STOPPED:
3851 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3852 		ret = -ETIME;
3853 		goto command_cleanup;
3854 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3855 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3856 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3857 				slot_id,
3858 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3859 		xhci_dbg(xhci, "Not freeing device rings.\n");
3860 		/* Don't treat this as an error.  May change my mind later. */
3861 		ret = 0;
3862 		goto command_cleanup;
3863 	case COMP_SUCCESS:
3864 		xhci_dbg(xhci, "Successful reset device command.\n");
3865 		break;
3866 	default:
3867 		if (xhci_is_vendor_info_code(xhci, ret))
3868 			break;
3869 		xhci_warn(xhci, "Unknown completion code %u for "
3870 				"reset device command.\n", ret);
3871 		ret = -EINVAL;
3872 		goto command_cleanup;
3873 	}
3874 
3875 	/* Free up host controller endpoint resources */
3876 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3877 		spin_lock_irqsave(&xhci->lock, flags);
3878 		/* Don't delete the default control endpoint resources */
3879 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3880 		spin_unlock_irqrestore(&xhci->lock, flags);
3881 	}
3882 
3883 	/* Everything but endpoint 0 is disabled, so free the rings. */
3884 	for (i = 1; i < 31; i++) {
3885 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3886 
3887 		if (ep->ep_state & EP_HAS_STREAMS) {
3888 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3889 					xhci_get_endpoint_address(i));
3890 			xhci_free_stream_info(xhci, ep->stream_info);
3891 			ep->stream_info = NULL;
3892 			ep->ep_state &= ~EP_HAS_STREAMS;
3893 		}
3894 
3895 		if (ep->ring) {
3896 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3897 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3898 		}
3899 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3900 			xhci_drop_ep_from_interval_table(xhci,
3901 					&virt_dev->eps[i].bw_info,
3902 					virt_dev->bw_table,
3903 					udev,
3904 					&virt_dev->eps[i],
3905 					virt_dev->tt_info);
3906 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3907 	}
3908 	/* If necessary, update the number of active TTs on this root port */
3909 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3910 	virt_dev->flags = 0;
3911 	ret = 0;
3912 
3913 command_cleanup:
3914 	xhci_free_command(xhci, reset_device_cmd);
3915 	return ret;
3916 }
3917 
3918 /*
3919  * At this point, the struct usb_device is about to go away, the device has
3920  * disconnected, and all traffic has been stopped and the endpoints have been
3921  * disabled.  Free any HC data structures associated with that device.
3922  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3923 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3924 {
3925 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3926 	struct xhci_virt_device *virt_dev;
3927 	struct xhci_slot_ctx *slot_ctx;
3928 	unsigned long flags;
3929 	int i, ret;
3930 
3931 	/*
3932 	 * We called pm_runtime_get_noresume when the device was attached.
3933 	 * Decrement the counter here to allow controller to runtime suspend
3934 	 * if no devices remain.
3935 	 */
3936 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3937 		pm_runtime_put_noidle(hcd->self.controller);
3938 
3939 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3940 	/* If the host is halted due to driver unload, we still need to free the
3941 	 * device.
3942 	 */
3943 	if (ret <= 0 && ret != -ENODEV)
3944 		return;
3945 
3946 	virt_dev = xhci->devs[udev->slot_id];
3947 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3948 	trace_xhci_free_dev(slot_ctx);
3949 
3950 	/* Stop any wayward timer functions (which may grab the lock) */
3951 	for (i = 0; i < 31; i++) {
3952 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3953 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3954 	}
3955 	virt_dev->udev = NULL;
3956 	xhci_disable_slot(xhci, udev->slot_id);
3957 
3958 	spin_lock_irqsave(&xhci->lock, flags);
3959 	xhci_free_virt_device(xhci, udev->slot_id);
3960 	spin_unlock_irqrestore(&xhci->lock, flags);
3961 
3962 }
3963 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3964 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3965 {
3966 	struct xhci_command *command;
3967 	unsigned long flags;
3968 	u32 state;
3969 	int ret = 0;
3970 
3971 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3972 	if (!command)
3973 		return -ENOMEM;
3974 
3975 	xhci_debugfs_remove_slot(xhci, slot_id);
3976 
3977 	spin_lock_irqsave(&xhci->lock, flags);
3978 	/* Don't disable the slot if the host controller is dead. */
3979 	state = readl(&xhci->op_regs->status);
3980 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3981 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3982 		spin_unlock_irqrestore(&xhci->lock, flags);
3983 		kfree(command);
3984 		return -ENODEV;
3985 	}
3986 
3987 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3988 				slot_id);
3989 	if (ret) {
3990 		spin_unlock_irqrestore(&xhci->lock, flags);
3991 		kfree(command);
3992 		return ret;
3993 	}
3994 	xhci_ring_cmd_db(xhci);
3995 	spin_unlock_irqrestore(&xhci->lock, flags);
3996 
3997 	wait_for_completion(command->completion);
3998 
3999 	if (command->status != COMP_SUCCESS)
4000 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4001 			  slot_id, command->status);
4002 
4003 	xhci_free_command(xhci, command);
4004 
4005 	return ret;
4006 }
4007 
4008 /*
4009  * Checks if we have enough host controller resources for the default control
4010  * endpoint.
4011  *
4012  * Must be called with xhci->lock held.
4013  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4014 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4015 {
4016 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4017 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4018 				"Not enough ep ctxs: "
4019 				"%u active, need to add 1, limit is %u.",
4020 				xhci->num_active_eps, xhci->limit_active_eps);
4021 		return -ENOMEM;
4022 	}
4023 	xhci->num_active_eps += 1;
4024 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4025 			"Adding 1 ep ctx, %u now active.",
4026 			xhci->num_active_eps);
4027 	return 0;
4028 }
4029 
4030 
4031 /*
4032  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4033  * timed out, or allocating memory failed.  Returns 1 on success.
4034  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4035 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4036 {
4037 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4038 	struct xhci_virt_device *vdev;
4039 	struct xhci_slot_ctx *slot_ctx;
4040 	unsigned long flags;
4041 	int ret, slot_id;
4042 	struct xhci_command *command;
4043 
4044 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4045 	if (!command)
4046 		return 0;
4047 
4048 	spin_lock_irqsave(&xhci->lock, flags);
4049 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4050 	if (ret) {
4051 		spin_unlock_irqrestore(&xhci->lock, flags);
4052 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4053 		xhci_free_command(xhci, command);
4054 		return 0;
4055 	}
4056 	xhci_ring_cmd_db(xhci);
4057 	spin_unlock_irqrestore(&xhci->lock, flags);
4058 
4059 	wait_for_completion(command->completion);
4060 	slot_id = command->slot_id;
4061 
4062 	if (!slot_id || command->status != COMP_SUCCESS) {
4063 		xhci_err(xhci, "Error while assigning device slot ID\n");
4064 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4065 				HCS_MAX_SLOTS(
4066 					readl(&xhci->cap_regs->hcs_params1)));
4067 		xhci_free_command(xhci, command);
4068 		return 0;
4069 	}
4070 
4071 	xhci_free_command(xhci, command);
4072 
4073 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4074 		spin_lock_irqsave(&xhci->lock, flags);
4075 		ret = xhci_reserve_host_control_ep_resources(xhci);
4076 		if (ret) {
4077 			spin_unlock_irqrestore(&xhci->lock, flags);
4078 			xhci_warn(xhci, "Not enough host resources, "
4079 					"active endpoint contexts = %u\n",
4080 					xhci->num_active_eps);
4081 			goto disable_slot;
4082 		}
4083 		spin_unlock_irqrestore(&xhci->lock, flags);
4084 	}
4085 	/* Use GFP_NOIO, since this function can be called from
4086 	 * xhci_discover_or_reset_device(), which may be called as part of
4087 	 * mass storage driver error handling.
4088 	 */
4089 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4090 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4091 		goto disable_slot;
4092 	}
4093 	vdev = xhci->devs[slot_id];
4094 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4095 	trace_xhci_alloc_dev(slot_ctx);
4096 
4097 	udev->slot_id = slot_id;
4098 
4099 	xhci_debugfs_create_slot(xhci, slot_id);
4100 
4101 	/*
4102 	 * If resetting upon resume, we can't put the controller into runtime
4103 	 * suspend if there is a device attached.
4104 	 */
4105 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4106 		pm_runtime_get_noresume(hcd->self.controller);
4107 
4108 	/* Is this a LS or FS device under a HS hub? */
4109 	/* Hub or peripherial? */
4110 	return 1;
4111 
4112 disable_slot:
4113 	xhci_disable_slot(xhci, udev->slot_id);
4114 	xhci_free_virt_device(xhci, udev->slot_id);
4115 
4116 	return 0;
4117 }
4118 
4119 /*
4120  * Issue an Address Device command and optionally send a corresponding
4121  * SetAddress request to the device.
4122  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4123 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4124 			     enum xhci_setup_dev setup)
4125 {
4126 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4127 	unsigned long flags;
4128 	struct xhci_virt_device *virt_dev;
4129 	int ret = 0;
4130 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4131 	struct xhci_slot_ctx *slot_ctx;
4132 	struct xhci_input_control_ctx *ctrl_ctx;
4133 	u64 temp_64;
4134 	struct xhci_command *command = NULL;
4135 
4136 	mutex_lock(&xhci->mutex);
4137 
4138 	if (xhci->xhc_state) {	/* dying, removing or halted */
4139 		ret = -ESHUTDOWN;
4140 		goto out;
4141 	}
4142 
4143 	if (!udev->slot_id) {
4144 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4145 				"Bad Slot ID %d", udev->slot_id);
4146 		ret = -EINVAL;
4147 		goto out;
4148 	}
4149 
4150 	virt_dev = xhci->devs[udev->slot_id];
4151 
4152 	if (WARN_ON(!virt_dev)) {
4153 		/*
4154 		 * In plug/unplug torture test with an NEC controller,
4155 		 * a zero-dereference was observed once due to virt_dev = 0.
4156 		 * Print useful debug rather than crash if it is observed again!
4157 		 */
4158 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4159 			udev->slot_id);
4160 		ret = -EINVAL;
4161 		goto out;
4162 	}
4163 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4164 	trace_xhci_setup_device_slot(slot_ctx);
4165 
4166 	if (setup == SETUP_CONTEXT_ONLY) {
4167 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4168 		    SLOT_STATE_DEFAULT) {
4169 			xhci_dbg(xhci, "Slot already in default state\n");
4170 			goto out;
4171 		}
4172 	}
4173 
4174 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4175 	if (!command) {
4176 		ret = -ENOMEM;
4177 		goto out;
4178 	}
4179 
4180 	command->in_ctx = virt_dev->in_ctx;
4181 
4182 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4183 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4184 	if (!ctrl_ctx) {
4185 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4186 				__func__);
4187 		ret = -EINVAL;
4188 		goto out;
4189 	}
4190 	/*
4191 	 * If this is the first Set Address since device plug-in or
4192 	 * virt_device realloaction after a resume with an xHCI power loss,
4193 	 * then set up the slot context.
4194 	 */
4195 	if (!slot_ctx->dev_info)
4196 		xhci_setup_addressable_virt_dev(xhci, udev);
4197 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4198 	else
4199 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4200 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4201 	ctrl_ctx->drop_flags = 0;
4202 
4203 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4205 
4206 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4207 	spin_lock_irqsave(&xhci->lock, flags);
4208 	trace_xhci_setup_device(virt_dev);
4209 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4210 					udev->slot_id, setup);
4211 	if (ret) {
4212 		spin_unlock_irqrestore(&xhci->lock, flags);
4213 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4214 				"FIXME: allocate a command ring segment");
4215 		goto out;
4216 	}
4217 	xhci_ring_cmd_db(xhci);
4218 	spin_unlock_irqrestore(&xhci->lock, flags);
4219 
4220 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4221 	wait_for_completion(command->completion);
4222 
4223 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4224 	 * the SetAddress() "recovery interval" required by USB and aborting the
4225 	 * command on a timeout.
4226 	 */
4227 	switch (command->status) {
4228 	case COMP_COMMAND_ABORTED:
4229 	case COMP_COMMAND_RING_STOPPED:
4230 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4231 		ret = -ETIME;
4232 		break;
4233 	case COMP_CONTEXT_STATE_ERROR:
4234 	case COMP_SLOT_NOT_ENABLED_ERROR:
4235 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4236 			 act, udev->slot_id);
4237 		ret = -EINVAL;
4238 		break;
4239 	case COMP_USB_TRANSACTION_ERROR:
4240 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4241 
4242 		mutex_unlock(&xhci->mutex);
4243 		ret = xhci_disable_slot(xhci, udev->slot_id);
4244 		xhci_free_virt_device(xhci, udev->slot_id);
4245 		if (!ret)
4246 			xhci_alloc_dev(hcd, udev);
4247 		kfree(command->completion);
4248 		kfree(command);
4249 		return -EPROTO;
4250 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4251 		dev_warn(&udev->dev,
4252 			 "ERROR: Incompatible device for setup %s command\n", act);
4253 		ret = -ENODEV;
4254 		break;
4255 	case COMP_SUCCESS:
4256 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257 			       "Successful setup %s command", act);
4258 		break;
4259 	default:
4260 		xhci_err(xhci,
4261 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4262 			 act, command->status);
4263 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4264 		ret = -EINVAL;
4265 		break;
4266 	}
4267 	if (ret)
4268 		goto out;
4269 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4270 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4271 			"Op regs DCBAA ptr = %#016llx", temp_64);
4272 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273 		"Slot ID %d dcbaa entry @%p = %#016llx",
4274 		udev->slot_id,
4275 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4276 		(unsigned long long)
4277 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4278 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4279 			"Output Context DMA address = %#08llx",
4280 			(unsigned long long)virt_dev->out_ctx->dma);
4281 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4282 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4283 	/*
4284 	 * USB core uses address 1 for the roothubs, so we add one to the
4285 	 * address given back to us by the HC.
4286 	 */
4287 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4288 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4289 	/* Zero the input context control for later use */
4290 	ctrl_ctx->add_flags = 0;
4291 	ctrl_ctx->drop_flags = 0;
4292 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4293 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4294 
4295 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4296 		       "Internal device address = %d",
4297 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4298 out:
4299 	mutex_unlock(&xhci->mutex);
4300 	if (command) {
4301 		kfree(command->completion);
4302 		kfree(command);
4303 	}
4304 	return ret;
4305 }
4306 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4307 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4308 {
4309 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4310 }
4311 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4312 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4313 {
4314 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4315 }
4316 
4317 /*
4318  * Transfer the port index into real index in the HW port status
4319  * registers. Caculate offset between the port's PORTSC register
4320  * and port status base. Divide the number of per port register
4321  * to get the real index. The raw port number bases 1.
4322  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4323 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4324 {
4325 	struct xhci_hub *rhub;
4326 
4327 	rhub = xhci_get_rhub(hcd);
4328 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4329 }
4330 
4331 /*
4332  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4333  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4334  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4335 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4336 			struct usb_device *udev, u16 max_exit_latency)
4337 {
4338 	struct xhci_virt_device *virt_dev;
4339 	struct xhci_command *command;
4340 	struct xhci_input_control_ctx *ctrl_ctx;
4341 	struct xhci_slot_ctx *slot_ctx;
4342 	unsigned long flags;
4343 	int ret;
4344 
4345 	spin_lock_irqsave(&xhci->lock, flags);
4346 
4347 	virt_dev = xhci->devs[udev->slot_id];
4348 
4349 	/*
4350 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4351 	 * xHC was re-initialized. Exit latency will be set later after
4352 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4353 	 */
4354 
4355 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4356 		spin_unlock_irqrestore(&xhci->lock, flags);
4357 		return 0;
4358 	}
4359 
4360 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4361 	command = xhci->lpm_command;
4362 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4363 	if (!ctrl_ctx) {
4364 		spin_unlock_irqrestore(&xhci->lock, flags);
4365 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4366 				__func__);
4367 		return -ENOMEM;
4368 	}
4369 
4370 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4371 	spin_unlock_irqrestore(&xhci->lock, flags);
4372 
4373 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4374 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4375 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4376 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4377 	slot_ctx->dev_state = 0;
4378 
4379 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4380 			"Set up evaluate context for LPM MEL change.");
4381 
4382 	/* Issue and wait for the evaluate context command. */
4383 	ret = xhci_configure_endpoint(xhci, udev, command,
4384 			true, true);
4385 
4386 	if (!ret) {
4387 		spin_lock_irqsave(&xhci->lock, flags);
4388 		virt_dev->current_mel = max_exit_latency;
4389 		spin_unlock_irqrestore(&xhci->lock, flags);
4390 	}
4391 	return ret;
4392 }
4393 
4394 #ifdef CONFIG_PM
4395 
4396 /* BESL to HIRD Encoding array for USB2 LPM */
4397 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4398 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4399 
4400 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4401 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4402 					struct usb_device *udev)
4403 {
4404 	int u2del, besl, besl_host;
4405 	int besl_device = 0;
4406 	u32 field;
4407 
4408 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4409 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4410 
4411 	if (field & USB_BESL_SUPPORT) {
4412 		for (besl_host = 0; besl_host < 16; besl_host++) {
4413 			if (xhci_besl_encoding[besl_host] >= u2del)
4414 				break;
4415 		}
4416 		/* Use baseline BESL value as default */
4417 		if (field & USB_BESL_BASELINE_VALID)
4418 			besl_device = USB_GET_BESL_BASELINE(field);
4419 		else if (field & USB_BESL_DEEP_VALID)
4420 			besl_device = USB_GET_BESL_DEEP(field);
4421 	} else {
4422 		if (u2del <= 50)
4423 			besl_host = 0;
4424 		else
4425 			besl_host = (u2del - 51) / 75 + 1;
4426 	}
4427 
4428 	besl = besl_host + besl_device;
4429 	if (besl > 15)
4430 		besl = 15;
4431 
4432 	return besl;
4433 }
4434 
4435 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4436 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4437 {
4438 	u32 field;
4439 	int l1;
4440 	int besld = 0;
4441 	int hirdm = 0;
4442 
4443 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4444 
4445 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4446 	l1 = udev->l1_params.timeout / 256;
4447 
4448 	/* device has preferred BESLD */
4449 	if (field & USB_BESL_DEEP_VALID) {
4450 		besld = USB_GET_BESL_DEEP(field);
4451 		hirdm = 1;
4452 	}
4453 
4454 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4455 }
4456 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4457 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4458 			struct usb_device *udev, int enable)
4459 {
4460 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4461 	struct xhci_port **ports;
4462 	__le32 __iomem	*pm_addr, *hlpm_addr;
4463 	u32		pm_val, hlpm_val, field;
4464 	unsigned int	port_num;
4465 	unsigned long	flags;
4466 	int		hird, exit_latency;
4467 	int		ret;
4468 
4469 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4470 		return -EPERM;
4471 
4472 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4473 			!udev->lpm_capable)
4474 		return -EPERM;
4475 
4476 	if (!udev->parent || udev->parent->parent ||
4477 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4478 		return -EPERM;
4479 
4480 	if (udev->usb2_hw_lpm_capable != 1)
4481 		return -EPERM;
4482 
4483 	spin_lock_irqsave(&xhci->lock, flags);
4484 
4485 	ports = xhci->usb2_rhub.ports;
4486 	port_num = udev->portnum - 1;
4487 	pm_addr = ports[port_num]->addr + PORTPMSC;
4488 	pm_val = readl(pm_addr);
4489 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4490 
4491 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4492 			enable ? "enable" : "disable", port_num + 1);
4493 
4494 	if (enable) {
4495 		/* Host supports BESL timeout instead of HIRD */
4496 		if (udev->usb2_hw_lpm_besl_capable) {
4497 			/* if device doesn't have a preferred BESL value use a
4498 			 * default one which works with mixed HIRD and BESL
4499 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4500 			 */
4501 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4502 			if ((field & USB_BESL_SUPPORT) &&
4503 			    (field & USB_BESL_BASELINE_VALID))
4504 				hird = USB_GET_BESL_BASELINE(field);
4505 			else
4506 				hird = udev->l1_params.besl;
4507 
4508 			exit_latency = xhci_besl_encoding[hird];
4509 			spin_unlock_irqrestore(&xhci->lock, flags);
4510 
4511 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4512 			 * input context for link powermanagement evaluate
4513 			 * context commands. It is protected by hcd->bandwidth
4514 			 * mutex and is shared by all devices. We need to set
4515 			 * the max ext latency in USB 2 BESL LPM as well, so
4516 			 * use the same mutex and xhci_change_max_exit_latency()
4517 			 */
4518 			mutex_lock(hcd->bandwidth_mutex);
4519 			ret = xhci_change_max_exit_latency(xhci, udev,
4520 							   exit_latency);
4521 			mutex_unlock(hcd->bandwidth_mutex);
4522 
4523 			if (ret < 0)
4524 				return ret;
4525 			spin_lock_irqsave(&xhci->lock, flags);
4526 
4527 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4528 			writel(hlpm_val, hlpm_addr);
4529 			/* flush write */
4530 			readl(hlpm_addr);
4531 		} else {
4532 			hird = xhci_calculate_hird_besl(xhci, udev);
4533 		}
4534 
4535 		pm_val &= ~PORT_HIRD_MASK;
4536 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4537 		writel(pm_val, pm_addr);
4538 		pm_val = readl(pm_addr);
4539 		pm_val |= PORT_HLE;
4540 		writel(pm_val, pm_addr);
4541 		/* flush write */
4542 		readl(pm_addr);
4543 	} else {
4544 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4545 		writel(pm_val, pm_addr);
4546 		/* flush write */
4547 		readl(pm_addr);
4548 		if (udev->usb2_hw_lpm_besl_capable) {
4549 			spin_unlock_irqrestore(&xhci->lock, flags);
4550 			mutex_lock(hcd->bandwidth_mutex);
4551 			xhci_change_max_exit_latency(xhci, udev, 0);
4552 			mutex_unlock(hcd->bandwidth_mutex);
4553 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4554 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4555 					   100, 10000);
4556 			return 0;
4557 		}
4558 	}
4559 
4560 	spin_unlock_irqrestore(&xhci->lock, flags);
4561 	return 0;
4562 }
4563 
4564 /* check if a usb2 port supports a given extened capability protocol
4565  * only USB2 ports extended protocol capability values are cached.
4566  * Return 1 if capability is supported
4567  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4568 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4569 					   unsigned capability)
4570 {
4571 	u32 port_offset, port_count;
4572 	int i;
4573 
4574 	for (i = 0; i < xhci->num_ext_caps; i++) {
4575 		if (xhci->ext_caps[i] & capability) {
4576 			/* port offsets starts at 1 */
4577 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4578 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4579 			if (port >= port_offset &&
4580 			    port < port_offset + port_count)
4581 				return 1;
4582 		}
4583 	}
4584 	return 0;
4585 }
4586 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4587 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4588 {
4589 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4590 	int		portnum = udev->portnum - 1;
4591 
4592 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4593 		return 0;
4594 
4595 	/* we only support lpm for non-hub device connected to root hub yet */
4596 	if (!udev->parent || udev->parent->parent ||
4597 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4598 		return 0;
4599 
4600 	if (xhci->hw_lpm_support == 1 &&
4601 			xhci_check_usb2_port_capability(
4602 				xhci, portnum, XHCI_HLC)) {
4603 		udev->usb2_hw_lpm_capable = 1;
4604 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4605 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4606 		if (xhci_check_usb2_port_capability(xhci, portnum,
4607 					XHCI_BLC))
4608 			udev->usb2_hw_lpm_besl_capable = 1;
4609 	}
4610 
4611 	return 0;
4612 }
4613 
4614 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4615 
4616 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4617 static unsigned long long xhci_service_interval_to_ns(
4618 		struct usb_endpoint_descriptor *desc)
4619 {
4620 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4621 }
4622 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4623 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4624 		enum usb3_link_state state)
4625 {
4626 	unsigned long long sel;
4627 	unsigned long long pel;
4628 	unsigned int max_sel_pel;
4629 	char *state_name;
4630 
4631 	switch (state) {
4632 	case USB3_LPM_U1:
4633 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4634 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4635 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4636 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4637 		state_name = "U1";
4638 		break;
4639 	case USB3_LPM_U2:
4640 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4641 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4642 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4643 		state_name = "U2";
4644 		break;
4645 	default:
4646 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4647 				__func__);
4648 		return USB3_LPM_DISABLED;
4649 	}
4650 
4651 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4652 		return USB3_LPM_DEVICE_INITIATED;
4653 
4654 	if (sel > max_sel_pel)
4655 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4656 				"due to long SEL %llu ms\n",
4657 				state_name, sel);
4658 	else
4659 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4660 				"due to long PEL %llu ms\n",
4661 				state_name, pel);
4662 	return USB3_LPM_DISABLED;
4663 }
4664 
4665 /* The U1 timeout should be the maximum of the following values:
4666  *  - For control endpoints, U1 system exit latency (SEL) * 3
4667  *  - For bulk endpoints, U1 SEL * 5
4668  *  - For interrupt endpoints:
4669  *    - Notification EPs, U1 SEL * 3
4670  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4671  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4672  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4673 static unsigned long long xhci_calculate_intel_u1_timeout(
4674 		struct usb_device *udev,
4675 		struct usb_endpoint_descriptor *desc)
4676 {
4677 	unsigned long long timeout_ns;
4678 	int ep_type;
4679 	int intr_type;
4680 
4681 	ep_type = usb_endpoint_type(desc);
4682 	switch (ep_type) {
4683 	case USB_ENDPOINT_XFER_CONTROL:
4684 		timeout_ns = udev->u1_params.sel * 3;
4685 		break;
4686 	case USB_ENDPOINT_XFER_BULK:
4687 		timeout_ns = udev->u1_params.sel * 5;
4688 		break;
4689 	case USB_ENDPOINT_XFER_INT:
4690 		intr_type = usb_endpoint_interrupt_type(desc);
4691 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4692 			timeout_ns = udev->u1_params.sel * 3;
4693 			break;
4694 		}
4695 		/* Otherwise the calculation is the same as isoc eps */
4696 		fallthrough;
4697 	case USB_ENDPOINT_XFER_ISOC:
4698 		timeout_ns = xhci_service_interval_to_ns(desc);
4699 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4700 		if (timeout_ns < udev->u1_params.sel * 2)
4701 			timeout_ns = udev->u1_params.sel * 2;
4702 		break;
4703 	default:
4704 		return 0;
4705 	}
4706 
4707 	return timeout_ns;
4708 }
4709 
4710 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4711 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4712 		struct usb_device *udev,
4713 		struct usb_endpoint_descriptor *desc)
4714 {
4715 	unsigned long long timeout_ns;
4716 
4717 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4718 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4719 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4720 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4721 			return USB3_LPM_DISABLED;
4722 		}
4723 	}
4724 
4725 	if (xhci->quirks & XHCI_INTEL_HOST)
4726 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4727 	else
4728 		timeout_ns = udev->u1_params.sel;
4729 
4730 	/* The U1 timeout is encoded in 1us intervals.
4731 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4732 	 */
4733 	if (timeout_ns == USB3_LPM_DISABLED)
4734 		timeout_ns = 1;
4735 	else
4736 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4737 
4738 	/* If the necessary timeout value is bigger than what we can set in the
4739 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4740 	 */
4741 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4742 		return timeout_ns;
4743 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4744 			"due to long timeout %llu ms\n", timeout_ns);
4745 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4746 }
4747 
4748 /* The U2 timeout should be the maximum of:
4749  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4750  *  - largest bInterval of any active periodic endpoint (to avoid going
4751  *    into lower power link states between intervals).
4752  *  - the U2 Exit Latency of the device
4753  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4754 static unsigned long long xhci_calculate_intel_u2_timeout(
4755 		struct usb_device *udev,
4756 		struct usb_endpoint_descriptor *desc)
4757 {
4758 	unsigned long long timeout_ns;
4759 	unsigned long long u2_del_ns;
4760 
4761 	timeout_ns = 10 * 1000 * 1000;
4762 
4763 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4764 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4765 		timeout_ns = xhci_service_interval_to_ns(desc);
4766 
4767 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4768 	if (u2_del_ns > timeout_ns)
4769 		timeout_ns = u2_del_ns;
4770 
4771 	return timeout_ns;
4772 }
4773 
4774 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4775 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4776 		struct usb_device *udev,
4777 		struct usb_endpoint_descriptor *desc)
4778 {
4779 	unsigned long long timeout_ns;
4780 
4781 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4782 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4783 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4784 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4785 			return USB3_LPM_DISABLED;
4786 		}
4787 	}
4788 
4789 	if (xhci->quirks & XHCI_INTEL_HOST)
4790 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4791 	else
4792 		timeout_ns = udev->u2_params.sel;
4793 
4794 	/* The U2 timeout is encoded in 256us intervals */
4795 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4796 	/* If the necessary timeout value is bigger than what we can set in the
4797 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4798 	 */
4799 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4800 		return timeout_ns;
4801 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4802 			"due to long timeout %llu ms\n", timeout_ns);
4803 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4804 }
4805 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4806 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4807 		struct usb_device *udev,
4808 		struct usb_endpoint_descriptor *desc,
4809 		enum usb3_link_state state,
4810 		u16 *timeout)
4811 {
4812 	if (state == USB3_LPM_U1)
4813 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4814 	else if (state == USB3_LPM_U2)
4815 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4816 
4817 	return USB3_LPM_DISABLED;
4818 }
4819 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4820 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4821 		struct usb_device *udev,
4822 		struct usb_endpoint_descriptor *desc,
4823 		enum usb3_link_state state,
4824 		u16 *timeout)
4825 {
4826 	u16 alt_timeout;
4827 
4828 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4829 		desc, state, timeout);
4830 
4831 	/* If we found we can't enable hub-initiated LPM, and
4832 	 * the U1 or U2 exit latency was too high to allow
4833 	 * device-initiated LPM as well, then we will disable LPM
4834 	 * for this device, so stop searching any further.
4835 	 */
4836 	if (alt_timeout == USB3_LPM_DISABLED) {
4837 		*timeout = alt_timeout;
4838 		return -E2BIG;
4839 	}
4840 	if (alt_timeout > *timeout)
4841 		*timeout = alt_timeout;
4842 	return 0;
4843 }
4844 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4845 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4846 		struct usb_device *udev,
4847 		struct usb_host_interface *alt,
4848 		enum usb3_link_state state,
4849 		u16 *timeout)
4850 {
4851 	int j;
4852 
4853 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4854 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4855 					&alt->endpoint[j].desc, state, timeout))
4856 			return -E2BIG;
4857 		continue;
4858 	}
4859 	return 0;
4860 }
4861 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4862 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4863 		enum usb3_link_state state)
4864 {
4865 	struct usb_device *parent;
4866 	unsigned int num_hubs;
4867 
4868 	if (state == USB3_LPM_U2)
4869 		return 0;
4870 
4871 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4872 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4873 			parent = parent->parent)
4874 		num_hubs++;
4875 
4876 	if (num_hubs < 2)
4877 		return 0;
4878 
4879 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4880 			" below second-tier hub.\n");
4881 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4882 			"to decrease power consumption.\n");
4883 	return -E2BIG;
4884 }
4885 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4886 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4887 		struct usb_device *udev,
4888 		enum usb3_link_state state)
4889 {
4890 	if (xhci->quirks & XHCI_INTEL_HOST)
4891 		return xhci_check_intel_tier_policy(udev, state);
4892 	else
4893 		return 0;
4894 }
4895 
4896 /* Returns the U1 or U2 timeout that should be enabled.
4897  * If the tier check or timeout setting functions return with a non-zero exit
4898  * code, that means the timeout value has been finalized and we shouldn't look
4899  * at any more endpoints.
4900  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4901 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4902 			struct usb_device *udev, enum usb3_link_state state)
4903 {
4904 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4905 	struct usb_host_config *config;
4906 	char *state_name;
4907 	int i;
4908 	u16 timeout = USB3_LPM_DISABLED;
4909 
4910 	if (state == USB3_LPM_U1)
4911 		state_name = "U1";
4912 	else if (state == USB3_LPM_U2)
4913 		state_name = "U2";
4914 	else {
4915 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4916 				state);
4917 		return timeout;
4918 	}
4919 
4920 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4921 		return timeout;
4922 
4923 	/* Gather some information about the currently installed configuration
4924 	 * and alternate interface settings.
4925 	 */
4926 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4927 			state, &timeout))
4928 		return timeout;
4929 
4930 	config = udev->actconfig;
4931 	if (!config)
4932 		return timeout;
4933 
4934 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4935 		struct usb_driver *driver;
4936 		struct usb_interface *intf = config->interface[i];
4937 
4938 		if (!intf)
4939 			continue;
4940 
4941 		/* Check if any currently bound drivers want hub-initiated LPM
4942 		 * disabled.
4943 		 */
4944 		if (intf->dev.driver) {
4945 			driver = to_usb_driver(intf->dev.driver);
4946 			if (driver && driver->disable_hub_initiated_lpm) {
4947 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4948 					state_name, driver->name);
4949 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4950 								      state);
4951 				if (timeout == USB3_LPM_DISABLED)
4952 					return timeout;
4953 			}
4954 		}
4955 
4956 		/* Not sure how this could happen... */
4957 		if (!intf->cur_altsetting)
4958 			continue;
4959 
4960 		if (xhci_update_timeout_for_interface(xhci, udev,
4961 					intf->cur_altsetting,
4962 					state, &timeout))
4963 			return timeout;
4964 	}
4965 	return timeout;
4966 }
4967 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4968 static int calculate_max_exit_latency(struct usb_device *udev,
4969 		enum usb3_link_state state_changed,
4970 		u16 hub_encoded_timeout)
4971 {
4972 	unsigned long long u1_mel_us = 0;
4973 	unsigned long long u2_mel_us = 0;
4974 	unsigned long long mel_us = 0;
4975 	bool disabling_u1;
4976 	bool disabling_u2;
4977 	bool enabling_u1;
4978 	bool enabling_u2;
4979 
4980 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4981 			hub_encoded_timeout == USB3_LPM_DISABLED);
4982 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4983 			hub_encoded_timeout == USB3_LPM_DISABLED);
4984 
4985 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4986 			hub_encoded_timeout != USB3_LPM_DISABLED);
4987 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4988 			hub_encoded_timeout != USB3_LPM_DISABLED);
4989 
4990 	/* If U1 was already enabled and we're not disabling it,
4991 	 * or we're going to enable U1, account for the U1 max exit latency.
4992 	 */
4993 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4994 			enabling_u1)
4995 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4996 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4997 			enabling_u2)
4998 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4999 
5000 	if (u1_mel_us > u2_mel_us)
5001 		mel_us = u1_mel_us;
5002 	else
5003 		mel_us = u2_mel_us;
5004 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5005 	if (mel_us > MAX_EXIT) {
5006 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5007 				"is too big.\n", mel_us);
5008 		return -E2BIG;
5009 	}
5010 	return mel_us;
5011 }
5012 
5013 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5014 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5015 			struct usb_device *udev, enum usb3_link_state state)
5016 {
5017 	struct xhci_hcd	*xhci;
5018 	struct xhci_port *port;
5019 	u16 hub_encoded_timeout;
5020 	int mel;
5021 	int ret;
5022 
5023 	xhci = hcd_to_xhci(hcd);
5024 	/* The LPM timeout values are pretty host-controller specific, so don't
5025 	 * enable hub-initiated timeouts unless the vendor has provided
5026 	 * information about their timeout algorithm.
5027 	 */
5028 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5029 			!xhci->devs[udev->slot_id])
5030 		return USB3_LPM_DISABLED;
5031 
5032 	/* If connected to root port then check port can handle lpm */
5033 	if (udev->parent && !udev->parent->parent) {
5034 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5035 		if (port->lpm_incapable)
5036 			return USB3_LPM_DISABLED;
5037 	}
5038 
5039 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5040 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5041 	if (mel < 0) {
5042 		/* Max Exit Latency is too big, disable LPM. */
5043 		hub_encoded_timeout = USB3_LPM_DISABLED;
5044 		mel = 0;
5045 	}
5046 
5047 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5048 	if (ret)
5049 		return ret;
5050 	return hub_encoded_timeout;
5051 }
5052 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5053 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5054 			struct usb_device *udev, enum usb3_link_state state)
5055 {
5056 	struct xhci_hcd	*xhci;
5057 	u16 mel;
5058 
5059 	xhci = hcd_to_xhci(hcd);
5060 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5061 			!xhci->devs[udev->slot_id])
5062 		return 0;
5063 
5064 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5065 	return xhci_change_max_exit_latency(xhci, udev, mel);
5066 }
5067 #else /* CONFIG_PM */
5068 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5069 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5070 				struct usb_device *udev, int enable)
5071 {
5072 	return 0;
5073 }
5074 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5075 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5076 {
5077 	return 0;
5078 }
5079 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5080 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5081 			struct usb_device *udev, enum usb3_link_state state)
5082 {
5083 	return USB3_LPM_DISABLED;
5084 }
5085 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5086 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5087 			struct usb_device *udev, enum usb3_link_state state)
5088 {
5089 	return 0;
5090 }
5091 #endif	/* CONFIG_PM */
5092 
5093 /*-------------------------------------------------------------------------*/
5094 
5095 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5096  * internal data structures for the device.
5097  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5098 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5099 			struct usb_tt *tt, gfp_t mem_flags)
5100 {
5101 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5102 	struct xhci_virt_device *vdev;
5103 	struct xhci_command *config_cmd;
5104 	struct xhci_input_control_ctx *ctrl_ctx;
5105 	struct xhci_slot_ctx *slot_ctx;
5106 	unsigned long flags;
5107 	unsigned think_time;
5108 	int ret;
5109 
5110 	/* Ignore root hubs */
5111 	if (!hdev->parent)
5112 		return 0;
5113 
5114 	vdev = xhci->devs[hdev->slot_id];
5115 	if (!vdev) {
5116 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5117 		return -EINVAL;
5118 	}
5119 
5120 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5121 	if (!config_cmd)
5122 		return -ENOMEM;
5123 
5124 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5125 	if (!ctrl_ctx) {
5126 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5127 				__func__);
5128 		xhci_free_command(xhci, config_cmd);
5129 		return -ENOMEM;
5130 	}
5131 
5132 	spin_lock_irqsave(&xhci->lock, flags);
5133 	if (hdev->speed == USB_SPEED_HIGH &&
5134 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5135 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5136 		xhci_free_command(xhci, config_cmd);
5137 		spin_unlock_irqrestore(&xhci->lock, flags);
5138 		return -ENOMEM;
5139 	}
5140 
5141 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5142 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5143 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5144 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5145 	/*
5146 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5147 	 * but it may be already set to 1 when setup an xHCI virtual
5148 	 * device, so clear it anyway.
5149 	 */
5150 	if (tt->multi)
5151 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5152 	else if (hdev->speed == USB_SPEED_FULL)
5153 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5154 
5155 	if (xhci->hci_version > 0x95) {
5156 		xhci_dbg(xhci, "xHCI version %x needs hub "
5157 				"TT think time and number of ports\n",
5158 				(unsigned int) xhci->hci_version);
5159 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5160 		/* Set TT think time - convert from ns to FS bit times.
5161 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5162 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5163 		 *
5164 		 * xHCI 1.0: this field shall be 0 if the device is not a
5165 		 * High-spped hub.
5166 		 */
5167 		think_time = tt->think_time;
5168 		if (think_time != 0)
5169 			think_time = (think_time / 666) - 1;
5170 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5171 			slot_ctx->tt_info |=
5172 				cpu_to_le32(TT_THINK_TIME(think_time));
5173 	} else {
5174 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5175 				"TT think time or number of ports\n",
5176 				(unsigned int) xhci->hci_version);
5177 	}
5178 	slot_ctx->dev_state = 0;
5179 	spin_unlock_irqrestore(&xhci->lock, flags);
5180 
5181 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5182 			(xhci->hci_version > 0x95) ?
5183 			"configure endpoint" : "evaluate context");
5184 
5185 	/* Issue and wait for the configure endpoint or
5186 	 * evaluate context command.
5187 	 */
5188 	if (xhci->hci_version > 0x95)
5189 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5190 				false, false);
5191 	else
5192 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5193 				true, false);
5194 
5195 	xhci_free_command(xhci, config_cmd);
5196 	return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5199 
xhci_get_frame(struct usb_hcd * hcd)5200 static int xhci_get_frame(struct usb_hcd *hcd)
5201 {
5202 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5203 	/* EHCI mods by the periodic size.  Why? */
5204 	return readl(&xhci->run_regs->microframe_index) >> 3;
5205 }
5206 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5207 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5208 {
5209 	struct xhci_hcd		*xhci;
5210 	/*
5211 	 * TODO: Check with DWC3 clients for sysdev according to
5212 	 * quirks
5213 	 */
5214 	struct device		*dev = hcd->self.sysdev;
5215 	unsigned int		minor_rev;
5216 	int			retval;
5217 
5218 	/* Accept arbitrarily long scatter-gather lists */
5219 	hcd->self.sg_tablesize = ~0;
5220 
5221 	/* support to build packet from discontinuous buffers */
5222 	hcd->self.no_sg_constraint = 1;
5223 
5224 	/* XHCI controllers don't stop the ep queue on short packets :| */
5225 	hcd->self.no_stop_on_short = 1;
5226 
5227 	xhci = hcd_to_xhci(hcd);
5228 
5229 	if (usb_hcd_is_primary_hcd(hcd)) {
5230 		xhci->main_hcd = hcd;
5231 		xhci->usb2_rhub.hcd = hcd;
5232 		/* Mark the first roothub as being USB 2.0.
5233 		 * The xHCI driver will register the USB 3.0 roothub.
5234 		 */
5235 		hcd->speed = HCD_USB2;
5236 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5237 		/*
5238 		 * USB 2.0 roothub under xHCI has an integrated TT,
5239 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5240 		 * companion controller.
5241 		 */
5242 		hcd->has_tt = 1;
5243 	} else {
5244 		/*
5245 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5246 		 * should return 0x31 for sbrn, or that the minor revision
5247 		 * is a two digit BCD containig minor and sub-minor numbers.
5248 		 * This was later clarified in xHCI 1.2.
5249 		 *
5250 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5251 		 * minor revision set to 0x1 instead of 0x10.
5252 		 */
5253 		if (xhci->usb3_rhub.min_rev == 0x1)
5254 			minor_rev = 1;
5255 		else
5256 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5257 
5258 		switch (minor_rev) {
5259 		case 2:
5260 			hcd->speed = HCD_USB32;
5261 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5262 			hcd->self.root_hub->rx_lanes = 2;
5263 			hcd->self.root_hub->tx_lanes = 2;
5264 			break;
5265 		case 1:
5266 			hcd->speed = HCD_USB31;
5267 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5268 			break;
5269 		}
5270 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5271 			  minor_rev,
5272 			  minor_rev ? "Enhanced " : "");
5273 
5274 		xhci->usb3_rhub.hcd = hcd;
5275 		/* xHCI private pointer was set in xhci_pci_probe for the second
5276 		 * registered roothub.
5277 		 */
5278 		return 0;
5279 	}
5280 
5281 	mutex_init(&xhci->mutex);
5282 	xhci->cap_regs = hcd->regs;
5283 	xhci->op_regs = hcd->regs +
5284 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5285 	xhci->run_regs = hcd->regs +
5286 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5287 	/* Cache read-only capability registers */
5288 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5289 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5290 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5291 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5292 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5293 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5294 	if (xhci->hci_version > 0x100)
5295 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5296 
5297 	xhci->quirks |= quirks;
5298 
5299 	get_quirks(dev, xhci);
5300 
5301 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5302 	 * success event after a short transfer. This quirk will ignore such
5303 	 * spurious event.
5304 	 */
5305 	if (xhci->hci_version > 0x96)
5306 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5307 
5308 	/* Make sure the HC is halted. */
5309 	retval = xhci_halt(xhci);
5310 	if (retval)
5311 		return retval;
5312 
5313 	xhci_zero_64b_regs(xhci);
5314 
5315 	xhci_dbg(xhci, "Resetting HCD\n");
5316 	/* Reset the internal HC memory state and registers. */
5317 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5318 	if (retval)
5319 		return retval;
5320 	xhci_dbg(xhci, "Reset complete\n");
5321 
5322 	/*
5323 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5324 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5325 	 * address memory pointers actually. So, this driver clears the AC64
5326 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5327 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5328 	 */
5329 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5330 		xhci->hcc_params &= ~BIT(0);
5331 
5332 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5333 	 * if xHC supports 64-bit addressing */
5334 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5335 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5336 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5337 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5338 	} else {
5339 		/*
5340 		 * This is to avoid error in cases where a 32-bit USB
5341 		 * controller is used on a 64-bit capable system.
5342 		 */
5343 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5344 		if (retval)
5345 			return retval;
5346 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5347 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5348 	}
5349 
5350 	xhci_dbg(xhci, "Calling HCD init\n");
5351 	/* Initialize HCD and host controller data structures. */
5352 	retval = xhci_init(hcd);
5353 	if (retval)
5354 		return retval;
5355 	xhci_dbg(xhci, "Called HCD init\n");
5356 
5357 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5358 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5359 
5360 	return 0;
5361 }
5362 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5363 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5364 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5365 		struct usb_host_endpoint *ep)
5366 {
5367 	struct xhci_hcd *xhci;
5368 	struct usb_device *udev;
5369 	unsigned int slot_id;
5370 	unsigned int ep_index;
5371 	unsigned long flags;
5372 
5373 	xhci = hcd_to_xhci(hcd);
5374 
5375 	spin_lock_irqsave(&xhci->lock, flags);
5376 	udev = (struct usb_device *)ep->hcpriv;
5377 	slot_id = udev->slot_id;
5378 	ep_index = xhci_get_endpoint_index(&ep->desc);
5379 
5380 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5381 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5382 	spin_unlock_irqrestore(&xhci->lock, flags);
5383 }
5384 
5385 static const struct hc_driver xhci_hc_driver = {
5386 	.description =		"xhci-hcd",
5387 	.product_desc =		"xHCI Host Controller",
5388 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5389 
5390 	/*
5391 	 * generic hardware linkage
5392 	 */
5393 	.irq =			xhci_irq,
5394 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5395 				HCD_BH,
5396 
5397 	/*
5398 	 * basic lifecycle operations
5399 	 */
5400 	.reset =		NULL, /* set in xhci_init_driver() */
5401 	.start =		xhci_run,
5402 	.stop =			xhci_stop,
5403 	.shutdown =		xhci_shutdown,
5404 
5405 	/*
5406 	 * managing i/o requests and associated device resources
5407 	 */
5408 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5409 	.urb_enqueue =		xhci_urb_enqueue,
5410 	.urb_dequeue =		xhci_urb_dequeue,
5411 	.alloc_dev =		xhci_alloc_dev,
5412 	.free_dev =		xhci_free_dev,
5413 	.alloc_streams =	xhci_alloc_streams,
5414 	.free_streams =		xhci_free_streams,
5415 	.add_endpoint =		xhci_add_endpoint,
5416 	.drop_endpoint =	xhci_drop_endpoint,
5417 	.endpoint_disable =	xhci_endpoint_disable,
5418 	.endpoint_reset =	xhci_endpoint_reset,
5419 	.check_bandwidth =	xhci_check_bandwidth,
5420 	.reset_bandwidth =	xhci_reset_bandwidth,
5421 	.address_device =	xhci_address_device,
5422 	.enable_device =	xhci_enable_device,
5423 	.update_hub_device =	xhci_update_hub_device,
5424 	.reset_device =		xhci_discover_or_reset_device,
5425 
5426 	/*
5427 	 * scheduling support
5428 	 */
5429 	.get_frame_number =	xhci_get_frame,
5430 
5431 	/*
5432 	 * root hub support
5433 	 */
5434 	.hub_control =		xhci_hub_control,
5435 	.hub_status_data =	xhci_hub_status_data,
5436 	.bus_suspend =		xhci_bus_suspend,
5437 	.bus_resume =		xhci_bus_resume,
5438 	.get_resuming_ports =	xhci_get_resuming_ports,
5439 
5440 	/*
5441 	 * call back when device connected and addressed
5442 	 */
5443 	.update_device =        xhci_update_device,
5444 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5445 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5446 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5447 	.find_raw_port_number =	xhci_find_raw_port_number,
5448 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5449 };
5450 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5451 void xhci_init_driver(struct hc_driver *drv,
5452 		      const struct xhci_driver_overrides *over)
5453 {
5454 	BUG_ON(!over);
5455 
5456 	/* Copy the generic table to drv then apply the overrides */
5457 	*drv = xhci_hc_driver;
5458 
5459 	if (over) {
5460 		drv->hcd_priv_size += over->extra_priv_size;
5461 		if (over->reset)
5462 			drv->reset = over->reset;
5463 		if (over->start)
5464 			drv->start = over->start;
5465 		if (over->check_bandwidth)
5466 			drv->check_bandwidth = over->check_bandwidth;
5467 		if (over->reset_bandwidth)
5468 			drv->reset_bandwidth = over->reset_bandwidth;
5469 		if (over->update_hub_device)
5470 			drv->update_hub_device = over->update_hub_device;
5471 	}
5472 }
5473 EXPORT_SYMBOL_GPL(xhci_init_driver);
5474 
5475 MODULE_DESCRIPTION(DRIVER_DESC);
5476 MODULE_AUTHOR(DRIVER_AUTHOR);
5477 MODULE_LICENSE("GPL");
5478 
xhci_hcd_init(void)5479 static int __init xhci_hcd_init(void)
5480 {
5481 	/*
5482 	 * Check the compiler generated sizes of structures that must be laid
5483 	 * out in specific ways for hardware access.
5484 	 */
5485 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5486 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5487 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5488 	/* xhci_device_control has eight fields, and also
5489 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5490 	 */
5491 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5492 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5493 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5494 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5495 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5496 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5497 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5498 
5499 	if (usb_disabled())
5500 		return -ENODEV;
5501 
5502 	xhci_debugfs_create_root();
5503 
5504 	return 0;
5505 }
5506 
5507 /*
5508  * If an init function is provided, an exit function must also be provided
5509  * to allow module unload.
5510  */
xhci_hcd_fini(void)5511 static void __exit xhci_hcd_fini(void)
5512 {
5513 	xhci_debugfs_remove_root();
5514 }
5515 
5516 module_init(xhci_hcd_init);
5517 module_exit(xhci_hcd_fini);
5518